
8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 1/165

June 2018 Edition

Introduction

This is the specification for GraphQL, a query language and execution engine originally created at Facebook
in 2012 for describing the capabilities and requirements of data models for client‐server applications. The
development of this open standard started in 2015.

GraphQL has evolved and may continue to evolve in future editions of this specification. Previous editions
of the GraphQL specification can be found at permalinks that match their release tag. The latest working
draft release can be found at facebook.github.io/graphql/draft/.

Copyright notice

Copyright © 2015‐present, Facebook, Inc.

As of September 26, 2017, the following persons or entities have made this Specification available under the
Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at
openwebfoundation.org.

Facebook, Inc.

You can review the signed copies of the Open Web Foundation Final Specification Agreement Version 1.0
for this specification at github.com/facebook/graphql, which may also include additional parties to those
listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS
PROVIDED “AS IS.” The contributors expressly disclaim any warranties (express, implied, or otherwise),
including implied warranties of merchantability, non‐infringement, fitness for a particular purpose, or title,
related to the Specification. The entire risk as to implementing or otherwise using the Specification is
assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO
ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF
ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT,
WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR

GraphQL

☰

https://github.com/facebook/graphql/releases
http://facebook.github.io/graphql/draft/
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
https://github.com/facebook/graphql/tree/master/signed-agreements

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 2/165

OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Conformance

A conforming implementation of GraphQL must fulfill all normative requirements. Conformance
requirements are described in this document via both descriptive assertions and key words with clearly
defined meanings.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative portions of this
document are to be interpreted as described in IETF RFC 2119. These key words may appear in lowercase
and still retain their meaning unless explicitly declared as non‐normative.

A conforming implementation of GraphQL may provide additional functionality, but must not where
explicitly disallowed or would otherwise result in non‐conformance.

Conforming Algorithms

Algorithm steps phrased in imperative grammar (e.g. “Return the result of calling resolver”) are to be
interpreted with the same level of requirement as the algorithm it is contained within. Any algorithm
referenced within an algorithm step (e.g. “Let completedResult be the result of calling CompleteValue()”) is
to be interpreted as having at least the same level of requirement as the algorithm containing that step.

Conformance requirements expressed as algorithms can be fulfilled by an implementation of this
specification in any way as long as the perceived result is equivalent. Algorithms described in this document
are written to be easy to understand. Implementers are encouraged to include equivalent but optimized
implementations.

See Appendix A for more details about the definition of algorithms and other notational conventions used in
this document.

Non‐Normative Portions

All contents of this document are normative except portions explicitly declared as non‐normative.

Examples in this document are non‐normative, and are presented to aid understanding of introduced
concepts and the behavior of normative portions of the specification. Examples are either introduced
explicitly in prose (e.g. “for example”) or are set apart in example or counter‐example blocks, like this:

This is an example of a non-normative example.

Example № 1

Counter Example № 2

☰

https://tools.ietf.org/html/rfc2119

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 3/165

This is an example of a non-normative counter-example.

Notes in this document are non‐normative, and are presented to clarify intent, draw attention to potential
edge‐cases and pit‐falls, and answer common questions that arise during implementation. Notes are either
introduced explicitly in prose (e.g. “Note: “) or are set apart in a note block, like this:

This is an example of a non‐normative note.

Contents

Note

1 Overview
2 Language

2.1 Source Text
2.1.1 Unicode
2.1.2 White Space
2.1.3 Line Terminators
2.1.4 Comments
2.1.5 Insignificant Commas
2.1.6 Lexical Tokens
2.1.7 Ignored Tokens
2.1.8 Punctuators
2.1.9 Names

2.2 Document
2.3 Operations
2.4 Selection Sets
2.5 Fields
2.6 Arguments
2.7 Field Alias
2.8 Fragments

2.8.1 Type Conditions
2.8.2 Inline Fragments

2.9 Input Values
2.9.1 Int Value
2.9.2 Float Value
2.9.3 Boolean Value
2.9.4 String Value
2.9.5 Null Value
2.9.6 Enum Value
2.9.7 List Value

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 4/165

2.9.8 Input Object Values
2.10 Variables
2.11 Type References
2.12 Directives

3 Type System
3.1 Type System Extensions
3.2 Schema

3.2.1 Root Operation Types
3.2.2 Schema Extension

3.3 Descriptions
3.4 Types

3.4.1 Wrapping Types
3.4.2 Input and Output Types
3.4.3 Type Extensions

3.5 Scalars
3.5.1 Int
3.5.2 Float
3.5.3 String
3.5.4 Boolean
3.5.5 ID
3.5.6 Scalar Extensions

3.6 Objects
3.6.1 Field Arguments
3.6.2 Field Deprecation
3.6.3 Object Extensions

3.7 Interfaces
3.7.1 Interface Extensions

3.8 Unions
3.8.1 Union Extensions

3.9 Enums
3.9.1 Enum Extensions

3.10 Input Objects
3.10.1 Input Object Extensions

3.11 List
3.12 Non-Null

3.12.1 Combining List and Non-Null
3.13 Directives

3.13.1 @skip
3.13.2 @include
3.13.3 @deprecated

4 Introspection

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 5/165

4.1 Reserved Names
4.2 Documentation
4.3 Deprecation
4.4 Type Name Introspection
4.5 Schema Introspection

4.5.1 The __Type Type
4.5.2 Type Kinds

4.5.2.1 Scalar
4.5.2.2 Object
4.5.2.3 Union
4.5.2.4 Interface
4.5.2.5 Enum
4.5.2.6 Input Object
4.5.2.7 List
4.5.2.8 Non-Null

4.5.3 The __Field Type
4.5.4 The __InputValue Type
4.5.5 The __EnumValue Type
4.5.6 The __Directive Type

5 Validation
5.1 Documents

5.1.1 Executable Definitions
5.2 Operations

5.2.1 Named Operation Definitions
5.2.1.1 Operation Name Uniqueness

5.2.2 Anonymous Operation Definitions
5.2.2.1 Lone Anonymous Operation

5.2.3 Subscription Operation Definitions
5.2.3.1 Single root field

5.3 Fields
5.3.1 Field Selections on Objects, Interfaces, and Unions Types
5.3.2 Field Selection Merging
5.3.3 Leaf Field Selections

5.4 Arguments
5.4.1 Argument Names
5.4.2 Argument Uniqueness

5.4.2.1 Required Arguments
5.5 Fragments

5.5.1 Fragment Declarations
5.5.1.1 Fragment Name Uniqueness
5.5.1.2 Fragment Spread Type Existence

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 6/165

5.5.1.3 Fragments On Composite Types
5.5.1.4 Fragments Must Be Used

5.5.2 Fragment Spreads
5.5.2.1 Fragment spread target defined
5.5.2.2 Fragment spreads must not form cycles
5.5.2.3 Fragment spread is possible

5.5.2.3.1 Object Spreads In Object Scope
5.5.2.3.2 Abstract Spreads in Object Scope
5.5.2.3.3 Object Spreads In Abstract Scope
5.5.2.3.4 Abstract Spreads in Abstract Scope

5.6 Values
5.6.1 Values of Correct Type
5.6.2 Input Object Field Names
5.6.3 Input Object Field Uniqueness
5.6.4 Input Object Required Fields

5.7 Directives
5.7.1 Directives Are Defined
5.7.2 Directives Are In Valid Locations
5.7.3 Directives Are Unique Per Location

5.8 Variables
5.8.1 Variable Uniqueness
5.8.2 Variables Are Input Types
5.8.3 All Variable Uses Defined
5.8.4 All Variables Used
5.8.5 All Variable Usages are Allowed

6 Execution
6.1 Executing Requests

6.1.1 Validating Requests
6.1.2 Coercing Variable Values

6.2 Executing Operations
6.2.1 Query
6.2.2 Mutation
6.2.3 Subscription

6.2.3.1 Source Stream
6.2.3.2 Response Stream
6.2.3.3 Unsubscribe

6.3 Executing Selection Sets
6.3.1 Normal and Serial Execution
6.3.2 Field Collection

6.4 Executing Fields
6.4.1 Coercing Field Arguments

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 7/165

GraphQL is a query language designed to build client applications by providing an intuitive and flexible
syntax and system for describing their data requirements and interactions.

For example, this GraphQL request will receive the name of the user with id 4 from the Facebook
implementation of GraphQL.

{

 user(id: 4) {

 name

 }

}

6.4.2 Value Resolution
6.4.3 Value Completion
6.4.4 Errors and Non-Nullability

7 Response
7.1 Response Format

7.1.1 Data
7.1.2 Errors

7.2 Serialization Format
7.2.1 JSON Serialization
7.2.2 Serialized Map Ordering

A Appendix: Notation Conventions
A.1 Context-Free Grammar
A.2 Lexical and Syntactical Grammar
A.3 Grammar Notation
A.4 Grammar Semantics
A.5 Algorithms

B Appendix: Grammar Summary
B.1 Ignored Tokens
B.2 Lexical Tokens
B.3 Document

§ Index

Overview

Example № 3

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 8/165

Which produces the resulting data (in JSON):

{

 "user": {

 "name": "Mark Zuckerberg"

 }

}

GraphQL is not a programming language capable of arbitrary computation, but is instead a language used to
query application servers that have capabilities defined in this specification. GraphQL does not mandate a
particular programming language or storage system for application servers that implement it. Instead,
application servers take their capabilities and map them to a uniform language, type system, and philosophy
that GraphQL encodes. This provides a unified interface friendly to product development and a powerful
platform for tool‐building.

GraphQL has a number of design principles:

Hierarchical: Most product development today involves the creation and manipulation of view
hierarchies. To achieve congruence with the structure of these applications, a GraphQL query itself is
structured hierarchically. The query is shaped just like the data it returns. It is a natural way for clients
to describe data requirements.
Product‐centric: GraphQL is unapologetically driven by the requirements of views and the front‐end
engineers that write them. GraphQL starts with their way of thinking and requirements and builds the
language and runtime necessary to enable that.
Strong‐typing: Every GraphQL server defines an application‐specific type system. Queries are
executed within the context of that type system. Given a query, tools can ensure that the query is both
syntactically correct and valid within the GraphQL type system before execution, i.e. at development
time, and the server can make certain guarantees about the shape and nature of the response.
Client‐specified queries: Through its type system, a GraphQL server publishes the capabilities that its
clients are allowed to consume. It is the client that is responsible for specifying exactly how it will
consume those published capabilities. These queries are specified at field‐level granularity. In the
majority of client‐server applications written without GraphQL, the server determines the data returned
in its various scripted endpoints. A GraphQL query, on the other hand, returns exactly what a client
asks for and no more.
Introspective: GraphQL is introspective. A GraphQL server’s type system must be queryable by the
GraphQL language itself, as will be described in this specification. GraphQL introspection serves as a
powerful platform for building common tools and client software libraries.

Because of these principles, GraphQL is a powerful and productive environment for building client
applications. Product developers and designers building applications against working GraphQL servers --
supported with quality tools -- can quickly become productive without reading extensive documentation and

Example № 4

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 9/165

with little or no formal training. To enable that experience, there must be those that build those servers and
tools.

The following formal specification serves as a reference for those builders. It describes the language and its
grammar, the type system and the introspection system used to query it, and the execution and validation
engines with the algorithms to power them. The goal of this specification is to provide a foundation and
framework for an ecosystem of GraphQL tools, client libraries, and server implementations -- spanning both
organizations and platforms -- that has yet to be built. We look forward to working with the community in
order to do that.

Clients use the GraphQL query language to make requests to a GraphQL service. We refer to these request
sources as documents. A document may contain operations (queries, mutations, and subscriptions) as well as
fragments, a common unit of composition allowing for query reuse.

A GraphQL document is defined as a syntactic grammar where terminal symbols are tokens (indivisible
lexical units). These tokens are defined in a lexical grammar which matches patterns of source characters
(defined by a double‐colon ::).

See Appendix A for more details about the definition of lexical and syntactic grammar and other notational
conventions used in this document.

SourceCharacter ::
/[\u0009\u000A\u000D\u0020-\uFFFF]/

GraphQL documents are expressed as a sequence of Unicode characters. However, with few exceptions,
most of GraphQL is expressed only in the original non‐control ASCII range so as to be as widely compatible
with as many existing tools, languages, and serialization formats as possible and avoid display issues in text
editors and source control.

Language

Note

Source Text

☰

http://unicode.org/standard/standard.html

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 10/165

UnicodeBOM ::
Byte Order Mark (U+FEFF)

Non‐ASCII Unicode characters may freely appear within StringValue and Comment portions of GraphQL.

