
Padding Oracle Attacks on the ISO CBC Mode
Encryption Standard

Kenneth G. Paterson? and Arnold Yau??

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, UK
{kenny.paterson, a.yau}@rhul.ac.uk

Abstract. In [8] Vaudenay presented an attack on block cipher CBC-
mode encryption when a particular padding method is used. In this pa-
per, we employ a similar approach to analyse the padding methods of the
ISO CBC-mode encryption standard. We show that, for several of the
padding methods referred to by this standard, we can exploit an oracle
returning padding correctness information to efficiently extract plaintext
bits. In particular, for one padding scheme, we can extract all plaintext
bits with a near-optimal number of oracle queries. For a second scheme,
we can efficiently extract plaintext bits from the last (or last-but-one)
ciphertext block, and obtain plaintext bits from other blocks faster than
exhaustive search.

Keywords
padding oracle attack, CBC-mode encryption, ISO standard

1 Introduction

1.1 Background

In [8] Vaudenay presented an attack on block cipher CBC-mode encryption when
a particular padding method is used. The attack requires an oracle which on
receipt of a ciphertext, decrypts it and replies to the sender whether the padding
is valid or not. The attack model assumes the attacker to have intercepted some
such padded then CBC-mode encrypted ciphertext under some key K, and have
access to the aforementioned padding validity oracle (operating using the same
key K). The result is that the attacker can recover the plaintext corresponding

? This author supported by the Nuffield Foundation, NUF-NAL02
?? This author supported by EPSRC and Hewlett-Packard Laboratories Bristol through
CASE award 01301027. Also supported by EU Fifth Framework Project IST-2001-
324467 ”CASENET”.

to any block of ciphertext using an average of 128b oracle calls, where b is the
number of bytes in a block and a byte is eight bits.

Further research has been done by Black and Urtubia [1], who generalised
Vaudenay’s attack to other padding schemes and modes of operations, and pre-
sented a padding method which prevents the attack. In [2], Canvel et al demon-
strated the practicality of padding oracle attacks and showed how subtleties in
security protocol implementation can lead to flaws. First of all they realised an
SSL/TLS padding oracle by exploiting timing information that is available upon
submission of correctly and incorrectly padded ciphertexts. Secondly an attack
against the IMAP protocol when used over SSL/TLS was implemented. In a
typical setting, the attack recovers the IMAP password within one hour. Kĺıma
and Rosa [7] applied idea of a “format correctness oracle” (of which padding is
a special case) to construct a PKCS#7 validity oracle and were able to decrypt
one PKCS#7 formatted ciphertext byte with on average 128 oracle calls.

1.2 ISO standards

The current ISO standard for modes of operation of a block cipher is the second
edition of ISO/IEC 10116 [4] (the third edition [5] is under development at
the time of writing). It does not, however, specify any padding methods for the
modes of operation (including CBC) that require one. In Section 5: Requirements
it indicates that padding methods are beyond its scope and instead refers to
ISO/IEC 9797-1 [3] (MACs using a block cipher) and 10118-1 [6] (general hash
functions) where a few such methods are defined. Using a similar approach to
[8], we have found attacks of various severity against some of those methods
when used with CBC-mode encryption. Thess attacks do not, however, entail
any security implications for those padding methods when they are used within
their proper contexts (i.e. MACs and hash functions).

Note that in Annex B.2.3 of ISO/IEC 10116, ciphertext-stealing and another
method are described for the special treatment of the last two blocks when
encrypting under CBC-mode, when padding the plaintext is not acceptable.
The standard does not prescribe that these methods be used, only that they can

be used instead of padding. We emphasise that we are not attacking these two
methods, but rather the padding methods in ISO/IEC 9797-1 and 10118-1 that
are recommended for use in ISO/IEC 10116.

1.3 Our contribution

We assume that an attacker has access to a padding oracle operating under the
fixed key K and has intercepted a ciphertext encrypted in CBC-mode under
that key. The attacker’s aim is to recover the plaintext for that ciphertext. We
further assume that the attacker is able to choose the initialisation vector when
submitting ciphertexts to the oracle. This assumption prevents our attack from
working when secret IVs are used; this is permitted in [4]. Some or all of these
assumptions may be unwarranted when one is attacking a real system.

Under the above assumptions, our main results are as follows:

1. Attacking against padding method 3 of [3], the attacker can recover the
plaintext for every ciphertext block with n+ O(log2 n) oracle calls for each
block, where n is the block size.

2. There are two attacks against padding method 3 of [6], though they are to
some degree interdependent. The padding method requires a parameter r to
be chosen where 1 ≤ r ≤ n. In the first of our two attacks, the attacker can
recover all plaintext bits to all ciphertext blocks with a complexity of O(2r−1)
oracle calls per block when r < n. When r = n the complexity increases to
O(2n). In our second attack, depending on which of two possible states the
padding is in, the attacker either recovers the whole of the last plaintext
block with n+O(log2 n) oracle calls, or recovers some u bits of the last-but-
one plaintext block which then speeds up the first attack by a factor of 2u−1

in recovering the remaining n− u bits of the block.

We will first introduce some notation used throughout the paper, followed by
a review of CBC-mode encryption. Then we present in turn each padding method
in [3] and [6] and, if applicable, our attack against it. We conclude with a few
remarks about the need for careful cryptographic design to prevent side-channel
attacks.

2 Symbols, Notation and CBC-Mode Review

2.1 Symbols and notation

Each symbol and notation will be introduced on their first use, but we find it
convenient to gather them here for reference purposes.

