

Chapter 2 Describing Physical Memory
Linux is available for a wide range of architectures so there needs to be an architecture-independent way
of describing memory. This chapter describes the structures used to keep account of memory banks, pages
and the flags that affect VM behaviour.

The first principal concept prevalent in the VM is Non-Uniform Memory Access (NUMA). With large scale
machines, memory may be arranged into banks that incur a different cost to access depending on the
“distance” from the processor. For example, there might be a bank of memory assigned to each CPU or a
bank of memory very suitable for DMA near device cards.

Each bank is called a node and the concept is represented under Linux by a struct pglist_data even if
the architecture is UMA. This struct is always referenced to by it's typedef pg_data_t. Every node in the
system is kept on a NULL terminated list called pgdat_list and each node is linked to the next with the
field pg_data_t→node_next. For UMA architectures like PC desktops, only one static pg_data_t
structure called contig_page_data is used. Nodes will be discussed further in Section 2.1.

Each node is divided up into a number of blocks called zones which represent ranges within memory.
Zones should not be confused with zone based allocators as they are unrelated. A zone is described by a
struct zone_struct, typedeffed to zone_t and each one is of type ZONE_DMA, ZONE_NORMAL or
ZONE_HIGHMEM. Each zone type suitable a different type of usage. ZONE_DMA is memory in the lower
physical memory ranges which certain ISA devices require. Memory within ZONE_NORMAL is directly
mapped by the kernel into the upper region of the linear address space which is discussed further in
Section 4.1. ZONE_HIGHMEM is the remaining available memory in the system and is not directly mapped by
the kernel.

With the x86 the zones are:

ZONE_DMA First 16MiB of memory
ZONE_NORMAL 16MiB - 896MiB
ZONE_HIGHMEM 896 MiB - End

It is important to note that many kernel operations can only take place using ZONE_NORMAL so it is the most
performance critical zone. Zones are discussed further in Section 2.2. Each physical page frame is
represented by a struct page and all the structs are kept in a global mem_map array which is usually stored
at the beginning of ZONE_NORMAL or just after the area reserved for the loaded kernel image in low memory
machines. struct pages are discussed in detail in Section 2.4 and the global mem_map array is discussed in
detail in Section 3.7. The basic relationship between all these structs is illustrated in Figure 2.1.

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

1 sur 13 27/07/2016 17:08

Figure 2.1: Relationship Between Nodes, Zones and Pages

As the amount of memory directly accessible by the kernel (ZONE_NORMAL) is limited in size, Linux
supports the concept of High Memory which is discussed further in Section 2.5. This chapter will discuss
how nodes, zones and pages are represented before introducing high memory management.

2.1 Nodes
As we have mentioned, each node in memory is described by a pg_data_t which is a typedef for a struct
pglist_data. When allocating a page, Linux uses a node-local allocation policy to allocate memory from
the node closest to the running CPU. As processes tend to run on the same CPU, it is likely the memory
from the current node will be used. The struct is declared as follows in <linux/mmzone.h>:

129 typedef struct pglist_data {
130 zone_t node_zones[MAX_NR_ZONES];
131 zonelist_t node_zonelists[GFP_ZONEMASK+1];
132 int nr_zones;
133 struct page *node_mem_map;
134 unsigned long *valid_addr_bitmap;
135 struct bootmem_data *bdata;
136 unsigned long node_start_paddr;
137 unsigned long node_start_mapnr;
138 unsigned long node_size;
139 int node_id;
140 struct pglist_data *node_next;
141 } pg_data_t;

We now briefly describe each of these fields:

node_zones The zones for this node, ZONE_HIGHMEM, ZONE_NORMAL, ZONE_DMA;
node_zonelists This is the order of zones that allocations are preferred from. build_zonelists() in
mm/page_alloc.c sets up the order when called by free_area_init_core(). A failed allocation in
ZONE_HIGHMEM may fall back to ZONE_NORMAL or back to ZONE_DMA;
nr_zones Number of zones in this node, between 1 and 3. Not all nodes will have three. A CPU bank
may not have ZONE_DMA for example;
node_mem_map This is the first page of the struct page array representing each physical frame in
the node. It will be placed somewhere within the global mem_map array;
valid_addr_bitmap A bitmap which describes “holes” in the memory node that no memory exists