The “Byte Order Mark” is a special Unicode character which may appear at the beginning of a file
containing Unicode which programs may use to determine the fact that the text stream is Unicode, what
endianness the text stream is in, and which of several Unicode encodings to interpret.

WhiteSpace ::
Horizontal Tab (U+0009)
Space (U+0020)

White space is used to improve legibility of source text and act as separation between tokens, and any
amount of white space may appear before or after any token. White space between tokens is not significant
to the semantic meaning of a GraphQL Document, however white space characters may appear within a
String or Comment token.

GraphQL intentionally does not consider Unicode “Zs” category characters as white‐space, avoiding
misinterpretation by text editors and source control tools.

LineTerminator ::
New Line (U+000A)
Carriage Return (U+000D) [lookahead ≠ New Line (U+000A)]
Carriage Return (U+000D) New Line (U+000A)

Like white space, line terminators are used to improve the legibility of source text, any amount may appear
before or after any other token and have no significance to the semantic meaning of a GraphQL Document.
Line terminators are not found within any other token.

Any error reporting which provide the line number in the source of the offending syntax should use the
preceding amount of LineTerminator to produce the line number.

Unicode

White Space

Note

Line Terminators

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 11/165

Comment ::
CommentCharlist, opt

CommentChar ::
SourceCharacter but not LineTerminator

GraphQL source documents may contain single‐line comments, starting with the # marker.

A comment can contain any Unicode code point except LineTerminator so a comment always consists of all
code points starting with the # character up to but not including the line terminator.

Comments behave like white space and may appear after any token, or before a line terminator, and have no
significance to the semantic meaning of a GraphQL Document.

Comma ::
,

Similar to white space and line terminators, commas (,) are used to improve the legibility of source text and
separate lexical tokens but are otherwise syntactically and semantically insignificant within GraphQL
Documents.

Non‐significant comma characters ensure that the absence or presence of a comma does not meaningfully
alter the interpreted syntax of the document, as this can be a common user‐error in other languages. It also
allows for the stylistic use of either trailing commas or line‐terminators as list delimiters which are both
often desired for legibility and maintainability of source code.

Token ::
Punctuator
Name
IntValue
FloatValue
StringValue

A GraphQL document is comprised of several kinds of indivisible lexical tokens defined here in a lexical
grammar by patterns of source Unicode characters.

Comments

Insignificant Commas

Lexical Tokens

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 12/165

Tokens are later used as terminal symbols in a GraphQL Document syntactic grammars.

Ignored ::
UnicodeBOM
WhiteSpace
LineTerminator
Comment
Comma

Before and after every lexical token may be any amount of ignored tokens including WhiteSpace and
Comment. No ignored regions of a source document are significant, however ignored source characters may
appear within a lexical token in a significant way, for example a String may contain white space characters.

No characters are ignored while parsing a given token, as an example no white space characters are
permitted between the characters defining a FloatValue.

Punctuator :: one of
! $ () ... : = @ [] { | }

GraphQL documents include punctuation in order to describe structure. GraphQL is a data description
language and not a programming language, therefore GraphQL lacks the punctuation often used to describe
mathematical expressions.

Name ::
/[_A-Za-z][_0-9A-Za-z]*/

GraphQL Documents are full of named things: operations, fields, arguments, types, directives, fragments,
and variables. All names must follow the same grammatical form.

Names in GraphQL are case‐sensitive. That is to say name , Name , and NAME all refer to different names.
Underscores are significant, which means other_name and othername are two different names.

Names in GraphQL are limited to this ASCII subset of possible characters to support interoperation with as
many other systems as possible.

Ignored Tokens

Punctuators

Names

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 13/165

Document :
Definitionlist

Definition :
ExecutableDefinition
TypeSystemDefinition
TypeSystemExtension

ExecutableDefinition :
OperationDefinition
FragmentDefinition

A GraphQL Document describes a complete file or request string operated on by a GraphQL service or
client. A document contains multiple definitions, either executable or representative of a GraphQL type
system.

Documents are only executable by a GraphQL service if they contain an OperationDefinition and otherwise
only contain ExecutableDefinition. However documents which do not contain OperationDefinition or do
contain TypeSystemDefinition or TypeSystemExtension may still be parsed and validated to allow client tools
to represent many GraphQL uses which may appear across many individual files.

If a Document contains only one operation, that operation may be unnamed or represented in the shorthand
form, which omits both the query keyword and operation name. Otherwise, if a GraphQL Document
contains multiple operations, each operation must be named. When submitting a Document with multiple
operations to a GraphQL service, the name of the desired operation to be executed must also be provided.

GraphQL services which only seek to provide GraphQL query execution may choose to only include
ExecutableDefinition and omit the TypeSystemDefinition and TypeSystemExtension rules from Definition.

OperationDefinition :
OperationType Nameopt VariableDefinitionsopt Directivesopt SelectionSet

SelectionSet

OperationType : one of
query mutation subscription

There are three types of operations that GraphQL models:

Document

Operations

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 14/165

query – a read‐only fetch.
mutation – a write followed by a fetch.
subscription – a long‐lived request that fetches data in response to source events.

Each operation is represented by an optional operation name and a selection set.

For example, this mutation operation might “like” a story and then retrieve the new number of likes:

mutation {

 likeStory(storyID: 12345) {

 story {

 likeCount

 }

 }

}

Query shorthand

If a document contains only one query operation, and that query defines no variables and contains no
directives, that operation may be represented in a short‐hand form which omits the query keyword and query
name.

For example, this unnamed query operation is written via query shorthand.

{

 field

}

many examples below will use the query short‐hand syntax.

SelectionSet :
{ Selectionlist }

Selection :

Example № 5

Example № 6

Note

Selection Sets

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 15/165

Field
FragmentSpread
InlineFragment

An operation selects the set of information it needs, and will receive exactly that information and nothing
more, avoiding over‐fetching and under‐fetching data.

{

 id

 firstName

 lastName

}

In this query, the id , firstName , and lastName fields form a selection set. Selection sets may also contain
fragment references.

Field :
Aliasopt Name Argumentsopt Directivesopt SelectionSetopt

A selection set is primarily composed of fields. A field describes one discrete piece of information available
to request within a selection set.

Some fields describe complex data or relationships to other data. In order to further explore this data, a field
may itself contain a selection set, allowing for deeply nested requests. All GraphQL operations must specify
their selections down to fields which return scalar values to ensure an unambiguously shaped response.

For example, this operation selects fields of complex data and relationships down to scalar values.

{

 me {

 id

 firstName

 lastName

 birthday {

 month

 day

Example № 7

Fields

Example № 8

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 16/165

 }

 friends {

 name

 }

 }

}

Fields in the top‐level selection set of an operation often represent some information that is globally
accessible to your application and its current viewer. Some typical examples of these top fields include
references to a current logged‐in viewer, or accessing certain types of data referenced by a unique identifier.

`me` could represent the currently logged in viewer.

{

 me {

 name

 }

}

`user` represents one of many users in a graph of data, referred to by a

unique identifier.

{

 user(id: 4) {

 name

 }

}

Arguments[Const] :

(Argument[?Const]list)

Argument[Const] :

Name : Value[?Const]

Fields are conceptually functions which return values, and occasionally accept arguments which alter their
behavior. These arguments often map directly to function arguments within a GraphQL server’s
implementation.

Example № 9

Arguments

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 17/165

In this example, we want to query a specific user (requested via the id argument) and their profile picture of
a specific size :

{

 user(id: 4) {

 id

 name

 profilePic(size: 100)

 }

}

Many arguments can exist for a given field:

{

 user(id: 4) {

 id

 name

 profilePic(width: 100, height: 50)

 }

}

Arguments are unordered

Arguments may be provided in any syntactic order and maintain identical semantic meaning.

These two queries are semantically identical:

{

 picture(width: 200, height: 100)

}

{

 picture(height: 100, width: 200)

}

Example № 10

Example № 11

Example № 12

Example № 13

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 18/165

Alias :
Name :

By default, the key in the response object will use the field name queried. However, you can define a
different name by specifying an alias.

In this example, we can fetch two profile pictures of different sizes and ensure the resulting object will not
have duplicate keys:

{

 user(id: 4) {

 id

 name

 smallPic: profilePic(size: 64)

 bigPic: profilePic(size: 1024)

 }

}

Which returns the result:

{

 "user": {

 "id": 4,

 "name": "Mark Zuckerberg",

 "smallPic": "https://cdn.site.io/pic-4-64.jpg",

 "bigPic": "https://cdn.site.io/pic-4-1024.jpg"

 }

}

Since the top level of a query is a field, it also can be given an alias:

{

 zuck: user(id: 4) {

 id

 name

 }

}

Field Alias

Example № 14

Example № 15

Example № 16

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 19/165

Returns the result:

{

 "zuck": {

 "id": 4,

 "name": "Mark Zuckerberg"

 }

}

A field’s response key is its alias if an alias is provided, and it is otherwise the field’s name.

FragmentSpread :
... FragmentName Directivesopt

FragmentDefinition :
fragment FragmentName TypeCondition Directivesopt SelectionSet

FragmentName :
Name but not on

Fragments are the primary unit of composition in GraphQL.

Fragments allow for the reuse of common repeated selections of fields, reducing duplicated text in the
document. Inline Fragments can be used directly within a selection to condition upon a type condition when
querying against an interface or union.

For example, if we wanted to fetch some common information about mutual friends as well as friends of
some user:

query noFragments {

 user(id: 4) {

 friends(first: 10) {

 id

 name

 profilePic(size: 50)

Example № 17

Fragments

Example № 18

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 20/165

 }

 mutualFriends(first: 10) {

 id

 name

 profilePic(size: 50)

 }

 }

}

The repeated fields could be extracted into a fragment and composed by a parent fragment or query.

query withFragments {

 user(id: 4) {

 friends(first: 10) {

 ...friendFields

 }

 mutualFriends(first: 10) {

 ...friendFields

 }

 }

}

fragment friendFields on User {

 id

 name

 profilePic(size: 50)

}

Fragments are consumed by using the spread operator (...). All fields selected by the fragment will be
added to the query field selection at the same level as the fragment invocation. This happens through
multiple levels of fragment spreads.

For example:

query withNestedFragments {

 user(id: 4) {

 friends(first: 10) {

 ...friendFields

 }

Example № 19

Example № 20

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 21/165

 mutualFriends(first: 10) {

 ...friendFields

 }

 }

}

fragment friendFields on User {

 id

 name

 ...standardProfilePic

}

fragment standardProfilePic on User {

 profilePic(size: 50)

}

The queries noFragments , withFragments , and withNestedFragments all produce the same response
object.

TypeCondition :
on NamedType

Fragments must specify the type they apply to. In this example, friendFields can be used in the context of
querying a User .

Fragments cannot be specified on any input value (scalar, enumeration, or input object).

Fragments can be specified on object types, interfaces, and unions.

Selections within fragments only return values when concrete type of the object it is operating on matches
the type of the fragment.

For example in this query on the Facebook data model:

query FragmentTyping {

 profiles(handles: ["zuck", "cocacola"]) {

 handle

 ...userFragment

 ...pageFragment

Type Conditions

Example № 21

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 22/165

 }

}

fragment userFragment on User {

 friends {

 count

 }

}

fragment pageFragment on Page {

 likers {

 count

 }

}

The profiles root field returns a list where each element could be a Page or a User . When the object in
the profiles result is a User , friends will be present and likers will not. Conversely when the result
is a Page , likers will be present and friends will not.

{

 "profiles": [

 {

 "handle": "zuck",

 "friends": { "count" : 1234 }

 },

 {

 "handle": "cocacola",

 "likers": { "count" : 90234512 }

 }

]

}

InlineFragment :
... TypeConditionopt Directivesopt SelectionSet

Fragments can be defined inline within a selection set. This is done to conditionally include fields based on
their runtime type. This feature of standard fragment inclusion was demonstrated in the

Example № 22

Inline Fragments

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 23/165

query FragmentTyping example. We could accomplish the same thing using inline fragments.

query inlineFragmentTyping {

 profiles(handles: ["zuck", "cocacola"]) {

 handle

 ... on User {

 friends {

 count

 }

 }

 ... on Page {

 likers {

 count

 }

 }

 }

}

Inline fragments may also be used to apply a directive to a group of fields. If the TypeCondition is omitted,
an inline fragment is considered to be of the same type as the enclosing context.

query inlineFragmentNoType($expandedInfo: Boolean) {

 user(handle: "zuck") {

 id

 name

 ... @include(if: $expandedInfo) {

 firstName

 lastName

 birthday

 }

 }

}

Value[Const] :

Example № 23

Example № 24

Input Values

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 24/165

[~Const] Variable
IntValue
FloatValue
StringValue
BooleanValue
NullValue
EnumValue
ListValue[?Const]

ObjectValue[?Const]

Field and directive arguments accept input values of various literal primitives; input values can be scalars,
enumeration values, lists, or input objects.

