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Abstract— The RSA cryptosystem is most widely used cryptosystem it may be used to provide both secrecy and digital signatures and its secu-

rity is based on the intractability of the integer factorization. The security of RSA  algorithm depends on the ability of the hacker to factorize num-

bers.  New, faster and better methods for factoring numbers are constantly being devised. The Trent best for long numbers is the Number Field 

Sieve.  Although the past work has proven that none of the attacks on RSA cryptosystem were dangerous. Indeed most of the dangers were be-

cause of improper use of RSA. In this paper what I am trying to do is to analyze the different types of possible attacks on RSA Cryptosystem. 

 

Index Terms— Cryptology, Cryptography, Cryptanalysis, CRT, Decryption, Encryption, RSA. 

——————————      —————————— 

1 INTRODUCTION                                                                     

he RSA Cryptosystem developed in 1977, by three 
peoples: Ronald Rivest, Adi Shamir & Len Adleman 
which is based upon the difficulty of factorization of two 

large primes. The cryptosystem is most commonly used for 
providing privacy and ensuring authencity of digital data. 
These days RSA is deployed in many commercial systems. It is 
used by web servers and browsers to secure web traffic, it is 
used to secure login sessions and it is at the heart of electronic 
credit card payment systems. So we can say that RSA is very 
frequently used in some or the other applications. The RSA 
Cryptosystem has been analysed for vulnerability by many 
researchers. Although the past work has proven that none of 
the attacks on RSA cryptosystem were dangerous. Indeed 
most of the dangers were because of improper use of RSA. 
Our goal is to survey some of these attacks and describe the 
underlying mathematical tools they use. Throughout the sur-
vey we follow standard naming conventions and use Alice 
and Bob to denote two generic parties wishing to communi-
cate with each other. We use Marvin to denote a malicious 
attacker wishing to eavesdrop or tamper with the communica-
tion between Alice and Bob. 
 

2 ELEMENTARY ATTACKS 

We begin by describing some old elementary attacks. These 
attacks illustrate blatant misuse of RSA. Although many such 
attacks exist, we are considering few ones  

 
2.1 Common Modulus 

To avoid generating a different modulus N = p.q for each user 
one may wish to fix N once and for all. The same N is used by 
all users. A trusted central authority could provide user i with 
a unique pair ei, di from which user i forms a public key (N, ei) 
and a secret key (N, di). 

 

At first glance this may seem to work: a cipher text 
C = Mea mod N intended for Alice cannot be decrypted by Bob 
since Bob does not possess da. However, this is incorrect and 
the resulting system is insecure. Bob can use his own expo-
nents eb , db to factor the modulus N. Once N is factored Bob 
can recover Alice's private key da from her public key ea. This 
observation, due to Simmons, shows that an RSA modulus 
should never be used by more than one entity. 

2.2 Blinding 

Let (N, d) be Bob's private key and (N, e) be his corresponding 
public key. Suppose an adversary Marvin wants Bob's signa-
ture on a message M є Z*N. Being no fool, Bob refuses to sign 
M. Marvin can try the following: he picks a random r є Z*N 
and sets    M’ = r^e M mod N. He then asks Bob to sign the 
random message M’. Bob may be willing to provide his signa-
ture S’ on the innocent-looking M’. But recall that S’ = M’^d 
mod N. Marvin now simply computes S = S’/r mod N and ob-
tains Bob's signature S on the original M. Indeed 
 
S^e  = (S’) ≦e / r≦e = (M’) ≦ed / r≦e ≡ M’/ r≦e = M (mod N)    (1) 
 
This technique, called blinding, enables Marvin to obtain a 
valid signature on a message of his choice by asking Bob to 
sign a random “blinded" message. Bob has no information as 
to what message he is actually signing. Since most signature 
schemes apply a “one-way hash" to the message M prior to 
signing, the attack is not a serious concern. Although we pre-
sented blinding as an attack, it is actually a useful property of 
RSA needed for implementing anonymous digital cash.   
 

3 Low Private Exponent 
To reduce decryption time (or signature-generation time), one 
may wish to use a small value of d rather than a random d. 
Since modular exponentiation takes time linear in log2 d, a 
small d can improve performance by at least a factor of 10 (for 
a 1024 bit modulus). Unfortunately, a clever attack due to M. 
Wiener shows that a small d results in a total break of the 
cryptosystem.     
 
