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Back in this 1998 post to the Bugtraq mailing list, Olaf Kirch outlined an attack he called 
“The poisoned NUL byte”. It was an off-by-one error leading to writing a NUL byte 
outside the bounds of the current stack frame. On i386 systems, this would clobber the 
least significant byte (LSB) of the “saved %ebp”, leading eventually to code execution. 
Back at the time, people were surprised and horrified that such a minor error and 
corruption could lead to the compromise of a process. 
 
Fast forward to 2014. Well over a month ago, Tavis Ormandy of Project Zero disclosed a 
glibc NUL byte off-by-one overwrite into the heap. Initial reaction was skepticism about 
the exploitability of the bug, on account of the malloc metadata hardening in glibc. In 
situations like this, the Project Zero culture is to sometimes “wargame” the situation. 
geohot quickly coded up a challenge and we were able to gain code execution. Details 
are captured in our public bug. This bug contains analysis of a few different possibilities 
arising from an off-by-one NUL overwrite, a solution to the wargame (with comments), 
and of course a couple of different variants of a full exploit (with comments) for a local 
Linux privilege escalation. 
 
Inspired by the success of the wargame, I decided to try and exploit a real piece of 
software. I chose the “pkexec” setuid binary as used by Tavis to demonstrate the bug. 
The goal is to attain root privilege escalation. Outside of the wargame environment, it 
turns out that there are a series of very onerous constraints that make exploitation hard. I 
did manage to get an exploit working, though, so read on to see how. 
 
Step 1: Choose a target distribution 
 
I decided to develop against Fedora 20, 32-bit edition. Why the 32-bit edition? I’m not 
going to lie: I wanted to give myself a break. I was expecting this to be pretty hard so 
going after the problem in the 32-bit space gives us just a few more options in our trusty 
exploitation toolkit. 
 
Why Fedora and not, say, Ubuntu? Both ship pkexec by default. Amusingly, Ubuntu has 
deployed the fiendish mitigation called the “even path prefix length” mitigation. Kudos! 
More seriously, there is a malloc() that is key to the exploit, in  
  



gconv_trans.c:__gconv_translit_find() : 
 
    newp = (struct known_trans *) malloc (sizeof (s truct known_trans) 
                                           + (__gco nv_max_path_elem_len 
                                              + nam e_len + 3) 
                                           + name_l en);  
 
 
 
If __gconv_max_path_elem_len  is even, then the malloc()  size will be odd. An odd 
malloc()  size will always result in an off-by-one off the end being harmless, due to 
malloc()  minimum alignment being sizeof(void*) . 
 
On Fedora, __gconv_max_path_elem_len  is odd due to the value being 
/usr/lib/gconv/  (15) or /usr/lib64/gconv/  (17). There are various unexplored 
avenues to try and influence this value on Ubuntu but for now we choose to proceed on 
Fedora. 
 
Step 2: Bypass ASLR 
 
Let’s face it, ASLR is a headache. On Fedora 32-bit, the pkexec image, the heap and the 
stack are all randomized, including relative to each other, e.g.: 
 
b772e000-b7733000 r-xp 00000000 fd:01 4650        / usr/bin/pkexec  
b8e56000-b8e77000 rw-p 00000000 00:00 0           [ heap]  
bfbda000-bfbfb000 rw-p 00000000 00:00 0           [ stack]  
 
There is often a way to defeat ASLR, but as followers of the path of least resistance, 
what if we could just bypass it altogether? Well, what happens if we run pkexec again 
after running the shell commands ulimit -s unlimited  and ulimit -d 1  ? These 
altered limits to stack and data sizes are inherited across processes, even setuid ones: 
 
40000000-40005000 r-xp 00000000 fd:01 9909        / usr/bin/pkexec  
406b9000-407bb000 rw-p 00000000 00:00 0           / * mmap() heap */  
bfce5000-bfd06000 rw-p 00000000 00:00 0           [ stack]  
 
This is much better. The pkexec image and libraries, as well as the heap, are now in 
static locations. The stack still moves around, with about 8MB variation (or 11 bits of 
entropy if you prefer), but we already know static locations for both code and data 
without needing to know the exact location of the stack. 
 