If not defined as constant (for example, in DefaultValue), input values can be specified as a variable. List and
inputs objects may also contain variables (unless defined to be constant).

IntValue ::
IntegerPart

IntegerPart ::
NegativeSignopt 0

NegativeSignopt NonZeroDigit Digitlist, opt

NegativeSign ::
-

Digit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit ::
Digit but not 0

An Int number is specified without a decimal point or exponent (ex. 1).

FloatValue ::
IntegerPart FractionalPart

Int Value

Float Value

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 25/165

IntegerPart ExponentPart
IntegerPart FractionalPart ExponentPart

FractionalPart ::
. Digitlist

ExponentPart ::
ExponentIndicator Signopt Digitlist

ExponentIndicator :: one of
e E

Sign :: one of
+ -

A Float number includes either a decimal point (ex. 1.0) or an exponent (ex. 1e50) or both (ex.
6.0221413e23).

BooleanValue : one of
true false

The two keywords true and false represent the two boolean values.

StringValue ::
" StringCharacterlist, opt "

""" BlockStringCharacterlist, opt """

StringCharacter ::
SourceCharacter but not " or \ or LineTerminator
\u EscapedUnicode
\ EscapedCharacter

EscapedUnicode ::
/[0-9A-Fa-f]{4}/

EscapedCharacter :: one of
" \ / b f n r t

Boolean Value

String Value

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 26/165

BlockStringCharacter ::
SourceCharacter but not """ or \"""
\"""

Strings are sequences of characters wrapped in double‐quotes ("). (ex. "Hello World"). White space and
other otherwise‐ignored characters are significant within a string value.

Unicode characters are allowed within String value literals, however SourceCharacter must not contain
some ASCII control characters so escape sequences must be used to represent these characters.

Block Strings

Block strings are sequences of characters wrapped in triple‐quotes ("""). White space, line terminators,
quote, and backslash characters may all be used unescaped to enable verbatim text. Characters must all be
valid SourceCharacter.

Since block strings represent freeform text often used in indented positions, the string value semantics of a
block string excludes uniform indentation and blank initial and trailing lines via BlockStringValue().

For example, the following operation containing a block string:

mutation {

 sendEmail(message: """

 Hello,

 World!

 Yours,

 GraphQL.

 """)

}

Is identical to the standard quoted string:

mutation {

 sendEmail(message: "Hello,\n World!\n\nYours,\n GraphQL.")

}

Since block string values strip leading and trailing empty lines, there is no single canonical printed block
string for a given value. Because block strings typically represent freeform text, it is considered easier to

Note

Example № 25

Example № 26

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 27/165

read if they begin and end with an empty line.

"""

This starts with and ends with an empty line,

which makes it easier to read.

"""

"""This does not start with or end with any empty lines,

which makes it a little harder to read."""

If non‐printable ASCII characters are needed in a string value, a standard quoted string with appropriate
escape sequences must be used instead of a block string.

Semantics

StringValue :: " StringCharacterlist, opt "

1. Return the Unicode character sequence of all StringCharacter Unicode character values (which
may be an empty sequence).

StringCharacter :: SourceCharacter but not " or \ or LineTerminator

1. Return the character value of SourceCharacter.

StringCharacter :: \u EscapedUnicode

1. Return the character whose code unit value in the Unicode Basic Multilingual Plane is the 16‐bit
hexadecimal value EscapedUnicode.

StringCharacter :: \ EscapedCharacter

1. Return the character value of EscapedCharacter according to the table below.

Escaped Character Code Unit Value Character Name

" U+0022 double quote

\ U+005C reverse solidus (back slash)

/ U+002F solidus (forward slash)

Example № 27

Counter Example № 28

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 28/165

Escaped Character Code Unit Value Character Name

b U+0008 backspace

f U+000C form feed

n U+000A line feed (new line)

r U+000D carriage return

t U+0009 horizontal tab

StringValue :: """ BlockStringCharacterlist, opt """

1. Let rawValue be the Unicode character sequence of all BlockStringCharacter Unicode character
values (which may be an empty sequence).

2. Return the result of BlockStringValue(rawValue).

BlockStringCharacter :: SourceCharacter but not """ or \"""

1. Return the character value of SourceCharacter.

BlockStringCharacter :: \"""

1. Return the character sequence """ .

BlockStringValue(rawValue) :

1. Let lines be the result of splitting rawValue by LineTerminator.
2. Let commonIndent be null.
3. For each line in lines:

a. If line is the first item in lines, continue to the next line.
b. Let length be the number of characters in line.
c. Let indent be the number of leading consecutive WhiteSpace characters in line.
d. If indent is less than length:

i. If commonIndent is null or indent is less than commonIndent:
1. Let commonIndent be indent.

4. If commonIndent is not null:
a. For each line in lines:

i. If line is the first item in lines, continue to the next line.
ii. Remove commonIndent characters from the beginning of line.

5. While the first item line in lines contains only WhiteSpace:
a. Remove the first item from lines.

6. While the last item line in lines contains only WhiteSpace:
a. Remove the last item from lines.

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 29/165

7. Let formatted be the empty character sequence.
8. For each line in lines:

a. If line is the first item in lines:
i. Append formatted with line.

b. Otherwise:
i. Append formatted with a line feed character (U+000A).

ii. Append formatted with line.
9. Return formatted.

NullValue :
null

Null values are represented as the keyword null.

GraphQL has two semantically different ways to represent the lack of a value:

Explicitly providing the literal value: null.
Implicitly not providing a value at all.

For example, these two field calls are similar, but are not identical:

{

 field(arg: null)

 field

}

The first has explictly provided null to the argument “arg”, while the second has implicitly not provided a
value to the argument “arg”. These two forms may be interpreted differently. For example, a mutation
representing deleting a field vs not altering a field, respectively. Neither form may be used for an input
expecting a Non‐Null type.

The same two methods of representing the lack of a value are possible via variables by either providing the a
variable value as null and not providing a variable value at all.

Null Value

Example № 29

Note

Enum Value

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 30/165

EnumValue :
Name but not true or false or null

Enum values are represented as unquoted names (ex. MOBILE_WEB). It is recommended that Enum values be
“all caps”. Enum values are only used in contexts where the precise enumeration type is known. Therefore
it’s not necessary to supply an enumeration type name in the literal.

ListValue[Const] :

[]

[Value[?Const]list]

Lists are ordered sequences of values wrapped in square‐brackets [] . The values of a List literal may be
any value literal or variable (ex. [1, 2, 3]).

Commas are optional throughout GraphQL so trailing commas are allowed and repeated commas do not
represent missing values.

Semantics

ListValue : []

1. Return a new empty list value.

ListValue : [Valuelist]

1. Let inputList be a new empty list value.
2. For each Valuelist

a. Let value be the result of evaluating Value.
b. Append value to inputList.

3. Return inputList

ObjectValue[Const] :

{ }

{ ObjectField[?Const]list }

ObjectField[Const] :

List Value

Input Object Values

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 31/165

Name : Value[?Const]

Input object literal values are unordered lists of keyed input values wrapped in curly‐braces { } . The values
of an object literal may be any input value literal or variable (ex.
{ name: "Hello world", score: 1.0 }). We refer to literal representation of input objects as “object
literals.”

Input object fields are unordered

Input object fields may be provided in any syntactic order and maintain identical semantic meaning.

These two queries are semantically identical:

{

 nearestThing(location: { lon: 12.43, lat: -53.211 })

}

{

 nearestThing(location: { lat: -53.211, lon: 12.43 })

}

Semantics

ObjectValue : { }

1. Return a new input object value with no fields.

ObjectValue : { ObjectFieldlist }

1. Let inputObject be a new input object value with no fields.
2. For each field in ObjectFieldlist

a. Let name be Name in field.
b. Let value be the result of evaluating Value in field.
c. Add a field to inputObject of name name containing value value.

3. Return inputObject

Example № 30

Example № 31

Variables

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 32/165

Variable :
$ Name

VariableDefinitions :
(VariableDefinitionlist)

VariableDefinition :
Variable : Type DefaultValueopt

DefaultValue :
= Value[Const]

A GraphQL query can be parameterized with variables, maximizing query reuse, and avoiding costly string
building in clients at runtime.

If not defined as constant (for example, in DefaultValue), a Variable can be supplied for an input value.

Variables must be defined at the top of an operation and are in scope throughout the execution of that
operation.

In this example, we want to fetch a profile picture size based on the size of a particular device:

query getZuckProfile($devicePicSize: Int) {

 user(id: 4) {

 id

 name

 profilePic(size: $devicePicSize)

 }

}

Values for those variables are provided to a GraphQL service along with a request so they may be substituted
during execution. If providing JSON for the variables’ values, we could run this query and request profilePic
of size 60 width:

{

 "devicePicSize": 60

}

Variable use within Fragments

Example № 32

Example № 33

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 33/165

Query variables can be used within fragments. Query variables have global scope with a given operation, so
a variable used within a fragment must be declared in any top‐level operation that transitively consumes that
fragment. If a variable is referenced in a fragment and is included by an operation that does not define that
variable, the operation cannot be executed.

Type :
NamedType
ListType
NonNullType

NamedType :
Name

ListType :
[Type]

NonNullType :
NamedType !

ListType !

GraphQL describes the types of data expected by query variables. Input types may be lists of another input
type, or a non‐null variant of any other input type.

Semantics

Type : Name

1. Let name be the string value of Name
2. Let type be the type defined in the Schema named name
3. type must not be null
4. Return type

Type : [Type]

1. Let itemType be the result of evaluating Type
2. Let type be a List type where itemType is the contained type.
3. Return type

Type : Type !

Type References

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 34/165

1. Let nullableType be the result of evaluating Type
2. Let type be a Non‐Null type where nullableType is the contained type.
3. Return type

Directives[Const] :

Directive[?Const]list

Directive[Const] :

@ Name Arguments[?Const]opt

Directives provide a way to describe alternate runtime execution and type validation behavior in a GraphQL
document.

In some cases, you need to provide options to alter GraphQL’s execution behavior in ways field arguments
will not suffice, such as conditionally including or skipping a field. Directives provide this by describing
additional information to the executor.

Directives have a name along with a list of arguments which may accept values of any input type.

Directives can be used to describe additional information for types, fields, fragments and operations.

As future versions of GraphQL adopt new configurable execution capabilities, they may be exposed via
directives.

The GraphQL Type system describes the capabilities of a GraphQL server and is used to determine if a
query is valid. The type system also describes the input types of query variables to determine if values
provided at runtime are valid.

TypeSystemDefinition :
SchemaDefinition
TypeDefinition
DirectiveDefinition

Directives

Type System

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 35/165

The GraphQL language includes an IDL used to describe a GraphQL service’s type system. Tools may use
this definition language to provide utilities such as client code generation or service boot‐strapping.

GraphQL tools which only seek to provide GraphQL query execution may choose not to parse
TypeSystemDefinition.

A GraphQL Document which contains TypeSystemDefinition must not be executed; GraphQL execution
services which receive a GraphQL Document containing type system definitions should return a descriptive
error.

The type system definition language is used throughout the remainder of this specification document when
illustrating example type systems.

TypeSystemExtension :
SchemaExtension
TypeExtension

Type system extensions are used to represent a GraphQL type system which has been extended from some
original type system. For example, this might be used by a local service to represent data a GraphQL client
only accesses locally, or by a GraphQL service which is itself an extension of another GraphQL service.

SchemaDefinition :
schema Directives[Const]opt { RootOperationTypeDefinitionlist }

RootOperationTypeDefinition :
OperationType : NamedType

A GraphQL service’s collective type system capabilities are referred to as that service’s “schema”. A schema
is defined in terms of the types and directives it supports as well as the root operation types for each kind of
operation: query, mutation, and subscription; this determines the place in the type system where those
operations begin.

Note

Type System Extensions

Schema

☰

https://en.wikipedia.org/wiki/Interface_description_language

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 36/165

A GraphQL schema must itself be internally valid. This section describes the rules for this validation process
where relevant.