C : ciphertext output after CBC-mode encryption and ciphertext the attacker
is trying to decrypt

C ′ : ciphertext to be submitted to an oracle during an attack
dK(Y) : decryption of ciphertext block Y under key K
eK(X) : encryption of plaintext block X under key K
D : unpadded data string to be CBC-mode encrypted
Ij : the jth intermediate block during CBC-mode encryption, i.e. Dj ⊕Cj−1, or

in the case j = 1, it is D1 ⊕ IV
I ′j : the jth intermediate block during the attack, i.e. dk(C

′
j)

IV : the initialisation vector used in CBC-mode
LD : the length (in bits) of the data string D
n : the block size (in bits) of the block cipher
P : the result of applying a given padding method to D
P ′ : data string computed by the padding oracle in the course of verifying

padding
q : the number of blocks in data string P after padding
VALID and INVALID: oracle responses to, respectively, correct and incorrect

padding after receipt and decryption of some ciphertext
X||Y : the result of concatenation of strings X and Y

PP
11

CC
11

IV

ee
KK

PP
22

CC
22

ee
KK

PP
q−1

CC
q−1

ee
KK

PP
qq

CC
qq

ee
KK

II
11

II
22

II
q−1

II
qq

Fig. 1. CBC-mode encryption

X ⊕ Y : the result of exclusive-or (XOR) of strings X and Y

X2 : the binary representation of the value X

Xj : the jth block of the plaintext or ciphertext X

Xj,k : the kth bit of the plaintext or ciphertext block Xj

2.2 Review of CBC-mode encryption

Cipher Block Chaining (CBC) is a mode of operation for an n-bit block cipher for
encrypting data of arbitrary length. It has been standardised in second edition
of ISO/IEC 10116 [4] and it is, quite naturally, included in the lastest draft of
the third edition of that standard [5].

Let the encryption operation of the block cipher under key K be eK , and
the data we wish to encrypt be D. CBC-mode encryption (Figure 1) operates
as follows:

1. A padding method is applied to D to make a padded message P of bitlength
a multiple of n.

2. P is divided into n-bit blocks P1, P2 . . . Pq.

3. An n bit number is chosen, at random or in a specified way, as the initiali-
sation vector IV .

4. Compute ciphertext block C1 = eK(IV ⊕ P1) and then

5. Ci = eK(Ci−1 ⊕ Pi), for 2 ≤ i ≤ q

6. The resulting C = IV ||C1||C2|| . . . ||Cq is the CBC-encrypted ciphertext.

We assume that IV is always prepended to the ciphertext. This allows a
more concise notation for our attacks to follow and means that IV effectively
plays the role of the “zeroth” ciphertext block; we write C0 = IV .

Let dK denote the inverse operation to eK . To decrypt a block Ci (Figure
2) we simply have to compute Di = dk(Ci) ⊕ Ci−1 for 2 ≤ i ≤ q, and D1 =
dk(C1)⊕ IV .

Some security properties of CBC-mode are outlined in Section 2 of [8].

CC
11

PP
11

IV

dd
KK

CC
22

PP
22

dd
KK

CC
q−1

PP
q−1

dd
KK

CC
qq

PP
qq

dd
KK

II
11

II
22

II
q−1

II
qq

Fig. 2. CBC-mode decryption

3 Attacking the Padding Methods of ISO/IEC 9797-1

3.1 The standard

The standard [3] specifies six algorithms to compute an m-bit MAC using an
n-bit block cipher with a secret key. The algorithms themselves are essentially
instances of the CBC-MAC method or variants of it. Padding is applied, as with
CBC-mode encryption, when the plaintext is not of length (in bits) a multiple
of n, the block cipher size. For some methods it is always applied, regardless of
the plaintext length.

3.2 Padding method 1

The method is described as follows:

“The data string D to be input to the [. . .] algorithm shall be right-
padded with as few (possibly none) ‘0’ bits as necessary to obtain a data
string whose length (in bits) is a positive integer multiple of n.”

Notice that this method is many-to-one: different data strings may be padded
to yield the same result, which means that padding cannot be removed unam-
biguously if the length of the plaintext is not known. Consequently, given a
padded data string, one cannot even tell where the data/padding boundary is,
let alone check for padding validity. In fact, without data length information,
every plaintext P is a validly padded version of at least one data string D. This
of course limits the applicability of the padding technique to cases where the
plaintext is of a fixed length, or where the proper length is somehow otherwise
conveyed to the recipient.

No attack can be based on information returned from a padding oracle be-
cause any ciphetext submitted to such an oracle will decrypt to give a correctly
padded plaintext.

00...0((LL
DD
))

22 DATA

nn LL
DD

[0, nn−1]

Fig. 3. ISO/IEC 9797-1 padding method 3

3.3 Padding method 2

The method:

“The data string D to be input to the [. . .] algorithm shall be right-
padded with a single ‘1’ bit. The resulting string shall then be right-
padded with as few (possibly none) ‘0’ bits as necessary to obtain a data
string whose length (in bits) is a positive integer multiple of n.”

This method has been analysed in [1] (it is called OZ-PAD in that paper).
The key result of [1] is that the method appears to resist padding oracle attacks.
This is because practically all data strings are correctly padded, with the only
exception being when a block contains all ‘0’ bits. However this padding mecha-
nism still lacks what is known as “semantic security” — an INVALID reply from
the padding oracle would tell the attacker that the decrypted plaintext block is
not a particular bit string. See [1] for details.