Theorem: (M.Wiener) Let N = p.q with q < p < 2q. Let d < 1/3 
N1/4. Given (N, e) with     e.d = 1 mod ϕ (N), Marvin can effi-
ciently recovered                                                                                                                                            
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Now k (N) = ed-1< ed.  

Since e <  (N), we see that k < d ½ N1/4. Hence we obtained  
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This is a classic approximation relation. The number of frac-
tions k/d with d < N approximating e/N so closely is bounded 
by log2 N. In fact, all such fractions are obtained as convergent 
of the continued fraction expansion of e/ N. All one has to do 
is compute the logN convergent of the continued fraction for 
e/N One of these will equal k/d. Since   ed- kψ (N) = 1, we have 
gcd (k, d) = 1, and hence k/d is a reduced fraction. This is a 
linear-time algorithm for recovering the secret key d. 
 
Since typically N is 1024 bits, it follows that d must be at least 
256 bits long in order to avoid this attack. This is unfortunate 
for low-power devices such as “smartcards", where a small d 
would result in big savings. All is not lost however. Wiener 
describes a number of techniques that enable fast decryption 
and are not susceptible to his attack. 
 

4 Low Public Exponent 
To reduce encryption or signature-verification time, it is cus-
tomary to use a small public exponent e. The smallest possible 
value for e is 3, but to defeat certain attacks the value                
e = 2^16 +1 = 65537 is recommended. When the value 2^16 +1 is 
used, signature verification requires 17 multiplications, as op-
posed to roughly 1000 when a random e < ψ (N) is used. Un-
like the attack of the previous section, attacks that apply when 
a small e is used are far from a total break. 

 
4.1 Hastad’s Broadcast Attack 

As a first application of Coppersmith's theorem, we present an 
improvement to an old attack due to Hastad. Suppose Bob 
wishes to send an encrypted message M to a number of parties 
P1, P2,,…. Pk. Each party has its own RSA key (Ni, ei) we as-
sume M is less than all the Ni. Naively, to send M, Bob en-
crypts it using each of the public keys and sends out the ith 
ciphertext to Pi. An attacker Marvin can eavesdrop on the con-
nection out of Bob's sight and collect the k transmitted cipher 
texts. For simplicity, suppose all public exponents ei are equal 
to 3. A simple argument shows that Marvin can recover M if   
k >= 3. Indeed, Marvin obtains C1, C2, C3, where 

 

     C1 = M3 mod N1          C2 = M3 mod N2       C3 = M3 mod N3  

We may assume that gcd (Ni, Nj) = 1 for all i ≠ j since otherwise 
Marvin can factor some of the Ni's. Hence, applying the Chi-
nese Remainder Theorem (CRT) to C1, C2, C3 gives a   C’є 
ZN1N2N3 satisfying C’ = M≦3 mod N1N2N3. Since M is less than 
all the Ni's, we have M^3 < N1N2N3. Then C’ = M^3 holds over 
the integers. Thus, Marvin may recover M by computing the 
real cube root of C. More generally, if all public exponents are 
equal to e, Marvin can recover M as soon as k ≥ e. The attack is 
feasible only when a small e is used. 
 
Hastad describes a far stronger attack. To motivate Hastad's 
result, consider a naive defence against the above attack. Ra-
ther than broadcasting the encryption of M, Bob could “pad" 
the message prior to encryption. For instance, if M is m bits 
long, Bob could send   Mi = i2^m + M to party Pi. Since Marvin 
obtains encryptions of different messages, he cannot mount 
the attack. Unfortunately, Hastad showed that this linear pad-
ding is insecure. In fact, he proved that applying any fixed 
polynomial to the message prior to encryption does not pre-
vent the attack. 

 
 
4.2 Franklin-Reiter Related Message Attack 

Franklin and Reiter found a clever attack when Bob sends 
Alice related encrypted messages using the same modulus. Let 
(N, e) be Alice's public key. Suppose M1, M2 є Z*N are two dis-
tinct messages satisfying M1 = f (M2) mod N for some publicly 
known polynomial. To send M1 and M2 to Alice, Bob may 
naively encrypt the messages and transmit the resulting cipher 
texts C1, C2. We show that given C1, C2, and Marvin can easily 
recover M1, M2. Although the attack works for any small e, we 
state the following lemma for e = 3 in order to simplify the 
proof .Coppersmith's Short Pad Attack The Franklin-Reiter 
attack might seem a bit artificial. After all, why should Bob 
send Alice? 