All types within a GraphQL schema must have unique names. No two provided types may have the same
name. No provided type may have a name which conflicts with any built in types (including Scalar and
Introspection types).

All directives within a GraphQL schema must have unique names.

All types and directives defined within a schema must not have a name which begins with "__" (two
underscores), as this is used exclusively by GraphQL’s introspection system.

A schema defines the initial root operation type for each kind of operation it supports: query, mutation, and
subscription; this determines the place in the type system where those operations begin.

The query root operation type must be provided and must be an Object type.

The mutation root operation type is optional; if it is not provided, the service does not support mutations. If
it is provided, it must be an Object type.

Similarly, the subscription root operation type is also optional; if it is not provided, the service does not
support subscriptions. If it is provided, it must be an Object type.

The fields on the query root operation type indicate what fields are available at the top level of a GraphQL
query. For example, a basic GraphQL query like:

query {

 myName

}

Is valid when the query root operation type has a field named “myName”.

type Query {

 myName: String

}

Similarly, the following mutation is valid if a mutation root operation type has a field named “setName”.
Note that the query and mutation root types must be different types.

Root Operation Types

Example № 34

Example № 35

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 37/165

mutation {

 setName(name: "Zuck") {

 newName

 }

}

When using the type system definition language, a document must include at most one schema definition.

In this example, a GraphQL schema is defined with both query and mutation root types:

schema {

 query: MyQueryRootType

 mutation: MyMutationRootType

}

type MyQueryRootType {

 someField: String

}

type MyMutationRootType {

 setSomeField(to: String): String

}

Default Root Operation Type Names

While any type can be the root operation type for a GraphQL operation, the type system definition language
can omit the schema definition when the query , mutation , and subscription root types are named
Query , Mutation , and Subscription respectively.

Likewise, when representing a GraphQL schema using the type system definition language, a schema
definition should be omitted if it only uses the default root operation type names.

This example describes a valid complete GraphQL schema, despite not explicitly including a schema
definition. The Query type is presumed to be the query root operation type of the schema.

type Query {

 someField: String

}

Example № 36

Example № 37

Example № 38

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 38/165

SchemaExtension :
extend schema Directives[Const]opt { OperationTypeDefinitionlist }

extend schema Directives[Const]

Schema extensions are used to represent a schema which has been extended from an original schema. For
example, this might be used by a GraphQL service which adds additional operation types, or additional
directives to an existing schema.

Schema Validation

Schema extensions have the potential to be invalid if incorrectly defined.

1. The Schema must already be defined.
2. Any directives provided must not already apply to the original Schema.

Description :
StringValue

Documentation is first‐class feature of GraphQL type systems. To ensure the documentation of a GraphQL
service remains consistent with its capabilities, descriptions of GraphQL definitions are provided alongside
their definitions and made available via introspection.

To allow GraphQL service designers to easily publish documentation alongside the capabilities of a
GraphQL service, GraphQL descriptions are defined using the Markdown syntax (as specified by
CommonMark). In the type system definition language, these description strings (often BlockString) occur
immediately before the definition they describe.

All GraphQL types, fields, arguments and other definitions which can be described should provide a
Description unless they are considered self descriptive.

As an example, this simple GraphQL schema is well described:

"""

A simple GraphQL schema which is well described.

"""

type Query {

Schema Extension

Descriptions

Example № 39

☰

http://commonmark.org/

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 39/165

 """

 Translates a string from a given language into a different language.

 """

 translate(

 "The original language that `text` is provided in."

 fromLanguage: Language

 "The translated language to be returned."

 toLanguage: Language

 "The text to be translated."

 text: String

): String

}

"""

The set of languages supported by `translate`.

"""

enum Language {

 "English"

 EN

 "French"

 FR

 "Chinese"

 CH

}

TypeDefinition :
ScalarTypeDefinition
ObjectTypeDefinition
InterfaceTypeDefinition
UnionTypeDefinition
EnumTypeDefinition
InputObjectTypeDefinition

Types

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 40/165

The fundamental unit of any GraphQL Schema is the type. There are six kinds of named type definitions in
GraphQL, and two wrapping types.

The most basic type is a Scalar . A scalar represents a primitive value, like a string or an integer.
Oftentimes, the possible responses for a scalar field are enumerable. GraphQL offers an Enum type in those
cases, where the type specifies the space of valid responses.

Scalars and Enums form the leaves in response trees; the intermediate levels are Object types, which define
a set of fields, where each field is another type in the system, allowing the definition of arbitrary type
hierarchies.

GraphQL supports two abstract types: interfaces and unions.

An Interface defines a list of fields; Object types that implement that interface are guaranteed to
implement those fields. Whenever the type system claims it will return an interface, it will return a valid
implementing type.

A Union defines a list of possible types; similar to interfaces, whenever the type system claims a union will
be returned, one of the possible types will be returned.

Finally, oftentimes it is useful to provide complex structs as inputs to GraphQL field arguments or variables;
the Input Object type allows the schema to define exactly what data is expected.

All of the types so far are assumed to be both nullable and singular: e.g. a scalar string returns either null or a
singular string.

A GraphQL schema may describe that a field represents list of another types; the List type is provided for
this reason, and wraps another type.

Similarly, the Non-Null type wraps another type, and denotes that the resulting value will never be null
(and that an error cannot result in a null value).

These two types are referred to as “wrapping types”; non‐wrapping types are referred to as “named types”. A
wrapping type has an underlying named type, found by continually unwrapping the type until a named type
is found.

Types are used throughout GraphQL to describe both the values accepted as input to arguments and variables
as well as the values output by fields. These two uses categorize types as input types and output types. Some

Wrapping Types

Input and Output Types

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 41/165

kinds of types, like Scalar and Enum types, can be used as both input types and output types; other kinds
types can only be used in one or the other. Input Object types can only be used as input types. Object,
Interface, and Union types can only be used as output types. Lists and Non‐Null types may be used as input
types or output types depending on how the wrapped type may be used.

IsInputType(type) :

1. If type is a List type or Non‐Null type:
a. Let unwrappedType be the unwrapped type of type.
b. Return IsInputType(unwrappedType)

2. If type is a Scalar, Enum, or Input Object type:
a. Return true

3. Return false

IsOutputType(type) :

1. If type is a List type or Non‐Null type:
a. Let unwrappedType be the unwrapped type of type.
b. Return IsOutputType(unwrappedType)

2. If type is a Scalar, Object, Interface, Union, or Enum type:
a. Return true

3. Return false

TypeExtension :
ScalarTypeExtension
ObjectTypeExtension
InterfaceTypeExtension
UnionTypeExtension
EnumTypeExtension
InputObjectTypeExtension

Type extensions are used to represent a GraphQL type which has been extended from some original type.
For example, this might be used by a local service to represent additional fields a GraphQL client only
accesses locally.

ScalarTypeDefinition :

Type Extensions

Scalars

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 42/165

Descriptionopt scalar Name Directives[Const]opt

Scalar types represent primitive leaf values in a GraphQL type system. GraphQL responses take the form of
a hierarchical tree; the leaves on these trees are GraphQL scalars.

All GraphQL scalars are representable as strings, though depending on the response format being used, there
may be a more appropriate primitive for the given scalar type, and server should use those types when
appropriate.

GraphQL provides a number of built‐in scalars, but type systems can add additional scalars with semantic
meaning. For example, a GraphQL system could define a scalar called Time which, while serialized as a
string, promises to conform to ISO‐8601. When querying a field of type Time , you can then rely on the
ability to parse the result with an ISO‐8601 parser and use a client‐specific primitive for time. Another
example of a potentially useful custom scalar is Url , which serializes as a string, but is guaranteed by the
server to be a valid URL.

scalar Time

scalar Url

A server may omit any of the built‐in scalars from its schema, for example if a schema does not refer to a
floating‐point number, then it must not include the Float type. However, if a schema includes a type with
the name of one of the types described here, it must adhere to the behavior described. As an example, a
server must not include a type called Int and use it to represent 128‐bit numbers, internationalization
information, or anything other than what is defined in this document.

When representing a GraphQL schema using the type system definition language, the built‐in scalar types
should be omitted for brevity.

Result Coercion

A GraphQL server, when preparing a field of a given scalar type, must uphold the contract the scalar type
describes, either by coercing the value or producing a field error if a value cannot be coerced or if coercion
may result in data loss.

A GraphQL service may decide to allow coercing different internal types to the expected return type. For
example when coercing a field of type Int a boolean true value may produce 1 or a string value "123"
may be parsed as base‐10 123 . However if internal type coercion cannot be reasonably performed without
losing information, then it must raise a field error.

Since this coercion behavior is not observable to clients of the GraphQL server, the precise rules of coercion
are left to the implementation. The only requirement is that the server must yield values which adhere to the
expected Scalar type.

Example № 40

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 43/165

Input Coercion

If a GraphQL server expects a scalar type as input to an argument, coercion is observable and the rules must
be well defined. If an input value does not match a coercion rule, a query error must be raised.

GraphQL has different constant literals to represent integer and floating‐point input values, and coercion
rules may apply differently depending on which type of input value is encountered. GraphQL may be
parameterized by query variables, the values of which are often serialized when sent over a transport like
HTTP. Since some common serializations (ex. JSON) do not discriminate between integer and floating‐point
values, they are interpreted as an integer input value if they have an empty fractional part (ex. 1.0) and
otherwise as floating‐point input value.

For all types below, with the exception of Non‐Null, if the explicit value null is provided, then the result of
input coercion is null.

Built‐in Scalars

GraphQL provides a basic set of well‐defined Scalar types. A GraphQL server should support all of these
types, and a GraphQL server which provide a type by these names must adhere to the behavior described
below.

The Int scalar type represents a signed 32‐bit numeric non‐fractional value. Response formats that support a
32‐bit integer or a number type should use that type to represent this scalar.

Result Coercion

Fields returning the type Int expect to encounter 32‐bit integer internal values.

GraphQL servers may coerce non‐integer internal values to integers when reasonable without losing
information, otherwise they must raise a field error. Examples of this may include returning 1 for the
floating‐point number 1.0 , or returning 123 for the string "123" . In scenarios where coercion may lose
data, raising a field error is more appropriate. For example, a floating‐point number 1.2 should raise a field
error instead of being truncated to 1 .

If the integer internal value represents a value less than -231 or greater than or equal to 231, a field error
should be raised.

Input Coercion

When expected as an input type, only integer input values are accepted. All other input values, including
strings with numeric content, must raise a query error indicating an incorrect type. If the integer input value

Int

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 44/165

represents a value less than -231 or greater than or equal to 231, a query error should be raised.

Numeric integer values larger than 32‐bit should either use String or a custom‐defined Scalar type, as not all
platforms and transports support encoding integer numbers larger than 32‐bit.

The Float scalar type represents signed double‐precision fractional values as specified by IEEE 754.
Response formats that support an appropriate double‐precision number type should use that type to represent
this scalar.

Result Coercion

Fields returning the type Float expect to encounter double‐precision floating‐point internal values.

GraphQL servers may coerce non‐floating‐point internal values to Float when reasonable without losing
information, otherwise they must raise a field error. Examples of this may include returning 1.0 for the
integer number 1 , or 123.0 for the string "123" .

Input Coercion

When expected as an input type, both integer and float input values are accepted. Integer input values are
coerced to Float by adding an empty fractional part, for example 1.0 for the integer input value 1 . All other
input values, including strings with numeric content, must raise a query error indicating an incorrect type. If
the integer input value represents a value not representable by IEEE 754, a query error should be raised.

The String scalar type represents textual data, represented as UTF‐8 character sequences. The String type is
most often used by GraphQL to represent free‐form human‐readable text. All response formats must support
string representations, and that representation must be used here.

Result Coercion

Fields returning the type String expect to encounter UTF‐8 string internal values.

GraphQL servers may coerce non‐string raw values to String when reasonable without losing information,
otherwise they must raise a field error. Examples of this may include returning the string "true" for a
boolean true value, or the string "1" for the integer 1 .

Note

Float

String

☰

http://en.wikipedia.org/wiki/IEEE_floating_point

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 45/165

Input Coercion

When expected as an input type, only valid UTF‐8 string input values are accepted. All other input values
must raise a query error indicating an incorrect type.

The Boolean scalar type represents true or false . Response formats should use a built‐in boolean type if
supported; otherwise, they should use their representation of the integers 1 and 0 .