(For those curious about the effect of these ulimits on 64-bit ASLR, the situation isn’t as 
bad there. The binary locations remain well randomized. The data size trick is still very 
useful, though: the heap goes from a random location relative to the binary, to a static 
offset relative to the binary. This represents a significant reduction in entropy for some 
brute-force scenarios.) 
 
Step 3: Massage the heap using just command line arguments and the 
environment 
 
After significant experimentation, our main heap massaging primitive is to call pkexec 
with a path comprising of ‘/’ followed by 469 ‘1’ characters. This path does not exist, so 
an error message including this path is built. The eventual error message string is a 508-



byte allocation, occupying a 512-byte heap chunk on account of 4 bytes of heap 
metadata. The error message is built using an algorithm that starts with a 100-byte 
allocation. If the allocation is not large enough, it is doubled in size, plus 100 bytes, and 
the old allocation is freed after a suitable copy. The final allocation is shrunk to precise 
size using realloc. Running the full sequence through for our 508-byte string, we see the 
following heap API calls: 
 
malloc(100), malloc(300), free(100), malloc(700), f ree(300), realloc(508)  
 
By the time we get to this sequence, we’ve filled up all the heap “holes” so that these 
allocations occur at the end of the heap, leading to this heap layout at the end of the 
heap (where “m” means metadata and a red value shows where the corruption will 
occur): 
 
| free space: 100 |m| free space: 300 |m| error message: 508 bytes | 
 
In fact, the heap algorithm will have coalesced the 100 and 300 bytes of free space. 
Next, the program proceeds to consider character set conversion for the error message. 
This is where the actual NUL byte heap overflows occurs, due to our 
CHARSET=//AAAAA… environment variable. Leading up to this, a few small allocations 
outside of our control occur. That’s fine; they stack up at the beginning of the coalesced 
free space. An allocation based on our CHARSET environment variable now occurs. We 
choose the number of A’s in our value to cause an allocation of precisely 236 bytes, 
which perfectly fills the remaining space in the 400 bytes of free space. The situation now 
looks like this: 
 
| blah |m| blah |m| charset derived value: 236 bytes |m: 0x00000201| error message: 508 bytes | 
 
The off-by-one NUL byte heap corruption now occurs. It will clobber the LSB of the 
metadata word that precedes the error message allocation. The format of metadata is a 
size word, with a couple of flags in the two least significant bits. The flag 0x1, which is 
set, indicates that the previous buffer, the charset derived value, is in use. The size is 
0x200, or 512 bytes. This size represents the 508 bytes of the following allocation plus 4 
bytes of metadata. The size and flag values at this time are very specifically chosen so 
that the single NUL byte overflow only has the effect of clearing the 0x1 in use flag. The 
size is unchanged, which is important later when we need to not break forward 
coalescing during free() . 
 
Step 4: Despair 
 
The fireworks kick off when the error message is freed as the program exits. We have 
corrupted the preceding metadata to make it look like the previous heap chunk is free 
when in fact it is not. Since the previous chunk looks free, the malloc code attempts to 
coalesce it with the current chunk being freed. When a chunk is free, the last 4 bytes 
represent the size of the free chunk. But the chunk is not really free; so what does it 
contain as its last 4 bytes? Those bytes will be interpreted as a size. It turns out that as 
an attacker, we have zero control over these last 4 bytes: they are always 0x6f732e00, 
or the string “.so” preceded by a NUL byte. 
 
Obviously, this is a very large size. And unfortunately it is used as an index backwards in 
memory in order to find the chunk header structure for the previous chunk. Since our 
heap is in the 0x40000000 range, subtracting 0x6f732e00 ends us up in the 0xd0000000 



range. This address is in kernel space so when we dereference it as a chunk header 
structure, we get a crash and our exploitation dreams go up in smoke. 
 
