
 1

New User To Technical Expert – Solaris Bookshelf

Stewart Watkiss

Volume

1

Solaris

User Guide

 i

Copyright

All rights to this document are retained by the author Stewart Watkiss.

The document is made freely available over the Internet and may be printed for
personal use or to pass on to a friend, colleague or family member provided that this
copyright message is included in the document.

The document however cannot be sold for profit, whether as a computer file, printed
document or any other form without written permission of the author. No part of the
document may be copied or included into other works without the written permission
of the author.

Whilst I do not forbid the electronic distribution of this document it is discouraged.
Instead please direct them to the web page at http://www.watkissonline.co.uk where
the latest version is referenced.

If the document is distributed in electronic format then the following rules must be
observed:

This message must be included as part of the document.
The file must be in its original format without any modification (i.e. the document is
provided in Portable Document Format and must be retained in this format).
The document may not be divided or sectioned other than how it is when downloaded,
the individual parts may be distributed separately however each section must have this
copyright message with it.

If in doubt about any of the above then you should E-mail the author for clarification.
You should also E-mail the author if permission is required to go outside of the rules
of these conditions. E-mail solarisbook@watkissonline.co.uk

If you do not agree with the conditions above then you should immediately destroy
any copies (electronic, printed or otherwise) that you may have.

I hope you find the document useful.

Stewart Watkiss

ii

7

 iii

Contents

Preface to Bookshelf...vii

Introduction to this book ..ix

Chapter 1 : THE UNIX OPERATING SYSTEM ..1

What is an Operating System ..3

More About UNIX ...4

The difference with Solaris ..5

Chapter 2 : GETTING STARTED...7

The Login ...9
Logging Directly into a Local Machine ..9
Logging in Over a Network..11

Exiting (logout)...13

Important Points for New Users ..14

Chapter 3 : SHELLS...15

What is a shell?...17
The Various Different Shells ..17
The Shell Prompt ...19

Chapter 4 : COMMANDS AND PROGRAMS...21

What are Command and Programs? ..23

Command Basics ..23
Format of Commands...23

Help with Commands...24
Finding Files and Commands (find) ...28
A few useful commands ...28

Clear ..29
Echo ...29

Chapter 5 : FILES AND DIRECTORIES...31

What are Files and Directories? ..33

iv

Relative Directories..35
Special Directories ...35
Moving about the directories (cd) ...35
Listing the contents of the directories (ls) ...36
Referring to files within a directory ..38
Hidden Files...38
Lost + Found..38

Chapter 6 : WORKING WITH FILES..41
Making a new directory (mkdir) ...43
Making a new file (touch) ..43
Removing a directory (rmdir / rm)..43
Removing a file (rm) ..44
Moving / Renaming a file or directory (mv) ...44
Copying a file (cp) ...44
Viewing the contents of a text file (cat) ..45
Viewing the beginning / end of a text file (head / tail)...45
Checking the type of file (file)..46
Printing a file ...46

File Permissions..46
Changing File Permissions (chmod) ...47
Changing the file owner (chown)..49

Chapter 7 : MAKING THE MOST OF UNIX COMMANDS.........................51

Using command switches ...53
The pipe command (|)...53
Redirecting stdout, stdin and stderr (> <)..54

Chapter 8 : MANAGING YOUR ACCOUNT...57

Normal Vs’ Root Username...59

Shell Variables..59

.profile...62

.kshrc ..64

History ..65

Chapter 9 : THE VI TEXT EDITOR...67

Editor Modes..69

Worked Example with VI ..70
Starting VI ...70
Inserting a New Line ..70

 v

Moving Around the File ...71
Deleting Letters and Inserting a New Word..71
Save the Document...71
Replacing a Letter ..71
Search and Replace ..72
Save and Exit ...72

Preferences ...72

Glossary ..75

Command Summary ..81

Index ...87

 vii

Preface to Bookshelf

This is the second UNIX book that I’ve written. The first is a book on AIX and
incorporates the full range of New User to Technical Expert in a single book. The
book started out as a aide-mémoire as part of my revision towards becoming an AIX
Certified Advanced Technical Expert. I passed the exams and continued writing until
it took the form of a complete book on the subject.

After completing my AIX Certification and Book I set myself a second challenge of
applying my acquired UNIX skills to learn Solaris. This bookshelf is intended to pass
that on to others that may be interested. Rather than writing this as a single book I
decided for the bookshelf approach, as it is easier to manage as several smaller books.

This was written whilst I had hands on role implementing some new services on
Solaris. This has given me practical experience of how the operating system can be
used and in some areas how it really works as opposed to what the manuals say.

viii

 ix

Introduction to this book

This book is written for a new user to UNIX. The target audience of this book would
typically be someone with little or no experience in UNIX, but maybe a bit of
background using other operating systems (e.g. Windows 95/98).

All sections are explained in full and therefore no previous experience of any other
environments are necessary. The book also includes information on some of the many
commands available. It may therefore be useful for someone with previous experience
of UNIX.

Most of the commands used in this section are the same as used on other UNIX like
operating systems such as AIX and Linux.

There generally appear to be too different approaches when creating a user guide for a
UNIX based computer. One is to explain how to use a graphic interface, explaining
what drag and drop means and how to use a mouse, the other explains the commands
that allow a user to learn how to operate using a command line. This book is based on
the latter; although I do make reference to X-Windows and CDE I am assuming that
you do know what a mouse is and how to click on pull down menus.
The reason I have gone down this path is that I see the novice Solaris user as being
someone that will eventually become a system administrator and not someone that
will be just clicking mouse buttons all day long. Whilst Solaris may provide much of
the functionality that is required for running GUI based programs I think that Linux is
a more natural choice for the complete beginner who does not have any desire to learn
the power of the command line. That is not to say Linux is not suitable for those who
prefer the command line, but that it is much more popular as a graphical desktop than
Solaris. Although Solaris does win back users with it’s support for high end CAD and
Graphics Design applications.

Often when people write a separate user guide and system administrators guide they
write in an overlap so that you don’t have to have both books to understand more
about the interaction between a System Administrator and a User. I have not.
Providing the books for free means that anyone that has a copy of the User Guide can
equally obtain a copy of the System Administrators guide and vice-versa. So if
something is not explained in the User Guide then pick up Volume 2 and you’ll
probably find it in there.

 1

The UNIX Operating System

This chapter explains what UNIX

is and why you need to know

about it.

Chapter

 1

 3

What is an Operating System

UNIX is an operating system, that is a layer of software that provides a path for
applications to control and communicate with the hardware.

Hardware refers to the bit's you can actually see and touch - Disk drives, Monitors,
Keyboards, CPU etc.

Software refers to programs or pieces of code that make the computer perform a
required function. In fact software is what differentiates a computer from other
electronic devices. A computer has the ability through using different software to
perform different functions. Compare this to an electronic typewriter that is only
capable of doing what the hardware is coded to do (type letters directly onto paper).
Nowadays it is harder to distinguish the difference as Word Processors can perform
the function of a typewriter but can have the ability to do other things, such as transfer
the files to a computer or save to disk.

Operating Systems are what tie the Software Applications and Hardware together.

To explain this a little clearer I'll use an analogy to a taxi. The taxi itself would be the
hardware part of the computer, the people travelling in the taxi would be the
applications and the taxi driver would be the operating system.
Imagine then that you are requested by your boss to attend a meeting at a different
location and that you should take a taxi. This would be like a user requesting that an
application performs a certain function. You would then request a taxi and get into it.
You would not be allowed to drive the taxi yourself so would make a request to the
driver (the operating system) to take you to a certain destination. The driver would
drive the taxi (control the hardware by using the pedals, steering wheel etc.) to the
destination requested by you. Once you reached your destination you would leave the
taxi allowing it to transport other people.

You can see that this would shield you from having to know how to drive the taxi,
you would not need to know whether it was a diesel taxi or a petrol taxi, or whether it
was a manual or automatic. All you need to be able to do is to talk with the driver and
explain where you wanted to go.

In this way if an application needs to write to a disk, it does not need to know the type
and size of the disk, it does not need to know how to move the head backwards and
forwards. All it needs to do it to send a request to the operating system asking it to
write the required data to disk and the operating system will worry about all the
details.
With multitasking operating systems such as UNIX, several programs can be running
at once. The operating system is also required to control the applications so that they
don't interfere with each other. It does this by controlling which applications should
be running in the processor, which memory has been allocated to it and when it needs
to step back and let another program run in the processor.

4

The following list are some of the operating systems that you may have heard of.
UNIX; MS-DOS; Windows 3.1 / 98 / NT and Apple Macintosh.

It is worth noting that whilst many of the operating systems come with bundled
applications for example word processors, basic graphics editors / viewers, calculator
etc. the applications are not actually part of the operating systems. If these
applications were removed the operating system would still function properly and
other applications could still communicate with the hardware via the operating
system.

More About UNIX

UNIX was originally developed during the early 1970's at AT&T's Bell Laboratories.
The main developers were Ken Thomas and Dennis Ritchie.

UNIX was developed as one of the earliest multi-user multitasking (time-sharing)
operating systems. Earlier computers were only able to handle a single user running a
single program at any one time. These new generation of computers had to be able to
run more than one program by more than one user. This was done using time-sharing
where each program (more accurately a thread) would run in the processor for a
certain length of time, before being removed from the processor to let another
program run. When done fast enough this gave the illusion that several programs were
running simultaneously. With multiple processors it's possible to run a true
multitasking environment where multiple threads can be running at simultaneously in
the separate processors.

Where UNIX was different from other operating systems at the time was that it was
designed as an open standard. Compared with proprietary operating systems, which
could only run on a certain computer, UNIX could be modified to run on a variety of
different computers from different manufacturers. This no longer tied the operating
system to any particular manufacturer of computer and was ultimately one of the
reasons for its success.
The operating system became an open free operating system that was developed
further by Universities and companies. The most notable of these was Berkeley
University, in fact many of the features in UNIX are referred to as to BSD standard,
referring to Berkeley Software Distribution.

Unfortunately this open standard also allowed companies to go there own way and
develop different "improvements" to the operating system. This in turn brought about
incompatibilities between the different versions. A list of some of the better known
variants of the UNIX operating systems are listed:

 5

Company / Developer UNIX Operating System
Sun SunOS / Solaris
IBM AIX
Hewlett-Packard HP-UX
Linus Torvalds Linux

Note that there are two operating systems next to Sun (SunOS and Solaris). As far as
you are concerned as either a UNIX user or a system administrator these are just
different names for the same operating system.

The difference with Solaris

Solaris is Sun’s version of UNIX designed primarily to run on Sun’s own SPARC
based workstations and servers. It is now also available to run on x86 based
computers as well.

Solaris is a popular variant of UNIX and is well supported by most software writers. It
is the most popular commercial UNIX operating system. Solaris does fall down when
compared with some variants, as it does not have some of the System Administration
tools available in other UNIX’s (such as AIX’s SMIT). Where it falls down in other
areas it is normally possible to get a third party alternative, although this does add
additional cost.

There are also a lot of common things introduced to make some different UNIX
Operating Systems look and feel the same despite being from different companies.
One of these is the Common Desktop Environment (CDE). This is an X Windows,
Window Manager developed jointly between IBM, HP, Sun and SCO designed to
give a common theme and common set of basic applications across different
platforms.

 7

Getting Started

This chapter provides the initial

guidance, for when a new user

first tries using Solaris.

Chapter

 2

 9

The Login

This section includes some of the basic information a new user needs when first
logging in and getting around in a UNIX environment.
This assumes that you have a pre-installed system and that you have been given a
username and password to login to the system. If you are going to have sole
responsibility for the machine then you may need to look at the System
Administrators Guide for details on installing the operating system.