3.4 Padding method 3

The method (Figure 3):

“The data string D to be input to the [. . .] algorithm shall be right-
padded with as few (possibly none) ‘0’ bits as necessary to obtain a
data string whose length (in bits) is a positive integer multiple of n. The
resulting string shall then be left-padded with a block L. The block L
consists of the binary representation of the length (in bits) LD of the
unpadded data string D, left-padded with as few (possibly none) ‘0’ bits
as necessary to obtain an n-bit block. The right-most bit of the block
L corresponds to the least significant bit of the binary representation of
LD.”

We have an attack against this padding scheme that decrypts, a block at
a time, arbitrary ciphertexts C1||C2|| . . . ||Cq. This attack takes n + O(log2 n)
oracle calls per block. There are two phases to this attack: determining LD and
the actual decryption.

CC
11

PP
11

IV

dd
KK

CC
22

PP
22

dd
KK

CC
q−1

PP
q−1

dd
KK

CC
qq

PP
qq

dd
KK

II
11

II
22

II
q−1

II
qq

Flipping the jjth bit in
this ciphertext block...

... will also flip the jjth bit
in this (last) plaintext
block, which may or may
not be a padding ’0’ bit.

The length block
where LL

DD
 resides

Fig. 4. Attack phase 1 — obtaining LD

Phase 1: Determining LD We want to find LD, the content of the first block,
which indicates the length of the unpadded data. To do that we use the padding
oracle to determine the number of ‘0’ bits that have been appended to the last
block, if any. This is performed as follows (Figure 4).

Firstly notice that in CBC-mode decryption, flipping (complementing) any
single bit at position i in block Cj would flip also the decrypted plaintext bit
at position i in block Pj+1 (whilst corrupting the whole of plaintext block Pi).
This allows us to flip arbitrary bits within a block in the decrypted plaintext by
appropriately altering the ciphertext. This observation is in fact the basis of all
of our attacks.

A padded data string consists of q ≥ 2 blocks. Here we consider the case
q ≥ 3; the case q = 2 is handled separately below. The string is right-padded
with some ‘0’ bits and left-padded with the length block containing the binary
representation of LD. LD is effectively a pointer to the last bit of the unpadded
data, all the bits after which should be ‘0.’ Let’s now see what happens if we
flip a single bit in Pq, the last plaintext block of the data string (by flipping a
bit in Cq−1, the last-but-one ciphertext block). This change does not affect the
decryption of C1 (since q ≥ 3) so the length block is left intact. So one of two
things might happen:

1. The bit flipped is part of the original unpadded data. The padding is there-
fore still intact and correct and the oracle returns VALID.

2. The bit flipped is one of those ‘0’ bits padded. The oracle therefore detects
a ‘1’ bit where it should have been ‘0,’ and thus returns INVALID.

This means that after flipping a single bit in Dq, a VALID oracle response
implies the padding boundary is to the right of the current position, and to the
left otherwise. So we now can work out the exact location of the boundary by

flipping the last plaintext block one bit at a time, say from right to left. The
transition point of oracle response from INVALID to VALID tells us the location
of the boundary we are after. This can be made more efficient by using a binary
search similar to that presented in Section 3 of [1]. Once we have the boundary
it is trivial to compute the value LD from the number of blocks in the ciphertext
and the position of the boundary within the last block.

This phase is presented in Algorithm 9797-1-m3-get-LD-general below. The
notation Xa,b denotes the bit at position b of the ciphertext or plaintext block
Xa. We number the positions in a block from 0 to n−1, going from left to right.

This method of obtaining LD does not work when the unpadded data string
consists only of a single block (this includes the case of the data being the
null string). Here, the padded data string consists of two blocks P1||P2. Now
flipping bits in the last (second) plaintext block would require changes in the
first ciphertext block C1, which in turn would corrupt the first plaintext block
where LD is supposed to reside.

Fortunately, there is a way to circumvent this problem at least for block sizes
n = 2m, m ≥ 1, the most common situation in practice. Let C = IV ||C1||C2 be
the ciphertext for which we wish to determine LD. It is not hard to see that if
IV ′ = IV ⊕ 0 . . . 0

︸ ︷︷ ︸

n−m−1

1 0 . . . 0
︸ ︷︷ ︸

m

, then C ′ = IV ′||C1||C1||C2 is also a valid ciphertext

unless LD = 0 or LD = n (in which cases the padding oracle will return INVALID

on submission of C ′). In the situation where C ′ is valid then we can simply apply
the method described above to C ′ to obtain L′D = LD + 2m, and hence LD.

We need to apply a further trick to distinguish the remaining cases, i.e. when
LD = 0 or LD = n. Now we set IV ′′ = IV ⊕ 0 . . . 0

︸ ︷︷ ︸

n−m−2

11 0 . . . 0
︸ ︷︷ ︸

m

and submit C ′′ =

IV ′′||C1||C1||C2 to the padding oracle. If LD = 0, then C ′′ will, on decryption,
contain a length field L′′D with L′′D = 3n. Since the unpadded data in C ′′ is of
length at most 2n, the padding oracle will output INVALID. On the other hand,
if LD = n, then C ′′ will yield L′′D = 2n and C ′′ accepted as VALID. Hence
one futher oracle query on a carefully chosen C ′′ is sufficient to decide whether
LD = 0 or LD = n.

The special case q = 2 is presented in Algorithm 9797-1-m3-get-LD-special
below.