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

2 sur 13 27/07/2016 17:08

for. In reality, this is only used by the Sparc and Sparc64 architectures and ignored by all others;
bdata This is only of interest to the boot memory allocator discussed in Chapter 5;
node_start_paddr The starting physical address of the node. An unsigned long does not work
optimally as it breaks for ia32 with Physical Address Extension (PAE) for example. PAE is discussed
further in Section 2.5. A more suitable solution would be to record this as a Page Frame Number
(PFN). A PFN is simply in index within physical memory that is counted in page-sized units. PFN for
a physical address could be trivially defined as (page_phys_addr >> PAGE_SHIFT);
node_start_mapnr This gives the page offset within the global mem_map. It is calculated in
free_area_init_core() by calculating the number of pages between mem_map and the local mem_map
for this node called lmem_map;
node_size The total number of pages in this zone;
node_id The Node ID (NID) of the node, starts at 0;
node_next Pointer to next node in a NULL terminated list.

All nodes in the system are maintained on a list called pgdat_list. The nodes are placed on this list as
they are initialised by the init_bootmem_core() function, described later in Section 5.2.1. Up until late
2.4 kernels (> 2.4.18), blocks of code that traversed the list looked something like:

 pg_data_t * pgdat;
 pgdat = pgdat_list;
 do {
 /* do something with pgdata_t */
 ...
 } while ((pgdat = pgdat->node_next));

In more recent kernels, a macro for_each_pgdat(), which is trivially defined as a for loop, is provided to
improve code readability.

2.2 Zones
Zones are described by a struct zone_struct and is usually referred to by it's typedef zone_t. It keeps
track of information like page usage statistics, free area information and locks. It is declared as follows in
<linux/mmzone.h>:

37 typedef struct zone_struct {
41 spinlock_t lock;
42 unsigned long free_pages;
43 unsigned long pages_min, pages_low, pages_high;
44 int need_balance;
45
49 free_area_t free_area[MAX_ORDER];
50
76 wait_queue_head_t * wait_table;
77 unsigned long wait_table_size;
78 unsigned long wait_table_shift;
79
83 struct pglist_data *zone_pgdat;
84 struct page *zone_mem_map;
85 unsigned long zone_start_paddr;
86 unsigned long zone_start_mapnr;
87
91 char *name;
92 unsigned long size;
93 } zone_t;

This is a brief explanation of each field in the struct.

lock Spinlock to protect the zone from concurrent accesses;

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

3 sur 13 27/07/2016 17:08

free_pages Total number of free pages in the zone;
pages_min, pages_low, pages_high These are zone watermarks which are described in the next
section;
need_balance This flag that tells the pageout kswapd to balance the zone. A zone is said to need
balance when the number of available pages reaches one of the zone watermarks. Watermarks is
discussed in the next section;
free_area Free area bitmaps used by the buddy allocator;
wait_table A hash table of wait queues of processes waiting on a page to be freed. This is of
importance to wait_on_page() and unlock_page(). While processes could all wait on one queue,
this would cause all waiting processes to race for pages still locked when woken up. A large group of
processes contending for a shared resource like this is sometimes called a thundering herd. Wait tables
are discussed further in Section 2.2.3;
wait_table_size Number of queues in the hash table which is a power of 2;
wait_table_shift Defined as the number of bits in a long minus the binary logarithm of the table size
above;
zone_pgdat Points to the parent pg_data_t;
zone_mem_map The first page in the global mem_map this zone refers to;
zone_start_paddr Same principle as node_start_paddr;
zone_start_mapnr Same principle as node_start_mapnr;
name The string name of the zone, “DMA”, “Normal” or “HighMem”
size The size of the zone in pages.

2.2.1 Zone Watermarks

When available memory in the system is low, the pageout daemon kswapd is woken up to start freeing
pages (see Chapter 10). If the pressure is high, the process will free up memory synchronously, sometimes
referred to as the direct-reclaim path. The parameters affecting pageout behaviour are similar to those by
FreeBSD [McK96] and Solaris [MM01].

Each zone has three watermarks called pages_low, pages_min and pages_high which help track how
much pressure a zone is under. The relationship between them is illustrated in Figure 2.2. The number of
pages for pages_min is calculated in the function free_area_init_core() during memory init and is
based on a ratio to the size of the zone in pages. It is calculated initially as ZoneSizeInPages / 128. The
lowest value it will be is 20 pages (80K on a x86) and the highest possible value is 255 pages (1MiB on a
x86).

