
 TECHNICALBRIEF
Shellshock: A Technical Report
Trend Micro Threat Research Lab

Introduction
On September 24, 2014, Stephane Chazelas
discovered that Bash incorrectly handled trailing code
in function definitions, as described in CVE-2014-
6271.1 Attackers can exploit what has been dubbed
“Shellshock” to bypass environment restrictions.
Several programs such as Secure Shell (SSH) and
Common Gateway Interface (CGI) scripts allow Bash
to run in the background. Because of this, attackers
can remotely exploit the vulnerability, making
Shellshock a serious threat. Researchers even warn
that it can become as big as Heartbleed, also known
as CVE-2014-0160, which was discovered this April.2

After performing tests, we found that not every
system can be remotely exploited because they run
Bash. Systems also need to run applications that
make Bash accessible over the network to become
vulnerable.

This report provides an in-depth technical description
of Shellshock.

Vulnerability Details
In the next few days, more information about
Shellshock will be disclosed and it can be completely
patched. As previously mentioned, CVE-2014-
6271 or Shellshock was originally discovered by
Stephane Chazelas, a Unix and Linux network and
telecommunications administrator and IT manager at
a U.K.-based robotics company, SeeByte Ltd.3

Proof of Concept

Running the following command is a simple test to
check if Bash is vulnerable on a system:

$ env x=’() { :;}; echo vulnerable’ bash -c “echo test”

Running the command above on a system running a
vulnerable Bash version will respond with the output,
“vulnerable.” The patch issued to fix the problem
ensures that code is not allowed to run after any
Bash function.

How the Vulnerability Can Be Exploited

We used the proof-of-concept (PoC) code to see how
the vulnerability could be exploited.

$ env x=’() { :;}; echo vulnerable’ bash -c “echo test”

The code above declares an environment variable
then prints “test.” Due to the specially crafted value of
the environment variable, Bash takes the code as a
function definition as in:

x() { :;
};
echo vulnerable

TREND MICRO | TECHNICAL BRIEF

2

Once a system is declared “vulnerable,” attackers
can then execute a malicious command after the
function definition.

Impact
Bash is a widely used Unix shell in several systems
and software and Shellshock affects versions 1.14–
4.3 of GNU Bash, specifically:

• Older than Bash 4.3 patch 25

• Older than Bash 4.2 patch 48

• Older than Bash 4.1 patch 12

• Older than Bash 4.0 patch 39

• Older than Bash 3.2 patch 52

• Older than Bash 3.1 patch 18

• Older than Bash 3.0 patch 17

• Bash 2.0.5 and older

• Bash 1.14.7 and older

Applications and networked devices that use Bash,
including routers, IP cameras, gateways (e.g., Citrix’s
NetScaler, F5’s BIG IP, and Cisco products), and Web
CGI programs are vulnerable. Attackers can even
command vulnerable Dynamic Host Configuration
Protocol (DHCP) server to execute arbitrary code on
client systems.

The following table lists commonly used OSs and
their default shells. OSs whose default shell is Bash
are vulnerable.

OS DEFAULT SHELL

Mac OS X Bash

RHEL Bash

CentOS Bash

Fedora Bash

Debian sh (lenny) dash (Squeeze)

Ubuntu dash

FreeBSD tcsh

Android Newer releases: ash; mksh is shipped with Android 3.0

iOS
(only on jail-broken devices) Bash

Embedded devices Mostly use BusyBox (ash)

TREND MICRO | TECHNICAL BRIEF

3

Attack Scenarios
Web Server Attack

Web server attacks are most problematic as Bash
scripts are executed via cgi-bin.

In this scenario, CGI requires a Web server to
convert HTTP request headers and pass them
on from a client to environment variables. This is
performed by the mod-cgi or mod_cgid module of an
Apache server. If attackers call a Bash script via cgi-
bin, they can use it to execute code as an httpd with
the Web server’s permission.

We tested this out on the Apache mod_cgi module
using different programming languages. Findings
showed that CGI programs written in Perl, PHP,
Python, and Ruby are vulnerable.