Phase 2: Decrypting We now have LD, the binary encoding of which is the
content of the first plaintext block. We can deduce that I1, the first intermediate
block, is equal to LD ⊕ IV . Note that by manipulating IV , we can change the
content of the first block to indicate a data length of any desired value. If L′D is
the desired value, we can take IV ′ = (L′D)2 ⊕ I1 = (L′D)2 ⊕ (LD)2 ⊕ IV .

We are now ready to decrypt an arbitrary ciphertext block Ck from the
ciphertext IV ||C1||C2|| . . . ||Cq, where 2 ≤ k ≤ q (Figure 5). Note that there is
no need to decrypt C1 as it just encrypts the value LD. The decryption is done in
a bit-by-bit fashion, starting from the rightmost bit. So to begin with we submit

Algorithm

9797-1-m3-get-LD-general

Input: IV ||C1||C2|| . . . ||Cq

Output: LD

Ensure: q ≥ 3
C := IV ||C1||C2|| . . . ||Cq

l := 0
u := n− 1
repeat

h := d(l + u)/2e
Cq−1,h := Cq−1,h ⊕ 1
if oracle(C) = VALID then

l := h
else if oracle(C) = INVALID then

u := h-1
end if

Cq−1,h := Cq−1,h ⊕ 1
until l = u
return LD := (q − 1)n+ l + 1

Algorithm

9797-1-m3-get-LD-special

Input: IV ||C1||C2

Output: LD

Ensure: n = 2m,m ≥ 1, q = 2
IV ′ := IV ⊕ 0 . . . 0

︸ ︷︷ ︸

n−m−1

1 0 . . . 0
︸ ︷︷ ︸

m

C′ := IV ′||C1||C1||C2

if oracle(C ′) = VALID then

L′D = 9797-1-m3-get-LD-general(C
′)

return LD := L
′
D − 2

m

else

IV ′′ := IV ⊕ 0 . . . 0
︸ ︷︷ ︸

n−m−2

11 0 . . . 0
︸ ︷︷ ︸

m

C′′ := IV ′′||C1||C1||C2

if oracle(C ′′ = VALID) then

return LD := n
else

return LD := 0
end if

end if

to the oracle the ciphertext C ′ = IV ′||C1||R||Ck where

IV ′ = (2n− 1)2 ⊕ (LD)2 ⊕ IV,

and R is a random n-bit block.
After decryption, L′D, the length field in the resulting plaintext P ′1||P

′
2||P

′
3

points to the last-but-one bit of P ′3, the last block. Now the padding oracle
outputs VALID for C ′ if the last bit of P ′3 is equal to ‘0,’ and INVALID if P ′3,n−1

is equal to ‘1.’ We then have I ′3,n−1 = P ′3,n−1⊕Rn−1 and this block I ′3 is equal to
the original intermediate block Ik. So we can obtain Pk,n−1 = I ′3,n−1⊕Ck−1,n−1.

To decrypt the next bit, we construct a new ciphertext for the oracle. We
want, after decryption, the value in L′D to decrement by one, and to ensure
that P ′3,n−1 is ‘0’. We can achieve the former by altering IV appropriately
and the latter by keeping/flipping last bit of C ′2 if the previous response was
VALID/INVALID. Submitting the resulting ciphertext to the oracle, a VALID

response indicates P ′3,n−2 equals ‘0,’ and ‘1’ otherwise. We can then compute
I ′3,n−2 = P ′3,n−2 ⊕ Rn−2. Note that the random block R at this iteration which
may (or may not) have changed from the last iteration. We can now obtain
Pk,n−2 = I ′3,n−2 ⊕ Ck−1,n−2.

The process is repeated, decrementing L′D by one per iteration while making
sure the bit positions in P ′3 corresponding to those we have obtained stay at ‘0.’
One bit of I ′3 and one bit of Pk are obtained at each iteration and we stop after
n − 1 iterations when the n − 1 rightmost bits of those blocks are determined.

C’
1
= C

11

P’
11
 = L

D’

IV

dd
KK

C’
2
= R

P’
22

dd
KK

C’
33
 = C

kk

dd
KK

I’
11

I’
22

I’
33

0...0XXBy manipulating the
IV we can control the
value of L

D .
...

... to point to here. Oracle
replies VALID if X=00,
INVALID otherwise.

P’
33

Fig. 5. Attack phase 2 — decrypting

We cannot get the leftmost bit of the block I ′3 (hence Pk,0) using this approach
because at the next step L′D would indicate a length 2n, a multiple of the block
size, and according to the standard, we would never append a new block in such
cases.

Instead, we extract this leftmost bit Pk,0 by using a different approach. We
assume that standard binary encoding is used for length information, with least
significant bit in the rightmost position. (A similar attack can be mounted in
the opposite situation too, but we omit the details.) Consider the ciphertext
C ′ = IV ′||C ′1||R where IV ′ = Ck−1 ⊕ 0Pk,1Pk,2 . . . Pk,n ⊕ (n)2, C

′
1 = Ck and

R is a random n-bit block. This ciphertext is constructed in such a way that
the length field is equal to Pk,00 . . . 0 ⊕ (n)2, indicating a length of either n or
n+2n−1 depending on the value of Pk,0. So if C ′ is submitted to the oracle, then
an output of VALID(INVALID) tells us that Pk,0 = 0 (Pk,0 = 1, respectively.)

