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1 Introduction 
 
Let N = pq be an RSA modulus with e, d encryption exponents such that 
ed ≡ 1 mod φ(N).  Then, for small public exponent e, it is possible to 
recover the entire private exponent d, and therefore factor N, given the n/4 
least significant bits of d, where n is the number of bits of N.  This attack 
is called a partial key exposure attack. 
 
1.1 Why is this useful? 
 
While quite interesting mathematically, this attack on RSA may at first 
glance appear to have very limited use in the real world.  Is it really 
feasible that one can somehow obtain only the n/4 least significant bits of 
d and therefore utilize the attack?   

The answer is actually yes.  There are a variety of attacks on RSA; 
some of which are called timing attacks.  Timing attacks track the amount 
of time a computer spends computing various steps of a given 
cryptographic protocol and information can be gleaned from this [1].  
These attacks take various amounts of time, but assuming one can be 
utilized to expose the n/4 LSB of d in and RSA protocol, this partial key 
exposure attack can then be used to efficiently recover the rest of d.   
 
1.2 Review of the RSA algorithm[6] 
 
The RSA algorithm (named after its inventors, Rivest, Shamir and 
Adleman) is a mathematically based public-key cryptosystem that is 
dependent on the assumption that factoring is “hard”.  And hard it is, as 
even the most sophisticated factoring algorithms, given a large enough 
integer N, would take such an inordinate amount of time as to render it 
useless. 

And thus RSA uses such an integer N, where N = pq, p and q large 
primes.  It then makes good use of Euler’s Theorem to choose the 
encryption exponent e and decryption exponent d: 
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Theorem 1 (Euler[5]).  If m is a positive integer and a is an integer with 
GCD(a, m) = 1, then aφ(m) ≡1 mod (m). 
 
Here, GCD(a,m) is the Greatest Common Divisor of a and m and φ(m) is 
Euler’s phi function, defined to be the number of positive integers less 
than m that are relatively prime to m.  Two numbers are relatively prime if 
their GCD is 1.  And, most importantly, if one can factor m, one can 
quickly calculate φ(m). 

For a simple example, take m = 15 and a = 2.  Then φ(m) = 8.  We 
see that 

 
28 = 256 ≡1 mod (15) 

 
            as 15 divides 255 evenly.   

To show how RSA makes use of this, assume your friend Bob 
wants to send you a message M without the devious Eve intercepting and 
reading it.  Also assume M has been converted by one of a variety of ways 
into a string of numbers.  For simplicity, we will bunch the numbers of M 
together to form one large number (although one can separate it into any 
number of blocks and encode those blocks independently).  For RSA to 
work properly, we require M < N.  

First, you choose your N, the product of large primes p and q, and 
then the exponents e and d such that ed ≡ 1 mod φ(N).  You make e and N 
public, but keep d private.  Bob computes M2 ≡ Me mod (N) and sends it 
over public channel to you.  You compute M2

d = (Me)d ≡ Med mod (N).  
But, ed ≡ 1 mod φ(N) so 

 
Med ≡ M 1 mod φ(N) = M 0 mod φ(N) * M  ≡ Mφ(N) * M ≡ M mod (N) = M, 

 
since M < N.  And so you have just uncovered M using the private 
exponent d.  Furthermore, even if Eve intercepts the transmission (which 
one assumes she will), in order to reveal M she would either have to be 
able to compute the eth root of M2 mod (N) or be able to factor N in order 
to quickly calculate φ(N), thus exposing d.  No other methods are known 
for determining M, but both of the methods discussed and even methods as 
of yet unknown are thought to be hard.   
 
1.3 Notation and Definitions 
 
The following list summarizes the definitions and assumptions used in this 
paper. 
 
N = pq is the n-bit RSA modulus, using large primes p and q, where we 
assume p and q satisfy  
 

N1/2 / 2 < q < p < 2 N1/2. 
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For convenience in future equations, we define s = p + q. 
Lastly, define k to be the unique integer such that  
 

ed – kφ(N) = ed – k(N – s + 1) = 1. 
 
That is, since ed ≡ 1 mod φ(N), 1 can be written as a linear combination of 
ed and φ(N).  k is simply the number one must multiply φ(N) to get this 
linear combination.  Since φ(N) > d we know that k < e. 
 