UNIX machines are often used by lots of different people. This differs from PC’s
which are often used solely by one person. To ensure that only those that are
authorised to use the computer, and to ensure that files can only be read by people
who they are intended to it is necessary to “login” to the computer. The most common
method for logging into a computer is to give a username and password. It is not
possible to issue any commands or access any files until a valid username and
password are entered. This is different to Windows 9x where the cancel button can be
pressed but still give you access to the computer.

 It is important that the password is kept secret as this is the basis of all security
regarding your identity and files. Further details on the importance of usernames and
passwords are provided in the Security section of this book.

There are a number of ways of logging in to a UNIX system. The two most common
methods are mentioned, logging in directly onto a local machine or by connecting
over a network using telnet.

Logging Directly into a Local Machine

When logging into a local machine, you will have a screen and keyboard attached
directly to the UNIX computer. The Computer will normally be either text based or a
Graphical Workstation. The login prompt should be already on the screen. This will
prompt initially for your username. You will have been provided with the username
from your system administrator. Usernames and passwords are both case sensitive and
therefore “stewart” is not the same as “Stewart” (this will typically be all in lower
case i.e. “stewart”).

Banner Message
login:

Type in your username
For a graphics login then hit the "TAB" key to move to the password field. For text
logins hit the "ENTER" key to be prompted for your password.
You should then enter your password and hit "Enter". Passwords will not show on the
screen and are case sensitive.
You may be required to change the password on your first use.

10

When logging onto a UNIX system care should be taken when entering the password
as it does not display and is very difficult to correct if you make a mistake. Sometimes
you may see an ‘X’ on the screen for every key entered but not always. If you do
make a mistake you could try pressing the “DELETE” key but this does not always
produce the desired effect.

Depending upon the security settings of the machine you are trying to log onto you
may only a few attempts at entering the correct password. More than the maximum
attempts and your password will be revoked preventing you from logging in in future.
If this happens you should contact the system administrator to get your password and
login count reset.

If you enter the username or password wrong little information will be given to the
actual cause of the error. For example it may say “You entered an invalid login name
or password” and prompt you to retry. This is deliberate as it makes it harder for any
unauthorised people to try and login by guessing passwords, however this also makes
it harder to see what you entered incorrectly. If this does happen then re-enter your
username and password slowly and carefully to ensure that you are not hitting the
wrong key.

Banner Message
login: invaliduser
Password:
Login incorrect

Banner Message
login:

You should then get either a text screen for a text based screen or a Graphical
Windows system if the system is set to use a graphical login.
If you are at a text screen then you are ready to proceed to the next section. If you
have a graphical screen then we need to have an active "Command Window" to
continue. If you already have a text window within the graphical display then this will
probably be what is required if not then you need to start a "Command Window".

Banner Message
login: stewart
Password:
Last login: Mon Mar 26 10:56:10 from 192.168.2.3
Sun Microsystems Inc. SunOS 5.6 Generic August 1997
$

The command window can be accessed by either right clicking the mouse button on
the main part of the screen and selecting one of: Terminal; Command; Prompt; Term
etc. or if you are running CDE it’s one of the ICONS available in the same group as
the text editor. The Command Window should have a prompt on the screen this may
be the ‘$’ sign as shown above or a ‘>’ or anything that the system administrator has
set for you.

 11

Once you have a text “Command Window” you can proceed to the next section.

The above screen shot shows where the terminal icon is on the CDE menu. It also
shows the terminal running in the background.

Logging in Over a Network

There are several ways of connecting to a UNIX computer over a network. I am
assuming the TCP/IP protocol is running on the UNIX machine and that TCP/IP is
running on a PC or similar from what you will be logging in from.

Depending upon the type of computer that you are connecting from it is possible to do
different things. The standard available across all platforms is the ability to get a text
command screen that allows commands to be run and text output to be seen. It is
possible if using another UNIX type environment to redirect graphics applications
from the remote machine to the computer that you’re connecting from. With Windows
and OS/2 this can also be achieved by using emulation software such as Exceed,
which is developed by Hummingbird.

Whilst there are a few ways of connecting (e.g. rlogin, rsh, rexec, telnet) I will be
using telnet, which is probably the most widely available of all the methods.

12

Telnet is provided as standard on the following platforms: All types of UNIX, Linux,
Windows 95 and later, OS/2 and even some "dumb terminals".

Telnet is started by issuing the command

telnet machine

from a command prompt (MS-DOS prompt for Windows 95/98). Where machine is
either the IP address or the hostname for the computer.

e.g. IP address 10.12.142.7 might have a hostname of solaris1.mynet.com . The
hostname or address will be provided by the system administrator. The hostname will
generally be the computer name followed by the network domain that it is connected
in. See the Networking section for a further explanation of the TCP/IP protocol.

You should then get a login screen to the UNIX machine. This should show the name
of the computer followed by a login prompt requesting a username.
You will have been provided with your username, this is case sensitive and therefore
"stewart" is not the same as "Stewart" (this will typically be all in lower case i.e.
"stewart").

Type in your username

 13

Then hit the "ENTER" key to be prompted for your password.
You should then enter your password and hit "Enter". Passwords will not show on the
screen and are case sensitive.
You may be required to change the password.

When logging onto a UNIX system care should be taken when entering the password
as it does not display and is very difficult to correct if you make a mistake. Sometimes
you may see an 'X' on the screen for every key entered but not always. If you do make
a mistake you could try pressing the "DELETE" key but this does not always produce
the desired effect.

Depending upon the security settings of the machine you are trying to log onto you
may only a few attempts at entering the correct password. More than the maximum
attempts and your password will be revoked preventing you from logging in in future.
If this happens you should contact the system administrator to get your password and
login count reset.

If you enter the username or password wrong little information will be given to the
actual cause of the error. For example it may just say "Authorisation Failed" and
prompt you to retry. This is deliberate as it makes it harder for any unauthorised
people to try and login by guessing passwords, however this also makes it harder to
see what you entered incorrectly. If this does happen then re-enter your username and
password slowly and carefully to ensure that you enter them correctly.

Banner Message
login:

After entering your username and password correctly you will end up at a command
prompt.

Banner Message
login: stewart
Password:
Last login: Mon Mar 26 10:56:10 from 192.168.2.3
Sun Microsystems Inc. SunOS 5.6 Generic August 1997
$

Exiting (logout)

Just as it is required to login, it is important that after you have finished you should
logout of the computer. This prevents anyone else from coming up to your terminal
after you have left pretending to the computer that it is you that is telling it what to do.

This is done by entering
logout

14

from the command line. For a user at a graphical screen it may be necessary to click
on the icon marked "EXIT" or one marked with an ' X'.

Another way of logging out of a logged in session / or of cancelling an application
requiring further input is to use CTRL-D.

If you are logged in remotely, or are using a virtual terminal then you should type:
exit
to close the current session.

Important Points for New Users

There are a few oddities of the UNIX operating system that may catch a new user
unawares.

Probably the most prevalent of these is that UNIX is case sensitive. With some other
operating systems entering “telnet” would have the same effect as if you entered
“TELNET” or indeed “TeLnEt”. This is not the case with UNIX where almost
everything is case sensitive. It is most common for directories and files to be all in
lower case. Unless you have a good reason to do it differently I’d suggest that it is a
good idea to use lower case throughout.

A second difference is that the UNIX directory path separator is the ‘/’ (forward slash)
as opposed to DOS, Windows and OS/2 which all use the ‘\’ (backward slash). This
can be a constant point of frustration for someone that spends a lot of a time switching
between UNIX and other operating systems in remembering to use the correct
command directory path separator. The UNIX file structure has a number of
advantages, which are covered later.

Depending upon your method of connecting to the computer some of the keys on the
keyboard may not work as expected (or indeed at all). Some of the keys to be aware
of are “BACKSPACE”, “DELETE”, and the arrow keys. If the “BACKSPACE” key
doesn’t work then try the “DELETE” key and visa-versa.
It can be very frustrating if the backspace key doesn’t work. Fortunately this is
something that can be easily changed. To set the backspace key to delete then enter
the following command
stty erase <BACKSPACE>
The <BACKSPACE> part of the command is where you should press backspace to
set the key. The backspace key will normally display as ^h.

The arrow keys are not really needed on a UNIX system as most programs are written
to accept normal keys as cursor keys.
These problems can sometimes be resolved by changing the terminal type or by re-
mapping of the keyboard, which are described later.

 15

Shells

The shell is the basic interface

between the user and the

operating system. This chapter will

explain what it is and how to get

the most out of the shell.

Chapter

 3

 17

What is a shell?

If you've followed the instructions above you'll be in a UNIX shell now. Whilst this is
what most people see as being the UNIX operating system it is in fact a program that
is running on top of the operating system. To take a basic view of how UNIX is built
up see the diagram below:

Hardware

Kernel

Low Level Utilities

Shell Applications

User

The kernel is the heart of the operating system. This is a process that runs
continuously managing the computer.
The kernel is a very specific task so to allow programs to communicate with it there
are a number of low level utilities that provide an interface between the application
and the kernel.
The shell is an application that allows users to communicate with the computer. It is a
text based application that allows programs to be started and tasks to be run.

This can also be visualised by likening the software to a nut (the type that does grow
on trees). The kernel is the inter most workings, with the shell on the outside
protecting the kernel against the user.

The Various Different Shells

In the same way that different variants of UNIX were developed there are also
different variants of the shell.

Here's a list of the most common UNIX shells:

18

On a standard setup you will normally have the Bourne shell by default. You can
switch to any other installed shell by entering the command name (e.g. entering csh
will give the C Shell). The users default shell for a user is contained within the
/etc/passwd or can be changed by the system administrator.

The shell is more than just a way of typing commands. It can be used to stop, start,
suspend programs and by writing script files it becomes a programming language in
itself.

More details of the shells are listed below.

Bourne Shell - This is the oldest shell and as such is not as feature rich as many of the
other shells. It's feature set is sufficient for most programming needs however it does
not have some of the user conveniences that are liked on the command line. There is
no option to reedit previous commands or to control background jobs. As the bourne
shell is available on all UNIX systems it is often used for programming script files as
it offers maximum portability between older UNIX machines. This is the default shell
used by Solaris when newly installed.

Korn Shell - This is based on the Bourne shell. One enhancement that is particularly
useful is it’s command-line editing facility. It is possible using either vi or emacs keys
to recall and edit previous commands. There are also more powerful programming
constructs than the bourne shell, however these are not as portable to older machines.
To run the Korn shell you can run ksh from the normal shell. Unless specified I will
assume the Korn shell is being used for the rest of this book.

C Shell - The c shell syntax is taken from the C programming language. As such it is a
useful tool for anyone familiar with programming C.

Bash Shell - The Bash shell is a combination of features from the Bourne Shell and
the C Shell. It's name comes from the Bourne Again SHell. It has a command-line
editor that allows the use of the cursor keys in a more "user friendly" manner than the
Korn shell. It also has a useful help facility allowing you to get a list of commands by
typing the first few letters followed by the "TAB" key.

Name of shell Command
name

Description Installed by default
on Solaris

Bourne Shell sh The most basic shell available on
all UNIX systems

þ
Default Shell

Korn Shell ksh Based on the Bourne shell with
enhancements

þ

C Shell csh Similar to the C programming
language in syntax

þ

Bash Shell bash Bourne Again Shell combines the
advantages of the Korn Shell and
the C Shell

ý

tcsh tcsh Similar to the C Shell ý

 19

tcsh - This is a different shell that emulates the C Shell. It has a number of
enhancements and further features even than the bash shell.