We summarise the decryption phase as the pair of algorithms 9797-1-m3-
decrypt and 9797-1-m3-decrypt-last-bit below. In these algorithms, Ω is the
function which takes as input a ciphertext C and is defined as:

Ω(C) =

{

0 if the padding oracle returns VALID for input C,

1 if the padding oracle returns INVALID for input C.

Complexity Phase 1, in the general case (q ≥ 3), should take no more than
log2 n oracle calls using binary search. To decrypt many messages encrypted
under a fixed key K, this phase only needs to be performed once. Phase 2
takes one oracle call per plaintext bit, thus n calls per plaintext block. For the
special case q = 2, one further oracle call is required in situations where LD = 0

Algorithm

9797-1-m3-decrypt

Input: LD, IV, C1, Ck

Output: Pk,1Pk,2 . . . Pk,n−1, the
rightmost n− 1 bits of Pk

R := a random n-bit block
for j := n− 1 to 1 do

IV ′ := IV ⊕ LD ⊕ (n+ j)2
b := Ω(C ′)
C′ := IV ′||C1||R||Ck

Pk,j := b⊕Rj ⊕ Ck−1,j

R := R⊕ 0 . . . 0
︸ ︷︷ ︸

j

b 0 . . . 0
︸ ︷︷ ︸

n−j−1

end for

return Pk,1Pk,2 . . . Pk,n−1

Algorithm

9797-1-m3-decrypt-last-bit

Input: Ck−1, Ck, Pk,1Pk,2 . . . Pk,n

Output: Pk,0, the leftmost bit of Pk

R := a random n-bit block
IV ′ := Ck−1⊕ 0Pk,1Pk,2 . . . Pk,n⊕ (n)2
C′ := IV ′||Ck||R
Pk,0 := Ω(C

′)
return Pk,0

or LD = n to distinguish between them (no further oracle calls are needed
otherwise).

Fewer than log2 (n) + 1 + (q − 1)n oracle calls are needed to recover all the
bits of plaintext from a q block ciphertext (remember that the first block contains
LD which is not part of the unpadded data string, and its value is already known
after phase 1 anyway).

Optimality The oracle returns one bit of information per use, so (q − 1)n is
information theoretically the smallest number of oracle calls needed to recover
(q − 1)n bits of plaintext entropy. Hence our attack makes nearly optimal use
of the padding oracle, especially when many ciphertexts are decrypted for the
same key K.

4 Attacking the Padding Methods of ISO/IEC 10118-1

4.1 The standard

ISO/IEC 10118 is a standard for hash functions, Part 1 [6] of which describes
the general construction of a hash function.

Padding methods 1 and 2 in this standard are identical to the respective
methods in ISO/IEC 9797-1 which were already discussed in the previous section.
We focus instead on padding method 3 of [6].

4.2 Padding method 3

In the standard, L1 is used to denote the block size. It will henceforth be replaced
by our usual notation n to be consistent with the rest of this paper. The method
is as follows (Figure 6):

10...0 (L
DD
))

22DATA

LL
DD

[[1,n]] rr

Fig. 6. ISO/IEC 10118-1 padding method 3

“This padding method requires the selection of a parameter r (where
r ≤ n), e.g. r = 64, and a method of encoding the bit length of the data
D, i.e. LD as a bit string of length r. The choice for r will limit the
length of D, in that LD < 2r.

“The data D [. . .] is padded using the following procedure.

1. D is concatenated with a single ‘1’ bit.

2. The result of the previous step is concatenated with between zero
and n − 1 ‘0’ bits, such that the length of the resultant string is
congruent to n − r modulo n. The result will be a bit string whose
length will be r bits short of an integer multiple of n bits (in the
case r = n, the result will be a bit string whose length is an exact
multiple of n bits).

3. Append an r-bit encoding of LD using the selected encoding method,
yielding the padded version of D.”

The above description can be summarised as “pad a ‘1’ followed by the
smallest number of ‘0’s needed to push the r bits of LD right to the end of a
block.” Using this method, the padded bits for data string D are appended in
one of two ways:

Same-block (LD mod n) ≤ (n − r − 1) The last block has enough space after
the last plaintext bit to contain at least a single ‘1’ bit and the r bits of L,
the length block that holds LD. The number of padded bits is between r+1
and n− 1.

Cross-block (LD mod n) ≥ (n− r) The last block does not have enough space
to contain a ‘1’ bit and the r bits of L. The number of padded bits is between
n and n + r and the padding extends over two blocks. Note that this will
always be the case when r = n.

We have identified two attacks against this method, though they are to some
degree dependent on each other. Note that no encoding method (for LD) is
specified in the standard. Our attacks work no matter which encoding method
is used, though the attacker needs to know this method. We expect that base 2
encoding will be used in most cases and it will be used for illustrative purposes
henceforth.

C’
11
 = C

kk

P’
11

IV

dd
KK

I’
11

‘Is P’
11
 correctly

padded?’

rr

rr
We traverse through
all values of these rr
bits with a high
probability of
success.

Fig. 7. Directed IV search

Attack 1: Directed IV search This attack works against any block Ck of the
ciphertext IV ||C1||C2|| . . . ||Cq and recovers the corresponding plaintext block
using on average 2r−1 + 22r−n+1 and at most 2r + 3 · 22r−n−1 padding oracle
queries, provided r ≤ n− 1. When r = n, the attack requires on average 2n and
at most 2n+1 oracle queries.