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

4 sur 13 27/07/2016 17:08

Figure 2.2: Zone Watermarks

pages_low When pages_low number of free pages is reached, kswapd is woken up by the buddy
allocator to start freeing pages. This is equivalent to when lotsfree is reached in Solaris and freemin
in FreeBSD. The value is twice the value of pages_min by default;
pages_min When pages_min is reached, the allocator will do the kswapd work in a synchronous
fashion, sometimes referred to as the direct-reclaim path. There is no real equivalent in Solaris but the
closest is the desfree or minfree which determine how often the pageout scanner is woken up;
pages_high Once kswapd has been woken to start freeing pages it will not consider the zone to be
“balanced” when pages_high pages are free. Once the watermark has been reached, kswapd will go
back to sleep. In Solaris, this is called lotsfree and in BSD, it is called free_target. The default for
pages_high is three times the value of pages_min.

Whatever the pageout parameters are called in each operating system, the meaning is the same, it helps
determine how hard the pageout daemon or processes work to free up pages.

2.2.2 Calculating The Size of Zones

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

5 sur 13 27/07/2016 17:08

Figure 2.3: Call Graph: setup_memory()

The PFN is an offset, counted in pages, within the physical memory map. The first PFN usable by the
system, min_low_pfn is located at the beginning of the first page after _end which is the end of the loaded
kernel image. The value is stored as a file scope variable in mm/bootmem.c for use with the boot memory
allocator.

How the last page frame in the system, max_pfn, is calculated is quite architecture specific. In the x86
case, the function find_max_pfn() reads through the whole e820 map for the highest page frame. The
value is also stored as a file scope variable in mm/bootmem.c. The e820 is a table provided by the BIOS
describing what physical memory is available, reserved or non-existent.

The value of max_low_pfn is calculated on the x86 with find_max_low_pfn() and it marks the end of
ZONE_NORMAL. This is the physical memory directly accessible by the kernel and is related to the
kernel/userspace split in the linear address space marked by PAGE_OFFSET. The value, with the others, is
stored in mm/bootmem.c. Note that in low memory machines, the max_pfn will be the same as the
max_low_pfn.

With the three variables min_low_pfn, max_low_pfn and max_pfn, it is straightforward to calculate the
start and end of high memory and place them as file scope variables in arch/i386/mm/init.c as
highstart_pfn and highend_pfn. The values are used later to initialise the high memory pages for the
physical page allocator as we will much later in Section 5.5.

2.2.3 Zone Wait Queue Table

When IO is being performed on a page, such are during page-in or page-out, it is locked to prevent
accessing it with inconsistent data. Processes wishing to use it have to join a wait queue before it can be
accessed by calling wait_on_page(). When the IO is completed, the page will be unlocked with
UnlockPage() and any process waiting on the queue will be woken up. Each page could have a wait queue
but it would be very expensive in terms of memory to have so many separate queues so instead, the wait
queue is stored in the zone_t.

It is possible to have just one wait queue in the zone but that would mean that all processes waiting on any
page in a zone would be woken up when one was unlocked. This would cause a serious thundering herd
problem. Instead, a hash table of wait queues is stored in zone_t→wait_table. In the event of a hash
collision, processes may still be woken unnecessarily but collisions are not expected to occur frequently.

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

6 sur 13 27/07/2016 17:08

Figure 2.4: Sleeping On a Locked Page

The table is allocated during free_area_init_core(). The size of the table is calculated by
wait_table_size() and stored in the zone_t→wait_table_size. The maximum size it will be is 4096
wait queues. For smaller tables, the size of the table is the minimum power of 2 required to store NoPages
/ PAGES_PER_WAITQUEUE number of queues, where NoPages is the number of pages in the zone and
PAGE_PER_WAITQUEUE is defined to be 256. In other words, the size of the table is calculated as the integer
component of the following equation:

wait_table_size = log2((NoPages * 2) / PAGES_PER_WAITQUEUE - 1)

The field zone_t→wait_table_shift is calculated as the number of bits a page address must be shifted
right to return an index within the table. The function page_waitqueue() is responsible for returning
which wait queue to use for a page in a zone. It uses a simple multiplicative hashing algorithm based on
the virtual address of the struct page being hashed.

It works by simply multiplying the address by GOLDEN_RATIO_PRIME and shifting the result
zone_t→wait_table_shift bits right to index the result within the hash table.
GOLDEN_RATIO_PRIME[Lev00] is the largest prime that is closest to the golden ratio[Knu68] of the largest
integer that may be represented by the architecture.