Result Coercion

Fields returning the type Boolean expect to encounter boolean internal values.

GraphQL servers may coerce non‐boolean raw values to Boolean when reasonable without losing
information, otherwise they must raise a field error. Examples of this may include returning true for non‐
zero numbers.

Input Coercion

When expected as an input type, only boolean input values are accepted. All other input values must raise a
query error indicating an incorrect type.

The ID scalar type represents a unique identifier, often used to refetch an object or as the key for a cache.
The ID type is serialized in the same way as a String ; however, it is not intended to be human‐readable.
While it is often numeric, it should always serialize as a String .

Result Coercion

GraphQL is agnostic to ID format, and serializes to string to ensure consistency across many formats ID
could represent, from small auto‐increment numbers, to large 128‐bit random numbers, to base64 encoded
values, or string values of a format like GUID.

GraphQL servers should coerce as appropriate given the ID formats they expect. When coercion is not
possible they must raise a field error.

Input Coercion

When expected as an input type, any string (such as "4") or integer (such as 4) input value should be
coerced to ID as appropriate for the ID formats a given GraphQL server expects. Any other input value,

Boolean

ID

☰

http://en.wikipedia.org/wiki/Globally_unique_identifier

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 46/165

including float input values (such as 4.0), must raise a query error indicating an incorrect type.

ScalarTypeExtension :
extend scalar Name Directives[Const]

Scalar type extensions are used to represent a scalar type which has been extended from some original scalar
type. For example, this might be used by a GraphQL tool or service which adds directives to an existing
scalar.

Type Validation

Scalar type extensions have the potential to be invalid if incorrectly defined.

1. The named type must already be defined and must be a Scalar type.
2. Any directives provided must not already apply to the original Scalar type.

ObjectTypeDefinition :
Descriptionopt type Name ImplementsInterfacesopt Directives[Const]opt FieldsDefinitionopt

ImplementsInterfaces :
implements &opt NamedType

ImplementsInterfaces & NamedType

FieldsDefinition :
{ FieldDefinitionlist }

FieldDefinition :
Descriptionopt Name ArgumentsDefinitionopt : Type Directives[Const]opt

GraphQL queries are hierarchical and composed, describing a tree of information. While Scalar types
describe the leaf values of these hierarchical queries, Objects describe the intermediate levels.

GraphQL Objects represent a list of named fields, each of which yield a value of a specific type. Object
values should be serialized as ordered maps, where the queried field names (or aliases) are the keys and the
result of evaluating the field is the value, ordered by the order in which they appear in the query.

Scalar Extensions

Objects

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 47/165

All fields defined within an Object type must not have a name which begins with "__" (two underscores),
as this is used exclusively by GraphQL’s introspection system.

For example, a type Person could be described as:

type Person {

 name: String

 age: Int

 picture: Url

}

Where name is a field that will yield a String value, and age is a field that will yield an Int value, and
picture is a field that will yield a Url value.

A query of an object value must select at least one field. This selection of fields will yield an ordered map
containing exactly the subset of the object queried, which should be represented in the order in which they
were queried. Only fields that are declared on the object type may validly be queried on that object.

For example, selecting all the fields of Person :

{

 name

 age

 picture

}

Would yield the object:

{

 "name": "Mark Zuckerberg",

 "age": 30,

 "picture": "http://some.cdn/picture.jpg"

}

While selecting a subset of fields:

{

 age

Example № 41

Example № 42

Example № 43

Example № 44

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 48/165

 name

}

Must only yield exactly that subset:

{

 "age": 30,

 "name": "Mark Zuckerberg"

}

A field of an Object type may be a Scalar, Enum, another Object type, an Interface, or a Union. Additionally,
it may be any wrapping type whose underlying base type is one of those five.

For example, the Person type might include a relationship :

type Person {

 name: String

 age: Int

 picture: Url

 relationship: Person

}

Valid queries must supply a nested field set for a field that returns an object, so this query is not valid:

{

 name

 relationship

}

However, this example is valid:

{

 name

 relationship {

 name

 }

}

Example № 45

Example № 46

Counter Example № 47

Example № 48

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 49/165

And will yield the subset of each object type queried:

{

 "name": "Mark Zuckerberg",

 "relationship": {

 "name": "Priscilla Chan"

 }

}

Field Ordering

When querying an Object, the resulting mapping of fields are conceptually ordered in the same order in
which they were encountered during query execution, excluding fragments for which the type does not apply
and fields or fragments that are skipped via @skip or @include directives. This ordering is correctly
produced when using the CollectFields() algorithm.

Response serialization formats capable of representing ordered maps should maintain this ordering.
Serialization formats which can only represent unordered maps (such as JSON) should retain this order
textually. That is, if two fields {foo, bar} were queried in that order, the resulting JSON serialization
should contain {"foo": "...", "bar": "..."} in the same order.

Producing a response where fields are represented in the same order in which they appear in the request
improves human readability during debugging and enables more efficient parsing of responses if the order of
properties can be anticipated.

If a fragment is spread before other fields, the fields that fragment specifies occur in the response before the
following fields.

{

 foo

 ...Frag

 qux

}

fragment Frag on Query {

 bar

 baz

}

Produces the ordered result:

Example № 49

Example № 50

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 50/165

{

 "foo": 1,

 "bar": 2,

 "baz": 3,

 "qux": 4

}

If a field is queried multiple times in a selection, it is ordered by the first time it is encountered. However
fragments for which the type does not apply does not affect ordering.

{

 foo

 ...Ignored

 ...Matching

 bar

}

fragment Ignored on UnknownType {

 qux

 baz

}

fragment Matching on Query {

 bar

 qux

 foo

}

Produces the ordered result:

{

 "foo": 1,

 "bar": 2,

 "qux": 3

}

Also, if directives result in fields being excluded, they are not considered in the ordering of fields.

Example № 51

Example № 52

Example № 53

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 51/165

{

 foo @skip(if: true)

 bar

 foo

}

Produces the ordered result:

{

 "bar": 1,

 "foo": 2

}

Result Coercion

Determining the result of coercing an object is the heart of the GraphQL executor, so this is covered in that
section of the spec.

Input Coercion

Objects are never valid inputs.

Type Validation

Object types have the potential to be invalid if incorrectly defined. This set of rules must be adhered to by
every Object type in a GraphQL schema.

1. An Object type must define one or more fields.
2. For each field of an Object type:

1. The field must have a unique name within that Object type; no two fields may share the same
name.

2. The field must not have a name which begins with the characters "__" (two underscores).
3. The field must return a type where IsOutputType(fieldType) returns true.
4. For each argument of the field:

1. The argument must not have a name which begins with the characters "__" (two
underscores).

2. The argument must accept a type where IsInputType(argumentType) returns true.
3. An object type may declare that it implements one or more unique interfaces.
4. An object type must be a super‐set of all interfaces it implements:

1. The object type must include a field of the same name for every field defined in an interface.

Example № 54

Example № 55

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 52/165

1. The object field must be of a type which is equal to or a sub‐type of the interface field
(covariant).

1. An object field type is a valid sub‐type if it is equal to (the same type as) the interface
field type.

2. An object field type is a valid sub‐type if it is an Object type and the interface field
type is either an Interface type or a Union type and the object field type is a possible
type of the interface field type.

3. An object field type is a valid sub‐type if it is a List type and the interface field type
is also a List type and the list‐item type of the object field type is a valid sub‐type of
the list‐item type of the interface field type.

4. An object field type is a valid sub‐type if it is a Non‐Null variant of a valid sub‐type
of the interface field type.

2. The object field must include an argument of the same name for every argument defined in
the interface field.

1. The object field argument must accept the same type (invariant) as the interface field
argument.

3. The object field may include additional arguments not defined in the interface field, but any
additional argument must not be required, e.g. must not be of a non‐nullable type.

ArgumentsDefinition :
(InputValueDefinitionlist)

InputValueDefinition :
Descriptionopt Name : Type DefaultValueopt Directives[Const]opt

Object fields are conceptually functions which yield values. Occasionally object fields can accept arguments
to further specify the return value. Object field arguments are defined as a list of all possible argument
names and their expected input types.

All arguments defined within a field must not have a name which begins with "__" (two underscores), as
this is used exclusively by GraphQL’s introspection system.

For example, a Person type with a picture field could accept an argument to determine what size of an
image to return.

type Person {

 name: String

Field Arguments

Example № 56

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 53/165

 picture(size: Int): Url

}

GraphQL queries can optionally specify arguments to their fields to provide these arguments.

This example query:

{

 name

 picture(size: 600)

}

May yield the result:

{

 "name": "Mark Zuckerberg",

 "picture": "http://some.cdn/picture_600.jpg"

}

The type of an object field argument must be an input type (any type except an Object, Interface, or Union
type).

Fields in an object may be marked as deprecated as deemed necessary by the application. It is still legal to
query for these fields (to ensure existing clients are not broken by the change), but the fields should be
appropriately treated in documentation and tooling.

When using the type system definition language, @deprecated directives are used to indicate that a field is
deprecated:

type ExampleType {

 oldField: String @deprecated

}

Example № 57

Example № 58

Field Deprecation

Example № 59

Object Extensions

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 54/165

ObjectTypeExtension :
extend type Name ImplementsInterfacesopt Directives[Const]opt FieldsDefinition

extend type Name ImplementsInterfacesopt Directives[Const]

extend type Name ImplementsInterfaces

Object type extensions are used to represent a type which has been extended from some original type. For
example, this might be used to represent local data, or by a GraphQL service which is itself an extension of
another GraphQL service.

In this example, a local data field is added to a Story type:

extend type Story {

 isHiddenLocally: Boolean

}

Object type extensions may choose not to add additional fields, instead only adding interfaces or directives.

In this example, a directive is added to a User type without adding fields:

extend type User @addedDirective

Type Validation

Object type extensions have the potential to be invalid if incorrectly defined.

1. The named type must already be defined and must be an Object type.
2. The fields of an Object type extension must have unique names; no two fields may share the same

name.
3. Any fields of an Object type extension must not be already defined on the original Object type.
4. Any directives provided must not already apply to the original Object type.
5. Any interfaces provided must not be already implemented by the original Object type.
6. The resulting extended object type must be a super‐set of all interfaces it implements.

InterfaceTypeDefinition :
Descriptionopt interface Name Directives[Const]opt FieldsDefinitionopt

Example № 60

Example № 61

Interfaces

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 55/165

GraphQL interfaces represent a list of named fields and their arguments. GraphQL objects can then
implement these interfaces which requires that the object type will define all fields defined by those
interfaces.

Fields on a GraphQL interface have the same rules as fields on a GraphQL object; their type can be Scalar,
Object, Enum, Interface, or Union, or any wrapping type whose base type is one of those five.

For example, an interface NamedEntity may describe a required field and types such as Person or
Business may then implement this interface to guarantee this field will always exist.

Types may also implement multiple interfaces. For example, Business implements both the NamedEntity
and ValuedEntity interfaces in the example below.

interface NamedEntity {

 name: String

}

interface ValuedEntity {

 value: Int

}

type Person implements NamedEntity {

 name: String

 age: Int

}

type Business implements NamedEntity & ValuedEntity {

 name: String

 value: Int

 employeeCount: Int

}

Fields which yield an interface are useful when one of many Object types are expected, but some fields
should be guaranteed.

To continue the example, a Contact might refer to NamedEntity .

type Contact {

 entity: NamedEntity

 phoneNumber: String

Example № 62

Example № 63

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 56/165

 address: String

}

This allows us to write a query for a Contact that can select the common fields.

{

 entity {

 name

 }

 phoneNumber

}

When querying for fields on an interface type, only those fields declared on the interface may be queried. In
the above example, entity returns a NamedEntity , and name is defined on NamedEntity , so it is valid.
However, the following would not be a valid query:

{

 entity {

 name

 age

 }

 phoneNumber

}

because entity refers to a NamedEntity , and age is not defined on that interface. Querying for age is
only valid when the result of entity is a Person ; the query can express this using a fragment or an inline
fragment:

{

 entity {

 name

 ... on Person {

 age

 }

 },

 phoneNumber

}

Example № 64

Counter Example № 65

Example № 66

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 57/165

Result Coercion

The interface type should have some way of determining which object a given result corresponds to. Once it
has done so, the result coercion of the interface is the same as the result coercion of the object.

Input Coercion

Interfaces are never valid inputs.

Type Validation

Interface types have the potential to be invalid if incorrectly defined.