Perl

#!/usr/bin/env perl
print “Content type: text/plain; charset=iso 8859 1\n\n”;
$result = system(“test >> /dev/null;”);

PHP

#!/usr/bin/env php
<?php
print “Content Type: text/html\n\n”;
print “Hello World!\n\n”;
var_dump(exec(‘date’));
?>

Python

#!/usr/bin/env python
print “Content Type: text/html”
print
print “””
<html>
<body>
<h2>Hello World!</h2>
</body>
</html>
“””
import os
os.system(‘date’)

Ruby

#!/usr/bin/env ruby
puts “Content type: text/html\n\n”
puts “<?xml version=\”1.0\” encoding=\”UTF 8\”?>”
puts “<!DOCTYPE html>”
puts “<html>”
puts “<head>”
puts “<title>Ruby CGI test</title>”
puts “</head>”
puts “<body>”
puts “<p>Hello, world!</p>”
puts “</body>”
puts “</html>”
`date`

TREND MICRO | TECHNICAL BRIEF

4

DHCP Server Abuse

Exploiting a vulnerable DHCP server can allow
attackers to spread arbitrary commands to clients
connected to local network environments. They can
set up malicious DHCP servers with specially crafted
command options to execute various malicious
payloads such as:

() { :; }; /usr/bin/cat /etc/shadow > /tmp/shadow

The following is a sample malicious DHCP server
setup, which has been configured with a malicious
payload in Additional Option 114:

A user who accesses the malicious server’s IP
address will execute the malicious command on his
system. The command will then move the shadow file
to /tmp/ as shown in the following:

• On a CentOS 7.0 DHCP client running a
vulnerable Bash version

• On an Ubuntu 10.04.1 LTS DHCP client
running a vulnerable Bash version

• On an Ubuntu 14.04.1 LTS DHCP client
running a vulnerable Bash version

TREND MICRO | TECHNICAL BRIEF

5

• On a Fedora 20 DHCP client running a
vulnerable Bash version

Mobile devices that run Android and iOS are not
vulnerable because they do not come shipped with
Bash by default. Mac OS X is not vulnerable as well
because it does not use Bash when requesting for IP
addresses during the DHCP process.

OS VERSION STATUS

CentOS 7.0 Vulnerable

Fedora 20 Vulnerable

Ubuntu 10.04.1 LTS Vulnerable

Ubuntu 14.04.1 LTS Vulnerable

Android 4.4.4 Invulnerable

iOS 7.0.4 Invulnerable

Mac OS
X 10.9.5 Invulnerable

GIT or Subversion Server Attack

Attacking GIT or subversion servers can give
attackers access to connected systems or servers

but not the ability to execute arbitrary commands due
to a restricted shell environment. CVE-2014-6271,
however, allows them to bypass restrictions and get
shells to work. (Regular OpenSSH users are not
affected because they already have shell access.)

Vulnerable servers whose default GIT user shell
is Bash are vulnerable to remote code execution,
especially those with uploaded SSH keys that
attackers can get their hands on. Note that only
GIT servers that use Bash for default shells are
vulnerable. Those that do not are not vulnerable such
as dash on Debian.

We used the following PoC Shellshock code to obtain
a vulnerable restricted GIT server’s password:

ssh git@gitserver ‘() { :;}; echo vulnerable’

Other Attack Scenarios

Even though this report presents a limited number
of exploit scenarios, several potential possibilities
can still emerge. But we know one thing for sure, the
vulnerability can spread via worms. In fact, we have
already seen worms spread Shellshock.

TREND MICRO | TECHNICAL BRIEF

6

Solutions and
Recommendations
Companies should test their Linux-based servers,
devices, and third-party applications that allow Bash
to run in the background. They should especially test

Web-based applications and services that attackers
can easily remotely exploit with Shellshock. Linux
versions such as Xymon, a very popular server
or network monitoring system are vulnerable to
Shellshock. We strongly recommend Bash users
to update to the latest versions as shown in the
following table:

OS AVAILABLE INVULNERABLE VERSION

RHEL

RHSA-2014:1306-1
BASH-3.2-33.el5_11.4 (RHEL5)
BASH-4.1.2-15.el6_5.2 (RHEL6)
BASH-4.2.45-5.el7_0.4 (RHEL7)