2 Supporting Theorems 
 
Before presenting the main theorem, it is important to first present 
theorems on which the main one depends.  The first one shows how one 
can efficiently find small solutions (x0, y0) to a bivariate polynomial given 
appropriate, known bounds on x0 and y0 in advance.  
 
Theorem 2 (Coppersmith[3]).  Let ƒ(x, y) be a polynomial in two 
variables over the integers, Ζ, of maximum degree δ in each variable 
separately, and assume the coefficients of ƒ are relatively prime as a set.  
Let X, Y be bounds on the desired solutions x0, y0.  Define ƒ∗(x, y) := ƒ(Xx, 
Yy) and let D be the absolute value of the largest coefficient of ƒ*.  If XY < 
D2/(3δ) , then in time polynomial in (log D, 2δ), we can find all integer pairs 
(x0,y0) with p(x0, y0) = 0, |x0| < X, |y0| < Y. 
 

A proof of this will not be provided here, but it uses lattice basis 
reduction, and is not fun.  Actually Theorem 2 all together isn’t very fun, 
but it does provide the framework to produce a corollary that is immensely 
helpful to our cause (although it may or may not be very fun, either): 
 
Corollary 1 [2].  Let N = pq be an n-bit RSA modulus.  Let r ≥ 2n/4 be 
given and suppose p0 := p mod r is known.  Then it is possible to factor N 
in time polynomial in n.  
 
Proof.  Since we know p0 and that it is p mod r, then we can find q0 := q ≡ 
N/p0 mod r.  Therefore, we can create the polynomial  
 
                                  ƒ(x,y) = (rx + p0)(ry + q0) – N.                                 (1) 
 
The solution (x0, y0) to this (with 0 < x0 < X = 2n/2 +1/r and 0 < y0< Y = 2n/2 

+1/r) will reveal the factorization of N.  These bounds hold since by 
definition N < 2n (since it is an n-bit number), and at x = X, y = Y, and 
assuming r = 2n/4 (its lower bound) (rx)(ry) would yield  
 

(2n/42n/2 +1/2n/4)(2n/42n/2+1/2n/4) = 2n+2 > N. 
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Therefore the solutions must be strictly less than X and Y.  So now we 
have a bivariate polynomial to which we seek a solution; the exact 
situation Theorem 2 handles.  The GCD of the coefficients of ƒ(x,y) is r, 
so in order to use Theorem 2 (since the coefficients must be relatively 
prime) we must divide through by r to get g(x,y) = ƒ(x,y)/r.  The largest 
coefficient of g(x,y) is somewhat small, so we define a new function 
g*(x,y) = g(Xx,Yy) which now has a largest coefficient that is at least 
2n+2/r.  Now, in order to use Theorem 2, it is required that 
 

XY = 2n+2/r2 < (2n+2/r)2/3,  
 
and by solving algebraically, we see that this is satisfied whenever r > 
2(n+2)/4.  Finally, by doing an exhaustive search on the first two bits of x0 
and y0, this can be reduced to r ≥ 2n/4.                                                         ٱ 
 
Now that the framework is in place, we can put it to some good use. 
 
3 Main Theorem 
 
In order to efficiently implement the partial key exposure attack, we need 
one more requirement—that the encryption exponent, e, is sufficiently 
small.  There is no set limit on how large e can be, but it must be small 
enough such that with available computing power, it is possible to do an 
exhaustive search on all values less than it.   
 
Theorem 3[2].  Let N = pq be an n-bit RSA modulus.  Let 1 ≤ e, d ≤ φ(N) 
satisfy ed ≡ 1 mod φ(N).  There is an algorithm that given the n/4 least 
significant bits of d computes all of d in polynomial time in n and e. 
 
Proof.  Since we are given the n/4 least significant bits of d, call it d0, we 
know d ≡ d0 mod 2n/4.  But remember that we have defined a value k such 
that 
 

ed – kφ(N) = ed – k(N – s + 1) = 1, 
 

where s = p + q. Therefore ed =  1 +  kφ(N) = 1 + k(N – s + 1),  and we 
now have  
 
                                 ed0 ≡ 1 + k(N – s + 1)  (mod 2n/4)                             (2) 

 
So now what one can do to carry out the attack is first try all candidate 
values of k, which, since k < e, is all values on the range [0…e].  For each 
of these values, solve the above equation to obtain s mod 2n/4.  We can 
now use this value in the equation 
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                                      p2 – sp + N ≡ 0 (mod 2n/4).                                   (3) 
 

Notice what the left side of this equation reduces to:  
 
p2 – sp + N = p2 – (p + q)p + N = p2 – p2 –  qp + N = p2 – p2 –  N + N = 0. 

