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Abstract. Nguyen and Shparlinski have recently presented a polynomial-time
algorithm that provably recovers the signer’s secret DSA key when a few consecutive
hits of the random nonces k (used at each signature generation) are known for a
mumber of DSA signatures at most linear in log g (g denoting as usnal the small
prime of DSA), under a reasonable assumption on the hash function used in DSA.
The number of required bits is about log!/® g, but can be decreased to loglogg
with a running time @/ '""€!*24) gyhexponential in logg, and even further to 2 in
polynomial time if one assumes access to ideal lattice basis reduction, namely an
oracle for the lattice closest vector problem for the infinity norm. All previously
known results were only heuristic, including those of Howgrave-Graham and Smart
who introduced the topic. Here, we obtain similar results for the elliptic curve variant
of D5SA (ECDSA).

Keywords: Cryptanalysis, ECDSA, lattices, LLL, closest vector problem, distribu-
tion, discrepancy, exponential sums, elliptic curves.
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plk) = “g"JPL

olk,p) = [k~ (h(w) + ap(k) | .
The pair (p(k),o(k, ) is the DSA signature of the message y with a
nonce k. In practice, ¢ is usually of bit-length 160 and p is of bit-length
between 512 and 1024.

1.2. THE ELripTic CURVE IDNGITAL SIGNATURE ALGORITHM
(ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic
curve analogue of DSA (see [13, 14, 15]). ECDSA uses an elliptic curve
IE over IF, where p is prime. If N = |[E(IF;)| denotes the number of
rational points over IF,, it is well-known that

IN —p—1] <2p'/?

and that IE(IF,) together with the point at infinity O form an Abelian
group, see [29].

Let G € IE(IF,) be a fixed point of order ¢, where g is a prime divisor
of N, that is gG = O, where © is the point at infinity. Both G and
g # 1 are publicly known. For a point () € IE(IF,) we denote by z(Q),
0 < x(Q) < p—1, the first component of () = (z,y) in the affine model
of IE. The signer’s secret key is again an element o € IF}.
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recovered. It has been shown by Bellare et al. [3] that one can still
recover ¢ if the nonce k is produced by Knuth's linear congruential
generator with known parameters, or variants. That attack is provable
under the random oracle model, and relies on Babai's approximation
algorithm [2] for the closest vector problem (CVP) in a lattice, which is
based on the celebrated LLL algorithm [19]. The attack does not work
if the parameters of the generator are unknown.

Recently, Howgrave-Graham and Smart [12] introduced a different
scenario to study the security of DSA. Suppose that for a reasonable
number of signatures, a small fraction of the corresponding nonce k
is revealed. For instance, suppose that the £ least significant bits of
k are known. Howgrave-Graham and Smart proposed in [12] several
heuristic attacks to recover the secret key in such setting and variants
(known bits in the middle, or split in several blocks) when £ is not
too small. Like [3], the attacks make use of LLL-based Babai's CVP
approximation algorithm [2]. However, the attacks of [3] and [12] are
quite different. Howgrave-Graham and Smart have followed an ap-
plied approach. The attack used several heuristic assumptions which
did not allow precise statements on its theoretical behaviour. It has
been assumed that the DSA signatures followed a perfectly uniform
distribution, that some lattice enjoyed some natural however heuristic
property, and that Babai's algorithm behaves much better than theo-
retically guaranteed. Some heuristic arguments of this attack have been
sharpened by Nguyen [23].

Nguyen and Shparlinski [24], following the approach of [23], have im-
proved the analysis of the attack of Howgrave-Graham and Smart [12],
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appropriate most significant bits), the number of bits can be decreased
to 2 if one further assumes access to ideal lattice reduction (namely,
an oracle for the closest vector problem for the infinity norm). Such
an assumption is realistic in low dimension despite NP-hardness re-
sults on lattice problems, due to the well-known experimental fact that
state-of-the-art lattice basis reduction algorithms behave much better
than theoretically guaranteed. Alternatively, the number of bits can be
decreased to loglogg but with a running time ¢/ 19819849) gybexpo-
nential in log ¢, using the closest vector approximation algorithm of [1,
Corollary 16]. This running time is interesting, as the bit-length of g is
usually chosen to be 160, in order to avoid square-root attacks.

1.4. QUR RESULTS

In this paper, we extend the results of Nguyen and Shparlinski [24] on
DSA to the case of ECDSA. This provides the first provable polynomial-
time attack against ECDSA when the nonces are partially known,
under the same two reasonable assumptions. Although the results pre-
viously mentioned on DSA could heuristically be applied to ECDSA,
no proved result has been known, due to the potential difference of
distribution between the ECDSA signatures (r(k), s(k, 1)) and the DSA
signatures (p(k), o(k, p)).