1. An Interface type must define one or more fields.
2. For each field of an Interface type:

1. The field must have a unique name within that Interface type; no two fields may share the same
name.

2. The field must not have a name which begins with the characters "__" (two underscores).
3. The field must return a type where IsOutputType(fieldType) returns true.
4. For each argument of the field:

1. The argument must not have a name which begins with the characters "__" (two
underscores).

2. The argument must accept a type where IsInputType(argumentType) returns true.

InterfaceTypeExtension :
extend interface Name Directives[Const]opt FieldsDefinition

extend interface Name Directives[Const]

Interface type extensions are used to represent an interface which has been extended from some original
interface. For example, this might be used to represent common local data on many types, or by a GraphQL
service which is itself an extension of another GraphQL service.

In this example, an extended data field is added to a NamedEntity type along with the types which
implement it:

extend interface NamedEntity {

 nickname: String

}

Interface Extensions

Example № 67

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 58/165

extend type Person {

 nickname: String

}

extend type Business {

 nickname: String

}

Interface type extensions may choose not to add additional fields, instead only adding directives.

In this example, a directive is added to a NamedEntity type without adding fields:

extend interface NamedEntity @addedDirective

Type Validation

Interface type extensions have the potential to be invalid if incorrectly defined.

1. The named type must already be defined and must be an Interface type.
2. The fields of an Interface type extension must have unique names; no two fields may share the same

name.
3. Any fields of an Interface type extension must not be already defined on the original Interface type.
4. Any Object type which implemented the original Interface type must also be a super‐set of the fields of

the Interface type extension (which may be due to Object type extension).
5. Any directives provided must not already apply to the original Interface type.

UnionTypeDefinition :
Descriptionopt union Name Directives[Const]opt UnionMemberTypesopt

UnionMemberTypes :
= |opt NamedType

UnionMemberTypes | NamedType

GraphQL Unions represent an object that could be one of a list of GraphQL Object types, but provides for
no guaranteed fields between those types. They also differ from interfaces in that Object types declare what
interfaces they implement, but are not aware of what unions contain them.

Example № 68

Unions

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 59/165

With interfaces and objects, only those fields defined on the type can be queried directly; to query other
fields on an interface, typed fragments must be used. This is the same as for unions, but unions do not define
any fields, so no fields may be queried on this type without the use of type refining fragments or inline
fragments.

For example, we might define the following types:

union SearchResult = Photo | Person

type Person {

 name: String

 age: Int

}

type Photo {

 height: Int

 width: Int

}

type SearchQuery {

 firstSearchResult: SearchResult

}

When querying the firstSearchResult field of type SearchQuery , the query would ask for all fields
inside of a fragment indicating the appropriate type. If the query wanted the name if the result was a Person,
and the height if it was a photo, the following query is invalid, because the union itself defines no fields:

{

 firstSearchResult {

 name

 height

 }

}

Instead, the query would be:

{

 firstSearchResult {

Example № 69

Counter Example № 70

Example № 71

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 60/165

 ... on Person {

 name

 }

 ... on Photo {

 height

 }

 }

}

Union members may be defined with an optional leading | character to aid formatting when representing a
longer list of possible types:

union SearchResult =

 | Photo

 | Person

Result Coercion

The union type should have some way of determining which object a given result corresponds to. Once it has
done so, the result coercion of the union is the same as the result coercion of the object.

Input Coercion

Unions are never valid inputs.

Type Validation

Union types have the potential to be invalid if incorrectly defined.

1. A Union type must include one or more unique member types.
2. The member types of a Union type must all be Object base types; Scalar, Interface and Union types

must not be member types of a Union. Similarly, wrapping types must not be member types of a
Union.

UnionTypeExtension :
extend union Name Directives[Const]opt UnionMemberTypes

extend union Name Directives[Const]

Example № 72

Union Extensions

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 61/165

Union type extensions are used to represent a union type which has been extended from some original union
type. For example, this might be used to represent additional local data, or by a GraphQL service which is
itself an extension of another GraphQL service.

Type Validation

Union type extensions have the potential to be invalid if incorrectly defined.

1. The named type must already be defined and must be a Union type.
2. The member types of a Union type extension must all be Object base types; Scalar, Interface and

Union types must not be member types of a Union. Similarly, wrapping types must not be member
types of a Union.

3. All member types of a Union type extension must be unique.
4. All member types of a Union type extension must not already be a member of the original Union type.
5. Any directives provided must not already apply to the original Union type.

EnumTypeDefinition :
Descriptionopt enum Name Directives[Const]opt EnumValuesDefinitionopt

EnumValuesDefinition :
{ EnumValueDefinitionlist }

EnumValueDefinition :
Descriptionopt EnumValue Directives[Const]opt

GraphQL Enum types, like scalar types, also represent leaf values in a GraphQL type system. However
Enum types describe the set of possible values.

Enums are not references for a numeric value, but are unique values in their own right. They may serialize as
a string: the name of the represented value.

In this example, an Enum type called Direction is defined:

enum Direction {

 NORTH

 EAST

 SOUTH

Enums

Example № 73

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 62/165

 WEST

}

Result Coercion

GraphQL servers must return one of the defined set of possible values. If a reasonable coercion is not
possible they must raise a field error.

Input Coercion

GraphQL has a constant literal to represent enum input values. GraphQL string literals must not be accepted
as an enum input and instead raise a query error.

Query variable transport serializations which have a different representation for non‐string symbolic values
(for example, EDN) should only allow such values as enum input values. Otherwise, for most transport
serializations that do not, strings may be interpreted as the enum input value with the same name.

Type Validation

Enum types have the potential to be invalid if incorrectly defined.

1. An Enum type must define one or more unique enum values.

EnumTypeExtension :
extend enum Name Directives[Const]opt EnumValuesDefinition

extend enum Name Directives[Const]

Enum type extensions are used to represent an enum type which has been extended from some original enum
type. For example, this might be used to represent additional local data, or by a GraphQL service which is
itself an extension of another GraphQL service.

Type Validation

Enum type extensions have the potential to be invalid if incorrectly defined.

1. The named type must already be defined and must be an Enum type.
2. All values of an Enum type extension must be unique.
3. All values of an Enum type extension must not already be a value of the original Enum.
4. Any directives provided must not already apply to the original Enum type.

Enum Extensions

☰

https://github.com/edn-format/edn

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 63/165

InputObjectTypeDefinition :
Descriptionopt input Name Directives[Const]opt InputFieldsDefinitionopt

InputFieldsDefinition :
{ InputValueDefinitionlist }

Fields may accept arguments to configure their behavior. These inputs are often scalars or enums, but they
sometimes need to represent more complex values.

A GraphQL Input Object defines a set of input fields; the input fields are either scalars, enums, or other input
objects. This allows arguments to accept arbitrarily complex structs.

In this example, an Input Object called Point2D describes x and y inputs:

input Point2D {

 x: Float

 y: Float

}

The GraphQL Object type (ObjectTypeDefinition) defined above is inappropriate for re‐use here, because
Object types can contain fields that define arguments or contain references to interfaces and unions, neither
of which is appropriate for use as an input argument. For this reason, input objects have a separate type in
the system.

Result Coercion

An input object is never a valid result. Input Object types cannot be the return type of an Object or Interface
field.

Input Coercion

The value for an input object should be an input object literal or an unordered map supplied by a variable,
otherwise a query error must be thrown. In either case, the input object literal or unordered map must not
contain any entries with names not defined by a field of this input object type, otherwise an error must be
thrown.

The result of coercion is an unordered map with an entry for each field both defined by the input object type
and for which a value exists. The resulting map is constructed with the following rules:

Input Objects

Example № 74

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 64/165

If no value is provided for a defined input object field and that field definition provides a default value,
the default value should be used. If no default value is provided and the input object field’s type is non‐
null, an error should be thrown. Otherwise, if the field is not required, then no entry is added to the
coerced unordered map.
If the value null was provided for an input object field, and the field’s type is not a non‐null type, an
entry in the coerced unordered map is given the value null. In other words, there is a semantic
difference between the explicitly provided value null versus having not provided a value.
If a literal value is provided for an input object field, an entry in the coerced unordered map is given
the result of coercing that value according to the input coercion rules for the type of that field.
If a variable is provided for an input object field, the runtime value of that variable must be used. If the
runtime value is null and the field type is non‐null, a field error must be thrown. If no runtime value is
provided, the variable definition’s default value should be used. If the variable definition does not
provide a default value, the input object field definition’s default value should be used.

Following are examples of input coercion for an input object type with a String field a and a required
(non‐null) Int! field b :

input ExampleInputObject {

 a: String

 b: Int!

}

Literal Value Variables Coerced Value

{ a: "abc", b: 123 } {} { a: "abc", b: 123 }

{ a: null, b: 123 } {} { a: null, b: 123 }

{ b: 123 } {} { b: 123 }

{ a: $var, b: 123 } { var: null } { a: null, b: 123 }

{ a: $var, b: 123 } {} { b: 123 }

{ b: $var } { var: 123 } { b: 123 }

$var { var: { b: 123 } } { b: 123 }

"abc123" {} Error: Incorrect value

$var { var: "abc123" } } Error: Incorrect value

{ a: "abc", b: "123" } {} Error: Incorrect value for field b

Example № 75

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 65/165

Literal Value Variables Coerced Value

{ a: "abc" } {} Error: Missing required field b

{ b: $var } {} Error: Missing required field b.

$var { var: { a: "abc" } } Error: Missing required field b

{ a: "abc", b: null } {} Error: b must be non‐null.

{ b: $var } { var: null } Error: b must be non‐null.

{ b: 123, c: "xyz" } {} Error: Unexpected field c

Type Validation

1. An Input Object type must define one or more input fields.
2. For each input field of an Input Object type:

1. The input field must have a unique name within that Input Object type; no two input fields may
share the same name.

2. The input field must not have a name which begins with the characters "__" (two underscores).
3. The input field must accept a type where IsInputType(inputFieldType) returns true.

InputObjectTypeExtension :
extend input Name Directives[Const]opt InputFieldsDefinition

extend input Name Directives[Const]

Input object type extensions are used to represent an input object type which has been extended from some
original input object type. For example, this might be used by a GraphQL service which is itself an extension
of another GraphQL service.

Type Validation

Input object type extensions have the potential to be invalid if incorrectly defined.

1. The named type must already be defined and must be a Input Object type.
2. All fields of an Input Object type extension must have unique names.
3. All fields of an Input Object type extension must not already be a field of the original Input Object.
4. Any directives provided must not already apply to the original Input Object type.

Input Object Extensions

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 66/165

A GraphQL list is a special collection type which declares the type of each item in the List (referred to as the
item type of the list). List values are serialized as ordered lists, where each item in the list is serialized as per
the item type. To denote that a field uses a List type the item type is wrapped in square brackets like this:
pets: [Pet] .

Result Coercion

GraphQL servers must return an ordered list as the result of a list type. Each item in the list must be the
result of a result coercion of the item type. If a reasonable coercion is not possible it must raise a field error.
In particular, if a non‐list is returned, the coercion should fail, as this indicates a mismatch in expectations
between the type system and the implementation.

If a list’s item type is nullable, then errors occuring during preparation or coercion of an individual item in
the list must result in a the value null at that position in the list along with an error added to the response. If a
list’s item type is non‐null, an error occuring at an individual item in the list must result in a field error for
the entire list.

For more information on the error handling process, see “Errors and Non‐Nullability” within the Execution
section.

Input Coercion

When expected as an input, list values are accepted only when each item in the list can be accepted by the
list’s item type.

If the value passed as an input to a list type is not a list and not the null value, then the result of input
coercion is a list of size one, where the single item value is the result of input coercion for the list’s item type
on the provided value (note this may apply recursively for nested lists).

This allow inputs which accept one or many arguments (sometimes referred to as “var args”) to declare their
input type as a list while for the common case of a single value, a client can just pass that value directly
rather than constructing the list.

Following are examples of input coercion with various list types and values:

Expected Type Provided Value Coerced Value

[Int] [1, 2, 3] [1, 2, 3]

[Int] [1, "b", true] Error: Incorrect item value

List

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 67/165

Expected Type Provided Value Coerced Value

[Int] 1 [1]

[Int] null null

[[Int]] [[1], [2, 3]] [[1], [2, 3]

[[Int]] [1, 2, 3] Error: Incorrect item value

[[Int]] 1 [[1]]

[[Int]] null null

By default, all types in GraphQL are nullable; the null value is a valid response for all of the above types. To
declare a type that disallows null, the GraphQL Non‐Null type can be used. This type wraps an underlying
type, and this type acts identically to that wrapped type, with the exception that null is not a valid response
for the wrapping type. A trailing exclamation mark is used to denote a field that uses a Non‐Null type like
this: name: String! .