The Shell Prompt

When logged into the shell you will normal see one of the following prompts: $, % or
#.
This is an indication that the shell is waiting for an input from the user. The prompts
can be customised but generally the last character should be left as the default prompt
character as it helps to distinguish between what shell you are running and whether or
not you are logged in as root.

The Bourne, Korn, and Bash shells all accept a similar syntax and unless you are
using one of the advanced features you do not necessarily need to know which one of
them you are in. If however you are in the C or tcsh shells this uses a completely
different syntax and can require commands to be entered differently. To make it a
little easier these have two different prompts depending upon the shell.

The default prompts are:

$ - Bourne, Korn and Bash Shells
% - C Shell

When logged into the computer as root, the user should take great care over the
commands that are entered (further information about the root user is included in the
System Administrator book). If you enter something incorrectly you could end up
damaging the UNIX installation files or even delete all the data from a disk. For this
reason the prompt is different when logged in as a root user as a constant reminder of
the risks.

The default prompt for root is the hash sign # this is regardless of the shell being used.

 21

Commands and Programs

This chapter explains what a

command or program is. It

explains how to run a command

and how different commands can

be used to interact to provide

extra functionality. It also tells you

where to go for help if you get

stuck.

Chapter

 4

 23

What are Command and Programs?

Ever time you do something on a computer you need a program to run to perform the
task. A command is a program and a lot of times the names can be used
interchangeably, however the names are often used in different circumstances.

Normally if you run a program on the command line that runs, (optionally) provides
an output and then exists you would refer to this as a command. However if you ran a
program that needed user input or that ran as a graphical program under X-Windows
then this would be referred to as an application or as a program.

Command Basics

UNIX commands are not necessarily the easiest commands to remember. They are
designed to be short commands to reduce the amount of typing:

e.g. ls - List directory contents
 cd - Change Directory
 cp - Copy
 pg - Show output one Page at a time

This can make it a little hard to remember but does save on typing when entering a
large number of commands. The commands are also highly customisable by having a
large number of options that can be entered on the command line however many other
functions are provided through a pipe. For example most programs will output to the
screen without worrying about how many screen-fulls there are. However all that is
needed so that you can view more than one page is to pipe the output through the pg
command. This is explained later.

Format of Commands

Generally most UNIX commands are designed to be run from a command line and
accept a number of options or arguments when run. This allows commands to run
without interaction from the user (often required on tasks designed to run in the
background). These are usually in the format:

command option(s) argument(s)

an example of this would be the ls command. The ls command will be explained later,
however for now it is sufficient to know that the ls command will list the contents of a
directory and will accept certain options and arguments. One option is the -l which
means provide more details about the files and another is -a which shows all files even
hidden ones. The argument provided is a file or directory name.

ls -l /home/stewart

24

will show the contents of my home directory. The -l is an option in that it changes to
way the program runs and the argument is /home/stewart which tells the program
what directory to look in. The ls command doesn't require any options or arguments.
For example the following are also perfectly valid commands.

ls /home/stewart shows a brief listing of the specified directory
ls -l shows a full listing of the current directory
ls shows a brief listing of the current directory

Also if more than one option is required there are two ways of specifying them. Either
individually as separate options i.e..

ls -l -a /home/stewart

or combined i.e.

ls -la /home/stewart

both the above will run identically.

Help with Commands

The universal help tool in UNIX is the Manual Pages. These are accessed by using the
“man” command. If you know the command that you want help on then enter man
followed by the command will show the manual pages for the command.

For example to get help on the pg command type:

man pg

this shows:

 25

pg Command

Purpose

Formats files to the display.

Syntax

pg [-Number] [-c] [-e] [-f] [-n] [-p String
] [-s] [+LineNumber] [+/Pattern/] [File ...]

Description

The pg command reads a file name from the File parameter and writes
the file to standard output one screen at a time. If you specify a
- (dash) as the File parameter, or run the pg command without
options,
the pg command reads standard input. Each screen is followed by a
prompt. If you press the Enter key, another page is displayed.
Subcommands
used with the pg command let you review or search in the file.

To determine workstation attributes, the pg command scans the file
for the workstation type specified by the TERM environment variable.
The default type is dumb.

The manual pages cover more than just straight forward commands, they also hold
subroutines that could have the same name as commands. Also there may be
commands with the same name but different actions depending upon the aspect of the
system it works on.

During the man pages it may refer to a different part of the man pages. The man pages
are actually split into 8 different types. These can be accessed by putting the number
before the command.

The format of this is

man x command

where x is the switch (see list later) and command is what your looking for help on.

Man command switches

1 User commands
2 System calls
3 Library functions
4 Devices and device drivers
5 File formats
6 Games
7 Miscellaneous
8 System and operation

26

The man files are all held within the man directory. This is normally /usr/man for the
operating system commands and /usr/local/man for any additional commands.

Typically each command registered with man will have the following information:

i. Name - The title and a one line description
ii. Synopsis - The syntax used

iii. Description - Information on the function and usage of the command. This
 normally includes examples.

iv. Files - Any associated files
v. See also - Any related information (other man pages)

vi. Bugs - Known Bugs or odd behaviour experienced

If you don't know what the name of the command is then you can use the -k option to
find the commands that perform a certain function. For example if you need to find a
directory listing you could try a search on the word list.

man -k list

One of the pages shows the following [my highlighting]

lindex (n) - Retrieve an element from a list
linsert (n) - Insert elements into a list
list (n) - Create a list
listalias (1) - list user and system aliases
listbox (n) - Create and manipulate listbox widgets
listen (2) - listen for connections on a socket
llength (n) - Count the number of elements in a list
locate (1) - list files in databases that match a pattern
lrange (n) - Return one or more adjacent elements from a
list
lreplace (n) - Replace elements in a list with new elements
ls, dir, vdir (1) - list contents of directories
lsattr (1) - list file attributes on a Linux second
extended file
em
lsearch (n) - See if a list contains a particular element
lsmod (1) - list loaded modules.

the ls command is the one that we were looking for.

if this is the first time this has been performed then you may be told that you have to
create the whatis database. This is done by issuing catman –w . This may need to be
done by root to have the appropriate permissions.

$ man -k list

man: 0703-310 file man not found.
 Create the whatis database using the <catman -w> command

 27

Another command similar to using man with the -k option is apropos. To search for a
command that performs a list function try:

apropos list

This needs the whatis database to have been created which can be achieved with the
command:

catman

Another way of obtaining help for what a command is or what it does is to use the
help switch. The most common switch is --help, other switches in common use
include -? and -h
For example

pg --help

would show the command options available for the pg command. The --help option is
not necessarily as comprehensive as using the man pages. Often the --help switch will
give a list of the available options only, compare this to the man display earlier.

$ pg --help
Usage: pg [-Number] [-p String] [-cefns] [+LineNumber] [+/Pattern/]
 [File...]

The --help option is the older standard that is usually implemented. However some
commands support a -h option instead.
Most commands will support both the above however if one doesn't work you could
try the other, which may work.

If you are running CDE there is also a further source of help in the form of the CDE
help viewer (dthelpview). This is launched by clicking on the icon indicating books
and a question mark normally in the bottom right hand corner next to the Trash Can.
If you get an error message saying that no applications have registered with the
viewer then you may need to install the CDE help files. This can be done using the
easy install within smit, using the standard install disks, select Personal Productivity
and then CDE Help Files.

28

CDE Help Viewer the cursor is over the icon used to launch it

You can also get more help from the Solaris Manuals. These are available from the
Sun Website:

http://docs.sun.com

Finding Files and Commands (find)

Sometimes you may have an idea what a command is called or the name of a file,
however not whereabouts it is on the disk. The find command will scan the directory
structure looking for files that match a certain search requirement.

The command is specified by specifying a directory and then searching all directories
underneath that.

The most common way of using the find command is to search for a program or file
by it's name. To search the entire computer for a file called filename the following
command would be used.

find / -name filename

Further information can also be searched for such as the creation date of the file or it's
file owner.

A few useful commands

 29

Here are a few commands that may come in handy.

Clear

Typing clear from the command line will clear the terminal screen. This is useful if
you've completed a command that has left a lot of text on the screen and you'd like it
cleared so that you can see what happens with your next command.

Echo

The echo command just echo's whatever you type onto the screen.

$ echo This is a message to show on the screen
This is a message to show on the screen
$

Whilst this command might not appear to be very useful when combined with other
commands via pipes or used in scripts it can indeed be very useful.

 31

Files and Directories

This chapter explains how data is

stored on the disks. Normally data

is stored in files, which are then

contained within a directory

structure. This makes finding the

files easier and to make it easier

to understand the purpose of a

file.

Chapter

 5

 33

What are Files and Directories?

A "classic" file is a collection of data located on a portion of a disk. The reason that I
say a classic file is that in UNIX files are often used as a representation of a device or
to refer to parts of the operating system. There are 3 types of files

• Ordinary - This contains data. One form of file is a text file however this
category also includes files created by applications or indeed the applications
themselves.

• Directory - This is a special kind of file that acts like a table of contents
allowing the organisation of files (see later in this section).

• Special Files - UNIX operating systems allow you to access logical devices
by creating virtual files that refer to them. These are found in the /dev
directory. For example /dev/tty1 refers to a TTY screen, /dev/cd0 refers to a
CD-ROM etc. One particular file is /dev/null which is a pointer to nothing.
You may wonder why you would want a file that didn't point at anything,
however this can be useful where you get an output that is not needed.
Redirecting the output to /dev/null will cause it to disappear.

The number of files on a computer can be in the thousands. To have these in one place
would make it very difficult to find what you wanted. Searching a list of thousands of
files would be equivalent to searching for a needle in a haystack. The files are
therefore collected together by commonality. These are put into groups called
directories. To make it even easier these are sorted into a hierarchical tree. Moving
down the hierarchical structure allows you to find more specific files.

The files and directories are referred to by filenames. The filenames can be quite long
(up to several hundred characters with some implementations). They can contain any
letters, digits and punctuation (including spaces). It is however better to avoid any
special characters and especially spaces. This is particularly important in a command
line environment like UNIX where it is necessary to interpret the differences between
a single filename with spaces and two separate parameters. See creating a new file for
more rules on filenames.

The directory structure starts at the root directory which is known by a forward slash
'/'. Each directory below the root has it's own name and is separated by the forward
slash '/'. Below the root directory are a number of "Top level Directories" Common
top level directories include home; usr; var; tmp and etc

These are used for the following purposes:

home - This directory is used as a starting point for user’s home directories. These are

directories that are given to users for them to store any files they create. The
users directory is a subdirectory to home normally the same name as the
username. e.g. /home/stewart

usr - This directory is used to store installed user applications.

34

var - This is used for files of variable length. Files that change a lot such as log files
would be kept here.

tmp - If used this directory is used for temporary files that are only needed for a short

period of file. Some systems use housekeeping jobs to periodically delete files
in this directory so important files should not be stored here.

etc - This directory holds many of the configuration files used by applications.

bin or sbin - Whilst you may see bin or sbin directories at the top level these are

normally symbolic links to the directories /usr/bin or /usr/sbin respectively.
The bin directory carries executable programs that can normally be run by
anyone, whereas the sbin directory is for programs intended for the superuser
only.

lib – This directory holds additional binary files used by programs. It is actually a link

to /usr/lib

export – This directory is used by NFS when configured as an NFS server

opt – Used to install programs. The name refers to optional programs, although

effectively applications (or the installer) can choose to install in either
/usr/local or in /opt. The opt directory is normally used for complete
applications and /usr/local for smaller command line programs.