At this juncture, we consider alternate heap metadata corruption situations, in the hope 
we will find a situation where we have more control: 
 

a. Forward coalescing of free heap chunks. If we cause the same corruption as 
described above, but arrange to free the chunk preceding the overflowed chunk, we 
follow a different code path. It results in the beginning of the 236-byte allocation being 
treated as a pair of freelist pointers for a linked list operation. This sounds initially 
promising, but again, we do not seem to have full control over the these values. In 
particular, the second freelist pointer comes out as NULL (guaranteed crash) and it is not 
immediately obvious how to overlap a non-NULL value there. 

b. Overflowing into a free chunk. This opens up a whole range of possibilities. 
Unfortunately, our overflow is a NUL byte so we can only make free chunks 
smaller and not bigger, which is a less powerful primitive. But we can again cause 
confusion as to the location of heap metadata headers. See 
“shrink_free_hole_consolidate_backward.c” in our public bug. Again, we are 
frustrated because we do not have obvious control over the first bytes of any 
malloc()  object that might get placed into the free chunk after we have corrupted 
the following length. 

c. Overflowing into a free chunk and later causing multiple pointers to point to 
the same memory. This powerful technique is covered in 
“shrink_free_hole_alloc_overlap_consolidate_backward.c” in our public bug. I 
didn’t investigate this path because the required precise sequence of heap 
operations did not seem readily possible. Also, the memory corruption occurs 
after the process has hit an error and is heading towards exit() , so taking 
advantage of pointers to overlapping memory will be hard. 

 
At this stage, things are looking bad for exploitation. 
 
Step 5: Aha! use a command-line argument spray to effect a heap spray and 
collide the heap into the stack 
 
The breakthrough to escape the despair of step 4 comes when we discover a memory 
leak in the pkexec program; from pkexec.c: 
 
    else if (strcmp (argv[n], "--user") == 0 || str cmp (argv[n], "-u") == 
0) 
       { 
         n++; 
         if (n >= (guint) argc) 
           { 
             usage (argc, argv); 
             goto out; 
           } 
 
         opt_user = g_strdup (argv[n]); 
       } 

 
 
 



This is very useful! If we specify multiple “-u” command line arguments, then we will 
spray the heap, because setting a new opt_user value does not consider freeing the old 
one. 
 
Furthermore, we observe that modern Linux kernels permit a very large number of 
command-line arguments to be passed via execve() , with each one able to be up to 32 
pages long. 
 
We opt to pass a very large number (15 million+) of “-u” command line argument values, 
each a string of 59 bytes in length. 59 bytes plus a NUL terminator is a 60 byte 
allocation, which ends up being a 64 byte heap chunk when we include metadata. This 
number is important later. 
 
The effect of all these command line arguments is to bloat both the stack (which grows 
down) and the heap (which grows up) until they crash into each other. In response to this 
collision, the next heap allocations actually go above the stack, in the small space 
between the upper address of the stack and the kernel space at 0xc0000000. We use 
just enough command line arguments so that we hit this collision, and allocate heap 
space above the stack, but do not quite run out of virtual address space -- this would halt 
our exploit! Once we’ve caused this condition, our tail-end mappings look a bit like this: 
 
407c8000-7c7c8000 rw-p 00000000 00:00 0       /* mm ap() based heap */  
7c88e000-bf91c000 rw-p 00000000 00:00 0       [stac k]  
bf91c000-bff1c000 rw-p 00000000 00:00 0       /* an other mmap() heap extent 
*/  
 
Step 6: Commandeer a malloc metadata chunk header 
 
The heap corruption listed in step 3 now plays out in a heap extent that is past the stack. 
Why did we go to all this effort? Because it avoids the despair in step 4. The huge 
backwards index of 0x63732e00 now results in an address that is mapped! Specifically, it 
will hit somewhere around the 0x50700000 range, squarely in the middle of our heap 
spray. We control the content at this address. 
 
