
2
Format String ProblemsFormat String Problems

17

Hacking /The 19 Deadly Sins of Software Security /Howard, LeBlanc, Viega/ 226085-8 / Chapter 2

P:\010Comp\Hacking\085-8\020-7\ch02.vp
Thursday, July 07, 2005 11:30:57 AM

Color profile: Disabled
Composite Default screen

OVERVIEW OF THE SIN
Format string problems are one of the few truly new attacks to surface in recent years.
One of the first mentions of format string bugs was on June 23, 2000, in a post by Lamagra
Argamal (www.securityfocus.com/archive/1/66842); Pascal Bouchareine more clearly
explained them almost a month later (www.securityfocus.com/archive/1/70552). An
earlier post by Mark Slemko (www.securityfocus.com/archive/1/10383) noted the ba-
sics of the problem, but missed the ability of format string bugs to write memory.

As with many security problems, the root cause of format string bugs is trusting
user-supplied input without validation. In C/C++, format string bugs can be used to
write to arbitrary memory locations, and the most dangerous aspect is that this can
happen without tampering with adjoining memory blocks. This fine-grained capability
allows an attacker to bypass stack protections, and even modify very small portions of
memory. The problem can also occur when the format strings are read from an untrusted
location the attacker controls. This latter aspect of the problem tends to be more prevalent
on UNIX and Linux systems. On Windows systems, application string tables are gener-
ally kept within the program executable, or resource Dynamic Link Libraries (DLLs). If
an attacker can rewrite the main executable or the resource DLLs, the attacker can per-
form many more straightforward attacks than format string bugs.

Even if you’re not dealing with C/C++, format string attacks can still lead to consider-
able problems. The most obvious is that users can be misled, but under some conditions,
an attacker might also launch cross-site scripting or SQL injection attacks. These can be
used to corrupt or transform data as well.

AFFECTED LANGUAGES
The most strongly affected language is C/C++. A successful attack can lead immediately
to the execution of arbitrary code, and to information disclosure. Other languages won’t
typically allow the execution of arbitrary code, but other types of attacks are possible as
we previously note. Perl isn’t directly vulnerable to specifiers being given by user input,
but it could be vulnerable if the format strings are read in from tampered data.

THE SIN EXPLAINED
Formatting data for display or storage can be a somewhat difficult task. Thus, many com-
puter languages include routines to easily reformat data. In most languages, the format-
ting information is described using some sort of a string, called the format string. The
format string is actually defined using limited data processing language that’s designed
to make it easy to describe output formats. But many developers make an easy mis-
take—they use data from untrusted users as the format string. As a result, attackers can
write strings in the data processing language to cause many problems.

18 19 Deadly Sins of Software Security

Hacking /The 19 Deadly Sins of Software Security /Howard, LeBlanc, Viega/ 226085-8 / Chapter 2

P:\010Comp\Hacking\085-8\020-7\ch02.vp
Thursday, July 07, 2005 11:32:12 AM

Color profile: Disabled
Composite Default screen

Sin 2: Format String Problems 19

Hacking /The 19 Deadly Sins of Software Security /Howard, LeBlanc, Viega/ 226085-8 / Chapter 2

The design of C/C++ makes this especially dangerous: C/C++’s design makes it
harder to detect format string problems, and format strings include some especially dan-
gerous commands (particularly %n) that do not exist in some other languages’ format
string languages.

In C/C++, a function can be declared to take a variable number of arguments by spec-
ifying an ellipsis (…) as the last (or only) argument. The problem is that the function being
called has no way to know just how many arguments are being passed in. The most com-
mon set of functions to take variable length arguments is the printf family: printf, sprintf,
snprintf, fprintf, vprintf, and so on. Wide character functions that perform the same func-
tion have the same problem. Let’s take a look at an illustration:

#include <stdio.h>

int main(int argc, char* argv[])

{

if(argc > 1)

printf(argv[1]);

return 0;

}

Fairly simple stuff. Now let’s look at what can go wrong. The programmer is expect-
ing the user to enter something benign, such as Hello World. If you give it a try, you’ll get
back Hello World. Now let’s change the input a little—try %x %x. On a Windows XP
system using the default command line (cmd.exe), you’ll now get the following:

E:\projects\19_sins\format_bug>format_bug.exe "%x %x"

12ffc0 4011e5

Note that if you’re running a different operating system, or are using a different com-
mand line interpreter, you may need to make some changes to get this exact string fed
into your program, and the results will likely be different. For ease of use, you could put
the arguments into a shell script or batch file.

