
 1

Partial Key Exposure Attack
On Low-Exponent RSA

Eric W. Everstine

1 Introduction

Let N = pq be an RSA modulus with e, d encryption exponents such that
ed ≡ 1 mod φ(N). Then, for small public exponent e, it is possible to
recover the entire private exponent d, and therefore factor N, given the n/4
least significant bits of d, where n is the number of bits of N. This attack
is called a partial key exposure attack.

1.1 Why is this useful?

While quite interesting mathematically, this attack on RSA may at first
glance appear to have very limited use in the real world. Is it really
feasible that one can somehow obtain only the n/4 least significant bits of
d and therefore utilize the attack?

The answer is actually yes. There are a variety of attacks on RSA;
some of which are called timing attacks. Timing attacks track the amount
of time a computer spends computing various steps of a given
cryptographic protocol and information can be gleaned from this [1].
These attacks take various amounts of time, but assuming one can be
utilized to expose the n/4 LSB of d in and RSA protocol, this partial key
exposure attack can then be used to efficiently recover the rest of d.

1.2 Review of the RSA algorithm[6]

The RSA algorithm (named after its inventors, Rivest, Shamir and
Adleman) is a mathematically based public-key cryptosystem that is
dependent on the assumption that factoring is “hard”. And hard it is, as
even the most sophisticated factoring algorithms, given a large enough
integer N, would take such an inordinate amount of time as to render it
useless.

And thus RSA uses such an integer N, where N = pq, p and q large
primes. It then makes good use of Euler’s Theorem to choose the
encryption exponent e and decryption exponent d:

 2

Theorem 1 (Euler[5]). If m is a positive integer and a is an integer with
GCD(a, m) = 1, then aφ(m) ≡1 mod (m).

Here, GCD(a,m) is the Greatest Common Divisor of a and m and φ(m) is
Euler’s phi function, defined to be the number of positive integers less
than m that are relatively prime to m. Two numbers are relatively prime if
their GCD is 1. And, most importantly, if one can factor m, one can
quickly calculate φ(m).

For a simple example, take m = 15 and a = 2. Then φ(m) = 8. We
see that

28 = 256 ≡1 mod (15)

 as 15 divides 255 evenly.

To show how RSA makes use of this, assume your friend Bob
wants to send you a message M without the devious Eve intercepting and
reading it. Also assume M has been converted by one of a variety of ways
into a string of numbers. For simplicity, we will bunch the numbers of M
together to form one large number (although one can separate it into any
number of blocks and encode those blocks independently). For RSA to
work properly, we require M < N.

First, you choose your N, the product of large primes p and q, and
then the exponents e and d such that ed ≡ 1 mod φ(N). You make e and N
public, but keep d private. Bob computes M2 ≡ Me mod (N) and sends it
over public channel to you. You compute M2

d = (Me)d ≡ Med mod (N).
But, ed ≡ 1 mod φ(N) so

Med ≡ M 1 mod φ(N) = M 0 mod φ(N) * M ≡ Mφ(N) * M ≡ M mod (N) = M,

since M < N. And so you have just uncovered M using the private
exponent d. Furthermore, even if Eve intercepts the transmission (which
one assumes she will), in order to reveal M she would either have to be
able to compute the eth root of M2 mod (N) or be able to factor N in order
to quickly calculate φ(N), thus exposing d. No other methods are known
for determining M, but both of the methods discussed and even methods as
of yet unknown are thought to be hard.

1.3 Notation and Definitions

The following list summarizes the definitions and assumptions used in this
paper.

N = pq is the n-bit RSA modulus, using large primes p and q, where we
assume p and q satisfy

N1/2 / 2 < q < p < 2 N1/2.

 3

For convenience in future equations, we define s = p + q.
Lastly, define k to be the unique integer such that

ed – kφ(N) = ed – k(N – s + 1) = 1.

That is, since ed ≡ 1 mod φ(N), 1 can be written as a linear combination of
ed and φ(N). k is simply the number one must multiply φ(N) to get this
linear combination. Since φ(N) > d we know that k < e.

