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1 Abstract

The Pohlig-Hellman algorithm is an algorithm that

solves the discrete logarithm problem. The algo-

rithm simplifies the problem by solving the elliptic

curve discrete logarithm problem (ECDLP) in the

prime subgroups of the point 〈P〉. The difficulty of

solving the ECDLP in its prime order subgroups is

no harder than solving the ECDLP in 〈P〉 [1, 3].

In our paper we will present the Pohlig-Hellman

algorithm and its applications. We will discuss its

complexity and how to construct the elliptic curves

in order to defend against the Pohlig-Hellman at-

tack. At the very end we will briefly discuss how

to choose parameters such that the effectiveness of

other attacks is also minimized.

2 Introduction

2.1 Groups and fields

It is important to know what groups and fields are

when we discuss elliptic curve cryptography. A

group consists of a set S and a binary operation

that usually is addition or multiplication denoted

by ⊕. The set S and the binary operation have to

satisfy the rule of closure, associativity and commu-

tativity. It also has to satisfy that every element a ∈
S has an inverse inv(a) ∈ S, and a neutral element

e ∈ S such that a ⊕ e = e ⊕ a = a exist [4].

A field F consists of the two operations, addition

and multiplication, and a set S. The additive group

is denoted by Ga = (S,⊕) and the multiplicative

group is denoted by Gm = (S∗,⊕) [5].

2.2 Elliptic Curve

An elliptic curve (EC) is defined as the solution set

of a nonsingular cubic polynomial equation with two

variables over a field F :

E = {(x, y) ∈ F × F | f(x, y) = 0} (1)

The general equation in a cubic with two different

variables is given by:

ax3 + by3 + cx2y + dxy2 + ex2

+fy2 + gxy + hx+ iy + j = 0
(2)

The Weierstrass form of the elliptic curve is only

valid when char(F) 6= {2, 3}. This curve is the most

known, and is given by: [6]

y2 = x3 + ax+ b (3)

2.3 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is an approach

to public-key cryptography. The concept is based

on the algebraic structure of EC over finite fields.

The advantage of ECC compared to non-ECC is

that it requires smaller keys to provide equivalent

security. The key exchange in ECC is described

in figure 1. Here user A and B agree on an ellip-

tic curve E and a point P on the curve with or-

der n. User A chooses a random number a, where

a ∈ [0,n − 1], and then computes the private key

which is [a]P. User B does the same and chooses a

random number b, where b ∈ [0,n − 1] and com-

putes B’s private key [b]P. The public key, S, will

then be S = [a][b]P [7].
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Figure 1: Key exhange in ECC [6].

2.4 Elliptic curve discrete logarithm

problem

Take the elliptic curve E, defined over the finite field

Fq. The two points P and Q are given, where P has

order n, and P ∈ E(Fq). Q is a point on the curve,

that is Q ∈ 〈P 〉. Then write Q = lP , where the

integer l ∈ [0,n− 1]. The elliptic curve discrete log-

arithm problem (ECDLP) is then defined as finding

the integer l that solves the equation Q = lP. l is

called the discrete logarithm of Q to the base P,

meaning l = logp Q [1].

Solving ECDLP in reasonable time is believed to

be beyond what is computable with today’s technol-

ogy, as long as the parameters are chosen to avoid

the known attacks. The hardness of the problem

creates the fundament of the security in all elliptic

curve cryptography. The best general known attack

on elliptic curve cryptography is a combination of

the Pohlig-Hellman and Pollard’s rho algorithms.

Given the largest primal divisor of n, denoted p;

such an attack solves ECDLP in O(
√

p) time. An al-

gorithm that solves the problem in polynomial time

is likely to exist, because if there is no such algo-

rithm, it would imply P 6= NP [1].

3 Pohlig-Hellman Attack

The Pohlig-Hellman algorithm was presented by

Stephan C. Pohlig and Martin E. Hellman in 1978.

In the original paper it is presented as an improved

algorithm used to compute discrete logarithms over

the cyclic field G = GF(p), and how their findings

impact elliptic curve cryptography [2].

Given the ECDLP Q = lP, the Pohlig-Hellman

algorithm is a recursive algorithm that reduces the

problem by computing discrete logarithms in the

prime order subgroups of 〈P〉. Each of these smaller

subproblems can then be solved using methods,

such the Pollard’s rho alogrithm.