We first consider the case r ≤ n− 1. We submit to the oracle strings of the
form

IV ′||C ′1

where IV ′ is a specially selected initialisation vector and C ′1 = Ck, hoping that
the oracle returns VALID. This situation is depicted in (Figure 7). If it does, then
the plaintext block Pk can be extracted using Attack 2 below on the ciphertext
IV ′||C ′1. The overall complexity will be the sum of the two attacks’ complexities,
and will be dominated by the complexity of this first phase.

How then should IV ′ be selected? Notice that there is a probability of 1−2r−n

that there is a ‘1’ somewhere in the leftmost n − r bits of Pk. Thus, if we
traverse through all 2r possible settings of the rightmost r bits of IV ′, then with
probability 1− 2r−n we will obtain (at least) one VALID reply from the padding
oracle. The expected number of oracle queries in this situation is therefore 2r−1.
But with probability 2r−n, all replies will be INVALID. Now if we flip the bit in
position n− r− 1 of IV ′ and repeat the above process, it is easy to see that we
are guaranteed to obtain at least one VALID response. A simple analysis shows
that the number of oracle queries needed is equal to 2r−1 + 22r−n+1 on average
and is always at most 2r + 3 · 22r−n−1.

Algorithm

10118-1-m3-a1-general

Input: Ck, n, r
Output: IV ′ s.t. IV ′||Ck is a valid
ciphertext

Ensure: 1 ≤ r < n
IV0 := a random n-bit block
IV ′ := 0 . . . 0

︸ ︷︷ ︸

n

i := 0
repeat

IV ′ := IV0 ⊕ 0 . . . 0
︸ ︷︷ ︸

n−r−1

i2
︸︷︷︸

r+1

C := IV ′||Ck

i := i+ 1
until oracle(C) = VALID

return IV ′

Algorithm

10118-1-m3-a1-special

Input: Ck, n, r
Output: IV ′, R s.t. IV ′||R||Ck is a valid
ciphertext

Ensure: r = n
IV0 := a random n-bit block
R0 := a random n-bit block
for i := 0 to 2n − 1 do

R := R0 ⊕ i2
︸︷︷︸

n

for j := 0 to 1 do

IV ′ := IV0 ⊕ 0 . . . 0j
︸ ︷︷ ︸

n

C := IV ′||R||Ck

if oracle(C) = VALID then

return IV ′, R
end if

end for

end for

An algorithm for Attack 1 in the case r ≤ n− 1 is given in Algorithm 10118-
1-m3-a1-general above.

Next we consider the case r = n. Here a valid plaintext must be at least two
blocks in length and a three-block ciphertext IV ′||R||Ck is required to perform
the attack. Instead of modifying only the initialisation vector as before, we now
also change the random block R at each iteration. The most likely valid two-block
plaintext to obtain at random is

x0x1 . . . xn−21
︸ ︷︷ ︸

n

|| (LD = n− 1)2
︸ ︷︷ ︸

n

where each xi can be either ‘0’ or ‘1.’ A valid two-block plaintext is guaranteed
to occur if we traverse through all 2n+1 possible settings of the second plain-
text block along with rightmost bit of the first plaintext block (by, respectively,
changing R and the rightmost bit of IV ′), so on average this strategy has a
complexity of 2n oracle calls.

This special case is illustrated in Algorithm 10118-1-m3-a1-special above.

Decrypting. Once we have a valid padding we can employ Attack 2 below with
input a valid ciphertext of the form IV ′||Ck (when r ≤ n−1) or IV ′||R||Ck (when
r = n).

We consider first the case r ≤ n− 1. Here the plaintext corresponding to the
ciphertext submitted to Attack 2 will always be same-block padded (because it
only contains one block). Then Attack 2 will efficiently recover the entire last

plaintext block for this ciphertext, which we denote by P ′1. P
′
1 will in general

consist of data bits, padding bits and length information. From P ′1, it is trivial
to recover Pk (the plaintext block that we are actually after). We have:

Pk = P ′1 ⊕ IV
′ ⊕ Ck−1.

For the case r = n, the first phase of Attack 2 below efficiently recovers the
length of the unpadded data for the valid ciphertext IV ′||R||Ck. This information
is contained in the length field which occupies all of P ′2, the second plaintext block
for this ciphertext. Thus after the first phase of Attack 2, P ′2 is known. Now Pk

can be recovered from:
Pk = P ′2 ⊕R⊕ Ck−1.

Complexity. Obtaining a valid plaintext block takes on average 2r−1+22r−n+1

oracle calls when r ≤ n − 1 and on average 2n oracle calls in the case r = n.
Our use of Attack 2 below has a complexity of n+O(log2 n) oracle calls for all
values of r (recall that for r = n, only the first phase of Attack 2 is needed,
while for r ≤ n − 1, the plaintext is same-block padded in which case Attack
2 is efficient). Thus our use of Attack 2 does not contribute significantly to the
overall complexity to decrypt a single block.

Impact. This attack applies to any ciphertext block and all n bits within the
block are recovered. For many choices of r this attack is many orders faster than
an exhaustive key search, and for a small enough r this attack will be practical
whenever a padding oracle is available. When r = n, our attack is still better
than an exhaustive key search for block ciphers whose key size is greater than the
block length. It is interesting to note that the parameter r seemingly innocent
of any security implications turns out not to be so at all.