There are some other top level directories that are used as starting points for other
directories.

dev - This is used to hold the devices available on the system. For example the first

hard disk (hdisk0) can be referred to as /dev/hdisk0

devices – This directory holds the actual device drivers. This is different to /dev which

provides an easier to use logical representation of the devices.

mnt - This is the mount point which is used as a convenient place to attach other

devices such as floppy disk drives and CD-ROM Drives. For example the
CDROM drive may be mounted as /mnt/cd0/ although the name does not have
to be the same as the device name.

proc – This is a special case directory holding information about the running system.

kernel – Another special directory used to represent the running kernel.

These then subdivide into further directories, the are known as subdirectories. The
directory structure can be represented as a tree.

 35

 /
(root)

home

usr

etc

stewart

local
bin
sbin

man

bin

sbin
man1

man2

The above tree is far from complete there can actually be over a hundred directories
on a UNIX installation.
The full directory path name starts with the root directory (/) and move up the tree
with each directory separated by a forward slash. For example the man2 directory
would have a full path of
/usr/local/man/man2

Relative Directories

So far we've been looking at the directory name in full this is known as the "absolute
directory". As well as being able to specify the directory in full (starting with root) it's
also possible to specify a "relative directory". To specify the relative directory start
from the current position and specify the rest of the directory name. The difference
between an absolute and relative directory is that an absolute directory always have a
'/' at the start of the path whereas a relative directory will not. If already positioned at
the directory /usr/local the man2 directory can be referenced by man/man2

Special Directories

There are 2 special directory names that apply to all the subdirectories. The current
directory is marked by a single dot (.) whereas the further up can be referenced by a
double dot (..) .

The man2 directory can be referenced from the /usr/local/bin directory with the
relative path ../man/man2

Moving about the directories (cd)

When first logging onto a UNIX system you will normally be in your "home"
directory. This is normally /home/username (for username stewart that will be
/home/stewart).

36

You can check the current directory at any time by issuing the pwd command (this
stands for print working directory).

You can move around the directories by using the cd (change directory command). To
change directory use cd followed by either the absolute or relative directory (as
detailed earlier).

Here's a few examples of how to change directory

Command What it does
cd Moves to your home directory. Normally

/home/username
cd / Moves to the root directory
cd /usr/local/man Moves to the man directory (absolute path) this

will work no matter what directory you are
currently in.

cd local/man Moves from the current directory (relatively). If
you are currently in the /usr directory this
command is identical to the above command.

cd .. Moves up a level. If you were at /usr/local/man
you would now be at /usr/local

Listing the contents of the directories (ls)

So far we have moved around the directories, however we have not looked at the files
stored, or indeed seen how to find out what directories exist. This is done using the ls
command.

Typing ls on it's own will list all the files and directories contained within the current
directory.

$ cd /home/stewart
$ pwd
/home/stewart
$ ls
docs readme.txt

Here I've moved to the usr directory. Displayed the current working directory and
then listed the contents of the directory. In my home directory is one file and one
subdirectory. You cannot tell for certain from the view above (although you could
guess from there names) which is the file and which is the subdirectory.
One way of telling is to use ls with the -l option which shows a lot more information.

 37

$ ls -l
total 636
drwx------ 2 stewart users 512 Sep 16 17:42 docs
-rw------- 1 stewart users 124 Sep 16 17:26 readme.txt

Using this display you can tell that docs is the directory.

As far as UNIX is concerned a directory is just a special type of file so is displayed
along with the other files. From the mode display (this is the 10 characters at the left
of each file displayed) the first character shows what type of file it is. The remaining 9
characters show the file permissions however these will be dealt with later.
There are seven different file types, which are listed in the table below.

File Type
Letter

Description

- Regular File
d Directory
l Symbolic Link
b Block Special File
c Character Special File
p or s Other Special files (not covered)

A regular file could be an application file or a text file etc.
A directory is a file that holds other files (including other directories)
A symbolic link allows a file to be redirected to another.

A block and a character file will be explained later.

We can also see that docs, is the directory by going into it and displaying the contents.

$ cd docs
$ pwd
/home/stewart/docs
$ ls
file1 file2

Here's an explanation of the Listing format shown earlier with the ls -l option.

38

 (1) (2) (3) (4) (5) (6) (7)
drwx------ 2 stewart users 512 Sep 16 17:42 docs
-rw------- 1 stewart users 124 Sep 16 17:26 readme.txt

1. File / Directory and permission bits
2. Link Count
3. Username of person who owns the file
4. Group name for which group privileges apply
5. Character count of the entry
6. Date file was last modified
7. Name of the file/directory

The permissions of the file will be explained later.

Referring to files within a directory

A file can be referred to by just it’s filename, it's absolute directory and filename, or
by a relative directory and filename. For example file1 can be referred to in the
following ways.

From /home/stewart/docs file1 (filename)
From anywhere /home/stewart/docs/file1 (Absolute)
From /home/stewart docs/file1 (relative)

There is also another way of referring to the current directory using a single dot '.' .
This is particularly important when running a program. Some programs that haven't
been installed in the standard program directories need to be run by specifying it's
directory and filename. The directory can be absolute or relative however when the
file is in the current directory the filename alone is not sufficient. To get around this
the file is referred to using the dot directory. For example is there is a program called
exec in the current directory this would be run by using ./exec

Hidden Files

Whilst you can normally see the files in a directory using the ls command it is also
possible to hide some. The normal reason for hiding a file is so that curious users
don’t edit or delete the file by mistake.
To hide a file all that is needed is for the name to begin with a period ‘.’
For example the file .profile is normally hidden from view. To view a hidden file use
the –a option when using the ls command.

Lost + Found

There is a special directory name called lost+found. Sometimes when the system
crashes it may "lose" a file. If this happens when the system runs it's checks it will
store them in the lost+found directory so that any information held in them can be
recovered.

 39

 41

Working with files

We have already covered some

commands used to display the

contents of a directory. This

chapter covers some of the

commands that can be used to

create and modify files and

directories.

Chapter

 6

 43

Making a new directory (mkdir)

New directories can be created using the mkdir command. Directories can be created
either singularly (in which case all directories above it must already exist) or several
at a time allowing parent directories to be created at the same time.

Creating a single directory from the current directory is done by mkdir followed by
the name of the new directory. For example:

mkdir newdir

The file directory could also have been created using a full path however all the
previous directories must already exist. If the previous directories don't already exist
then using the -p option will also create the parent directory. For example:

mkdir -p /home/stewart/newdir1/newdir2

Making a new file (touch)

A common way of making a file is to save to a file from an application (see the vi
section for details of using a text editor). It is also possible to create a blank file using
the touch command. The format is to have the filename after the touch command. For
example:
touch newfile

The following rules should be followed when creating a file:

• The name should be descriptive of the comments
• Only use alphanumeric characters i.e. Uppercase, lowercase, numbers, #.@-_
• Although spaces can be included in a filename it is strongly advised against

this
• Should not include shell metacharacters (characters used by shell pipes etc)

*?<>/&;:![]$\'"
• Should not begin with + or -
• Should not be the same as a system command
• Filenames starting with . are hidden (cannot be seen from an ls without the -a

option)
• Less than 255 characters

Whilst this is often the most common use of the touch command it has other uses as
well. For example the touch command can be used to change the creation date or
other properties of a file.

Removing a directory (rmdir / rm)

44

The safest way to delete a directory is to first remove all files from the directory. Then
check the directory is empty by issuing ls -a (the -a will show all files even if they are
hidden). Then change to the directory above and type

rmdir dirname

The rmdir command will only work when the directory is already empty which
provides a little protection against accidentally deleting files.

For a more cavalier way of removing a directory or multiple directories the rm
command can be used. To do this type rm -r followed by the directory name. For
example:
rm -r dirname

Warning: This is a very dangerous command.
The rm -r command will remove all directories below the one specified.
Be especially careful if logged in as root as this can delete all the data on
the disk.

There is no way of undeleting files that are deleted by mistake.
The only way or restoring the file if deleted accidentally is to copy it from the latest
backup disk (if available)!

Removing a file (rm)

Files are removed by using the rm command. To delete the file type rm followed by
the file name (can include a path).

There is no way of restoring a deleted file (except from a backup copy) so be careful
when deleting files. A slightly safer option is to use the -i option, which will prompt
before deleting each file. This is particularly useful when using wildcards (see later).
It is possible to setup your profile so that you always use the -i option (see alias).

Moving / Renaming a file or directory (mv)

Files or directories can by moved or renamed by using the move command (mv). To
move a file enter the mv command followed by the filename and then followed by the
new directory. To rename a file or directory enter the mv command followed by the
old name and the new name.

You can use the path along with the filename.

Using the -i option will prevent accidentally overwriting an existing file.

Copying a file (cp)

N

 45

Files can be copied using the cp command. Enter cp followed by the existing file and
then the new file (can include paths). Putting the 2nd parameter (new file) as a
directory name will copy the file to another with the same name in the new directory.

Using the -i option will prevent accidentally overwriting an existing file if it exists.
Wildcards can also be used to copy multiple files into different directories.

There is also a cpio command that is more versatile and allows the copying of
directories and files within them. View the man pages for more information on the
cpio command.

Viewing the contents of a text file (cat)

You can view the contents of a text file using the cat command. Whilst cat may seam
a strange name for a command the view a file, it's because the command can be used
to combine two files into a single one (the name comes from concatenate).

To view a file using cat

cat filename

you should not use this on a binary file as the output can do strange things, including
sounding the speaker or accidentally re-mapping the keys.

Other commands that can be used including more, pg and view (see later). Cat is
useful for automating a task as it does not need any interaction from a user.

Viewing the beginning / end of a text file (head / tail)

Sometimes you may want to look at the first few or last few lines of a file. For the
first few lines you may need to look at the top of a file and take a different action
depending upon the type of file, An example of needing to see the last few lines
would be a sequential logfile where you want to view the last few entries rather than
having to go through all the entries to reach the bottom.

The commands to do these are the head and tail commands for the top and bottom of
the file respectively. The commands have a number of options allowing you to specify
a certain number of lines or start from a particular place in a file however the easiest
way to use it is just to enter

head filename
or
tail filename

which will display the first / last 10 lines of a file.

One use of the tail command is to look at the end of a file that is in the process of
being updated. The command could be repeatedly run against a file to show any new

46

additions to the file. If however the file has not been changed then the previous output
will be redisplayed or if the file has changed too much then some lines may be
missed. The better way is to use the -f option, which will display any new lines that
are added to a file.

tail -f filename

Checking the type of file (file)

If you try and view the contents of a none text file you will often get garbage on the
screen. Sometimes this will actually prevent you from using that terminal by changing
the mapping of the keyboard or the screen. It is therefore a good idea to check what an
unknown file is before viewing the contents.

One way of doing this is using the file command. Entering

file filename

will tell you if the file is a text file, a command file or a directory etc.

Printing a file

To put a file on the print queue use the following command.

lp filename

You may need to specify the printer (see man lp for more details). If you are using an
X-Windows application then there is normally a print function included within the
application and this could be used instead.

File Permissions

UNIX systems are designed to have multiple people using them, and as such there are
controls on what each user can be done. So a user may create a file on the system that
others can view, but not change, or that only certain people can see. You cannot
however prevent the root user from accessing the file as they have full permissions to
all files on the system.

File permissions are split into 3 different categories. These apply to:

user - the owner of the file
group - a group of people, e.g. a project team or department
others - anyone else that has a login to the computer

these are then split into 3 different permissions, that of being able to:

 47

read - Look at the contents of a file / find out what files are in a directory
write - Change or delete the contents of a file / create or remove files in a directory
execute - Can execute (run as a program) a file / can change to the directory or copy
from the directory.

These are represented by the letters r, w and x respectively.