2 Supporting Theorems

Before presenting the main theorem, it is important to first present
theorems on which the main one depends. The first one shows how one
can efficiently find small solutions (x0, y0) to a bivariate polynomial given
appropriate, known bounds on x0 and y0 in advance.

Theorem 2 (Coppersmith[3]). Let ƒ(x, y) be a polynomial in two
variables over the integers, Ζ, of maximum degree δ in each variable
separately, and assume the coefficients of ƒ are relatively prime as a set.
Let X, Y be bounds on the desired solutions x0, y0. Define ƒ∗(x, y) := ƒ(Xx,
Yy) and let D be the absolute value of the largest coefficient of ƒ*. If XY <
D2/(3δ) , then in time polynomial in (log D, 2δ), we can find all integer pairs
(x0,y0) with p(x0, y0) = 0, |x0| < X, |y0| < Y.

A proof of this will not be provided here, but it uses lattice basis
reduction, and is not fun. Actually Theorem 2 all together isn’t very fun,
but it does provide the framework to produce a corollary that is immensely
helpful to our cause (although it may or may not be very fun, either):

Corollary 1 [2]. Let N = pq be an n-bit RSA modulus. Let r ≥ 2n/4 be
given and suppose p0 := p mod r is known. Then it is possible to factor N
in time polynomial in n.

Proof. Since we know p0 and that it is p mod r, then we can find q0 := q ≡
N/p0 mod r. Therefore, we can create the polynomial

 ƒ(x,y) = (rx + p0)(ry + q0) – N. (1)

The solution (x0, y0) to this (with 0 < x0 < X = 2n/2 +1/r and 0 < y0< Y = 2n/2

+1/r) will reveal the factorization of N. These bounds hold since by
definition N < 2n (since it is an n-bit number), and at x = X, y = Y, and
assuming r = 2n/4 (its lower bound) (rx)(ry) would yield

(2n/42n/2 +1/2n/4)(2n/42n/2+1/2n/4) = 2n+2 > N.

 4

Therefore the solutions must be strictly less than X and Y. So now we
have a bivariate polynomial to which we seek a solution; the exact
situation Theorem 2 handles. The GCD of the coefficients of ƒ(x,y) is r,
so in order to use Theorem 2 (since the coefficients must be relatively
prime) we must divide through by r to get g(x,y) = ƒ(x,y)/r. The largest
coefficient of g(x,y) is somewhat small, so we define a new function
g*(x,y) = g(Xx,Yy) which now has a largest coefficient that is at least
2n+2/r. Now, in order to use Theorem 2, it is required that

XY = 2n+2/r2 < (2n+2/r)2/3,

and by solving algebraically, we see that this is satisfied whenever r >
2(n+2)/4. Finally, by doing an exhaustive search on the first two bits of x0
and y0, this can be reduced to r ≥ 2n/4. ٱ

Now that the framework is in place, we can put it to some good use.

3 Main Theorem

In order to efficiently implement the partial key exposure attack, we need
one more requirement—that the encryption exponent, e, is sufficiently
small. There is no set limit on how large e can be, but it must be small
enough such that with available computing power, it is possible to do an
exhaustive search on all values less than it.

Theorem 3[2]. Let N = pq be an n-bit RSA modulus. Let 1 ≤ e, d ≤ φ(N)
satisfy ed ≡ 1 mod φ(N). There is an algorithm that given the n/4 least
significant bits of d computes all of d in polynomial time in n and e.

Proof. Since we are given the n/4 least significant bits of d, call it d0, we
know d ≡ d0 mod 2n/4. But remember that we have defined a value k such
that

ed – kφ(N) = ed – k(N – s + 1) = 1,

where s = p + q. Therefore ed = 1 + kφ(N) = 1 + k(N – s + 1), and we
now have

 ed0 ≡ 1 + k(N – s + 1) (mod 2n/4) (2)

So now what one can do to carry out the attack is first try all candidate
values of k, which, since k < e, is all values on the range [0…e]. For each
of these values, solve the above equation to obtain s mod 2n/4. We can
now use this value in the equation

 5

 p2 – sp + N ≡ 0 (mod 2n/4). (3)

Notice what the left side of this equation reduces to:

p2 – sp + N = p2 – (p + q)p + N = p2 – p2 – qp + N = p2 – p2 – N + N = 0.