What happened? The printf function took an input string that caused it to expect two
arguments to be pushed onto the stack prior to calling the function. The %x specifiers en-
abled you to read the stack, four bytes at a time, as far as you’d like. It isn’t hard to imag-
ine that if you had a more complex function that stored a secret in a stack variable, the
attacker would then be able to read the secret. The output here is the address of the stack
location (0x12ffc0), followed by the code location that the main() function will return into.
As you can imagine, both of these are extremely important pieces of information that are
being leaked to an attacker.

You may now be wondering just how the attacker uses a format string bug to write
memory. One of the least used format specifiers is %n, which writes the number of

P:\010Comp\Hacking\085-8\020-7\ch02.vp
Thursday, July 07, 2005 11:32:13 AM

Color profile: Disabled
Composite Default screen

20 19 Deadly Sins of Software Security

Hacking /The 19 Deadly Sins of Software Security /Howard, LeBlanc, Viega/ 226085-8 / Chapter 2

characters that should have been written so far into the address of the variable you gave
as the corresponding argument. Here’s how it should be used:

unsigned int bytes;

printf("%s%n\n", argv[1], &bytes);

printf("Your input was %d characters long\n, bytes");

The output would be:

E:\projects\19_sins\format_bug>format_bug2.exe "Some random input"

Some random input

Your input was 17 characters long

On a platform with four-byte integers, the %n specifier will write four bytes at once,
and %hn will write two bytes. Now attackers only have to figure out how to get the
address they’d like in the appropriate position in the stack, and tweak the field width
specifiers until the number of bytes written is what they’d like.

You can find a more complete demonstration of the steps needed to conduct an exploit in Chapter 5 of
Writing Secure Code, Second Edition by Michael Howard and David C. LeBlanc (Microsoft Press,
2002), or in The Shellcoder’s Handbook: Discovering and Exploiting Security Holes by Jack Koziol,
David Litchfield, Dave Aitel, Chris Anley, Sinan “noir” Eren, Neel Mehta, and Riley Hassell (Wiley,
2004).

For now, let’s just assume that if you allow attackers to control the format string in a
C/C++ program, it is a matter of time before they figure out how to make you run their
code. An especially nasty aspect of this type of attack is that before launching the attack,
they can probe the stack and correct the attack on the fly. In fact, the first time the author
demonstrated this attack in public, he used a different command line interpreter than
he’d used to create the demonstration, and it didn’t work. Due to the unique flexibility of
this attack, it was possible to correct the problem and exploit the sample application with
the audience watching.

Most other languages don’t support the equivalent of a %n format specifier, and they
aren’t directly vulnerable to easy execution of attacker-supplied code, but you can still
run into problems. There are other, more complex variants on this attack that other lan-
guages are vulnerable to. If attackers can specify a format string for output to a log file or
database, they can cause incorrect or misleading logs. Additionally, the application read-
ing the logs may consider them trusted input, and once this assumption is violated,
weaknesses in that application’s parser may lead to execution of arbitrary code. A related
problem is embedding control characters in log files—backspaces can be used to erase
things; line terminators can obfuscate or even eliminate the attacker’s traces.

P:\010Comp\Hacking\085-8\020-7\ch02.vp
Thursday, July 07, 2005 11:32:13 AM

Color profile: Disabled
Composite Default screen

This should go without saying, but if an attacker can specify the format string fed to
scanf or similar functions, disaster is on the way.