These can be seen by using ls –l on a file:

/home/stewart/test $ ls -l
total 14
drwxr-x--- 2 stewart stewart 512 Jan 7 15:13 dir1
-rw-r--r-- 1 stewart group01 27 Jan 7 15:14 file1
-rw-rw---- 1 stewart group01 31 Jan 7 15:14 groupedit.txt
-rw-rw-rw- 1 stewart stewart 3502 Jan 7 15:15 public.txt

The first few columns represent the file type and permissions:

d rwx rwx rwx

Is a directory
user

group
others

If the entry is filled in then it has affect if it is dashed out '-' then it does not apply.

There are also further permissions that can be set, however these are more advanced
and are outside of the scope of the user guide.

Changing File Permissions (chmod)

Assuming that you are either the owner of the file or root it is possible for you to
change the permissions of a file to either add or remove permissions. This is done
using the chmod (change mode) command.

The chmod command can be used in one of two ways. The Symbolic Format or the
octal format. Symbolic is useful for new users as it is easier to use, however once the
octal format is learnt it can be a powerful and quick way of changing file permissions.

The basic format is

chmod mode filename

It is only the format of the mode parameter that is different.

48

In symbolic format permissions are added or deleted using the following symbols:

u = owner of the file (user)
g = groups owner (group)
o = anyone else on the system (other)

+ = add permission
 - = remove permission

r = read permission
w = write permission
x = execute permission (if the file is a program then this gives permission to run it)

For example from the previous ls entry we have a file called file1 which we would
like the group to be able to write to:

-rw-r--r-- 1 stewart group01 27 Jan 7 15:14 file1

Using symbolic format we just need to add write access to the group which can be
done using:

chmod g+w file1

In Octal format the mode is based upon a octal number representing the different
mode permissions, where each of the permission groups (user, group, others) has an
octal value representing the read, write and execute bits. This requires a little bit of
knowledge on binary and octal number bases.

To use the octal format we don’t just put the changes, but issue the command on the
entire permissions for the file.

 User Group Others
Symbolic rwx rw- r--
Binary 111 110 100
 4+2+1 4+2+0 4+0+0
Octal 7 6 4

The file permissions would therefore have the octal number 764 and would therefore
be changed using the command

chmod 764 file1

A basic way of working this out is to add the following numbers depending upon the
permission required.
Read = 4
Write = 2
Execute = 1

 49

Therefore if you wanted to set read to yes, write to no and execute to yes, this would
be 4+1=5

Changing the file owner (chown)

It is possible to change the owner of a file however normally this requires the user to
be logged in as root. The owner or group can be changed using the chown (change
owner) command.

The format is as follows:

chown user:group filename

 51

Making the Most of UNIX
Commands

This chapter explains how

different commands can interact to

provide extra functionality. It

introduces a number of ways of

dealing with a programs output. It

will introduce some new programs

to make it easier to perform some

tasks.

Chapter

 7

 53

Whilst the number of options on each UNIX command may seam overwhelming at
first this is part of what makes UNIX so powerful. Another of the features that makes
UNIX so powerful is the ability to combine several commands to make them more
useful. This can be achieved either by stringing commands together on the command
line or by bundling the commands together into a script file which can range from
something very trivial to a program in it's own right. I will not discuss scripts further
in this book (see volume 7) however I will show how multiple commands can be
combined.

Using command switches

The most basic way of extending the functionality of a command is to use some of the
switches available.

These can be found using the man command as mentioned in an earlier section.

The simple example of this is the ls command. Without any switches all that is
displayed is a list of all the files in the current directory.

$ ls
docs readme.txt smit.log smit.script

By adding the '-l' option more information is provided.

$ ls -l
total 636
drwx------ 2 stewart users 512 Sep 16 17:42 docs
-rw------- 1 stewart users 124 Sep 16 17:26 readme.txt

The pipe command (|)

There are a number of features missing from some of the commands. For example
there is no way of viewing the output a page at a time or of sorting the output into a
certain order. Whilst this may sound like a large disadvantage at first it is not really a
problem as there are a number of commands that are specially designed to perform
those exact functions. By restricting these tasks to other commands it makes the
commands simpler and the number of options down.

The way this is achieved is by 'piping' the standard output into another command that
is specifically designed to perform the certain function. The pipe command is a
vertical bar '|'. This is normally found at the bottom left of the keyboard and is typed
by using shift and the '\' key (this assumes a keyboard with the UK layout).

54

The first command is entered first followed by the pipe command and then followed
by the second command. Any output from the first command is then used as input to
the second command.

For example to sort a basic directory listing by name the ls command is piped through
the sort command.

ls | sort

The output can be redirected through any number of pipes each one changing the
output in someway. The full command is referred to as a pipeline.

Redirecting stdout, stdin and stderr (> <)

The output from a command goes to the standard output (stdout), which is normally
the screen. Whereas the input is normally taken from standard input (stdin), which is
normally the keyboard. To automate processes it is sometimes required to change this
so that for example the output from a command is routed to a file or the printer. This
is done by redirecting the stdout and stdin streams.

The output from the ls command could be redirected to a file in this case called
dirlist.txt

ls > dirlist.txt

If the file dirlist.txt already exists it will be deleted. It is also possible to append the
output to the end of an existing file by using >> instead of >.

For example

echo "This is the next line of the log" >> log.file

Whilst you may see all the output from a command on a single screen this is not all
necessarily coming from stdout. There is also another data stream called standard
error which by default is directed to the same screen as stdout. This data stream is
used to send messages regarding any error messages. The advantage of having this as
a separate stream is that even if you redirect stdout, because you are not interested in
the output or just want it for reference you will instantly see any error messages on the
screen. If this is a command running automatically without user interaction then there
will not be any one to see messages put on the screen. The standard error data stream
can therefore be redirected the same as stdout by prefixing the redirect by the number
2 digit. In fact the stdout data stream should be prefixed by the number 1 digit, the 1 is
normally dropped to save typing. To therefore redirect any error messages to an
error.log file and the normal responses to a log file the following would be used.

command >log.file 2>error.log

The single >'s can be replaced by double >>'s if you would like the output to be
appended to the file rather than to overwrite the file.

 55

It is also possible to write both stdout and the standard error stream to the same file.
This is not simply a case of using the same file name in the above command as you
might expect. The reason for this is that a file can only be opened for writing by one
process at a time. The two redirects are two different processes and would not allow
both streams to write to the same file. This can however be achieved by redirecting
the error data stream to the stdout data stream using 2>&1. Which now gives:

command >output.file 2>&1

In a similar light you cannot use a file used as input to the command to redirect the
output to. For example it is not valid to issue the following command

sort file1 >file1 This is not valid

instead the output would have to be redirected to a temporary file and then renamed to
the required name.

sort file1 >/temp/tmp$$
mv /tmp/tmp$$ file1

The file ending in $$ will actually be created by the system with a unique number.
This is useful for temporary files as it prevents you overwriting a temporary file in use
by a different process.

The use of stdin, stdout and stderr is possible using only the single less than / greater
than signs because of the way that processes are assigned to a file descriptor table.

The file descriptor table is a list of numbers relating to open files. The first 3 files to
be opened are stdin, stdout and stderr, these are numbered 0 for stdin, 1 for stdout and
2 for stderr. Therefore stdin and stdout can be referred to by < and > respectively (no
further filename) whereas stderr requires 2> to ensure it is output stream numbered 2
that is to be redirected.

These redirects are fine for use in batch programs that are run without anyone
monitoring the system. Sometimes it is necessary for someone to monitor the output
of the command but also for it to be duplicated into a file for logging purposes or to
perform further processing on.

The tee command is used within a pipeline and whatever input it receives it both puts
into a file and forwards on the pipeline.

command | tee file1

The line above will take any output from the command and put a copy in file1 as well
as sending it to the screen. This could be combined further by allowing the output to
be further processed by another command. The tee command can be used any number
of times in a pipeline like this.

command1 | tee file1 | command2

56

If you want tee to append to a file rather than overwrite it the -a option is used.

The same basic redirect can also be done in the reverse direction in that an interactive
program that requires input from a user can be automated. For example with an
interactive program such as ftp (file transfer protocol). The ftp program allows files to
be transferred from one computer to another over a network. This however needs a
user to type the commands in to transfer the file. Instead the commands should be
entered into a text file the same as how they would be entered from the keyboard. The
file is then directed into the program in place of the stdin.

ftp rs6k.mynet.com <commands.txt

Redirecting to a file can have an unfortunate consequence if the file already exists and
does not want to be replaced. By using the redirects incorrectly it is possible to
accidentally overwrite an important file. In the korn shell there is an option that allows
us to prevent overwriting files by mistake. This is the noclobber option and is set by
typing

set -o noclobber

If an attempt is now made to overwrite a file the shell will issue an error message and
prevent the file being written to. The no clobber option can be turned off using

set + noclobber

If required the noclobber option could be put an a users .profile to have this set
automatically.

 57

Managing Your Account

This chapter provides information

useful to having your account

work how you want it. It introduces

some of the user settings, but

assumes that you don’t have

superuser privileges. For more

detailed information on managing

userid’s you should consult the

User Administration part of the

System Administrators book.

Chapter

 8

 59

Whenever you login to a UNIX machine using your username then certain things will
be automatically setup. These will be different for different users on the system and to
an extent can be customised by you. I will explain where some of the settings
originate from, even though you may not be able to change them. At least then you
will appreciate why the machine is behaving as it does.

Normal Vs’ Root Username

You may come across references to the following terms: root username, superuser and
userid 0. These all refer to the same thing, which is basically a user with full
privileges to your system. Anyone logged in as that user can read and update any file
on the system, they can read any emails and perform operations as though they are
any user. For security reasons the root password should therefore be well guarded. If
you are in the position of owning the root userid (i.e. this is a machine that you own
and manage) then you might think that it is a good idea to login as root then you don’t
have to worry about not being able to do anything. This is not a good idea as it also
means that any mistakes that you make could have bad consequences for the whole
system. For example the rm command is used on a regular basis to delete unwanted
files. Using the –r option whole directories can be deleted at once. If you ran
rm –r *
from the root directory (a command often run, but never from the root directory) then
as root you would delete all the files on the system, however if you were only a
normal user you would not be authorised to delete anything from the root directory
and so the command would fail. It is therefore better to perform most functions as a
normal user, and only use the root userid when it is necessary to use the elevated
privileges.

It would be quite tedious to log out and back in again every time you wanted to
change userid. There is however a command that allows you to switch userid without
having to logout of your existing session. The command is called su. It originally
stood for “SuperUser” as all it allowed was to change to the root userid. With modern
versions (meaning within the last 10 years so almost all versions in current use) you
can change to any user and not just root, it is therefore more appropriate to call it the
“SwitchUser” command. For obvious security reasons you need to enter the password
for any user you are su’ing to unless you are root. As root has the ability to reset or
change the usernames it has the unique ability of being able to su to any other userid
without giving a username. The su command is discussed further in the Systems
Administrator Book.

Shell Variables

Whilst you are in the shell there are a number of variables that the shell needs to be
aware of. These could typically hold information about you, about the shell you are
running in, or about your personal preferences. For example the shell needs to know
what your home directory is, so that you can easily change directory or save files. It
stores this in the $HOME variable.
Another variable commonly used is the $TERM variable. This describes the type of
terminal you have so that the shell or applications know how to send control the

60

screen. For example a vt100 terminal may have a different command to clear the
screen than is used by a Wyse Terminal.
There is another one that you may need to change which is the $PATH variable. This
indicates which directories the shell will look in to find a program that you’ve asked
to be run.

Normally all system defined variables are in uppercase whereas user variables are in
lowercase.