In fact, our approach is very similar to that of [24], the main differ-
ence being that we use bounds of exponential sums from [16] to obtain
some results on the distribution of ECDSA signatures (r(k), s(k, p)),
whereas [24] applies bounds of exponential sums from [17] to study
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Like [24], our attack follows the approach of Nguyen [23] which reduces
the DSA/ECDSA problem to a variant of the hidden number problem
(HNP) introduced in 1996 by Boneh and Venkatesan [5, 6]. The HNP
can be stated as follows: recover a number o € IF, such that for many
known random ¢ € IF;, an approximation APPgg4(af) of af is known.
Here, for any rationals n and £, the notation APPgg(n) denotes any

rational r such that: q

|ﬂ' - rl‘? E 2!4_1 1

where the symbol |.|, is defined as |z|; = minycz |z — byg| for any real z.

The connection between the ECDSA problem and HNP can easily be
explained. Assume that we know the ¢ least significant bits of a nonce
k € IF;. That is, we are given an integer a such that 0 < a < 2t — 1

and k — a = 2b for some integer b > 0. Given a message u signed with
the nonce k, the congruence

ar(k) = s(k,u)k — () (mod g),
can be rewritten for s(k, p) # 0 as:
frr[k]lz_fa[k.. p)y = (a. - .a(k,g;]_lh[p}) 27¢4b (mod q). (1)
Now define the following two elements
ko) = |27 r(k)sh, )|

ulk, p) = [24 (ﬂ - Hlkﬂp}_lh{#’}”q
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HNP to CVP. This polynomial-time algorithm, which we will call BV,
is again based on Babai's CVP approximation algorithm. It provably
solves HNP when £ > log'/% g + loglog g. That result enabled Boneh
and Venkatesan to establish in [5] some results on the bit-security of
the Diffie-Hellman key exchange and related cryptographic schemes.
However, in the latter application, the distribution of the multipliers ¢
is not perfectly uniform, making some of the statements of [5] incorrect.
This has led Gonziles Vasco and Shparlinski [10] to extend results on
the BV algorithm to the case where ¢ is randomly selected from a
subgroup of IFy, to obtain rigorous statements on the bit-security of
the Diffie-Hellman key exchange and related schemes (see also [11]).

In ECDSA-HNP as well, the distribution of the multiplier ¢(k, p)
is not necessarily perfectly uniform. We thus apply an extension (pre-
sented in [24]) of the results of [5] on the BV algorithm using the
notion of discrepancy, in the spirit of that of [10, 11]. To achieve the
proof of our attack, we show using exponential sum techniques that
ECDSA signatures follow some kind of uniform distribution. A similar
reasoning has been exploited in [24].

1.6. STRUCTURE OF THE PAPER AND NOTATION

The paper is organized as follows. In Section 2, we review a few facts
on the hidden number problem, and we recall two extensions of [5,
Theorem 1] where the multipliers may have imperfect uniform distri-
bution. In Section 3, we obtain uniformity results on the distribution of
ECDSA signatures, which might be of independent interest. Finally, in
Section 4, we collect the aforementioned results and apply it to ECDSA.
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1] states that there exists a deterministic polynomial time é]gnrithm A
such that

*1F£:d (A1, ... tq, O(t1),...,0(tg)) = a] =

Bl | it

where d = 2[?11!2] and #;,...,13 are chosen uniformly and indepen-
dently at random from Z}.

To show the insecurity of DSA with partially known nonces, Nguyen
and Shparlinski [24] generalized the previous result to cases where the
multiplier ¢ has not necessarily perfectly uniform distribution. The gen-
eralization used the classical notion of discrepancy [8, 18, 28]. Recall
that the discrepancy D(I') of an N-element sequence I' = {~1,...,ywv}
of elements of the interval [0, 1] is defined as

A(J,N)
N

D)= sup
JC[o,]

—|J|\..

where the supremum is extended over all subintervals J of [0, 1], |.J| is
the length of .J, and A(.J, N) denotes the number of points v, in J for
D<n<N-1

Informally speaking the discrepancy tells us how much the number
of hits A(.J, N') of a given interval .J differ from its expected value |.J|N.

Nguyen and Shparlinski [24] introduced the following definition: a
finite sequence T of integers is A-homogeneously distributed modulo g
if for any integer a coprime with g, the discrepancy of the sequence
{lat],/q}icT is at most A. This provided the following generaliza-
tion [24] of [5, Theorem 1]:
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independently at random from the elements of T and all coin tosses of
the algorithm A.