The Pohlig-Hellman algorithm works as fol-

lows:

· Write n as n = pe11pe22 . . . p
er
r

· Compute li = l mod peii for all 1≤i≤r.

The Chinese Remainder Theorem is then used

to obtain a unique solution to the following system

of congruences:

l ≡ l1 (mod pe11 )

l ≡ l2 (mod pe22 ) (4)

· · ·
l ≡ lr (mod perr )

Here p1, p2,..., pr is a mutually coprime set of

positive integers, i.e. gcd(pi,pj) = 1 for all i =

j. l1, l2, ...,lr are all positive integers such that 0

≤ li <pi. The unique positive integer l can be com-

puted efficiently by using the Extended Euclidean

Algorithm to compute the linear congruences above

[11].

Each li can then be expressed in base p the fol-

lowing way:

li = z0 + z1p + z2p2 + ...+ ze−1p
e−1 (5)

where zi ∈ [0, p− 1]. Let

P0 =
n

pi
(6)

and

Q0 =
n

pi
Q (7)

Rewriting the equations, and using the fact that the

order of P0 is p, we get

Q0 = lP0 = z0P0 (8)

Then z0 is found by computing the ECDLP solu-

tion in 〈P0〉. Every z0, ..., ze−1 is then computed by

solving

Qi = ziP0 (9)

in 〈P0〉 [1, 3].
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3.1 Complexity

The Pohlig-Hellman algorithm’s worst-case time

complexity is O(
√

n) for a group of order n. What is

interesting is that it is a lot more efficient when the

order is B-smooth. A B-smooth order means that

the order has prime factors, which are less than B.

Then, if the prime factorisation of order n is
∏
i

peii ,

the complexity will be O

(∑
i
ei(log n+

√
pi)

)
[8].

It turns out that the best known general-

purpose attack on ECDLP is a combination of the

Pohlig-Hellman algorithm and the Pollard’s rho al-

gorithm.

Pollard’s rho algorithm is an algorithm based

on integer factorization, and is really effective for

a composite number with a small prime factor.

The combination of these algorithms has a fully-

exponential running time of O(
√

p) where p is the

highest prime factor of the order n.

Therefore it is really important to choose ellip-

tic curve parameters so that n is divisible by a large

prime number p, which makes it extremely hard and

infeasible to finish the computation in a reasonable

time. This will be discussed in subsection 3.2 [9, 10].

3.2 Defending Against Pohlig-Hellman

Attacks

Pohlig-Hellman is designed to reduce the problem

so that the ECDLP is solved in the prime order

subgroups of n, where n is the order of the given

point P. It is possible to choose the elliptic curve

paramaters in such a way that it reduces the effec-

tiveness of the Pohlig-Hellman attack. The way this

is done is by making n divisible by a large prime, p

[1].

If the largest prime that divides n is sufficiently

large, it follows that solving this ECDLP over this

prime is very hard. P is sufficiently large when p >

2160 [1]. The reason why p has to be bigger than

2160 is because this is the limit where solving the

Chinese Remainder Theorem is taking so much time

and solving the problem is infeasible. If the param-

eters of elliptic curves are also carefully chosen to

defeat all other known attacks, then by today’s com-

puter technology it is infeasible to solve the ECDLP

problem, which implies that using ECC in today’s

cryptography is still secure [10].

It is important to keep in mind that there is

no mathematical proof that the ECDLP is impos-

sible to solve within reasonable time. There exists

no proof that there does not exist an efficient algo-

rithm that solves the ECDLP. A proof of this kind

would revamp the whole computer science industry,

due to the non-existence of a polynomial-time algo-

rithm for the ECDLP implies that P 6= NP [10].

To show the difference in time of solving the

ECDLP with Pohlig-Hellman we will show two ex-

amples, choosing two different points in a large El-

liptic group. One with order that has a relatively

small highest prime factor and the other with a or-

der that has a large highest prime factor. We will

look on the difference in time spent for solving the

ECDLP and refers to the article ”Weak Curves In

Elliptic Curve Cryptography” written by Novotney.