2.3 Zone Initialisation
The zones are initialised after the kernel page tables have been fully setup by paging_init(). Page table
initialisation is covered in Section 3.6. Predictably, each architecture performs this task differently but the
objective is always the same, to determine what parameters to send to either free_area_init() for UMA
architectures or free_area_init_node() for NUMA. The only parameter required for UMA is
zones_size. The full list of parameters:

nid is the Node ID which is the logical identifier of the node whose zones are being initialised;
pgdat is the node's pg_data_t that is being initialised. In UMA, this will simply be
contig_page_data;
pmap is set later by free_area_init_core() to point to the beginning of the local lmem_map array
allocated for the node. In NUMA, this is ignored as NUMA treats mem_map as a virtual array starting
at PAGE_OFFSET. In UMA, this pointer is the global mem_map variable which is now mem_map gets
initialised in UMA.
zones_sizes is an array containing the size of each zone in pages;

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

7 sur 13 27/07/2016 17:08

zone_start_paddr is the starting physical address for the first zone;
zone_holes is an array containing the total size of memory holes in the zones;

It is the core function free_area_init_core() which is responsible for filling in each zone_t with the
relevant information and the allocation of the mem_map array for the node. Note that information on what
pages are free for the zones is not determined at this point. That information is not known until the boot
memory allocator is being retired which will be discussed much later in Chapter 5.

2.3.1 Initialising mem_map

The mem_map area is created during system startup in one of two fashions. On NUMA systems, the global
mem_map is treated as a virtual array starting at PAGE_OFFSET. free_area_init_node() is called for each
active node in the system which allocates the portion of this array for the node being initialised. On UMA
systems, free_area_init() is uses contig_page_data as the node and the global mem_map as the “local”
mem_map for this node. The callgraph for both functions is shown in Figure 2.5.

Figure 2.5: Call Graph: free_area_init()

The core function free_area_init_core() allocates a local lmem_map for the node being initialised. The
memory for the array is allocated from the boot memory allocator with alloc_bootmem_node() (see
Chapter 5). With UMA architectures, this newly allocated memory becomes the global mem_map but it is
slightly different for NUMA.

NUMA architectures allocate the memory for lmem_map within their own memory node. The global
mem_map never gets explicitly allocated but instead is set to PAGE_OFFSET where it is treated as a virtual
array. The address of the local map is stored in pg_data_t→node_mem_map which exists somewhere
within the virtual mem_map. For each zone that exists in the node, the address within the virtual mem_map for
the zone is stored in zone_t→zone_mem_map. All the rest of the code then treats mem_map as a real array as
only valid regions within it will be used by nodes.

2.4 Pages
Every physical page frame in the system has an associated struct page which is used to keep track of its
status. In the 2.2 kernel [BC00], this structure resembled it's equivalent in System V [GC94] but like the
other UNIX variants, the structure changed considerably. It is declared as follows in <linux/mm.h>:

152 typedef struct page {
153 struct list_head list;
154 struct address_space *mapping;
155 unsigned long index;

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

8 sur 13 27/07/2016 17:08

156 struct page *next_hash;
158 atomic_t count;
159 unsigned long flags;
161 struct list_head lru;
163 struct page **pprev_hash;
164 struct buffer_head * buffers;
175
176 #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
177 void *virtual;
179 #endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */
180 } mem_map_t;

Here is a brief description of each of the fields:

list Pages may belong to many lists and this field is used as the list head. For example, pages in a
mapping will be in one of three circular linked links kept by the address_space. These are
clean_pages, dirty_pages and locked_pages. In the slab allocator, this field is used to store
pointers to the slab and cache the page belongs to. It is also used to link blocks of free pages together;
mapping When files or devices are memory mapped, their inode has an associated address_space.
This field will point to this address space if the page belongs to the file. If the page is anonymous and
mapping is set, the address_space is swapper_space which manages the swap address space;
index This field has two uses and it depends on the state of the page what it means. If the page is part
of a file mapping, it is the offset within the file. If the page is part of the swap cache this will be the
offset within the address_space for the swap address space (swapper_space). Secondly, if a block of
pages is being freed for a particular process, the order (power of two number of pages being freed) of
the block being freed is stored in index. This is set in the function __free_pages_ok();
next_hash Pages that are part of a file mapping are hashed on the inode and offset. This field links
pages together that share the same hash bucket;
count The reference count to the page. If it drops to 0, it may be freed. Any greater and it is in use by
one or more processes or is in use by the kernel like when waiting for IO;
flags These are flags which describe the status of the page. All of them are declared in <linux/mm.h>
and are listed in Table 2.1. There are a number of macros defined for testing, clearing and setting the
bits which are all listed in Table 2.2. The only really interesting one is SetPageUptodate() which
calls an architecture specific function arch_set_page_uptodate() if it is defined before setting the
bit;
lru For the page replacement policy, pages that may be swapped out will exist on either the
active_list or the inactive_list declared in page_alloc.c. This is the list head for these LRU
lists. These two lists are discussed in detail in Chapter 10;
pprev_hash This complement to next_hash so that the hash can work as a doubly linked list;
buffers If a page has buffers for a block device associated with it, this field is used to keep track of
the buffer_head. An anonymous page mapped by a process may also have an associated
buffer_head if it is backed by a swap file. This is necessary as the page has to be synced with
backing storage in block sized chunks defined by the underlying filesystem;
virtual Normally only pages from ZONE_NORMAL are directly mapped by the kernel. To address pages
in ZONE_HIGHMEM, kmap() is used to map the page for the kernel which is described further in Chapter
9. There are only a fixed number of pages that may be mapped. When it is mapped, this is its virtual
address;

The type mem_map_t is a typedef for struct page so it can be easily referred to within the mem_map array.

Bit name Description
PG_active This bit is set if a page is on the active_list LRU and cleared when it is

removed. It marks a page as being hot

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

9 sur 13 27/07/2016 17:08

PG_arch_1 Quoting directly from the code: PG_arch_1 is an architecture specific page state
bit. The generic code guarantees that this bit is cleared for a page when it first is
entered into the page cache. This allows an architecture to defer the flushing of
the D-Cache (See Section 3.9) until the page is mapped by a process

PG_checked Only used by the Ext2 filesystem
PG_dirty This indicates if a page needs to be flushed to disk. When a page is written to

that is backed by disk, it is not flushed immediately, this bit is needed to ensure
a dirty page is not freed before it is written out

PG_error If an error occurs during disk I/O, this bit is set
PG_fs_1 Bit reserved for a filesystem to use for it's own purposes. Currently, only NFS

uses it to indicate if a page is in sync with the remote server or not
PG_highmem Pages in high memory cannot be mapped permanently by the kernel. Pages that

are in high memory are flagged with this bit during mem_init()
PG_launder This bit is important only to the page replacement policy. When the VM wants

to swap out a page, it will set this bit and call the writepage() function. When
scanning, if it encounters a page with this bit and PG_locked set, it will wait for
the I/O to complete

PG_locked This bit is set when the page must be locked in memory for disk I/O. When I/O
starts, this bit is set and released when it completes

PG_lru If a page is on either the active_list or the inactive_list, this bit will be set
PG_referenced If a page is mapped and it is referenced through the mapping, index hash table,

this bit is set. It is used during page replacement for moving the page around
the LRU lists

PG_reserved This is set for pages that can never be swapped out. It is set by the boot memory
allocator (See Chapter 5) for pages allocated during system startup. Later it is
used to flag empty pages or ones that do not even exist

PG_slab This will flag a page as being used by the slab allocator
PG_skip Used by some architectures to skip over parts of the address space with no

backing physical memory
PG_unused This bit is literally unused
PG_uptodate When a page is read from disk without error, this bit will be set.

Table 2.1: Flags Describing Page Status

Bit name Set Test Clear
PG_active SetPageActive() PageActive() ClearPageActive()

PG_arch_1 n/a n/a n/a
PG_checked SetPageChecked() PageChecked() n/a
PG_dirty SetPageDirty() PageDirty() ClearPageDirty()
PG_error SetPageError() PageError() ClearPageError()

PG_highmem n/a PageHighMem() n/a
PG_launder SetPageLaunder() PageLaunder() ClearPageLaunder()
PG_locked LockPage() PageLocked() UnlockPage()
PG_lru TestSetPageLRU() PageLRU() TestClearPageLRU()
PG_referenced SetPageReferenced() PageReferenced() ClearPageReferenced()
PG_reserved SetPageReserved() PageReserved() ClearPageReserved()

PG_skip n/a n/a n/a
PG_slab PageSetSlab() PageSlab() PageClearSlab()