Since the previous result applies lattice reduction, it is interesting
to know how it is affected if ideal lattice reduction is available, due
to the well-known experimental fact that lattice basis reduction al-
gorithms behave much better than theoretically guaranteed, despite
NP-hardness results for most lattice problems (see [25, 26]). Nguyen
and Shparlinski [24] have obtained the following:

LEMMA 2. Let 5 > 0 be fized. For a prime q, define £ =145, and
B
d=|-n""l -‘ .
’-3"? 0g g

Let T be a f(g)-homogeneously distributed modulo q sequence of integer
numbers, where f(q) is any function with f(q) — 0 as g — ooc. There
erists a deterministic polynomial-time algorithm A using a CVP,,-
oracle (in dimension d 4+ 1) such that for any fized integer o in the
interval [0,q — 1], given as input a prime q, d integers ty,... 13 and d
rationals
u; = APP; (ad;), i=1,....4d,
its oulput satisfies for sufficiently large q
1
Pr [A[‘?'.t'l:"-:td;ul:---:udj = ﬂ’] =21- E

where the probability is taken over all #,,...,1; chosen uniformly and
independently at random from the elements of T .
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Let T be a 2% -homogeneously distributed modulo q sequence of integer
numbers. There exists a probabilistic algorithm A which runs in time
gVt lesloea) gnd such that for any fized integer a in the interval 0,
1], given as input a prime q, d integers t1,...,1; and d rationals

u; = APPg g(ot;), i=1,....d,

its oulput satisfies for sufficiently large q

1

Pr [A[‘?'.tl:"':td;ul:"'!udj = t‘:':.] =1- E

where the probability is taken over all #;,...,1; chosen uniformly and
independently at random from the elements of T .

3. Distribution of Signatures Modulo g

Here we obtain some results about the uniformity of distribution of
t(k, u) modulo g which can be of independent interest.

Let e,(z) = exp(2miz/p) and e (z) = exp(2miz/q).

One of our main tools is the Weil bound on exponential sums with
rational functions which we present in the following form given by
Theorem 2 of [21].
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case of Cﬂrnﬁllary 1 to Theorem 1 nfv[lﬁ].

LEMMA 5. The bound

Ecdl{rpll 1 ZEF (cz(kG))| {4?71!2

holds.

For an integer o € [0,q — 1] let us denote by R(#) be the number of
solutions of the equation

r(k)=49, ke[l,g-1]
LEMMA 6. The bound
R(#) = O(p'?logp),  de0,q—1],
holds.

Proof. Let

b=

We remark that R(+#) is the number of solutions k € [1,q — 1] of the
congruence

z(kG)=gz+9 (modp), ke[l,g—1], z€][0,L]
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R(#) < 2+~ ey (ca(k@)| |3 ey (~caz)
P k=1 z=0 |
113—1 g—1 L
<24 &y (ca(k@))| |3 ey (cg2)] -
pr.':l k=1 z=0

Combining Lemma 5 to estimate the sum over k € [1,q — 1] (certainly
the missing term corresponding to k = 0 does not change the order of
magnitude of this sum) with the estimate

p-1| L
Z Z e, (cqz)

e=1 |z=0

p—1| L |
= Z Z e, (cz) = O(plogp),
=1 |z=0 |

see Exercise 11.c in Chapter 3 of [31], we obtain the desired result. 0O

In particular, denote by S the set of pairs (k, u) € [1,q—1] x M with
sk, ) # 0 (that is, the set of pairs (k, ) for which the congruence (1)
holds and thus #(k, p) is defined). Then

5] = M| (g + 0 (v 10gp)) - (3)

For a hash function h : M — IF, we also denote by W the number
of pairs (p1, ps) € M? with h(p) = h(ps). Thus, W/|M|? is a prob-
ability of a collision and our results are nontrivial under a reasonable
assumption that this probability is of order of magnitude close to 1/q.