Attack 2: Attacking the last block(s) This attack is conceptually similar
to the one against padding method 3 of ISO/IEC 9797-1 given above: there are
two phases, the first of which determines LD and the second of which recovers
any plaintext that is found in a “mixed” block – that is, a block that consists
of both data and padding bits. There is obviously at most one such block in
any plaintext padded using this padding method, which is either the last block
or the one that immediately precedes it. If the padding ends exactly on a block
boundary, then our attack does not recover any (unpadded) plaintext.

Obtaining LD. We want to know LD, the data length. For ease of presentation
we first examine the case r ≤ n − 2, but our algorithm to follow handles all
values of r. Here, in the same-block padded case, the last plaintext block Pq cor-
responding to the last ciphertext block Cq in the ciphertext IV ||C1||C2|| . . . ||Cq

has a format as follows:
[DATA]
︸ ︷︷ ︸

t

10 . . . 0
︸ ︷︷ ︸

p

(LD)2
︸ ︷︷ ︸

r

where t+ p+ r = n and p ≥ 1. In the cross-block padded case, the above format
spans the last two blocks Pq−1 and Pq and we put t+ p+ r = 2n. We note that
the attacker does not at first know which of the cases he is faced with.

Given a q-block ciphertext, we want to flip the plaintext bit Pq,n−r−2, the
rightmost position at which a data bit could ever reside, given q and our as-
sumption on r. We submit to the padding oracle the ciphertext

IV ||C1||C2|| . . . ||Cq−1 ⊕ 0 . . . 0
︸ ︷︷ ︸

n−r−2

10 0 . . . 0
︸ ︷︷ ︸

r

||Cq.

(Recall that C0 = IV , so the case where q = 1 is included here.)

Upon submission of the above ciphertext, the oracle will return:

– VALID meaning the padding has not been disturbed so the bit flipped is a
data bit. Since this bit is at the rightmost possible data bit position, we can
deduce the data length LD = (q − 1)n+ n− r − 1. Or else,

– INVALID meaning a padding bit has been flipped so the padding is no longer
valid. Therefore the padding boundary is somewhere to the left of this bit, so
we continue by resetting this bit and flipping the bit immediately to the left,
and test the resulting ciphertext for padding correctness. We repeat this,
flipping bits further and further to the left (and into the previous block if
necesssary) until the first time the oracle returns VALID. This indicates that
the tested bit is the last data bit, and LD is determined accordingly.

One might worry about instances when cross-block padding arises, where
flipping bits in the last plaintext block (by flipping bits in the last-but-one ci-
phertext block) would turn the last-but-one plaintext block into “garbage” and
along with it, potentially, any padding bits within it, so the oracle might report
INVALID for the wrong bits. On closer inspection, however, this turns out not to
be an issue because all we want to know is whether the padding boundary is to
the left or right of the bit in question. Even if the oracle does report INVALID for
the wrong bits, it does still imply the boundary is to the left, and VALID would
just mean that unpadded data bits have been corrupted so the boundary is still
to the right.

A binary search can also be applied here: for any single flipped bit, a VALID

response means the start of the padding is to the right of this bit, whereas
INVALID means it is to the left. This speed-up is made in Algorithm10118-1-m3-
a2-get-LD below.

We are now ready for the decryption stage. Same-block and cross-block
padded messages are treated differently; recall that knowledge of LD indicates
which case the attacker is faced with.

Decrypting: Same-block. Recall the structure of the last plaintext block: t
data bits, followed by p padding bits in the form 10 . . . 0 and finally r bits of an
encoding of data length LD. We can recover the remaining t bits of the plaintext
in the last block, again using a similar method to decryption phase of the attack

Algorithm 10118-1-m3-a2-get-LD

Input: IV ||C1||C2|| . . . ||Cq, n, r
Output: LD

C := IV ||C1||C2|| . . . ||Cq

l := (q − 2)n+ n− r
u := (q − 1)n+ n− r − 1
repeat

h := b(l + u)/2c
Cbh/nc,h mod n := Cbh/nc,h mod n ⊕ 1
if oracle(C) = VALID then

l := h+1
else if oracle(C) = INVALID then

u := h
end if

Cbh/nc,h mod n := Cbh/nc,h mod n ⊕ 1
until l = u
return LD := l

on ISO/IEC 9797-1 method 3. We submit to the oracle IV ′||C ′1 where C ′1 = Cq

and

IV ′ = Cq−1 ⊕ 0 . . . 0
︸ ︷︷ ︸

n−r

(LD)2
︸ ︷︷ ︸

r

⊕ 0 . . . 0
︸ ︷︷ ︸

t

10 . . . 0
︸ ︷︷ ︸

p

(t− 1)2
︸ ︷︷ ︸

r

.

After decryption the length block in the plaintext block P ′1 should have the
value t − 1 which points to the last-but-one bit of the original data sub-block,
with the middle padding sub-block being all ‘0’s. A VALID response means the
last (tth) data bit in P ′1 is a ‘1,’ and ‘0’ otherwise.

By decrementing the length field sub-block in P ′1 one by one whilst keeping
all recovered bit positions ‘0,’ a single bit is revealed at each iteration until the
whole block is recovered. We can now compute the intermediate block I ′1 by
XORing the final IV with D′1, and then by XORing I ′1 with Cq−1 we get the
original last plaintext block.

This decryption procedure is presented in Algorithm 10118-1-m3-decrypt-
same-block below.

Decrypting: Cross-block. For cross-block padded plaintexts, Pq is deter-
mined completely by LD and the padding. However, the padding extends into
the penultimate plaintext block Pq−1. Suppose u bits of padding are present in
Pq−1. Then we show how to decrypt Cq−1 using Attack 1 above, but with a
speed-up factor of 2u−1.