Fedora
BASH-4.2.48-2.fc19 (Fedora 19)
BASH-4.2.48-2.fc20 (Fedora 20)
BASH-4.3.25-2.fc21 (Fedora 21)

CentOS
BASH-3.2-33.el5_10.4 (CentOS 5)
BASH-4.1.2-15.el6_5.2 (CentOS 6)
BASH-4.2.45-5.el7_0.4 (CentOS 7)

AWS CVE-2014-6271 Advisory
ALAS-2014-418

Ubuntu

USN-2362-1 (CVE-2014-6271)
USN-2363-1 (CVE-2014-7169)
4.1-2ubuntu3.2 (Ubuntu 10.04 LTS)
4.2-2ubuntu2.3 (Ubuntu 12.04 LTS)
4.3-7ubuntu1.2 (Ubuntu 14.04 LTS)

SuSE

CVE-2014-6271/Bug 896776
CVE-2014-7169/Bug 898346
3.2-147.20.1 (SuSE11)
3.1-24.32.1 (SuSE10)

Debian

DSA-3032-1 (CVE-2014-6271)
DSA-3035-1 (CVE-2014-7169)
4.1-3+deb6u2 (squeeze (lts))
4.2+dfsg-0.1+deb7u3 (wheezy(security))
4.3-9.2 (sid)

Gentoo

Bug 523592
BASH-3.1_p18-r1
BASH-3.2_p52-r1
BASH-4.0_p39-r1
BASH-4.1_p12-r1
BASH-4.2_p48-r1

TREND MICRO | TECHNICAL BRIEF

7

OS AVAILABLE INVULNERABLE VERSION

Scientific Linux
SLSA-2014:1293-1
BASH-3.2-33.el5.1(SL5)
BASH-4.1.2-15.el6_5.1(SL6)

SecRule REQUEST_LINE “\(\) {“ “phase:1,deny,id:
1000001,status:400,log,msg:’CVE-2014-6271 - BASH
Attack’”

• GET/POST names:

SecRule ARGS_NAMES “^\(\) {“ “phase:2,deny,id:
1000002,t:urlDecode,t:urlDecodeUni,status:400,log,
msg:’CVE-20 14-6271 - BASH Attack’”

• GET/POST values:

SecRule ARGS “^\(\) {“ “phase:2,deny,id:1000003,t:
urlDecode,t:urlDecodeUni,status:400,log,msg:’CVE-
2014-6271 - BASH Attack’”

• Filenames for uploads:

SecRule FILES_NAMES “^\(\) {“ “phase:2,deny,id:
1000004,t:urlDecode,t:urlDecodeUni,status:400,log,
msg:’CVE-2014-6271 - BASH Attack’”

• IPTables

iptables A INPUT m string algo bm hex string ‘|28 29
20 7B|’ j DROP

ip6tables A INPUT m string algo bm hex string ‘|28 29
20 7B|’ j DROP

• Suricata

alert http $EXTERNAL_NET any > $HOME_NET any
(msg:”Possible CVE 2014 6271 BASH Vulnerability
Requested (header)”; flow:established,to_server;
content:”() {“; http_header; threshold:type limit, track
by_src, count 1, seconds 120; sid:2014092401;)

• Snort

alert tcp $EXTERNAL_NET any > $HOME_NET
$HTTP_PORTS (msg:”Possible CVE 2014 6271 BASH
Vulnerability Requested (header) “; flow:established,to_
server; content:”() {“; http_header; threshold:type limit,
track by_src, count 1, seconds 120; sid:2014092401;)

A patch for the Bash vulnerability has been released
but it remains incomplete. Some believe the fix still
allows certain characters to be injected in vulnerable
Bash versions via specially crafted environment
variables. Attackers can still craft new methods
to bypass environment restrictions and execute
shell commands. Bypass methods identified in the
following still work:

• CVE-2014-71694

• CVE-2014-71865

• CVE-2014-71876

• https://rhn.redhat.com/errata/RHSA 2014 1306.
html

Companies should keep an eye out for updates
even if they have already patched CVE-2014-6271.
They should also implement the following additional
measures to protect their networks:

• Switch default shell to a Bash alternative such
as dash or tsh. (Do so carefully, however,
because different shells use different
syntaxes. This can break existing scripts.)