Sinful C/C++
Unlike many other flaws we’ll examine, this one is fairly easy to spot as a code defect. It’s
very simple:

printf(user_input);

is wrong, and

printf("%s", user_input);

is correct.
One variant on the problem that many programmers neglect is that it is not sufficient

to do this correctly only once. There are a number of common code constructs where you
might use sprintf to place a formatted string into a buffer, and then slip up and do this:

fprintf(STDOUT, err_msg);

The attacker then only has to craft the input so that the format specifiers are escaped,
and in most cases, this is a much more easily exploited version because the err_msg
buffer frequently will be allocated on the stack. Once attackers manage to walk back up
the stack, they’ll be able to control the location that is written using user input.

Related Sins
Although the most obvious attack is related to a code defect, it is a common practice to
put application strings in external files for internationalization purposes. If your applica-
tion has sinned by failing to protect the file properly, then an attacker can supply format
strings because of a lack of proper file access.

Another related sin is failing to properly validate user input. On some systems, an en-
vironment variable specifies the locale information, and the locale, in turn, determines
the directory where language-specific files will be found. On some systems, the attacker
might even cause the application to look in arbitrary directories.

SPOTTING THE SIN PATTERN
Any application that takes user input and passes it to a formatting function is potentially
at risk. One very common instance of this sin happens in conjunction with applications
that log user input. Additionally, some functions may implement formatting internally.

Sin 2: Format String Problems 21

Hacking /The 19 Deadly Sins of Software Security /Howard, LeBlanc, Viega/ 226085-8 / Chapter 2

P:\010Comp\Hacking\085-8\020-7\ch02.vp
Thursday, July 07, 2005 11:32:14 AM

Color profile: Disabled
Composite Default screen

22 19 Deadly Sins of Software Security

Hacking /The 19 Deadly Sins of Software Security /Howard, LeBlanc, Viega/ 226085-8 / Chapter 2

SPOTTING THE SIN DURING CODE REVIEW
In C/C++, look for functions from the printf family. Problems to look for are

printf(user_input);

fprintf(STDOUT, user_input);

If you see a function that looks like this:

fprintf(STDOUT, msg_format, arg1, arg2);

then you need to verify where the string referenced by msg_format is stored and how
well it is protected.

There are many other system calls and APIs that are also vulnerable—syslog is one
example. Any time you see a function definition that includes … in the argument list,
you’re looking at something that is likely to be a problem.

Many source code scanners, even the lexical ones like RATS and flawfinder, can
detect this. There’s even PScan (www.striker.ottawa.on.ca/~aland/pscan/), which was
designed specifically for this.

There are also countering tools that can be built into the compilation process. For
example, there’s Crispin Cowan’s FormatGuard: http://lists.nas.nasa.gov/archives/
ext/linux-security-audit/2001/05/msg00030.html.

TESTING TECHNIQUES TO FIND THE SIN
Pass formatting specifiers into the application and see if hexadecimal values are returned.
For example, if you have an application that expects a file name and returns an error
message containing the input when the file cannot be found, then try giving it file
names like NotLikely%x%x.txt. If you get an error message along the lines of
“NotLikely12fd234104587.txt cannot be found,” then you have just found a format string
vulnerability.

This is obviously somewhat language-dependent; you should pass in the formatting
specifiers that are used by the implementation language you’re using at least. However,
since many language run times are implemented in C/C++, you’d be wise to also send in
C/C++ formatting string commands to detect cases where your underlying library has a
dangerous vulnerability.

Note that if the application is web based and echoes your user input back to you, an-
other concern would be cross-site scripting attacks.

EXAMPLE SINS
The following entries in Common Vulnerabilities and Exposures (CVE) at http://
cve.mitre.org are examples of SQL injection. Out of the 188 CVE entries that reference
format strings, this is just a sampling.