Let v = LD mod n, then the number of known plaintext bits u is equal to
n− v and those bits are of the form 10 . . . 0

︸ ︷︷ ︸

u

. If we submit the ciphertext IV ′||C ′1

Algorithm 10118-1-m3-decrypt-same-block

Input: LD, IV, Cq−1, Cq, r, n
Output: Pq := Pq,0Pq,1 . . . Pk,t−1 10 . . . 0

︸ ︷︷ ︸

p

(LD)2
︸ ︷︷ ︸

r

Ensure: LD indicates that the plaintext is same-block padded
C′1 = Cq

t := LD mod n
for j := t− 1 to 0 do

IV ′ := Cq−1 ⊕ 0 . . . 0
︸ ︷︷ ︸

n−r

(LD)2
︸ ︷︷ ︸

r

⊕ 0 . . . 0
︸ ︷︷ ︸

t

10 . . . 0
︸ ︷︷ ︸

p

(j)2
︸︷︷︸

r

C′ := IV ′||C′1
b := Ω(C ′)⊕ 1
Pq,j := b⊕ IV

′
j ⊕ Cq−1,j

IV ′j := IVj ⊕ b
end for

return Pq := Pq,1Pq,2 . . . Pk,t 10 . . . 0
︸ ︷︷ ︸

p

(LD)2
︸ ︷︷ ︸

r

to the oracle where

IV ′ = Cq−2 ⊕ 0 . . . 0
︸ ︷︷ ︸

n−u

10 . . . 0
︸ ︷︷ ︸

u

⊕ 0 . . . 0
︸ ︷︷ ︸

n−r

(n− r − 1)2
︸ ︷︷ ︸

n−r

and C ′1 = Cq−1, then we only need to go through all 2r−u+1 settings of the
r−u+1 bits to the left of the u known bits (by changing IV ′) to guarantee a valid
plaintext. This strategy takes on average 2r−u oracle calls which is a fraction
2−(u−1) of the original 2r−1 oracle calls for Attack 1 without the knowledge of
the u padding bits.

Complexity. It takes log2 n oracle calls to find LD. For same-block padded
plaintexts, it takes one call per bit for decrypting. So to recover the t data bits
of the last block, t+ log2 n oracle calls are required.

For cross-block padded plaintexts, on average 2r−u oracle calls are needed
to recover the whole of the penultimate plaintext block Pq−1, where u is the
number of known bits from finding LD.

Impact. The attack is highly efficient in terms of oracle queries at extracting
plaintext bits from the last plaintext block Pq. A maximum of n − r − 1 bits
of data can be recovered in this way and the attack is therefore significant for
short messages, especially in combination with a small r. One might argue that
r = n is a natural choice for the implementor. In this case, the padding is always
cross-block and the attacker must resort to the speeded-up version of Attack 1.

5 Conclusions

We argue that, at least for the CBC-mode of operation for a block cipher stan-
dard, it is not good enough just to standardise the mode; an entire specification
handling bit-level computations is needed, which necessarily includes padding
issues. Padding methods devised for hashing or MACs, as we have shown, may
not be suited to encryption operations where a different adversarial model may
be applicable.

We also make the point that there is a need for careful consideration of the
potential for side-channel cryptanalysis for cryptographic primitives and security
protocols in their design phase. Designs should be fully specified so as to allow as
little room as possible for the implementor to take potentially weak approaches
during implementation.

We agree with the argument in Section 7 of [1] for the practice of the encryp-
tion being accompanied by strong integrity checks when possible and appropri-
ate. Such “authenticated encryption” would, within the context of this paper,
prevent any practical attempts at constructing a valid ciphertext which in turn
precludes the existence of a padding oracle, and hence all the associated attacks
that we have discovered.

Acknowledgement

We thank Alain Hiltgen for useful comments on the paper and for showing us
how to extract the leftmost bits of plaintext in Section 3.4.

References

1. J. Black and H. Urtubia. Side-Channel Attacks on Symmetric Encryption Schemes:
The Case for Authenticated Encryption. Proceedings of the 11th USENIX Security

Symposium, San Francisco, CA, USA, August 5-9, 2002, pp. 327–338, 2002.
2. B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password Interception in
a SSL/TLS Channel. In Proc. CRYPTO 2003, D. Boneh (ed.), LNCS Vol. 2729,
pp. 583–599, 2003.

3. ISO/IEC 9797-1: Information technology — Security tehniques — Message Auhen-
tication Codes (MACs) — Part 1: Mechanisms using a block cipher. 1999.

4. ISO/IEC 10116 (2nd edition): Information technology — Security techniques —
Modes of operation for an n-bit block cipher. 1997.

5. ISO/IEC 3rd CD 10116 (3rd edition): Information technology — Security tech-
niques — Modes of operation for an n-bit block cipher (Commitee Draft). 2002.

6. ISO/IEC FDIS 10118-1: Information technology — Security techniques — Hash-
functions — Part 1: General (Final Draft). 2000

7. V. Klima and T. Rosa. Side Channel Attacks on CBC Encrypted Messages in the
PKCS#7 Format. Cryptology ePrint Archive, Report 2003/098, 2003.

8. S. Vaudenay. Security Flaws Induced by CBC Padding — Applications to SSL,
IPSEC, WTLS. . . . In Proc. EUROCRYPT’02, LNCS Vol. 2332, pp. 534–545, 2002.