 
But since we are dealing with values d0 and s that are mod 2n/4, our answer 
of 0 is also mod 2n/4.  We solve equation (3) to obtain a candidate value for 
p mod 2n/4.  With this candidate value, we can find a candidate q0 ≡ N/p0 
and solve equation (1) quickly via the algorithm discussed in Theorem 2.  
 ٱ
 
3.1 Running Time Analysis 
 
One sees that the running time of this algorithm is most dependent on the 
first and last steps.  The first step requires stepping through up to e values 
of k.  For each of these values, it is simply solving a couple modular 
equations, before the final step.  The final step is actually factoring N, and 
this step is polynomial1 in log D where D is the largest coefficient of the 
polynomial which is, in this case, equation (1).  The largest coefficient is 
XY = 2n+2/r2 and so log (XY) ≈ n and thus the running time of this factoring 
step is nε for some ε.  Therefore the running time is O(enε) which, for a 
fixed size RSA modulus and thus a fixed n, is simply linear in e. 
 
3.2 A Numerical Example 
 
Suppose you want to crack a message encoded with an RSA modulus N = 
1633, and you know that e = 23.  Also pretend you are unable to simply 
divide 1633 by all primes less than 40 (its approximate square root). 1633 
in binary is 11001100001, which is 11 bits.  Therefore, if by using timing 
attacks or some other method you are able to obtain the 3 least significant 
bits of d (if n/4 is a fraction, always round up), you could implement the 
above algorithm and expose both d and the factorization of N.  Luckily, 
you are able to discover those 3 bits, and they are 011, or 3 in decimal.  
Let’s see how it’s done. 

             
            The first step is to look at equation (2):  

 
ed0 ≡ 1 + k(N – s + 1)  (mod 2n/4). 

 
So in this problem we have: 
 

(23)(3) ≡ 1 + k(1633 – s + 1) (mod 23) 
                                                           

1When dealing with a largest coefficient that is n bits, the actual running time is roughly 
n4[4].  This is a very rough estimate however, so the exact number is not emphasized. 
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So to work through the algebra and reduce mod 8: 
 

69 ≡ 1 + k(1634 – s) (mod 8) 
 

5 ≡ 1 + k(1634 – s) (mod 8) 
 

                                          4 ≡ k(1634 – s) (mod 8)                                   (4) 
 

Now we begin to test candidate values of k.  Since e = 23, there are only 
23 possible values to test.  For this example, we’ll try two values: one to 
show what happens with a wrong value, and one that shows what happens 
when it’s correct.  First, the wrong value: let k = 2.  We have: 
 
                                         4 ≡ 2(1634 – s) (mod 8).                                      

 
There is no inverse of 2 mod 8, but this equation can still be solved: 
 

4 ≡ 3268 – 2s (mod 8) 
 

2s ≡ 3264 (mod 8) 
 

2s ≡ 0 (mod 8) 
 

s ≡ 0 (mod 8) 
 

Now we plug 3 into equation (3): 
 
                                       p2 – sp + N ≡ 0 (mod 2n/4)                                   (5) 

 
p2 – 0p + 1633 ≡ 0 (mod 8) 

 
p2 + 1633  ≡ 0 (mod 8) 

 
p2 ≡ -1633 (mod 8) 

 
p2 ≡ 7 (mod 8) 

 
However, we only have to check 0 through 7 to find that 7 does not have a 
square root mod 8, and so the value fails. Were we working through the 
algorithm, we would move to the next number. 