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

10 sur 13 27/07/2016 17:08

PG_unused n/a n/a n/a
PG_uptodate SetPageUptodate() PageUptodate() ClearPageUptodate()

Table 2.2: Macros For Testing, Setting and Clearing page→flags Status Bits

2.4.1 Mapping Pages to Zones

Up until as recently as kernel 2.4.18, a struct page stored a reference to its zone with page→zone
which was later considered wasteful, as even such a small pointer consumes a lot of memory when
thousands of struct pages exist. In more recent kernels, the zone field has been removed and instead the
top ZONE_SHIFT (8 in the x86) bits of the page→flags are used to determine the zone a page belongs to.
First a zone_table of zones is set up. It is declared in mm/page_alloc.c as:

33 zone_t *zone_table[MAX_NR_ZONES*MAX_NR_NODES];
34 EXPORT_SYMBOL(zone_table);

MAX_NR_ZONES is the maximum number of zones that can be in a node, i.e. 3. MAX_NR_NODES is the
maximum number of nodes that may exist. The function EXPORT_SYMBOL() makes zone_table accessible
to loadable modules. This table is treated like a multi-dimensional array. During free_area_init_core(),
all the pages in a node are initialised. First it sets the value for the table

733 zone_table[nid * MAX_NR_ZONES + j] = zone;

Where nid is the node ID, j is the zone index and zone is the zone_t struct. For each page, the function
set_page_zone() is called as

788 set_page_zone(page, nid * MAX_NR_ZONES + j);

The parameter, page, is the page whose zone is being set. So, clearly the index in the zone_table is stored
in the page.

2.5 High Memory
As the addresses space usable by the kernel (ZONE_NORMAL) is limited in size, the kernel has support for the
concept of High Memory. Two thresholds of high memory exist on 32-bit x86 systems, one at 4GiB and a
second at 64GiB. The 4GiB limit is related to the amount of memory that may be addressed by a 32-bit
physical address. To access memory between the range of 1GiB and 4GiB, the kernel temporarily maps
pages from high memory into ZONE_NORMAL with kmap(). This is discussed further in Chapter 9.

The second limit at 64GiB is related to Physical Address Extension (PAE) which is an Intel invention to
allow more RAM to be used with 32 bit systems. It makes 4 extra bits available for the addressing of
memory, allowing up to 236 bytes (64GiB) of memory to be addressed.

PAE allows a processor to address up to 64GiB in theory but, in practice, processes in Linux still cannot
access that much RAM as the virtual address space is still only 4GiB. This has led to some disappointment
from users who have tried to malloc() all their RAM with one process.

Secondly, PAE does not allow the kernel itself to have this much RAM available. The struct page used
to describe each page frame still requires 44 bytes and this uses kernel virtual address space in
ZONE_NORMAL. That means that to describe 1GiB of memory, approximately 11MiB of kernel memory is
required. Thus, with 16GiB, 176MiB of memory is consumed, putting significant pressure on
ZONE_NORMAL. This does not sound too bad until other structures are taken into account which use
ZONE_NORMAL. Even very small structures such as Page Table Entries (PTEs) require about 16MiB in the
worst case. This makes 16GiB about the practical limit for available physical memory Linux on an x86. If
more memory needs to be accessed, the advice given is simple and straightforward, buy a 64 bit machine.

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

11 sur 13 27/07/2016 17:08

2.6 What's New In 2.6
Nodes

At first glance, there has not been many changes made to how memory is described but the seemingly
minor changes are wide reaching. The node descriptor pg_data_t has a few new fields which are as
follows:

node_start_pfn replaces the node_start_paddr field. The only difference is that the new field is a
PFN instead of a physical address. This was changed as PAE architectures can address more memory
than 32 bits can address so nodes starting over 4GiB would be unreachable with the old field;
kswapd_wait is a new wait queue for kswapd. In 2.4, there was a global wait queue for the page
swapper daemon. In 2.6, there is one kswapdN for each node where N is the node identifier and each
kswapd has its own wait queue with this field.

The node_size field has been removed and replaced instead with two fields. The change was introduced to
recognise the fact that nodes may have “holes” in them where there is no physical memory backing the
address.

node_present_pages is the total number of physical pages that are present in the node.
node_spanned_pages is the total area that is addressed by the node, including any holes that may
exist.