He looks at the elliptic curve E : y2 = x3 + 7x + 1

and Galios Field over prime p = 4516284508517:

· When the order of the point P is

4516285972627 it has the prime factors

11 · 13 · 31582419389. Solving the ECDLP

with Pohlig-Hellman takes 49.14 seconds.

· When the order of the point P is

9254332285624 it has the prime factors

23 · 19 · 23 · 67 · 2089 · 18913. Solving the

ECDLP with the same Pohlig-Hellman code

takes 0.16 seconds.

This example confirms that using a order n with

a larger prime factor takes much more time. Just

imagine how long it would have taken if the largest

prime factor was bigger than 2160 [3].

4 Defending againt other attacks

In the previous section we explained how the Pohlig-

Hellman algorithm can be used to exploit the secu-

rity of certain elliptic curves. In this section we will

describe other ways of attacking systems that uses

ECC and how to choose the parameters to avoid the

ECDLP being easily solved.
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4.1 Exhaustive search

This attack is a brute-force way of breaking the

ECC. The search is done by computing lP for ev-

ery l until lP = Q. The expected running time of

the algorithm is n/2. Choosing n ≥ 280 is sufficient

to make the method unfeasible, given the current

technology [1].

4.2 Pollard’s rho

There are several versions of the Pollard’s rho algo-

rithm, including the ρ and the λ methods, as well

as parallelized versions. The parallelized version us-

ing M processors, has time complexity O(
√

πn
2 /M)

[12]. Hankerson, Menezes and Vanstone suggests

using curves where the largest prime factor of n is

p > 2160, to combat this attack [1].

4.3 Anomalous curves

An elliptic curve is anomalous if E(Fp) = p. It is

important to avoid using such curves in ECC, be-

cause it allows ECDLP to be solved in O(log p) time

[12].

4.4 Pairing attacks

Several different pairing attacks are presented by

Musson in ”Attacking the Elliptic Curve Discrete

Logarithm Problem”, 2006. Two of the most known

algorithms of this kind are the MOV attack and the

Frey-Rück attack, which uses Weil and Tate pairing

[12]. These attacks exploit isomorphic properties

to reduce ECDLP to the DLP. Because DLP can

be solved in subexponential-time, one must avoid

curves that are vulnerable to these methods.

Let qk ≡ 1 mod n. The pairing attacks are in-

efficient if n does not divide

qk − 1 (10)

for small k. When n > 2160, it is then sufficient to

check (10) for k ∈ [1, 20] [1].

4.5 GHS attack

The GHS attack uses the Weil Descent technique

to reduce the ECDLP to Hyperelliptic Curve DLP.

The algorithms has different extensions, such as the

use of isogenies. There is a simple way to avoid this

attack, which is done by defining the curve over F2p

where p is prime and p ∈ [160, 600] [12].

4.6 Index calculus

Index calculus methods for abelian varieties have

been developed, but the running time is proven to

be O(q2−2/n), over the field Fq. This makes the at-

tack unfeasible for big n [12].

The Xedni Calculus is an index calculus type of

attack on ECDLP that has shown some interesting

results. Much research has been made, trying to

make it effective. However, this attack is proven to

be inefficient for large primes. This is because its

running time is O(p) and it must also be repeated

at least O(p) times to solve the ECDLP [12].

5 Summary

The Pohlig-Hellman algorithm solves the ECDLP

problem in a very efficient way if the order is B-

smooth. The Pohlig-Hellman is a recursive algo-

rithm that reduces the problem to computing the

DLP in prime order subgroups of 〈P〉. To defend

against these attacks it is essential to choose an or-

der which has biggest prime factor p > 2160. If you

always follow this guideline, using Pohlig-Hellman

to solve the ECDLP in elliptic curve cryptography

is infeasible with today’s computer technology.

In order to defend against the other known at-

tacks covered in this paper there are additional

things to consider. One is to avoid anomalous

curves, because they only take O(log p) to solve.

Pairing attacks are inefficient if n does not divide

qk − 1 for small k, which also restricts the param-

eters. The GHS attacks are eliminated by making

sure p is prime and p ∈ [160, 600] in the field F2p .

The index calculus attacks are less effective than

other attacks for large numbers, and one is pro-

tected as long as the constraints above are applied.
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