However, we would never actually get to k = 2 in this example 
because the correct value is k = 1.  Picking up after equation (4) we get: 
 

4 ≡ 1(1634 – s) (mod 8) 
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s ≡ 6 (mod 8) 
 

and equation (5) now becomes 
 

p2 – 6p + 1633 ≡ 0 (mod 8) 
 

p2 – 6p  ≡ 7 (mod 8) 
 

p(p – 6)  ≡ 7 (mod 8) 
 

and by trying the 8 possible values for p, we find that p ≡ 7 mod 8.  So 
now with this “candidate” value for p0 ≡ p mod 8, we can determine a 
possible value for q0 ≡ q mod 8.  To do this, we need to recognize that p0q0 
≡ N mod 8.  Therefore: 

 
7q0 ≡ 1633 (mod 8) 

 
7q0 ≡ 1 (mod 8) 

 
remember that the inverse of 7 mod 8 is 7, so multiplying both sides by 7 
gives q0 ≡ 7 mod 8.  With these values for p0 and q0, we can now create 
the polynomial found in equation (1): 
 

ƒ(x,y) = (rx + p0)(ry + q0) – N 
 

which becomes 
 

ƒ(x,y) = (8x + 7)(8y + 7) – 1633 
 

the roots of which will yield the factorization of N.  The algorithm from 
Theorem 2 can do this in time polynomial in n, but for small enough 
numbers like we are working with here, it is simple enough to try test 
values, and sure enough this equation has roots x = 2 and y = 8.  This 
means that p and q are (8*2 + 7) = 23 and (8*8 + 7) = 71, respectively.  
Finally, now that p and q are exposed, it is easy enough to calculate φ(N) = 
(p – 1)(q – 1) = 22 * 70 = 1540.  To find d, we need to solve this equation: 
 

ed – kφ(N) = 1 
 
Since k = 1, this becomes 
 

23d – 1540 = 1 
 

and the routine calculation shows d = 67.  Now, any message sent using 
the given N and e as a key can easily be decoded.   
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3.3 Ok, That Was a LOT Harder Than Brute Force. What Gives? 
 
The previous example certainly shows the algorithm works, but wouldn’t 
it have just been quicker to try a brute force division of 1633 by all the 
primes less than its square root?  In this example, yes it would have.  
However, in the real world, RSA moduli are huge, to the tune of 1024 bits.  
To show just how unwieldy a number of this size is, here’s another 
theorem. 
 
Theorem 4 (Prime Number Theorem[5]).  The ratio of π(x) to x/(ln x) 
approaches 1 as x grows without bound, where π(x) is the number of prime 
numbers less than or equal to x. 
 
In other words, the number of primes less than or equal to x is 
approximately equal to x/(ln x).  This means that 21024 has about 21024/(ln 
21024) ≈ 2.5 x 10305 primes less than it.  So a computer that can fully check 
a trillion primes per second would still take about 8 x 10285 years to check 
them all.  Even if we realize that we only have to check all primes up to 
the square root of N, this would still take 1.2 x 10144 years. Now compare 
that to the above algorithm whose running time we can approximate by 
en4.  Our super-computer(s) that can perform a trillion calculations per 
second would now take at most e seconds (give or take a relatively small 
constant multiplier).   
 
3.4 Bringing It All Together 
 
This algorithm far from renders RSA useless, however.  Remember the 
running time is ce for some constant c.  For an encryption exponent that is 
very small, like in our toy example above, the algorithm runs very fast 
even if the modulus N is large.  Even for moderate e, the algorithm runs 
fairly efficiently: take e ≈ 216 and N ≈ 21024 and our supercomputer would 
still manage in roughly 18 hours, worst case (remember that for an N that 
large, brute force factoring would take the same insane number of years 
regardless of the size of e).  However, for very large e, say of the 
magnitude of 2512, the algorithm has essentially gained nothing: with a 
large N as in the example in the previous section, our super-computer 
would take somewhere along the line of 4.3 x 10146 years; that is, it has 
actually lost ground on brute-force division by primes.  Therefore the 
algorithm is rendered useless (when compared to brute-force) by 
extremely high e or extremely low N (of course RSA itself is useless for 
small N). 
 
4 Conclusion 
 
Just like numerous other methods for “cracking” RSA, this algorithm is 
amazingly effective under certain circumstances, but rendered impotent 



 9 

with relative ease.  All one has to do is ensure proper bounds are placed on 
e, i.e. that is e is made large, and this attack will fail.  So until factoring is 
made easy, or some other “back door” is found, all this method 
accomplishes is to tell us how to better implement RSA.  For now at least, 
RSA is completely safe.   
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