 
Lemma (FR) Set e = 3 and let (N, e) be an RSA public key. Let 
M1 ≠ M2 є Z*N  satisfy  M1 = f (M2) mod N for some linear poly-
nomial f = ax + b є  ZN*x+ with b≠0. Then given (N, e, C1, C2, f), 
Marvin can recover M1, M2 in time quadratic in log N. 
 
Proof: To keep this part of the proof general, we state in using 
an arbitrary e (rather than restricting to e = 3). Since          
C1=M1e mod N, we know that M2 is a root of the polynomial 
g1(x) = f(x)e – C1 є ZN[x], Similarly M2 is a root of                     
g2(x) = f(x)e – C2 є ZN[x]. The linear factor x-M2 divides both 
polynomials. Therefore, Marvin may use the Euclidean algo-
rithm to compute the gcd of g1 and g2. If the gcd turns out to 
be linear, M2 is found. The gcd can be computed in quadratic 
time in c and log N. 

 
We show that when e = 3 the gcd must be linear. The poly-
nomial x3- C2 factors, modulo both p and q into a linear factor 
and an irreducible quadratic factor (recall that gcd(e,ψ(N))=1 
and hence x3 - C2 has only one root in ZN). Since g2 cannot di-
vide g1, the gcd must be linear, for e > 3 the gcd is almost al-
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ways linear. However for some rare M1, M2 and f, it is possible 
to obtain a nonlinear gcd, in which case the attack fails. 
 
For e > 3 the attack takes time quadratic in e. Consequently, it 
can be applied only when a small public exponent e is used. 
For large e the work in computing the gcd is prohibitive. It is 
an interesting question to device such an attack for arbitrary e. 
In particular, can the gcd of g1 and g2 above be found in time 
polynomials in log e? 
 
4.3 Partial Key Exposure Attack 

Let (N, d) be a private RSA key, suppose by some means Mar-
vin is able to expose a fraction of the bits of d, say a quarter of 
them. Can he reconstruct the rest of d? Surprisingly, the an-
swer is positive when the corresponding public key is small. 
Recently Boneh, Durfee, and Frankel showed that as long as     
e < sqrt N, it is possible to reconstruct all of d from just a frac-
tion of its bits. These results illustrate the importance of safe-
guarding the entire private RSA key. 
 
Theorem: (Coppersmith) Let N = pq be an n-bit RSA mod-
ulus. Then given the n/4 least significant bits of p or the n/4 
most significant bits of p, one can efficiently factor N. 
By definition of e and d, there exists an integer k such that 
 

                           ed-k (N-p-q+1)=1                         (3) 
 
Since d< ϕ(N), we must have 0 ≤ k ≤ e. Reducing the equation 
modulo 2n/4 and setting     q = N/p, we obtain 

 
         (ed) p - kp (N - p+1)+ kN = p (mod 2n/4)           (4) 

 
Since Marvin is given the n/4 least significant bits of d, he 
knows the value of ed mod 2n/4. Consequently, he obtains equ-
ations an equation in k and p. For each of the e possible values 
of k, Marvin solves the quadratic equation in p and obtains a 
number of candidate values for p mod 2n/4. For each of these 
candidate values, he runs the algorithms of above theorem in 
order to factor N. One can show that the total number of can-
didate values for p mod 2n/4 is at most e log2e. Hence after at 
most e log2e attempts, N will be factored. 
Finally when the encryption exponent e is small, the RSA sys-
tem leaks half the most significant bits of the corresponding 
private key d. To see this consider once again the equation    
ed-k (N-p-q+1) = 1 for an integer 0 ≤ k ≤ e. Given k, Marvin 
may easily compute 
 

d’ =*(kN + 1)/e+ 
Then 

                  |d’-d|  ≤ k (p+q)/e  ≤  3k√N/e  <  3√N                  (5) 
 

Hence, d’ is a good approximation for d. The bound shows 
that, for most d, half the most significant bits of d’ are equal to 
those of d. Since there are only e possible values for k, Marvin 
can construct a small set of size e such that one of the element 
in the set is equal to half the most significant bits of d. The case 
e = 3 is especially interesting. In this case one can show that 
always k = 2 and hence the system completely leaks half the 

most significant bits of d. 
 