You can list all variables by using the set command.

e.g.
$ set
HOME=/export/home/stewart
IFS=

LOGNAME=stewart
MAIL=/var/mail/stewart
MAILCHECK=600
OPTIND=1
PATH=/usr/bin:/bin:/usr/sbin:/sbin
PS1=$
PS2=>
SHELL=/sbin/sh
SSH_CLIENT=192.168.2.3 62880 22
SSH_TTY=/dev/pts/5
TERM=ANSI
TZ=GB
USER=stewart

One instance that you may need to change a setting is if you connect to the Solaris
machine by using telnet from a Windows 9x machine. If you use the standard telnet
client then you will probably end up with a terminal type of ANSI (see TERM in
above screenshot). Whilst you may be able to issue commands normally many full
screen applications will not work. See the following error when trying to use the vi
editor:

$ echo $TERM
ANSI
$ vi test.txt
ANSI: Unknown terminal type

[Using open mode]
Segmentation Fault
$

The echo command is used to display the value of $TERM to confirm what it is
defined as.

The rather cryptic error message is basically saying that it cannot run because it does
not know how to control a terminal defined with type “ANSI”.

 61

To overcome this you first need to change the value of the variable. The windows
telnet command supports ANSI/vt100 under the same profile, therefore we can try the
vt100 terminal type which is better supported by UNIX. The following shows what
the effect of changing the value is:

$ TERM=vt100
$ echo $TERM
vt100
$ vi test.txt
ANSI: Unknown terminal type

[Using open mode]
Segmentation Fault
$

Note that I have used the correct command to change the TERM variable (ie.
TERM=vt100). The $ sign is not used when changing the variable.
The echo command confirms that it has been changed however the application still
failed.
Looking at the error message he problem is that it does not know about the ANSI
terminal type. But haven’t we just changed it to vt100, why is it complaining about us
having a ANSI terminal defined? Either I’m lying or the program is still trying to use
the old value.

The reason that this doesn’t work is that the value changed is the variable being used
by the current shell we are using (remember this is a program normally either sh or
ksh). When we start a new program, or indeed a new shell it runs as a child and does
not have access to the variable changed in the new shell. See the following example:

$ echo $TERM
vt100
$ ksh
$ echo $TERM
ANSI
$ exit

Here I have displayed the $TERM variable (vt100). I then started a new child shell
(ksh) and then displayed the $TERM variable again. Inside the child shell the variable
is now back to the original ANSI. A similar thing is happening whenever we run a
program. Fortunately there is a command that lets you set a variable so that it is
passed to any new child shells. The command is export. Now we try the commands
again:

$ TERM=vt100
$ export TERM
$ vi test.txt

This time the vi program runs successfully. If you run the ksh command again and
echo the $TERM variable you will notice that that too has changed to $TERM.

62

You can get rid of a variable by using the unset command. It is better not to remove
any system-defined variables (unless you really do know what your doing), however
you may have created your own variable that is no longer needed. The following
example creates a new variable before removing it.

$ MYVARIABLE="UNIX is great"
$ echo $MYVARIABLE
UNIX is great
$ unset MYVARIABLE
$ echo $MYVARIABLE

$

Below are a list of some other variables you may come across:

• LOGNAME - This holds your login name for use by certain commands. This
is one variable that cannot be changed.

• MAIL - This holds the name of the file where your mail is sent
• MAILCHECK - How often the shell will check to see if you have new mail
• TERM - The terminal type you are using / emulating
• umask - This determines what permission bits will be set when a new file is

created. This is a mask so an inversion will give you the default file settings.
E.g. the default of 022 will create a new directory with 755 (user can read,
write, execute everyone else can read, execute). When a regular file is created
the execute bit is not set so you would get 644. You may want to make this a
little more secure by setting to 027 (don't give any permissions to other users)
or even 077 (only give owner permissions). See the book on security for more
details.

• PATH - This is a colon separated list of all the directories that will be
searched to find a command typed in by the user. Some people add a :. to this
string to say if the command is not found in the rest of the path then try the
current directory, however there are security issues associated with this (see
security section) and certainly this should not be set for the root user.

• PS1 - This is the system prompt and is set to a $ by default. You may want to
change this to include your current directory name using the command:
PS1='$PWD $'

• ENV - Not included by default it can be useful to add this to your .profile. To
set the shell environment file to .kshrc (this is the normal name for the Korn
Shell) you would include the following line:
export ENV=$HOME/.kshrc
This is especially useful if using a X-Windows where the .profile is not called
when you start a new xterm.

.profile

The previous chapter explained how to change your $TERM variable so that you can
run full screen programs when logging in from a Windows 9x machine. Whilst the
commands were straightforward enough you can probably appreciate it would be
awfully annoying to have to type that in every time you logged in. There are several

 63

places that these variables can be defined, however there is one that is run every time
you login that you are allowed to edit yourself. This file is called .profile and is
located in your home directory (the directory stored in $HOME).

To add anything just use your preferred editor (the vi later is explained in a later
chapter). If the file does not exist then the editor will normally create a blank file on
your behalf. To automatically change the Terminal type to vt100 enter the following
lines.

TERM=vt100
export TERM

The problem here is that you may logon to the computer using different methods
(physically on the machine; from a windows machine; from a dumb terminal located
in a different room etc.). If you do then you may find that your choice of terminal on
one screen may conflict with another. The following lines show how you could add an
entry that would only select vt100 if you connect with an ANSI terminal (ie. Windows
Telnet).

if [$TERM="ANSI"]
then TERM=vt00
export TERM
fi

I will not explain this here; just accept that it works. The if statement is explained in
volume 7 “Unix Scripts”.

Another common complaint with Solaris users is that the “Backspace” key doesn’t
work as expected. This can be a common frustration but you can get around it by
running the following command.

stty erase ^H

Here the ^H is generated by pressing the backspace key.

You could add this to the .profile however you may find that when you press the
backspace key to generate the ^H it will actually work as a backspace key (just when
you don’t want it to). To get around this then enter the following command (note: do
not enter the stty command prior to this as it will prevent you being able to create the
^H).

echo “stty erase ^H” >> $HOME/.profile

The echo command displays the entered line, but it is then redirected onto the last line
of the .profile file. Then when you login the backspace key will work as expected.

Note that anything added to the .profile file will not take effect until you logout and
then login again.

64

.kshrc

This file is similar to the .profile file however is run whenever the Korn shell is started
rather than when you login. Again this is located in the $HOME directory.

When using X the .profile is loaded when X-Windows is started. This sets up the
system wide variables, however there are commands that can be set that are specific to
the shell and not to the overall session. Normally these will not be passed onto the
virtual terminal unless they are put in the .kshrc file.
The name of the file is not important, however it must be the same as the ENV
variable set in the .profile file. It is not normally in the .profile by default (unless your
system administrator has set it up that way), so you need to add the following line in
your .profile file first.

export ENV=$HOME/.kshrc

An example of a command that would work differently if it is in .profile and .kshrc is

set -o vi

including the above command is the same as starting the shell with
ksh -o vi

which sets the shell environment into the vi style input.

If this was in the .profile then whenever a login was made into a terminal it would
take effect, however when starting a terminal from X it is not a new login and
therefore would not be invoked. If however this is included in the .kshrc then
whenever the Korn Shell was started it would be invoked and as the Korn Shell is
invoked by both a login and a new terminal started in X this would happen all the
time.

Some of the commands that could be put into the .kshrc file.

• set -o vi This command sets the environment into the vi style input. What this
does is to provide a level of command recall for the shell. To really understand
this you need to understand how to use the vi editor (see the chapter on the vi
editor). To use the recall keys you first need to press the escape key (this may
be mapped differently on your system however is normally the key marked
Esc). Then you are in command mode and can recall commands and move
around using the keys "hjkl" ('h'=left, 'j'=down, 'k'=up, 'l'=right). You can then
delete a character by using the 'x' key. Pressing the 'i' key will insert before
the cursor and pressing the 'a' key will insert after the cursor. Pressing either 'i'
or 'a' will put you into insert mode and to return to command mode you press
the escape key again. This may all sound very complex however if you are
able to use the vi editor (a useful skill to acquire) then you will find this very
familiar.

• alias - The alias command is used to set up alternative names for commands.
The format of the command is:

 65

alias newcmdname='normalcmdname -args'
What will happen then when you enter newcmdname is that it will be replaced
with normalcmdname -args. Note: this will happen only on commands entered
at the command line and will have no effect on script files. A few examples of
where this would be useful is shown below:

alias rm='rm -i'
This will include the -i option on any delete command. What this does is provide
interactive prompting so that you will be asked if you want to delete each file.

alias up='cd ..'
Whenever you enter the up command it will take you one level up the directory tree.
This is useful if you, or a user have trouble remembering a command as you can make
easy to remember alias names.

alias computer2='telnet computer2.mynet.com'
If you often telnet to another computer (computer2) this will save you having to type
in the whole command instead of entering 26 characters you just need to enter 9
characters.

History

It is possible to recall previous commands using the –o vi option explained earlier,
however it is also possible using the history command.

 Issuing the history command will show the last few commands entered.

$ history
52 clear
53 ls
54 cd test
55 ls
56 pwd
57 cd ..
58 vi temp.txt
59 history
$

to recall one of the commands listed enter an r followed by the number

r 55

by default the history command will give you the last 16 commands entered.

The history is held in a file called .sh_history and can be edited using the fc command
(see the man pages for more details).

 67

The vi text editor

One thing you’ll need to do when

you start using any UNIX system

is to edit text files. Text files are

used to control many of the

settings of the system and many

applications. Whilst there are

many text editors for UNIX vi is

provided on just about every

flavour and installation of UNIX. If

you learn vi then you’ll be able to

edit text files no matter what

system you’re on.

Chapter

 9

 69

vi is a very powerful text editor. It runs in a standard terminal and uses the standard
keyboard (it is not reliant on the arrow keys, or the insert, home, pgup keys). This
makes it equally as useful on a graphics workstation as on a minimal text based
terminal or indeed via a telnet terminal.

To someone new to UNIX the vi text editor can be very daunting. However learning
to use vi can be one of the most useful tools that a UNIX user can know. Whilst
anyone with a X-Windows system may prefer the ease of use provided by the X based
editors such as dtpad or xedit you cannot always guarantee to have them available.
Whereas regardless if you're working on a graphics or text only terminal almost all
UNIX systems will have the vi editor installed. Also once you know the basics for vi
you can use these in other circumstances, for example the korn shell can be setup to
have the vi keys for command recall and edit (see details on the .kshrc file) or the
same keys can be used to scroll through a file using the more command.

Rather than just describe what all the different keys do I've worked through a little
example of creating and editing a text file, however it is first important to understand
about the different modes of the vi editor.

Editor Modes

If you have not used vi before, then having to switch between the different modes can
seam a bit alien at first, however is actually quite simple in operation. The most
common two are "Insert mode", and the "Command mode".

Whenever you start vi it will be in command mode. In this state whenever you type
something, instead of being included in the file it will be used as a command for the
editor. Example commands include moving around a document, deleting parts of the
document, and file operations such as saving the document and exiting.

To add the text that you type in at the keyboard requires you to be in insert mode.
When in insert mode any text entered at the keyboard is added to the document at the
current cursor position.

To switch between the different modes involves pressing the appropriate keys. To
move to command mode you would press the ESCAPE key. A useful feature of the
ESCAPE key is that it still works when in command mode. Indeed if you forget which
mode you are in just press the ESCAPE key and regardless it will put you in the
command mode.

There are several different keys that allow you to go from the command mode to the
insert mode. By using the appropriate key, the number of keystrokes required can be
reduced. Some of the keys are listed below:
i Insert - any text entered will be put immediately before the current letter.
a After - any text entered will be put immediately after the current letter.
A After end of line - any text entered will be put after the end of the current line.

