* ey

Format String &
Double-Free
Attacks

ECES568 — Lecture 5
Courtney Gibson, P.Eng.
University of Toronto ECE

Outline

Format String Attacks
o Information leakage
o %n vulnerability
o Crafting a format-string attack
Double-Free Attacks
o malloc / free implementation
o Double-free vulnerabillity

Format String
Attacks

snprintf, information leakage,
%N, format string vulnerability

Formart String Vulnerabllities

A simple format string vulnerability:

sprintf (buf, “"WARNING: %s”, attacker string);

o sprintf is similar to printf, except that the
outputis copied into buf

o The vulnerability above is similar to strcpy,
and can result in a buffer overflow

Formart String Vulnerabllities

A more complex vulnerability:

snprintf (buf, len, attacker string);

There is no buffer overflow risk, as len limits the
number of characters written into buf...but, the
attacker gets to specify the format string.

Example: Application logs, language configs,
locale files, etc..

Recall: Stack Frame

Input
Parameters

Return
Address

Saved Frame
Pointer

Local
Variables

NelY%sle
Registers

0x48592
20
0x998623

Return Address

Frame Pointer

snprintf Operation

void main()
{

const int len = 20;
char buf[len];
snprintf (buf, len, ”“AB%d%d”, 5, 6);
// buf is now “AB56”

“AB%d%d”

0x48592

o Arguments are pushed to the stack in reverse order

o snprintf copies data from the formart string until it
reaches a ‘%’'. The next argument on the stack is
then fetched and output in the requested format

snprintf Operation

Unexpected Behaviour

o What happens if there are more ‘%’
parameters than argumentse

o The argument pointer keeps moving up
the stack, and points to values in the
previous frame!

void main() {
char buf[256] ;

snprintf (buf, 256,
"AB,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x\n”, 5);

printf (buf) ;

snprintf Operation

-
—

snprintf

l

0x48592
256
0x998623

Return Address
“AB,%08x,%08x,7%08x,7%08x,%08X,..."
Z4 Z

Frame Pointer 0x48592

void main() {
char buf[256];

snprintf (buf, 256,
"AB,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x\n”, 5);

printf (buf) ;

Unexpected Behaviour

void main() {
char buf[256] ; .

snprintf (buf, 256,
”"AB,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x\n”, 5);

printf (buf) ;

The output of the program is:

AB,00000005,302c4241,30303030,2c353030,...

/ / k \ This is buf: the argument
GO!

i ir (R pointer hasworked back
’ b S info main’s stack frame.

Information Leakage

o If there is valuable information further up
the stack (e.g., passwords, encryption
keys, etc.), then there is a significant risk of
InNformation leakage.

o Programmers may not pay attention to
sanitizing input like language config:

<param name="lastLogin" value="Votre derniere connecté il ya %d jours'/>

Overwriting the Return Address

Rather than just leak N
information, can we inject an d\

exploite |
/

In most C “print” functions,
%N’ assumes the current
argument is a pointer; the
number of characters written so
far are copied to that address.

Overwriting the Refturn Address

numBytes = 11 —
int numBytes; |

printf (“Hello world%n\n”, &numBytes) ;

o Normally, “%" arguments read values, but
%n Mmodifies the memory pointed to by
the argument

o We can take control of the program if a
%N argument points to the saved return
address on the stack

Exploiting Format String Vulnerabilities

o At the front of your format string, put the
address where you think the return address is
stored on the stack

o Put your shellcode in the format string

o Put enough “%" arguments so that the
argument pointer points to the front of your
format string

o Put a %n at the end and overwrite the return
address to point at the shellcode in the buffer

%n Vulnerability

void main ()

{
char buf[256];

0x48590

123

0x4858C (Arg #2)

0x48590 printf (buf, 123);
0x48588 (Arg #1)

Refturn Address
DXx48584

Frame Pointer

0x48584 shellcode Yox %n
))

0x48590 0x48594

|

Y
buf

%n Vulnerability

Problem: How do we get %n (the
number of printed characters) up
to such a high value?

0x48590

]23 0x4858C
In practice, the address of our

0x48590 0x48588 shellcode willbe a very large
0x48594 number: would require prinfing
Dx48584 many, many bytes: buf won't be
Frame Pointer large enough.

0x48584 shellcode | Tox | Ton

0x48590 0x48594 I
\

Y
buf

Overwriting the Correct Return Address

The number of characters written can be
controlled by adding a width argument
between % and x, v or d.

Example: “%243d" writes an infeger with @
field width of 243; “%n” will be incremented
by 243.

Address of
Return Addr shellcode %243d | Jon

Overwriting the Correct Return Address

In practice, though, the
stfack addresses are really,
really large values; we
need %n to overwrite the
return address with a large
32-bit number:

o Would require printf to produce multiple GB of
output: likely will not fit in memory

o Often, large width values will crash the
program

Overwriting the Correct Return Address

Fortunately, the 32-bit number return address can be
written one byte at a time:

o Use just the lowest-order byte stored by “%hhn”
o It is incremented with modulo-256 arithmetic
For more information:

o “Exploiting Format String Vulnerabillities” on the
course website

RA RA+1 RA+2 [RWNRE RA+3 shellcode

ToNNX ‘%hhn ToNNX l%hhn ToNNX l%hhn ToNNX l%hhn

What Happens With a Size Limite

Can the size limit in snprintf stop this attack?
snprintf(buf, len, formatString, ..);

snprinff will interpret the whole format string,
regardless of the specified size limit:

o If output is longer than len, it is fruncated
before writing to buf

o %n is always evaluated, and assumes that
there is no size limif in place

Double-Free
Attacks

malloc, free, allocation tags,
double-free vulnerability

Double-Free Vulnerabillity

Freeing a memory location that is under the
control of an attacker is an exploitable .
vulnerability.)

p = malloc(128);

q = malloc(128); Why is this a

free (p) ; vulnerabllitye

free(q);

" e Let’s look at how
p = malloc(256) ; malloc works... '

strcpy (p, attacker string);
free(q);

malloc Implementation

malloc maintains a doubly-linked list of free and
allocated memory regions:

o Information about a region is maintained in a
chunk tag that is stored just before the region

o Each chunk maintains:

o A “free bit”, indicating whether the chunk is
allocated or free

o Links to the next and previous chunk tags

o Inifially when all memory is unallocated, it is in
one free memory region

free region

malloc Implementation

When a regionis allocated, malloc marks
the remaining free space with a new tag:

¢ allocated a

When anotherregionis allocated, another
tag is created:

¢ allocated m allocated @ free region

free region

free Implementation

When regions are de-allocated, the free
function sets the "“free bit":

ﬁ allocated ¢ free region ﬁ free region

free also tries to consolidate adjacent free
regions:

ﬁ allocated ﬂ free region

Double-Free Vulnerabillity

A vulnerability occurs when the program
calls free on a region that contains data set .
by the aftfacker: '

o free(q) will tfry to use the chunk tag located just
before the address pointed to by q

o In this case, the “chunk tag” is now actually part
of the attacker’s string

tag allocated tag free region

|

q

Double-Free Vulnerabillity

The attacker can set the values in their

“chunk tag” such that free will overwrite @
memory location chosen by the attacker
with a value chosen by the attacker.

fake " f .
tag ag ree region

q

Double-Free Vulnerabillity

q

Ia \ free region

fake

next tag
rciurn Address

prev
When consolidating free regions, free essentially does:

tag = g - sizeof(chunkTag);
tag->next->prev = tag->prev;