First of all, we need to estimate exponential sums with the multi-
pliers £(k, j)
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For A € IF; we denote by H(A) the number of p € M with h(u) = A.
We also define the integer b € [1,q — 1] by the congruence a = 2 f¢;

(mod g). Then

> eq(t(k.p) -

keky

g—1
kr(k)
o= S HQ) Y e (a—) .
- A+ ar(k)
Al 'nr[k]i—kl 1[mm-t a)

Applying the Cauchy inequality we obtain

2
g—1
kr(k) '
a? < H(\)? e (u—) . (4)
,‘EZ]F AEZ]F: ; "\ Atar(k)/|
7 T ar(k)®=-2 (mod q)
First of all we remark that
S H(A) =W (5)
AcF,
Furthermore,
.2
Sy . (a520)
AcF, k1 A—Fﬂ‘l"{k}l [

ar(k)g=2 (mad q)
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_ kr(k)  mr(m)
X +ar(k) X+ ar(m)

Fk,m[X}

is not constant in IF,. If r(k) = r(m) then

Thus it is constant only if K = m or r(k) = r(m) = 0. From Lemma 6 we
see that the number of such pairs is O (p lng2 p) for which we estimate
the sum over A trivially as g. For other pairs (k,m) € [1,q — 1]2 we use
Lemma 4 getting

2
g—1

r(k) ) 2 5/2

E E g | a————— = O(pglog’p + ¢°?).

= ( X+ ar(k) (patos )
T ar(k)g-2 (mod q)

Substituting this estimate and the identity (5) in (4) we obtain the
desired statement. O

LEMMA 8. The sequence t(k,p), (k,pu) € 8§, is A-homogeneously
distributed modulo q, where

Ao Wz (puzq_m logp + L_,!,1;4) logq
M| ‘
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signiﬁcant bits of k.
Combining (2), Lemma 1 and Lemma 8, we obtain

THEQOREM 9. Let w = 0 be an arbitrary absolute constant. For any
£ > () there exists & > () such that for any point G € IE(IF,) of multi-

plicative order g, where g > p'/** is prime, and any hash function h
with |ﬁ4|2
W E ql_d' 1

given an oracle Oy with

f = {w (lﬂgqlﬂg log log *?) ”2-‘ :
loglog g

there erists o probabilistic polynomial lime algorithm to compute the
secrel parameter o, from O ({]ng qlog log g/ log log log q)*/ 2) signatures

(r(k),s(k,p)) with k € [0,q— 1] and p € M selected independently and
uniformly at random.

Proof. We choose k € [0,g—1] and p € M independently and uniformly
at random and ignore pairs (k,p) € S. It follows from (3) that the
expected number of choices in order to get d pairs (k,p) € & is d +

0 (‘?_6) for some 4 > 0 depending only on £ > 0.

From Lemma 8 we see that the sequence f(k, u), (k,p) € 8§, is A-
homogeneously distributed with

A =0 ((p/2q *o1ogp + ¢ /*) log g) = O(q™?)

PubECDSA.tex; 5/03/2002; 19:41; p.14



~l

and p € M selected independently and uniformly at random. )
Accordingly, from Lemma 3 we derive

THEOREM 11. For any £ > 0 there exists § > 0 such that for any
point G € IE(IF,) of multiplicative order q, where q = p 2t s prime,
and any hash function h with

|M|?
W<

given an oracle Oy with

¢=logloga]

there exists a probabilistic algorithm to compule the secrel parameler e,
in time g9/ 198189)  from O (log g/ log log q) signatures (r(k), s(k, p))
with k € [0,q — 1] and p € M selected independently and uniformly at
random.

Using the inequality (2) one can also obtain a similar result for the
oracle returning the £ most significant bits of k. Oracles returning £
consecutive bits in the middle can be studied as well, see the discussion
below and in [24].
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tacks on other modifications of DSA, including the Nyberg-Rueppel
signature scheme [9].

Finally, as shown in [24], our results can be generalized to the case
of consecutive bits at a known position. The simplest case is when
the consecutive bits are the most significant bits. The definition of
most significant bits may depend on the context, as opposed to least
significant bits. Two possible definitions have been studied in [24]. The
usual definition refers to the binary encoding of elements in IF,, where
each element is encoded with n bits where n = 1 4 |logg| is the bit-
length of g. Thus, we define the £ most significant bits of an element
z € IF, as the unique positive integer MSB,  (z) € {0,...,2¢"1} such
that:

z — 2" EMSB, (z) € {0,...,2"* — 1},

For instance, the most significant bit is 1 if z > 2", and 0 otherwise.
However, this definition is not very well-suited to modular residues,
since the most significant bit MSB4(x) may in fact leak less than
one bit of information: if g is very close to 2", then MSB1 4(z) is
most of the time equal to 0. Hence, Boneh and Venkatesan used in [5]
another definition of most significant bits, which we will refer to as
most significant modular bits. The £ most significant modular bits of
an element z € IF,; are defined as the unique integer MSMBy 4(z) such
that
0 <z — MSMBy,(z)g/2¢ < q/2°.

For example, the most significant modular bit is 0 if z < ¢/2, and 1
otherwise. The argument of [24] shows that Theorems 9 and 10 also
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