5 Implementation Attack 
Now we are moving to a completely different type of attacks. 
Rather than attacking the underlying structure of the RSA 
function, these attacks focus on the implementation of RSA 
 

5.1 Random Faults 

Implementation of RSA decryption and signature frequently 
use the CRT to speed up the computation of Md mod N. In-
stead of working modulo N, the signer Bob first computes the 
signatures modulo p and q and then combines the results us-
ing the CRT. More precisely, Bob first computes 
 

Cp = Mdp mod p   and    Cq = Mdq mod q 
 

Where dp = d mod (p-1) and dq = d mod (q-1). He then obtains 
the signature C by setting  
 

                    C = T1Cp + T2Cq (mod N)              (6) 
Where 
 
 

T1        and      T2  

 
The running time of the last CRT step is negligible compared 
to the two exponentiations. Note that p and q are half the 
length of N. Since simple implementations of multiplication 
take quadratic time, multiplication modulo p is four times 
faster than modulo N. Furthermore, dp is half the length of d 
and consequently computing Mdp mod p    is eight times faster 
than computing Md mod N. Overall signature time is thus re-
duced by a factor of four. Many implementations use this me-
thod to improve performance. 
 
Boneh, DeMillo and Lipton observed that there is an inherent 
danger in using the CRT method. Suppose that while generat-
ing a signature, a glitch on Bob’s computer causes it to miscal-
culate in a single instruction. Say, while copying a register 
from one location to another, one of the bits is flipped. Given 
an invalid signature, an adversary Marvin can easily factor 
Bob’s modulus N. 
 
Suppose a single error occurs while Bob is generating a signa-
ture. As a result, exactly one of Cp or Cq will be computed in-
correctly. Say Cp is correct, but C’q is not. The resulting signa-
ture C’, he knows it is a false signature since C’e ≠ M mod N. 
However, notice that  
 

C’e = M  mod p     while   C’e ≠ M  mod q 
     

As a result, gcd (N,C’e - M) exposes a nontrivial factor of N. 
For the attack to work Marvin must have full knowledge of M. 
namely, we are assuming Bob does not use any random pad-
ding procedure.  Random padding prior to signing defeats the 
attack. A simpler defense is for Bob to check the generated 
signature before sending it out to the world. Checking is espe-
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cially important when using the CRT speedup method. Ran-
dom faults are hazardous to many cryptographic systems. 
Many systems, including a non-CRT implementation of RSA, 
can be attacked using random faults. However, these results 
are far more theoretical. 
 

5.2 Bleichenbacher’s Attack on PKCS 1 
 
Let N be an n-bit RSA modulus and M be an m-bit message 
with m < n. Before applying RSA encryption it is natural to 
pad the message M to n bits by appending random bits to it. 
An old version of standard known as Public Key Cryptogra-
phy Standard 1 (PKCS 1) uses this approach. After padding 
the message looks as follows: 
 

02 Random 00 M 
 
The resulting message is n bits long and is directly encrypted 
using RSA. The initial block containing “02” is 16 bits long and 
is there to indicate that a random pad has been added to the 
message. 
 
When PKCS 1 message is received by Bob’s machine, an appli-
cation decrypts it, checks the initial block, and strips off the 
random pad. However some applications check for the “02” 
initial block and if it is not present they send back an error 
message saying “invalid message”. Bleichenbacher showed 
that this error message can lead to disastrous consequences: 
using the error message, an attacker Marvin can decrypt ci-
pher text of his choice. 
 
Suppose Marvin intercepts a cipher text C intended for Bob 
and wants to decrypt it. To mount the attack, Marvin picks a 
random r є Z*N, computes C’ = rC mod N, and sends C’ to 
Bob’s machine. An application running on Bob’s machine rece-
ives C’ and attempts to decrypt it. It is either responds with an 
error message or does not respond at all. Hence, Marvin learns 
whether the most significant 16 bits of the decryption of C’ are 
equal to 02. In effect, Marvin test whether the 16 bits most sig-
nificant bits of the decryption of rC mod N are qual to 02, for 
any r of his choice. Bleichenbacher showed that such an at-
tempt is sufficient for decrypting C. 
 

6 CONCLUSION 

Two decades of research into inverting the RSA function pro-
duced some insightful attacks, but no devastating attack has 
ever been found. The attacks discovered so far mainly illu-
strate the pitfalls to be avoided when implementing RSA. At 
the moment it appears that proper implementations can be 
trusted to provide security in the digital world. These attacks 
illustrate that a study of the underlying mathematical struc-
ture is insufficient. Desmedt and Odlyzko , Joye and Quisqua-
ter  and deJonge and Chaum  describe some additional at-
tacks. Throughout the paper we observed that many attacks 
can be defeated by properly padding the message prior to en-
cryption or signing. 
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