Nullable vs. Optional

Fields are always optional within the context of a query, a field may be omitted and the query is still valid.
However fields that return Non‐Null types will never return the value null if queried.

Inputs (such as field arguments), are always optional by default. However a non‐null input type is required.
In addition to not accepting the value null, it also does not accept omission. For the sake of simplicity
nullable types are always optional and non‐null types are always required.

Result Coercion

In all of the above result coercions, null was considered a valid value. To coerce the result of a Non‐Null
type, the coercion of the wrapped type should be performed. If that result was not null, then the result of
coercing the Non‐Null type is that result. If that result was null, then a field error must be raised.

When a field error is raised on a non‐null value, the error propogates to the parent field. For more
information on this process, see “Errors and Non‐Nullability” within the Execution section.

Input Coercion

Non-Null

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 68/165

If an argument or input‐object field of a Non‐Null type is not provided, is provided with the literal value
null, or is provided with a variable that was either not provided a value at runtime, or was provided the value
null, then a query error must be raised.

If the value provided to the Non‐Null type is provided with a literal value other than null, or a Non‐Null
variable value, it is coerced using the input coercion for the wrapped type.

A non‐null argument cannot be omitted:

{

 fieldWithNonNullArg

}

The value null cannot be provided to a non‐null argument:

{

 fieldWithNonNullArg(nonNullArg: null)

}

A variable of a nullable type cannot be provided to a non‐null argument:

query withNullableVariable($var: String) {

 fieldWithNonNullArg(nonNullArg: $var)

}

The Validation section defines providing a nullable variable type to a non‐null input type as invalid.

Type Validation

1. A Non‐Null type must not wrap another Non‐Null type.

The List and Non‐Null wrapping types can compose, representing more complex types. The rules for result
coercion and input coercion of Lists and Non‐Null types apply in a recursive fashion.

Counter Example № 76

Counter Example № 77

Example № 78

Note

Combining List and Non-Null

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 69/165

For example if the inner item type of a List is Non‐Null (e.g. [T!]), then that List may not contain any null
items. However if the inner type of a Non‐Null is a List (e.g. [T]!), then null is not accepted however an
empty list is accepted.

Following are examples of result coercion with various types and values:

Expected Type Internal Value Coerced Result

[Int] [1, 2, 3] [1, 2, 3]

[Int] null null

[Int] [1, 2, null] [1, 2, null]

[Int] [1, 2, Error] [1, 2, null] (With logged error)

[Int]! [1, 2, 3] [1, 2, 3]

[Int]! null Error: Value cannot be null

[Int]! [1, 2, null] [1, 2, null]

[Int]! [1, 2, Error] [1, 2, null] (With logged error)

[Int!] [1, 2, 3] [1, 2, 3]

[Int!] null null

[Int!] [1, 2, null] null (With logged coercion error)

[Int!] [1, 2, Error] null (With logged error)

[Int!]! [1, 2, 3] [1, 2, 3]

[Int!]! null Error: Value cannot be null

[Int!]! [1, 2, null] Error: Item cannot be null

[Int!]! [1, 2, Error] Error: Error occurred in item

DirectiveDefinition :
Descriptionopt directive @ Name ArgumentsDefinitionopt on DirectiveLocations

DirectiveLocations :

Directives

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 70/165

|opt DirectiveLocation

DirectiveLocations | DirectiveLocation

DirectiveLocation :
ExecutableDirectiveLocation
TypeSystemDirectiveLocation

ExecutableDirectiveLocation : one of
QUERY

MUTATION

SUBSCRIPTION

FIELD

FRAGMENT_DEFINITION

FRAGMENT_SPREAD

INLINE_FRAGMENT

TypeSystemDirectiveLocation : one of
SCHEMA

SCALAR

OBJECT

FIELD_DEFINITION

ARGUMENT_DEFINITION

INTERFACE

UNION

ENUM

ENUM_VALUE

INPUT_OBJECT

INPUT_FIELD_DEFINITION

A GraphQL schema describes directives which are used to annotate various parts of a GraphQL document as
an indicator that they should be evaluated differently by a validator, executor, or client tool such as a code
generator.

GraphQL implementations should provide the @skip and @include directives.

GraphQL implementations that support the type system definition language must provide the @deprecated
directive if representing deprecated portions of the schema.

Directives must only be used in the locations they are declared to belong in. In this example, a directive is
defined which can be used to annotate a fragment definition:

Example № 79

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 71/165

directive @example on FIELD

fragment SomeFragment on SomeType {

 field @example

}

Directive locations may be defined with an optional leading | character to aid formatting when representing
a longer list of possible locations:

directive @example on

 | FIELD

 | FRAGMENT_SPREAD

 | INLINE_FRAGMENT

Directives can also be used to annotate the type system definition language as well, which can be a useful
tool for supplying additional metadata in order to generate GraphQL execution services, produce client
generated runtime code, or many other useful extensions of the GraphQL semantics.

In this example, the directive @example annotates field and argument definitions:

directive @example on FIELD_DEFINITION | ARGUMENT_DEFINITION

type SomeType {

 field(arg: Int @example): String @example

}

While defining a directive, it must not reference itself directly or indirectly:

directive @invalidExample(arg: String @invalidExample) on ARGUMENT_DEFINITION

Validation

1. A directive definition must not contain the use of a directive which references itself directly.
2. A directive definition must not contain the use of a directive which references itself indirectly by

referencing a Type or Directive which transitively includes a reference to this directive.
3. The directive must not have a name which begins with the characters "__" (two underscores).
4. For each argument of the directive:

1. The argument must not have a name which begins with the characters "__" (two underscores).

Example № 80

Example № 81

Counter Example № 82

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 72/165

2. The argument must accept a type where IsInputType(argumentType) returns true.

directive @skip(if: Boolean!) on FIELD | FRAGMENT_SPREAD | INLINE_FRAGMENT

The @skip directive may be provided for fields, fragment spreads, and inline fragments, and allows for
conditional exclusion during execution as described by the if argument.

In this example experimentalField will only be queried if the variable $someTest has the value false .

query myQuery($someTest: Boolean) {

 experimentalField @skip(if: $someTest)

}

directive @include(if: Boolean!) on FIELD | FRAGMENT_SPREAD | INLINE_FRAGMENT

The @include directive may be provided for fields, fragment spreads, and inline fragments, and allows for
conditional inclusion during execution as described by the if argument.

In this example experimentalField will only be queried if the variable $someTest has the value true

query myQuery($someTest: Boolean) {

 experimentalField @include(if: $someTest)

}

Neither @skip nor @include has precedence over the other. In the case that both the @skip and @include
directives are provided in on the same the field or fragment, it must be queried only if the @skip condition is
false and the @include condition is true. Stated conversely, the field or fragment must not be queried if
either the @skip condition is true or the @include condition is false.

@skip

Example № 83

@include

Example № 84

Note

@deprecated

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 73/165

directive @deprecated(

 reason: String = "No longer supported"

) on FIELD_DEFINITION | ENUM_VALUE

The @deprecated directive is used within the type system definition language to indicate deprecated
portions of a GraphQL service’s schema, such as deprecated fields on a type or deprecated enum values.

Deprecations include a reason for why it is deprecated, which is formatted using Markdown syntax (as
specified by CommonMark).

In this example type definition, oldField is deprecated in favor of using newField .

type ExampleType {

 newField: String

 oldField: String @deprecated(reason: "Use `newField`.")

}

A GraphQL server supports introspection over its schema. This schema is queried using GraphQL itself,
creating a powerful platform for tool‐building.

Take an example query for a trivial app. In this case there is a User type with three fields: id, name, and
birthday.

For example, given a server with the following type definition:

type User {

 id: String

 name: String

 birthday: Date

}

The query

Example № 85

Introspection

Example № 86

☰

http://commonmark.org/

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 74/165

{

 __type(name: "User") {

 name

 fields {

 name

 type {

 name

 }

 }

 }

}

would return

{

 "__type": {

 "name": "User",

 "fields": [

 {

 "name": "id",

 "type": { "name": "String" }

 },

 {

 "name": "name",

 "type": { "name": "String" }

 },

 {

 "name": "birthday",

 "type": { "name": "Date" }

 },

]

 }

}

Example № 87

Example № 88

Reserved Names

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 75/165

Types and fields required by the GraphQL introspection system that are used in the same context as user‐
defined types and fields are prefixed with "__" two underscores. This in order to avoid naming collisions
with user‐defined GraphQL types. Conversely, GraphQL type system authors must not define any types,
fields, arguments, or any other type system artifact with two leading underscores.

All types in the introspection system provide a description field of type String to allow type designers
to publish documentation in addition to capabilities. A GraphQL server may return the description field
using Markdown syntax (as specified by CommonMark). Therefore it is recommended that any tool that
displays description use a CommonMark‐compliant Markdown renderer.

To support the management of backwards compatibility, GraphQL fields and enum values can indicate
whether or not they are deprecated (isDeprecated: Boolean) and a description of why it is deprecated
(deprecationReason: String).

Tools built using GraphQL introspection should respect deprecation by discouraging deprecated use through
information hiding or developer‐facing warnings.

GraphQL supports type name introspection at any point within a query by the meta‐field
__typename: String! when querying against any Object, Interface, or Union. It returns the name of the
object type currently being queried.

This is most often used when querying against Interface or Union types to identify which actual type of the
possible types has been returned.

This field is implicit and does not appear in the fields list in any defined type.

Documentation

Deprecation

Type Name Introspection

Schema Introspection

☰

http://commonmark.org/

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 76/165

The schema introspection system is accessible from the meta‐fields __schema and __type which are
accessible from the type of the root of a query operation.

__schema: __Schema!

__type(name: String!): __Type

These fields are implicit and do not appear in the fields list in the root type of the query operation.

The schema of the GraphQL schema introspection system:

type __Schema {

 types: [__Type!]!

 queryType: __Type!

 mutationType: __Type

 subscriptionType: __Type

 directives: [__Directive!]!

}

type __Type {

 kind: __TypeKind!

 name: String

 description: String

 # OBJECT and INTERFACE only

 fields(includeDeprecated: Boolean = false): [__Field!]

 # OBJECT only

 interfaces: [__Type!]

 # INTERFACE and UNION only

 possibleTypes: [__Type!]

 # ENUM only

 enumValues(includeDeprecated: Boolean = false): [__EnumValue!]

 # INPUT_OBJECT only

 inputFields: [__InputValue!]

 # NON_NULL and LIST only

 ofType: __Type

}

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 77/165

type __Field {

 name: String!

 description: String

 args: [__InputValue!]!

 type: __Type!

 isDeprecated: Boolean!

 deprecationReason: String

}

type __InputValue {

 name: String!

 description: String

 type: __Type!

 defaultValue: String

}

type __EnumValue {

 name: String!

 description: String

 isDeprecated: Boolean!

 deprecationReason: String

}

enum __TypeKind {

 SCALAR

 OBJECT

 INTERFACE

 UNION

 ENUM

 INPUT_OBJECT

 LIST

 NON_NULL

}

type __Directive {

 name: String!

 description: String

 locations: [__DirectiveLocation!]!

 args: [__InputValue!]!

}

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 78/165

enum __DirectiveLocation {

 QUERY

 MUTATION

 SUBSCRIPTION

 FIELD

 FRAGMENT_DEFINITION

 FRAGMENT_SPREAD

 INLINE_FRAGMENT

 SCHEMA

 SCALAR

 OBJECT

 FIELD_DEFINITION

 ARGUMENT_DEFINITION

 INTERFACE

 UNION

 ENUM

 ENUM_VALUE

 INPUT_OBJECT

 INPUT_FIELD_DEFINITION

}

__Type is at the core of the type introspection system. It represents scalars, interfaces, object types, unions,
enums in the system.

__Type also represents type modifiers, which are used to modify a type that it refers to (ofType: __Type).
This is how we represent lists, non‐nullable types, and the combinations thereof.

There are several different kinds of type. In each kind, different fields are actually valid. These kinds are
listed in the __TypeKind enumeration.

Represents scalar types such as Int, String, and Boolean. Scalars cannot have fields.

The __Type Type

Type Kinds

Scalar

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 79/165

A GraphQL type designer should describe the data format and scalar coercion rules in the description field
of any scalar.