Zones

Even at first glance, zones look very different. They are no longer called zone_t but instead referred to as
simply struct zone. The second major difference is the LRU lists. As we'll see in Chapter 10, kernel 2.4
has a global list of pages that determine the order pages are freed or paged out. These lists are now stored
in the struct zone. The relevant fields are:

lru_lock is the spinlock for the LRU lists in this zone. In 2.4, this is a global lock called
pagemap_lru_lock;
active_list is the active list for this zone. This list is the same as described in Chapter 10 except it is
now per-zone instead of global;
inactive_list is the inactive list for this zone. In 2.4, it is global;
refill_counter is the number of pages to remove from the active_list in one pass. Only of interest
during page replacement;
nr_active is the number of pages on the active_list;
nr_inactive is the number of pages on the inactive_list;
all_unreclaimable is set to 1 if the pageout daemon scans through all the pages in the zone twice and
still fails to free enough pages;
pages_scanned is the number of pages scanned since the last bulk amount of pages has been
reclaimed. In 2.6, lists of pages are freed at once rather than freeing pages individually which is what
2.4 does;
pressure measures the scanning intensity for this zone. It is a decaying average which affects how
hard a page scanner will work to reclaim pages.

Three other fields are new but they are related to the dimensions of the zone. They are:

zone_start_pfn is the starting PFN of the zone. It replaces the zone_start_paddr and
zone_start_mapnr fields in 2.4;

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

12 sur 13 27/07/2016 17:08

spanned_pages is the number of pages this zone spans, including holes in memory which exist with
some architectures;
present_pages is the number of real pages that exist in the zone. For many architectures, this will be
the same value as spanned_pages.

The next addition is struct per_cpu_pageset which is used to maintain lists of pages for each CPU to
reduce spinlock contention. The zone→pageset field is a NR_CPU sized array of struct
per_cpu_pageset where NR_CPU is the compiled upper limit of number of CPUs in the system. The
per-cpu struct is discussed further at the end of the section.

The last addition to struct zone is the inclusion of padding of zeros in the struct. Development of the 2.6
VM recognised that some spinlocks are very heavily contended and are frequently acquired. As it is
known that some locks are almost always acquired in pairs, an effort should be made to ensure they use
different cache lines which is a common cache programming trick [Sea00]. These padding in the struct
zone are marked with the ZONE_PADDING() macro and are used to ensure the zone→lock,
zone→lru_lock and zone→pageset fields use different cache lines.

Pages

The first noticeable change is that the ordering of fields has been changed so that related items are likely to
be in the same cache line. The fields are essentially the same except for two additions. The first is a new
union used to create a PTE chain. PTE chains are are related to page table management so will be
discussed at the end of Chapter 3. The second addition is of page→private field which contains private
information specific to the mapping. For example, the field is used to store a pointer to a buffer_head if
the page is a buffer page. This means that the page→buffers field has also been removed. The last
important change is that page→virtual is no longer necessary for high memory support and will only
exist if the architecture specifically requests it. How high memory pages are supported is discussed further
in Chapter 9.

Per-CPU Page Lists

In 2.4, only one subsystem actively tries to maintain per-cpu lists for any object and that is the Slab
Allocator, discussed in Chapter 8. In 2.6, the concept is much more wide-spread and there is a formalised
concept of hot and cold pages.

The struct per_cpu_pageset, declared in <linux/mmzone.h> has one one field which is an array with
two elements of type per_cpu_pages. The zeroth element of this array is for hot pages and the first
element is for cold pages where hot and cold determines how “active” the page is currently in the cache.
When it is known for a fact that the pages are not to be referenced soon, such as with IO readahead, they
will be allocated as cold pages.

The struct per_cpu_pages maintains a count of the number of pages currently in the list, a high and low
watermark which determine when the set should be refilled or pages freed in bulk, a variable which
determines how many pages should be allocated in one block and finally, the actual list head of pages.

To build upon the per-cpu page lists, there is also a per-cpu page accounting mechanism. There is a struct
page_state that holds a number of accounting variables such as the pgalloc field which tracks the
number of pages allocated to this CPU and pswpin which tracks the number of swap readins. The struct is
heavily commented in <linux/page-flags.h>. A single function mod_page_state() is provided for
updating fields in the page_state for the running CPU and three helper macros are provided called
inc_page_state(), dec_page_state() and sub_page_state().

Describing Physical Memory https://www.kernel.org/doc/gorman/html/understand/understand...

13 sur 13 27/07/2016 17:08