But since we are dealing with values d0 and s that are mod 2n/4, our answer
of 0 is also mod 2n/4. We solve equation (3) to obtain a candidate value for
p mod 2n/4. With this candidate value, we can find a candidate q0 ≡ N/p0
and solve equation (1) quickly via the algorithm discussed in Theorem 2.
 ٱ

3.1 Running Time Analysis

One sees that the running time of this algorithm is most dependent on the
first and last steps. The first step requires stepping through up to e values
of k. For each of these values, it is simply solving a couple modular
equations, before the final step. The final step is actually factoring N, and
this step is polynomial1 in log D where D is the largest coefficient of the
polynomial which is, in this case, equation (1). The largest coefficient is
XY = 2n+2/r2 and so log (XY) ≈ n and thus the running time of this factoring
step is nε for some ε. Therefore the running time is O(enε) which, for a
fixed size RSA modulus and thus a fixed n, is simply linear in e.

3.2 A Numerical Example

Suppose you want to crack a message encoded with an RSA modulus N =
1633, and you know that e = 23. Also pretend you are unable to simply
divide 1633 by all primes less than 40 (its approximate square root). 1633
in binary is 11001100001, which is 11 bits. Therefore, if by using timing
attacks or some other method you are able to obtain the 3 least significant
bits of d (if n/4 is a fraction, always round up), you could implement the
above algorithm and expose both d and the factorization of N. Luckily,
you are able to discover those 3 bits, and they are 011, or 3 in decimal.
Let’s see how it’s done.

 The first step is to look at equation (2):

ed0 ≡ 1 + k(N – s + 1) (mod 2n/4).

So in this problem we have:

(23)(3) ≡ 1 + k(1633 – s + 1) (mod 23)

1When dealing with a largest coefficient that is n bits, the actual running time is roughly
n4[4]. This is a very rough estimate however, so the exact number is not emphasized.

 6

So to work through the algebra and reduce mod 8:

69 ≡ 1 + k(1634 – s) (mod 8)

5 ≡ 1 + k(1634 – s) (mod 8)

 4 ≡ k(1634 – s) (mod 8) (4)

Now we begin to test candidate values of k. Since e = 23, there are only
23 possible values to test. For this example, we’ll try two values: one to
show what happens with a wrong value, and one that shows what happens
when it’s correct. First, the wrong value: let k = 2. We have:

 4 ≡ 2(1634 – s) (mod 8).

There is no inverse of 2 mod 8, but this equation can still be solved:

4 ≡ 3268 – 2s (mod 8)

2s ≡ 3264 (mod 8)

2s ≡ 0 (mod 8)

s ≡ 0 (mod 8)

Now we plug 3 into equation (3):

 p2 – sp + N ≡ 0 (mod 2n/4) (5)

p2 – 0p + 1633 ≡ 0 (mod 8)

p2 + 1633 ≡ 0 (mod 8)

p2 ≡ -1633 (mod 8)

p2 ≡ 7 (mod 8)

However, we only have to check 0 through 7 to find that 7 does not have a
square root mod 8, and so the value fails. Were we working through the
algorithm, we would move to the next number.

However, we would never actually get to k = 2 in this example
because the correct value is k = 1. Picking up after equation (4) we get:

4 ≡ 1(1634 – s) (mod 8)

 7

s ≡ 6 (mod 8)

and equation (5) now becomes

p2 – 6p + 1633 ≡ 0 (mod 8)

p2 – 6p ≡ 7 (mod 8)

p(p – 6) ≡ 7 (mod 8)

and by trying the 8 possible values for p, we find that p ≡ 7 mod 8. So
now with this “candidate” value for p0 ≡ p mod 8, we can determine a
possible value for q0 ≡ q mod 8. To do this, we need to recognize that p0q0
≡ N mod 8. Therefore:

7q0 ≡ 1633 (mod 8)

7q0 ≡ 1 (mod 8)

remember that the inverse of 7 mod 8 is 7, so multiplying both sides by 7
gives q0 ≡ 7 mod 8. With these values for p0 and q0, we can now create
the polynomial found in equation (1):