70

It is also possible to run ed commands by pressing colon ':' when in command mode.
The ed commands are based on command line editing used by the "ed" command line
editor. The vi editor is based on the ed program that is a basic command line editor.

Worked Example with VI

Following this example will introduce a lot of the functionality of the vi editor.

Starting VI

To start the editor enter vi followed by the filename.

vi sjayouth.txt

If the file already exists then it will be opened and displayed on the screen. If it is a
new file then the initial screen will be blank. The editor is started in command mode.
The file opened is shown below. It is an article from a St. John Ambulance Newsletter
that I wrote in September 2000:

Mention St. John Ambulance and most think of adults trained in first aid helping
those in need. However St. John actually has one of the biggest youth organisations in
the country, catering for all children from the age of 6 upwards.
The youth area is split into two age groups. Badgers are for children from 6 to 10 and
Cadets are for members aged from 10 to 18. Both groups are open to boys and girls.

Badgers make friends and have fun. The badgers work towards 9 different badges in
areas from first aid to hobbies. After gaining all 9 badges he / she can become a Super
Badger.

Cadets play games and learn first aid, like the badgers. Cadets then get to practice the
first aid on real casualties. There are adult members ready to give a helping hand
whenever it's needed. The Cadet’s work on an award scheme leading up to the Grand
Prior Award.

For more information see www.sja.org.uk

Inserting a New Line

We will now add a line before the text with the title "Young Members". The cursor is
located in the top left hand corner, which is exactly where we want to insert the text.
When we started the editor we were in command mode so we now need to change to
insert mode by pressing:

i

We can then type in the title

Young Members <Enter> <Enter>

 71

Pressing the enter key moved the following text to the next line and then inserted a
blank line.

Moving Around the File

Now imagine that I wanted to replace the word "practice" with "use". To move around
the file it may be possible to use the cursor keys. Some terminals do not support the
cursor keys and the alternative is to use four of the standard keys. These are
h - left
j - down
k - up
l - right
To use the standard keys as cursors requires that you are in command mode.

To move to the word "practice" first press
ESCAPE
to change to command mode.

Once in command mode then press the 'j' key until the cursor is next to the line
containing the word. Then subsequent presses of the 'l' key will move until the cursor
is on they letter 'p' of practice.

Deleting Letters and Inserting a New Word

Now press the 'x' key, which will delete the letter under the cursor. Press they 'x' key 7
more times until the word has been deleted. Then press the 'i' key to return to insert
mode and enter the word "use".

Save the Document

We will now save the file in case we accidentally make a mistake in future. To save
the current document you need to change to command mode. Then press the colon
key (:) to create a command line and enter 'w' followed by the enter key.

The file will then be saved.

Replacing a Letter

Prior to the introduction of the children's act the age for cadets was up to 16. Now we
shall change the age from 18 to 16. We shall move the cursor and replace the figure 8
with the figure 6.

First press ESCAPE and use the 'k' key to move up the document up to the line
containing the figure 8. Then move across the line using the 'h' and 'l' keys until the
cursor is over the figure 8.

72

To replace the character press the 'r' key. Then pressing the '6' key will cause the
number to be replaced with a 6. You will still be in command mode.

Search and Replace

For this exercise we will now replace the occurrence of 18 back to 16, however this
time we will do it using a ed command. We can find the occurrences of a word by
using a regular expression. So to search for 18 we would enter /18 followed by enter.
This would search from the start of the file until it reached the first instance of 18.

If instead we wanted to replace 18 with 16 directly then the command that would be
entered is :%s/18/16/g
The colon tells the editor that what follows is an ed style command. The %s is to
initiate a search and replace. The first string between the '/' characters is the item to
search for, the next is the string to replace with. This would work on every line of the
file, but only of the first occurrence on each line. The g option makes the command
work globally for every possible occurrence.

This may also replace other parts of strings such as 180 would be replaced with 160.
So it is important to ensure that the command that is issued is what you really want it
to do.

Save and Exit

Now we will save and exit the document. Press the ':' key followed by 'w' (to write -
save) followed by 'q' to quit the program.

This is then end of this example.

Preferences

Within vi it is possible to change some of the settings. These are done by issuing a ':'
followed by the set command with the option as a parameter. For example to display
line numbers in the editor you would issue the command:
:set number
This could then be turned off again by using the word no in front of the options. So to
turn the number option back off you would issue:
:set nonumber

Other options that can be set include:

all Display all options & current settings
errorbells Sounds a bell sound whenever an error occurs
ignorecase Makes search commands case insensitive
showmode Shows the current mode in the bottom of the screen

These settings only last as long as the current session. To have these commands run
whenever vi is run then the required commands should be put in a file called .exrc in
your home directory. These should be entered without the colon e.g.

 73

set number
set showmode

 75

Glossary

|. See pipe
&. See background process
>. See redirection
<. See redirection

A

access permission. The access allowed
to a particular file. This can be based
on the different levels of access (read,
write, execute) at different classes of
users (owner, group, all others).

ACL. Access Control List. Used to
control access to a file (see access
permission).

ACLST. Alternating Current Logic
Self-Test

address Space. The range of addresses
availaable for a processes code and
data.

AIX. Advanced Interactive Executive.
IBM’s implementation of the UNIX
operating system.

alias. The process of assigning a new
name to a command

ANSI. American National Standards
Institute

application. Program used to perform
a certain task.

ASCII. American Standard Code for
Information Interchange. Collection of
character sets used throughout the
computer industry.

awk. Interpreted programming
language. Useful for it’s pattern
matching abilities and is often used in
combinations with shell scripts.

B

background process. A process
running independently of the initiating
terminal. Started by ending the
command with an &. The starting
process is then no longer waiting for
the “death of the child process”.

backup. Having a copy of data or code
used incase the original information is
destroyed.

BSD. Berkely Software Distribution. A
UNIX thread with differences from the
base UNIX platform, although now
mostly combined with other platforms.

block device. A device that transfers
data in fixed block sizes. Normally 512
or 1024 bytes.

booting. Starting the computer from a
power off or a system reset.

byte. Storage used to represent a
character. Equal to 8 bits of data.

C

C. Programming language in which the
UNIX operating system and most
applications are coded in.

CDE. Common Desktop Environment.
X Window Manager developed jointly
between Sun, IBM, HP and SCO to
provide a common feel to UNIX
running on different machines.

CGI. Common Gateway Interface. A
method of providing client server
interactivity between a web browser
and a server. CGI is implemented by
scripts on the server and requires
nothing special on the client. This is
known as “server side scripting”

76

character I/O. The transfer of data
byte by byte as used by slower devices,
such as terminals and printers.

child. A process emerging from a fork.

CISC. Complex Instruction Set
Cycles. Processors with a large number
of instructions. These tend to be slower
due to the number of instructions that
the processor has to be able to handle

client. User of a network service.

command. A request to perform an
operation or run a program. When
arguments are added to the command
the entire string is considered to be the
command.

console. Terminal used by the kernel
to send messages to.

CRC. Cyclic Redundancy Check

current directory. The currently
active directory. If no directory
specified then the directory that a
command will act upon.

CUT. Co-ordinated Universal Time
(the same as GMT)

D

device driver. Program that controls a
hardware device, such as printer, disk
or screen.

directory. Special file containing the
names and controlling information for
files and directories.

disk / diskette. Storage medium used
for transferring data between
machines.

DoS. Denial of Service. Where a
computer is attacked so that it can no
longer perform it’s role.

E

EBCDIC. Alternative character set to
ASCII. Used on IBM mainframes.

editor. Program used to enter and
modify text or other files.

environment. Collection of variables
passed to a program or shell script by
the invoking process.

escape. The \ character used to indicate
that the next character in a command is
normal text with no special meaning.

Ethernet. Networking protocol used to
connect a LAN.

execute permission. Permission to run
a program or list the contents of a
directory.

F

field seperator. Character used to
separate one field from the next.
Normally space or tab.

FIFO. First In, First Out. Queuing
process where first into a queue is the
first out.

file. Collection of related data stored
and received by it’s given name.

file system. Collection of files and
structures on a physical or logical
media.

flag. Option sent to a program.

full path name. Directory name given
starting from the root (/) directory.

G

 77

gateway. Device acting as a connector
between two separate networks.

GMT. Greenwich Mean Time (the
same as CUT). The time at Greenwich
England, but not taking into account
any changes due to British Summer
Time.

group. Collection of AIX users show
share a set of files.

H

hardware. The physical equipment.

heterogeneous. Applies to networks
consisting of products from multiple
vendors.

homogeneous. Applies to networks
consisting of products from a single
vendor.

I

interpreter. Program which
“interprets” program statements
directly from a text file.

IP. Internet Protocol

IPL. Initial Program Load - the
booting sequence of a computer.

J

Journaled File System. A method of
storing information on the hard disks.

K

kernel. The core of the operating
system that provides the fundamental
running of the system.

kill. To prematurely terminate a
process.

L

LAN. Local Area Network. Network
normally within a single location.

line editor. Editor that processes one
line at a time.

link. Alias one directory or file to
another.

Linux. Open Source UNIX like
operating system.

login. To provide your identity to the
system to gain access.

logout. To inform the system that you
no longer need access for this session.

M

make. Programming tool that helps
make a program from the source code.

memory. Storage medium, normally
refers to volatile memory held in the
system.

metacharacters. Characters or
combinations of characters to represent
different characters or sequence of
characters.

Motif. Graphical user interface for X
Windows.

N

NFS. Network File System

null device. A logical device used to
obtain empty files or dispose of
unwanted data.

O

78

OEM. Original Equipment
Manufacturer.

operating system. Software
interfacing between the applications
and the hardware. It controls how
applications can run on the system

owner. The person who created a file,
or to whom ownership has been
transfered to.

P

parallel processing. Having more than
one processor in the same system.

password. Secret character string used
to verify user identification.

PATH. Variable which specifies
where to search for program files.

path name. Filename specifying
directories leading to that file.

permission. Authority given for a set
file.

pipes. System routines that can take
the output from one process and feed it
in as the input to another. The bar ‘|’
character is used to indicate to the
system that you wish to use a pipe.

POSIX. Portable Operating System for
Computer Environments. Set of open
standards for an operating system.

process. Unit of activity known to the
system (usually a program).

profile. File in the users home
directory executed at login to
customise the environment. The actual
file is called .profile

R

read permission. Allows reading of a
file

redirection. The use of a different
device or file instead of STDIN and
STDOUT which use the symbols < and
> respectively.

regular expression. An expression
that specifies a set of character strings
using metacharacters.

relative path name. The name of a
directory or file using the directories
from the current directory.

RISC. Reduced Instruction Set
Computer. Processer with a small
number of individual instructions. By
only being able to have a small number
of instructions the processer can handle
them quickly and generally faster.

root directory. The topmost directory
that contains all other directories in the
file system.

RPM. Redhat Package Manager. Used
to bundle applications so that they can
be easily installed under Linux.

S

scalability. The ability for a computer
to accomodate growth with the
minimal of effort.

SCCS. Source Code Control System

server. A provider of service in a
computer network.

setuid. A permission that allows a
program to run as though started by a
different user.

shell. User Interface of a UNIX
operating system.

 79

shell program / shell script. Program
consisting of shell commands in a text
file.

signal. Software generated interrupt to
another process. As used by the kill
command.

SIO. Serial I/O Register

sockets. When a network session is
connected a socket is used to represent
the address and ports of the systems.

software. The programs run on a
system (the part of a system that is not
physical).