P:\010Comp\Hacking\085-8\020-7\ch02.vp
Thursday, July 07, 2005 11:32:14 AM

Color profile: Disabled
Composite Default screen

Sin 2: Format String Problems 23

Hacking /The 19 Deadly Sins of Software Security /Howard, LeBlanc, Viega/ 226085-8 / Chapter 2

CVE-2000-0573
From the CVE description: “The lreply function in wu-ftpd 2.6.0 and earlier does not
properly cleanse an untrusted format string, which allows remote attackers to execute ar-
bitrary commands via the SITE EXEC command.”

This is the first publicly known exploit for a format string bug. The title of the
BUGTRAQ post underscores the severity of the problem: “Providing *remote* root since
at least 1994.”

CVE-2000-0844
From the CVE description: “Some functions that implement the locale subsystem on
UNIX do not properly cleanse user-injected format strings, which allows local attackers
to execute arbitrary commands via functions such as gettext and catopen.”

The full text of the original advisory can be found at www.securityfocus.com/ar-
chive/1/80154, and this problem is especially interesting because it affects core system
APIs for most UNIX variants (including Linux), except for BSD variants due to the fact
that the NLSPATH variable is ignored for privileged suid application in BSD. This advi-
sory, like many CORE SDI advisories, is especially well written and informative and
gives a very thorough explanation of the overall problem.

REDEMPTION STEPS
The first step is never pass user input directly to a formatting function, and also be sure to
do this at every level of handling formatted output. As an additional note, the formatting
functions have significant overhead. Look at the source for _output if you’re inter-
ested—it might be convenient to write:

fprintf(STDOUT, buf);

The preceding line of code isn’t just dangerous, but it also consumes a lot of extra CPU
cycles.

The second step to take is to ensure that the format strings your application uses are
only read from trusted places, and that the paths to the strings cannot be controlled by the
attacker. If you’re writing code for UNIX and Linux, following the example of the BSD
variants and ignoring the NLSPATH variable, which can be used to specify the file used
for localized messages, may provide some defense in depth.

C/C++ Redemption
There isn’t much more to it than this:

printf("%s", user_input);

P:\010Comp\Hacking\085-8\020-7\ch02.vp
Thursday, July 07, 2005 11:32:14 AM

Color profile: Disabled
Composite Default screen

EXTRA DEFENSIVE MEASURES
Check and limit the locale to valid values. (For more information, see David Wheeler’s
“Write It Secure: Format Strings and Locale Filtering” listed in the “Other Resources” sec-
tion below). Don’t use the printf-family of functions if you can avoid it. For example, if
you’re using C++, use stream operators instead:

#include <iostream>

//...

std::cout << user_input

//...

OTHER RESOURCES
■ “format bugs, in addition to the wuftpd bug” by Lamagra Agramal:

www.securityfocus.com/archive/1/66842

■ Writing Secure Code, Second Edition by Michael Howard and David C. LeBlanc
(Microsoft Press, 2002), Chapter 5, “Public Enemy #1: Buffer Overruns”

■ “UNIX locale format string vulnerability, CORE SDI” by Iván Arce:
www.securityfocus.com/archive/1/80154

■ “Format String Attacks” by Tim Newsham: www.securityfocus.com/archive/
1/81565

■ “Windows 2000 Format String Vulnerabilities” by David Litchfield:
www.nextgenss.com/papers/win32format.doc

■ “Write It Secure: Format Strings and Locale Filtering” by David A. Wheeler:
www.dwheeler.com/essays/write_it_secure_1.html

SUMMARY
■ Do use fixed format strings, or format strings from a trusted source.

■ Do check and limit locale requests to valid values.

■ Do not pass user input directly as the format string to formatting functions.

■ Consider using higher-level languages that tend to be less vulnerable to
this issue.

24 19 Deadly Sins of Software Security

Hacking /The 19 Deadly Sins of Software Security /Howard, LeBlanc, Viega/ 226085-8 / Chapter 2

P:\010Comp\Hacking\085-8\020-7\ch02.vp
Thursday, July 07, 2005 11:32:15 AM

Color profile: Disabled
Composite Default screen