ƒ(x,y) = (rx + p0)(ry + q0) – N

which becomes

ƒ(x,y) = (8x + 7)(8y + 7) – 1633

the roots of which will yield the factorization of N. The algorithm from
Theorem 2 can do this in time polynomial in n, but for small enough
numbers like we are working with here, it is simple enough to try test
values, and sure enough this equation has roots x = 2 and y = 8. This
means that p and q are (8*2 + 7) = 23 and (8*8 + 7) = 71, respectively.
Finally, now that p and q are exposed, it is easy enough to calculate φ(N) =
(p – 1)(q – 1) = 22 * 70 = 1540. To find d, we need to solve this equation:

ed – kφ(N) = 1

Since k = 1, this becomes

23d – 1540 = 1

and the routine calculation shows d = 67. Now, any message sent using
the given N and e as a key can easily be decoded.

 8

3.3 Ok, That Was a LOT Harder Than Brute Force. What Gives?

The previous example certainly shows the algorithm works, but wouldn’t
it have just been quicker to try a brute force division of 1633 by all the
primes less than its square root? In this example, yes it would have.
However, in the real world, RSA moduli are huge, to the tune of 1024 bits.
To show just how unwieldy a number of this size is, here’s another
theorem.

Theorem 4 (Prime Number Theorem[5]). The ratio of π(x) to x/(ln x)
approaches 1 as x grows without bound, where π(x) is the number of prime
numbers less than or equal to x.

In other words, the number of primes less than or equal to x is
approximately equal to x/(ln x). This means that 21024 has about 21024/(ln
21024) ≈ 2.5 x 10305 primes less than it. So a computer that can fully check
a trillion primes per second would still take about 8 x 10285 years to check
them all. Even if we realize that we only have to check all primes up to
the square root of N, this would still take 1.2 x 10144 years. Now compare
that to the above algorithm whose running time we can approximate by
en4. Our super-computer(s) that can perform a trillion calculations per
second would now take at most e seconds (give or take a relatively small
constant multiplier).

3.4 Bringing It All Together

This algorithm far from renders RSA useless, however. Remember the
running time is ce for some constant c. For an encryption exponent that is
very small, like in our toy example above, the algorithm runs very fast
even if the modulus N is large. Even for moderate e, the algorithm runs
fairly efficiently: take e ≈ 216 and N ≈ 21024 and our supercomputer would
still manage in roughly 18 hours, worst case (remember that for an N that
large, brute force factoring would take the same insane number of years
regardless of the size of e). However, for very large e, say of the
magnitude of 2512, the algorithm has essentially gained nothing: with a
large N as in the example in the previous section, our super-computer
would take somewhere along the line of 4.3 x 10146 years; that is, it has
actually lost ground on brute-force division by primes. Therefore the
algorithm is rendered useless (when compared to brute-force) by
extremely high e or extremely low N (of course RSA itself is useless for
small N).

4 Conclusion

Just like numerous other methods for “cracking” RSA, this algorithm is
amazingly effective under certain circumstances, but rendered impotent

 9

with relative ease. All one has to do is ensure proper bounds are placed on
e, i.e. that is e is made large, and this attack will fail. So until factoring is
made easy, or some other “back door” is found, all this method
accomplishes is to tell us how to better implement RSA. For now at least,
RSA is completely safe.

References

1. Boneh. “Twenty Years of Attacks on the RSA Cryptosystem”.
 American Mathematics Society Notices 46. 1999. pp. 203-212.

2. Boneh, Durfee, Frankel. “An Attack on RSA Given a Small Fraction
 of the Private Key Bits”. AsiaCrypt ’98. pp. 25 – 34.

3. D. Coppersmith. “Finding a small root of a univariate modular
 equation”, Proc. Of Eurocrypt ’96. pp. 155 – 165.

4. Gathen and Gerhard. Modern Computing Algebra. Cambridge

University Press, 1999. pp. 449 – 454.

5. Rosen. Elementary Number Theory. 4th ed. Addison-Wesley, 2000.
 pp. 71, 217.

6. Trappe, Washington. Introduction to Cryptography. University of
 Maryland Press, 2001. pp. 151 – 156.