STDERR. Standard Error. The data
stream where errors are normally sent.
This is normally the console although
it can be redirected.

STDIN. Standard Input. The data
stream where input comes from.
Normally this is the keyboard although
it can be redirected.

STDOUT. Standard Output. The data
stream standard messages are
outputted to. This is normally the
terminal although it can be redirected.

subdirectory. A directory that is
subordinate to another directory.

superuser. The system administrator
with priviliages allowing them to
access every file in the system. This is
normally the root user.

swap space. A space on disk where
memory can be swapped into to make
space for other programs.

system. The computer and it’s
associated devices and programs.

System V. The thread of UNIX that
retained the AT&T style rather than
the BSD style.

T

TCP. Transmission Control Protocol

TCP/IP. Transmission Control
Protocol over Internet Protocol.

termcap. File containing the
capabilities and functions of a
terminal.

U

UNIX. Multi-user Multitasking
operating system. Originally developed
at Bell Laboratories in the early
1970’s.

V

vi. Visual Editor. A text editor used
within a text terminal. Very powerful,
but can be difficult to learn initially.
Available on just about every UNIX
like operating system.

W

wild card. Metacharacter used to
specify one or more replacement
characters. e.g. * allows any number of
charcters to match.

window. Are of the screen in which
the running program is displayed.

working directory. Directory in which
the current program is running and
upon where any actions (not
specifiying a directory) will be taken.

80

write permission. Permission to
change the contents of a file or
directory.

X

X-Windows. Interface to the system
that provides windows. Also useful in
distributing applications as the
application can run on a different
machine to the one where the screen
and keyboard are being used.

 81

Command Summary

The following are a list of useful commands.

at time job
 Runs a command at a specific time.

cat file1
 Display the contents of the text file “file1”.

cat file1 file2 > file3
 Combine the files file1 and file2 and output into file3

cd
 Change to the users home directory

cd ..
 Move up a directory

cd directory
 Change to the specified directory

chgrp group file
 Change group ownership for a file.

chmod [ugo][+/-][rwx] file
 Change permissions of a file using symbolic form

chmod XXX file
 Change permissions of a file using numeric form

chown owner:group file
 Change the owner / group of a file or directory

chown -R owner:group directory
 Change the ownership of subdirectories and files.

compress filename
 Compresses a file so that it takes up less space. Useful prior to transferring the
file to another system using a network or tape. Files compressed with the compress
program are suffixed with .Z

cp file1 file2
 Copy file1 to file2

cp -R dir1 dir2
 Copy a directory and subdirectories from dir1 to dir2
date
 Shows and sets the system date and time.

82

del file1
 Deletes a file after asking for confirmation. Ignores file protection allowing
the owner to delete a file it owns.

df
 Displays available space on all file systems

diff file1 file2
 Compares two different text files and indicates the differences

du
 Shows a summary of filesystem usage

e file
 Edits a file using the INed editor

ed file
 Uses the ed editor to edit the file.

env
 Display environment variables

find path -name filename
 Finds files named filename starting from directory path.

ftp hostname
 Interactive file transfer program for transferring files over the network.

grep pattern file
 Searches a file for the pattern

gzip file
 Compress a file using the gzip program. This is not included with AIX as
standard but is often installed by system administrators. Files that have been
compressed as suffixed with a .gz

gunzip file
 Uncompress a file that has been compressed with the gzip program. This is not
included with AIX as standard but is often installed by system administrators. Files to
be uncompressed will normally end with .gz

head -count file
 Display count number of lines from a file

help
 One page display of help for new users

kill pid

 83

 Terminates a process

ln file1 file2
 Links file1 to file2

ln -s file1 file2
 Creates a softlink instead of a hard link

ls file
 Lists a file. If the file is a directory lists files in the directory.

mail
 Read and send mail

man command
 View manual pages for a command.

mkdir directory
 Creates a new directory.

mount -F type /dev/dsk/device /mountpoint
 Mounts the filesystem of type from /dev/device to /mnt/mounpoint

mount -F hsfs -o ro /dev/dsk/c0t0d0s0 / cdrom
 Mount the CD-ROM drive so that the files can be read as part of the normal
file structure. The device name may be different depending upon the disk setups.

mv file1 file2
 Moves or renames a file or directory.

passwd
 Changes the password

pg file1
 View a text file one page at a time

ps -ef
 Show all processes

pwd
 Shows the current working directory.

rm file1
 Deletes (unlinks) a file

rm -r file1
 Removes a directory (including all files and subdirectories)

rmdir directory
 Removes a directory and it’s contents

84

sed file
 Edits a file using the stream editor.

shutdown time
 Shutdown the computer at the specified time interval

stty
 Sets terminal settings

stty sane
 Resets terminal to default settings

tail -n count file
 Shows count number of lines from the bottom of file
tail -f file
 Shows bottom of file, showing new lines as they are added.

tar -c file1 file2
 Archives file1 an file2 to the default backup device (normally a tape drive)

tar -cvf filename.tar file1 file2
 Archive file1 and file2 into a file called filename.tar. The -v option will list all
files archived

tar -x
 Extract the files from the default backup device.

tar -xvf filename.tar
 Extract all files from an archive. The -v option shows all the files as they are
extracted.

telnet hostname
 Logs into a remote system

touch file
 Updates the access time for a file. If the file does not exist then it creates an
empty file.

umount directory
 Unmounts the directory

umount -f device
 Unmounts using the device name. The -f option forces the umount if the
filesystem is in use.

uname
 Shows the name and version of the operating system.

ucompress filename

 85

 Uncompresses a file compressed using the compress file. Files will normally
be suffixed with .Z prior to being uncompressed.

vi file
 Edits a file using the vi editor

who
 Displays users on a system

who am i
 Displays your username

 87

Index

$ 19
$HOME .. 59
$PATH ... 60
$TERM... 59
% 19
& 75
. 35
.. 35
.kshrc .. 64
.profile .. 63
/ 33
| 53, 75
< 56, 75
> 54, 75
>> ... 54
absolute directory............................ 35
access ... 75
account.. 57
ACL ... 75
ACLST... 75
AIX..5, 75
alias .. 75
ANSI .. 75
application 75
apropos ... 27
argument... 23
ASCII ... 75
at 81
authorised ... 9
awk... 75
background process 75
Backspace 63
BACKSPACE................................. 14
backup44, 75
bash .. 18
Bash.. 18
bin... 34
binary.. 48
block device 75
booting ... 75
Bourne .. 18
BSD...4, 75
byte .. 75
C 75
C Shell .. 18
case sensitive9, 14
cat ..45, 81

catman....................................... 26, 27
cd 23, 35, 36, 81
CDE 5, 10, 27, 75
CGI...75
character ..76
chgrp ...81
child ..76
chmod.................................. 47, 48, 81
chown.. 49, 81
CISC ...76
classic file ..33
Clear..29
client ...76
command21, 23, 46, 51, 76
command line23
Command Window..........................10
commands28
Common Desktop Environment See

CDE
compress..81
console ..76
copy...45
cp 23, 44, 81
cpio ...45
create...41
csh...18
CUT ..76
data..31
date..43
del ...82
delete...44
DELETE..14
deleted ...44
dev...34
device driver...................................76
devices...34
df 82
diff...82
directory28, 31, 33, 41, 46, 76
disk.. 33, 76
diskette ...76
disks ..31
DoS ...76
dthelpview27
du ..82
e 82
EBCDIC ...76

88

Echo.. 29
ed 82
edit.. 67
editor.. 76
env.. 82
ENV ..62, 64
environment................................... 76
escape ... 76
etc... 34
Ethernet ... 76
execute.. 47
execute permission 76
Exiting .. 13
export...34, 64
field seperator................................ 76
FIFO .. 76
file 31, 37, 41, 46, 76
file system 76
filename .. 33
find ..28, 82
flag ... 76
fork ... 76
ftp ... 82
gateway .. 77
GMT .. 77
grep... 82
group38, 46, 77
gunzip ... 82
gzip ... 82
hardware 77
Hardware .. 3
head ...45, 82
help24, 27, 82
heterogeneous 77
Hewlett-Packard................................ 5
hidden file 38
history... 65
home ..33, 35
homogeneous 77
hostname... 12
HP-UX.. 5
IBM .. 5
ICONS.. 10
interpreter 77
IP.. 77
IP address.. 12
IPL ... 77
Journaled File System 77
kernel...................................17, 34, 77
keyboard14, 54

kill... 77, 82
Korn ..18
ksh... 18, 64
LAN ..77
lib ..34
line editor77
link..77
Linux...5, 77
ln 83
logfile ..45
login .. 12, 77
Login ...9
LOGNAME....................................62
logout .. 13, 77
Lost + Found38
lp 46
ls 23, 24, 36, 83. See
mail ...83
MAIL..62
MAILCHECK................................62
make ...77
man 24, 25, 83
Manual PagesSee man
memory ..77
metacharacters 43, 77
mkdir ... 43, 83
mnt ..34
modify ...41
more ..45
Motif...77
mount ..83
move..44
multitasking.......................................4
mv ... 44, 83
network ...11
NFS ... 34, 77
noclobber...56
null..77
octal...48
OEM ...78
operating system........................ 33, 78
Operating System1
opt ...34
option ..23
options....................................... 23, 53
OS/2 ..11
others ..46
overwrite ...56
overwriting45
owner .. 49, 78

 89

parallel processing......................... 78
passwd .. 83
password................................9, 10, 78
PATH ..62, 78
path name76, 78
PC... 11
permission...................... 38, 46, 75, 78
pg................................... 23, 24, 45, 83
pipe......................................23, 43, 53
pipes ... 78
POSIX.. 78
print .. 46
printer ... 54
proc... 34
process ... 78
profile... 78
program .. 21
programming................................... 18
prompt10, 13, 19
ps 83
PS1 ... 62
pwd..36, 83
read... 47
read permission 78
redirect.. 54
redirection 78
regular expression 78
relative directory 35
relative path name......................... 78
remove .. 44
rename .. 44
replace .. 72
rexec ... 11
RISC .. 78
rlogin .. 11
rm 43, 44, 59, 83
rmdir ..43, 83
root ..19, 59
root directory33, 78
RPM... 78
rsh... 11
sbin ... 34
scalability 78
SCCS.. 78
SCO.. 5
script ..53, 79
search.. 72
Security... 9
sed .. 84
server ... 78

set..64
set -o vi ...64
setuid ..78
sh 18
shell15, 18, 19, 43, 59, 78
shutdown ...84
SMIT...5
sockets ..79
software ..79
Solaris ...5
Solaris Manuals28
SPARC..5
special file33
stderr ...54
STDERR ..79
stdin...54
STDIN ..79
stdout...54
STDOUT ..79
stored...31
stty....................................... 14, 63, 84
su 59
subdirectory............................... 34, 79
Sun ..5
SunOS ...5
superuser 57, 79
swap space79
switches...53
SwitchUser See su
system ...79
System V...79
tail ... 45, 84
tar ..84
TCP ..79
TCP/IP....................................... 11, 79
tcsh..18
tee..55
telnet.................................... 11, 60, 84
TERM...62
termcap ..79
text 33, 46, 67
thread ..4
tmp ..34
touch.. 43, 84
type ...46
ucompress..84
umask ...62
umount ..84
uname..84
undelete ... See

90

UNIX.....................................1, 17, 79
user .. 46
username................................9, 35, 59
usr... 33
var... 34
variables.. 59
vi 67, 79, 85
view .. 45
whatis database 26
who... 85
wild card .. 79

window ...79
Windows 11, 60
working directory79
Workstation9
write ..47
write permission.............................80
X See X Windows
X Windows...................... 5, 64, 69, 80
x86 ..5
X-Windows23