At this juncture, we encounter the first non-determinism in our exploit. This is of course a 
shame as we deployed quite a few tricks to avoid randomness. But, by placing a heap 
extent past the stack, we’ve fallen victim to stack randomization. That’s one piece of 
randomization we were not able to bypass. By experimental determination, the top of the 
stack seems to range from 0xbf800000-0xbffff000, for 2048 (2^11) different possibilities 
with 4k (PAGE_SIZE) granularity. 
 
A brief departure on exploit reliability. As we spray the heap, the heap grows in mmap() 
extents of size 1MB. There is no control over this. Therefore, there’s a chance that the 
stack will randomly get mapped sufficiently high that a 1MB mmap() heap extent cannot 
fit above the stack. This will cause the exploit to fail about 1 in 8 times. Since the exploit 
is a local privilege escalation and takes just a few seconds, you can simply re-run it. 
 
In order to get around this randomness, we cater for every possible stack location in the 
exploit. The backwards index to a malloc chunk header will land at a specific offset into 
any one of 2048 different pages. So we simply forge a malloc chunk header at all of 
those locations. Whichever one hits by random, our exploit will continue in a deterministic 
manner by using the same path forward. At this time, it’s worth noting why we sprayed 
the heap with 59-byte strings. These end up spaced 64 bytes apart. Since 64 is a perfect 



multiple of PAGE_SIZE (4096), we end up with a very uniform heap spray pattern. This 
gives us two things: an easy calculation to map command line arguments to an address 
where the string will be placed in the heap, and a constant offset into the command line 
strings for where we need to place the forged heap chunk payload. 
 
Step 7: Clobber the tls_dtor_list 
 
So, we have now progressed to the point where we corrupt memory such that a free()  
call will end up using a faked malloc chunk header structure that we control. In order to 
further progress, we abuse freelist linked list operations to write a specific value to a 
specific address in memory. Let’s have a look at the malloc.c code to remove a pointer 
from a doubly-linked freelist: 
 
#define unlink(AV, P, BK, FD) {                                        \  
[...] 
 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) {              \ 
   mutex_unlock(&(AV)->mutex);                                        \ 
   malloc_printerr (check_action, "corrupted double -linked list", P); \ 
   mutex_lock(&(AV)->mutex);                                          \ 
 } else 
{                                                             \            
                                       
   if (!in_smallbin_range (P->size)                                   \ 
       && __builtin_expect (P->fd_nextsize != NULL,  0)) {             \ 
     assert (P->fd_nextsize->bk_nextsize == P);                       \ 
     assert (P->bk_nextsize->fd_nextsize == P);                       \ 
     if (FD->fd_nextsize == NULL) {                                   \ 
[...] 
     } else {                                                         \ 
       P->fd_nextsize->bk_nextsize = P->bk_nextsize ;                  \ 
       P->bk_nextsize->fd_nextsize = P->fd_nextsize ;                  \ 
[...]  
 
We see that the main doubly linked list is checked in a way that makes it hard for us to 
write to arbitrary locations. But the special doubly linked list for larger allocations has only 
some debug asserts for the same type of checks. (Aside: there’s some evidence that 
Ubuntu glibc builds might compile these asserts in, even for release builds. Fedora 
certainly does not.) So we craft our fake malloc header structure so that the main forward 
and back pointers point back to itself, and so that the size is large enough to enter the 
secondary linked list manipulation. This bypasses the main linked list corruption check, 
but allows us to provide arbitrary values for the secondary linked list. These arbitrary 
values let us write an arbitrary 4-byte value to an arbitrary 4-byte address, but with a very 
significant limitation: the value we write must itself be a valid writeable address, on 
account of the double linking of the linked list. i.e. after we write our arbitrary value of P-

>bk_nextsize  to P->fd_nextsize , the value P->bk_nextsize  is itself dereferenced and 
written to. 
 