• To protect CGI programs, filter requests using
the following intrusion detection system (IDS)
or Web application firewall rules to block
exploits:

• mod_security

• Request header values:

SecRule REQUEST_HEADERS “^\(\) {“ “phase:1,deny,
id:1000000,t:urlDecode,status:400,log,msg:’CVE-2014-
6271 - BASH Attack’”

• SERVER_PROTOCOL values:

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information and educational purposes only. It is not intended and should not be construed to constitute legal advice.
The information contained herein may not be applicable to all situations and may not reflect the most current situation. Nothing contained herein should be relied on
or acted upon without the benefit of legal advice based on the particular facts and circumstances presented and nothing herein should be construed otherwise. Trend
Micro reserves the right to modify the contents of this document at any time without prior notice.

Translations of any material into other languages are intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise
related to the accuracy of a translation, please refer to the original language official version of the document. Any discrepancies or differences created in the
translation are not binding and have no legal effect for compliance or enforcement purposes.

Although Trend Micro uses reasonable efforts to include accurate and up-to-date information herein, Trend Micro makes no warranties or representations of any kind
as to its accuracy, currency, or completeness. You agree that access to and use of and reliance on this document and the content thereof is at your own risk. Trend
Micro disclaims all warranties of any kind, express or implied. Neither Trend Micro nor any party involved in creating, producing, or delivering this document shall
be liable for any consequence, loss, or damage, including direct, indirect, special, consequential, loss of business profits, or special damages, whatsoever arising
out of access to, use of, or inability to use, or in connection with the use of this document, or any errors or omissions in the content thereof. Use of this information
constitutes acceptance for use in an “as is” condition.

Trend Micro Incorporated, a global leader in security software, strives to make the
world safe for exchanging digital information. Our innovative solutions for consumers,
businesses and governments provide layered content security to protect information
on mobile devices, endpoints, gateways, servers and the cloud. All of our solutions are
powered by cloud-based global threat intelligence, the Trend Micro™ Smart Protection
Network™, and are supported by over 1,200 threat experts around the globe. For more
information, visit www.trendmicro.com.

©2014 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend
Micro t-ball logo are trademarks or registered trademarks of Trend Micro, Incorporated.
All other product or company names may be trademarks or registered trademarks of
their owners.

10101 N. De Anza Blvd.
Cupertino, CA 95014

U.S. toll free: 1 +800.228.5651
Phone: 1 +408.257.1500
Fax: 1 +408.257.2003

• ref:

• mod_security, IPTables
(https://access.redhat.com/
articles/1212303)

• Snort, Suricata (http://www.
volexity.com/blog/?p=19)

• Restrict access by source IP address. If CGI
program use is still required and patching is
not an option, restrict access by source IP
address. Only allow trusted IP ranges or hosts
to access services.

References
1. NIST. (September 24, 2014). National

Vulnerability Database. “Vulnerability
Summary for CVE-2014-6271.” Last accessed
September 27, 2014, http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2014-6271.

2. Trend Micro Incorporated. (2014). TrendLabs

Security Intelligence Blog. “Heartbleed.” Last
accessed September 27, 2014, http://blog.
trendmicro.com/trendlabs-security-intelligence
/?s=heartbleed&Submit=+Go+.

3. SeeByte Ltd. (2014). SeeByte. “About
SeeByte.” Last accessed September 27,
2014, http://www.seebyte.com/about-
seebyte/.

4. NIST. (September 24, 2014). National
Vulnerability Database. “Vulnerability
Summary for CVE-2014-7169.” Last accessed
September 27, 2014, http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2014-7169.

5. Debian Security. (2014). Debian. “CVE-2014-
7186.” Last accessed September 27, 2014,
https://security-tracker.debian.org/tracker/
CVE-2014-7186.

6. Debian Security. (2014). Debian. “CVE-
2014 7187.” Last accessed September 27,
2014, https://security-tracker.debian.org/
tracker/CVE-2014-7187.

http://www.trendmicro.com/us/index.html