This limitation does provide a headache. At this point in the process’ lifetime, it is printing 
an error message just before it frees a few things up and exits. There are not a huge 
number of opportunities to gain control of code execution, and our corruption primitive 
does not let us directly overwrite a function pointer with another, different pointer to code. 
To get around this, we note that there are two important glibc static data structure 
pointers that indirectly control some code that gets run during the exit()  process: 
__exit_funcs  and tls_dtor_list . __exit_funcs  does not work well for us because the 
structure contains an enum value that has to be some small number like 0x00000002 in 



order to be useful to us. It is hard for us to construct fake structures that contain NUL 
bytes in them because our building block is the NUL-terminated string. But 
tls_dtor_list  is ideal for us. It is a singly linked list that runs at exit()  time, and for 
every list entry, an arbitrary function pointer is called with an arbitrary value (which has to 
be a pointer due to previous contraints)! It’s an easy version of ROP. 
 
Step 8: Deploy a chroot() trick 
 
For our first attempt to take control of the program, we simply call system(“/bin/bash”) . 
This doesn’t work because this construct ends up dropping privileges. It is a bit 
disappointing to go to so much trouble to run arbitrary code, only to end up with a shell 
running at our original privilege level. 
 
The deployed solution is to chain in a call to chroot()  before the call to system() . This 
means that when system()  executes /bin/sh , it will do so inside a chroot we have set 
up to contain our own /bin/sh  program. Inside our fake /bin/sh , we will end up running 
with effective root privilege. So we switch to real root privilege by calling setuid(0)  and 
then execute a real shell. 
 
TL;DR: Done! We escalated from a normal user account to root privileges. 
 
Step 9: Tea and medals; reflect 
 
The main point of going to all this effort is to steer industry narrative away from quibbling 
about whether a given bug might be exploitable or not. In this specific instance, we took 
a very subtle memory corruption with poor levels of attacker control over the overflow, 
poor levels of attacker control over the heap state, poor levels of attacker control over 
important heap content and poor levels of attacker control over program flow. 
 
Yet still we were able to produce a decently reliable exploit! And there’s a long history of 
this over the evolution of exploitation: proclamations of non-exploitability that end up 
being neither advisable nor correct. Furthermore, arguments over exploitability burn time 
and energy that could be better spent protecting users by getting on with shipping fixes. 
 
Aside from fixing the immediate glibc memory corruption issue, this investigation led to 
additional observations and recommendations: 
 

• Memory leaks in setuid binaries are surprisingly dangerous because they can 
provide a heap spray primitive. Fixing the pkexec memory leak is recommended. 

• The ability to lower ASLR strength by running setuid binaries with carefully 
chosen ulimits is unwanted behavior. Ideally, setuid programs would not be 
subject to attacker-chosen ulimit values. There’s a long history of attacks along 
these lines, such as this recent file size limit attack. Other unresolved issues 
include the ability to fail specific allocations or fail specific file opens via carefully 
chosen RLIMIT_AS  or RLIMIT_NOFILE  values. 

• The exploit would have been complicated significantly if the malloc main linked 
listed hardening was also applied to the secondary linked list for large chunks. 
Elevating the assert()  to a full runtime check is recommended. 

• We also noticed a few environment variables that give the attacker unnecessary 
options to control program behavior, e.g. G_SLICE letting the attacker control 
properties of memory allocation. There have been interesting historical instances 



where controlling such properties assisted exploitation such as this traceroute 
exploit from 2000. We recommend closing these newer routes too. 

 
I hope you enjoyed this write-up as much as I enjoyed developing the exploit! There’s 
probably a simple trick that I’ve missed to make a much simpler exploit. If you discover 
that this is indeed the case, or if you pursue a 64-bit exploit, please get in touch! For top-
notch work, we’d love to feature a guest blog post. 
 