Fields

kind must return __TypeKind.SCALAR .
name must return a String.
description may return a String or null.
All other fields must return null.

Object types represent concrete instantiations of sets of fields. The introspection types (e.g. __Type ,
__Field , etc) are examples of objects.

Fields

kind must return __TypeKind.OBJECT .
name must return a String.
description may return a String or null.
fields : The set of fields query‐able on this type.

Accepts the argument includeDeprecated which defaults to false. If true, deprecated fields
are also returned.

interfaces : The set of interfaces that an object implements.
All other fields must return null.

Unions are an abstract type where no common fields are declared. The possible types of a union are
explicitly listed out in possibleTypes . Types can be made parts of unions without modification of that
type.

Fields

kind must return __TypeKind.UNION .
name must return a String.
description may return a String or null.
possibleTypes returns the list of types that can be represented within this union. They must be object
types.
All other fields must return null.

Object

Union

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 80/165

Interfaces are an abstract type where there are common fields declared. Any type that implements an
interface must define all the fields with names and types exactly matching. The implementations of this
interface are explicitly listed out in possibleTypes .

Fields

kind must return __TypeKind.INTERFACE .
name must return a String.
description may return a String or null.
fields : The set of fields required by this interface.

Accepts the argument includeDeprecated which defaults to false. If true, deprecated fields
are also returned.

possibleTypes returns the list of types that implement this interface. They must be object types.
All other fields must return null.

Enums are special scalars that can only have a defined set of values.

Fields

kind must return __TypeKind.ENUM .
name must return a String.
description may return a String or null.
enumValues : The list of EnumValue . There must be at least one and they must have unique names.

Accepts the argument includeDeprecated which defaults to false. If true, deprecated enum
values are also returned.

All other fields must return null.

Input objects are composite types used as inputs into queries defined as a list of named input values.

For example the input object Point could be defined as:

input Point {

 x: Int

Interface

Enum

Input Object

Example № 89

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 81/165

 y: Int

}

Fields

kind must return __TypeKind.INPUT_OBJECT .
name must return a String.
description may return a String or null.
inputFields : a list of InputValue .
All other fields must return null.

Lists represent sequences of values in GraphQL. A List type is a type modifier: it wraps another type
instance in the ofType field, which defines the type of each item in the list.

Fields

kind must return __TypeKind.LIST .
ofType : Any type.
All other fields must return null.

GraphQL types are nullable. The value null is a valid response for field type.

A Non‐null type is a type modifier: it wraps another type instance in the ofType field. Non‐null types do not
allow null as a response, and indicate required inputs for arguments and input object fields.

kind must return __TypeKind.NON_NULL .
ofType : Any type except Non‐null.
All other fields must return null.

The __Field type represents each field in an Object or Interface type.

Fields

name must return a String

List

Non-Null

The __Field Type

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 82/165

description may return a String or null
args returns a List of __InputValue representing the arguments this field accepts.
type must return a __Type that represents the type of value returned by this field.
isDeprecated returns true if this field should no longer be used, otherwise false.
deprecationReason optionally provides a reason why this field is deprecated.

The __InputValue type represents field and directive arguments as well as the inputFields of an input
object.

Fields

name must return a String
description may return a String or null
type must return a __Type that represents the type this input value expects.
defaultValue may return a String encoding (using the GraphQL language) of the default value used
by this input value in the condition a value is not provided at runtime. If this input value has no default
value, returns null.

The __EnumValue type represents one of possible values of an enum.

Fields

name must return a String
description may return a String or null
isDeprecated returns true if this field should no longer be used, otherwise false.
deprecationReason optionally provides a reason why this field is deprecated.

The __Directive type represents a Directive that a server supports.

Fields

name must return a String
description may return a String or null

The __InputValue Type

The __EnumValue Type

The __Directive Type

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 83/165

locations returns a List of __DirectiveLocation representing the valid locations this directive
may be placed.
args returns a List of __InputValue representing the arguments this directive accepts.

GraphQL does not just verify if a request is syntactically correct, but also ensures that it is unambiguous and
mistake‐free in the context of a given GraphQL schema.

An invalid request is still technically executable, and will always produce a stable result as defined by the
algorithms in the Execution section, however that result may be ambiguous, surprising, or unexpected
relative to a request containing validation errors, so execution should only occur for valid requests.

Typically validation is performed in the context of a request immediately before execution, however a
GraphQL service may execute a request without explicitly validating it if that exact same request is known
to have been validated before. For example: the request may be validated during development, provided it
does not later change, or a service may validate a request once and memoize the result to avoid validating
the same request again in the future. Any client‐side or development‐time tool should report validation errors
and not allow the formulation or execution of requests known to be invalid at that given point in time.

Type system evolution

As GraphQL type system schema evolve over time by adding new types and new fields, it is possible that a
request which was previously valid could later become invalid. Any change that can cause a previously valid
request to become invalid is considered a breaking change. GraphQL services and schema maintainers are
encouraged to avoid breaking changes, however in order to be more resilient to these breaking changes,
sophisticated GraphQL systems may still allow for the execution of requests which at some point were
known to be free of any validation errors, and have not changed since.

Examples

For this section of this schema, we will assume the following type system in order to demonstrate examples:

type Query {

 dog: Dog

}

Validation

Example № 90

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 84/165

enum DogCommand { SIT, DOWN, HEEL }

type Dog implements Pet {

 name: String!

 nickname: String

 barkVolume: Int

 doesKnowCommand(dogCommand: DogCommand!): Boolean!

 isHousetrained(atOtherHomes: Boolean): Boolean!

 owner: Human

}

interface Sentient {

 name: String!

}

interface Pet {

 name: String!

}

type Alien implements Sentient {

 name: String!

 homePlanet: String

}

type Human implements Sentient {

 name: String!

}

enum CatCommand { JUMP }

type Cat implements Pet {

 name: String!

 nickname: String

 doesKnowCommand(catCommand: CatCommand!): Boolean!

 meowVolume: Int

}

union CatOrDog = Cat | Dog

union DogOrHuman = Dog | Human

union HumanOrAlien = Human | Alien

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 85/165

Formal Specification

For each definition definition in the document.
definition must be OperationDefinition or FragmentDefinition (it must not be TypeSystemDefinition).

Explanatory Text

GraphQL execution will only consider the executable definitions Operation and Fragment. Type system
definitions and extensions are not executable, and are not considered during execution.

To avoid ambiguity, a document containing TypeSystemDefinition is invalid for execution.

GraphQL documents not intended to be directly executed may include TypeSystemDefinition.

For example, the following document is invalid for execution since the original executing schema may not
know about the provided type extension:

query getDogName {

 dog {

 name

 color

 }

}

extend type Dog {

 color: String

}

Documents

Executable Definitions

Counter Example № 91

Operations

Named Operation Definitions

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 86/165

Formal Specification

For each operation definition operation in the document.
Let operationName be the name of operation.
If operationName exists

Let operations be all operation definitions in the document named operationName.
operations must be a set of one.

Explanatory Text

Each named operation definition must be unique within a document when referred to by its name.

For example the following document is valid:

query getDogName {

 dog {

 name

 }

}

query getOwnerName {

 dog {

 owner {

 name

 }

 }

}

While this document is invalid:

query getName {

 dog {

 name

 }

}

query getName {

 dog {

Operation Name Uniqueness

Example № 92

Counter Example № 93

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 87/165

 owner {

 name

 }

 }

}

It is invalid even if the type of each operation is different:

query dogOperation {

 dog {

 name

 }

}

mutation dogOperation {

 mutateDog {

 id

 }

}

Formal Specification

Let operations be all operation definitions in the document.
Let anonymous be all anonymous operation definitions in the document.
If operations is a set of more than 1:

anonymous must be empty.

Explanatory Text

GraphQL allows a short‐hand form for defining query operations when only that one operation exists in the
document.

For example the following document is valid:

Counter Example № 94

Anonymous Operation Definitions

Lone Anonymous Operation

Example № 95

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 88/165

{

 dog {

 name

 }

}

While this document is invalid:

{

 dog {

 name

 }

}

query getName {

 dog {

 owner {

 name

 }

 }

}

Formal Specification

For each subscription operation definition subscription in the document
Let subscriptionType be the root Subscription type in schema.
Let selectionSet be the top level selection set on subscription.
Let variableValues be the empty set.
Let groupedFieldSet be the result of CollectFields(subscriptionType, selectionSet, variableValues).
groupedFieldSet must have exactly one entry.

Explanatory Text

Subscription operations must have exactly one root field.

Counter Example № 96

Subscription Operation Definitions

Single root field

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 89/165

Valid examples:

subscription sub {

 newMessage {

 body

 sender

 }

}

subscription sub {

 ...newMessageFields

}

fragment newMessageFields on Subscription {

 newMessage {

 body

 sender

 }

}

Invalid:

subscription sub {

 newMessage {

 body

 sender

 }

 disallowedSecondRootField

}

subscription sub {

 ...multipleSubscriptions

}

fragment multipleSubscriptions on Subscription {

 newMessage {

 body

Example № 97

Example № 98

Counter Example № 99

Counter Example № 100

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 90/165

 sender

 }

 disallowedSecondRootField

}

Introspection fields are counted. The following example is also invalid:

subscription sub {

 newMessage {

 body

 sender

 }

 __typename

}

While each subscription must have exactly one root field, a document may contain any number of
operations, each of which may contain different root fields. When executed, a document containing multiple
subscription operations must provide the operation name as described in GetOperation().

Formal Specification

For each selection in the document.
Let fieldName be the target field of selection
fieldName must be defined on type in scope

Explanatory Text

The target field of a field selection must be defined on the scoped type of the selection set. There are no
limitations on alias names.

For example the following fragment would not pass validation:

Counter Example № 101

Note

Fields

Field Selections on Objects, Interfaces, and Unions Types

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 91/165

fragment fieldNotDefined on Dog {

 meowVolume

}

fragment aliasedLyingFieldTargetNotDefined on Dog {

 barkVolume: kawVolume

}

For interfaces, direct field selection can only be done on fields. Fields of concrete implementors are not
relevant to the validity of the given interface‐typed selection set.

For example, the following is valid:

fragment interfaceFieldSelection on Pet {

 name

}

and the following is invalid:

fragment definedOnImplementorsButNotInterface on Pet {

 nickname

}

Because unions do not define fields, fields may not be directly selected from a union‐typed selection set,
with the exception of the meta‐field __typename. Fields from a union‐typed selection set must only be
queried indirectly via a fragment.

For example the following is valid:

fragment inDirectFieldSelectionOnUnion on CatOrDog {

 __typename

 ... on Pet {

 name

 }

 ... on Dog {

 barkVolume

Counter Example № 102

Example № 103

Counter Example № 104

Example № 105

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 92/165

 }

}

But the following is invalid:

fragment directFieldSelectionOnUnion on CatOrDog {

 name

 barkVolume

}

Formal Specification

Let set be any selection set defined in the GraphQL document.
FieldsInSetCanMerge(set) must be true.

FieldsInSetCanMerge(set) :

1. Let fieldsForName be the set of selections with a given response name in set including visiting
fragments and inline fragments.

2. Given each pair of members fieldA and fieldB in fieldsForName:
a. SameResponseShape(fieldA, fieldB) must be true.
b. If the parent types of fieldA and fieldB are equal or if either is not an Object Type:

i. fieldA and fieldB must have identical field names.
ii. fieldA and fieldB must have identical sets of arguments.

iii. Let mergedSet be the result of adding the selection set of fieldA and the selection set of
fieldB.

iv. FieldsInSetCanMerge(mergedSet) must be true.

SameResponseShape(fieldA, fieldB) :

1. Let typeA be the return type of fieldA.
2. Let typeB be the return type of fieldB.
3. If typeA or typeB is Non‐Null.

a. If typeA or typeB is nullable, return false.
b. Let typeA be the nullable type of typeA
c. Let typeB be the nullable type of typeB

4. If typeA or typeB is List.
a. If typeA or typeB is not List, return false.

Counter Example № 106

Field Selection Merging

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 93/165

b. Let typeA be the item type of typeA
c. Let typeB be the item type of typeB
d. Repeat from step 3.

5. If typeA or typeB is Scalar or Enum.
a. If typeA and typeB are the same type return true, otherwise return false.

6. If typeA or typeB is not a composite type, return false.
7. Let mergedSet be the result of adding the selection set of fieldA and the selection set of fieldB.
8. Let fieldsForName be the set of selections with a given response name in mergedSet including

visiting fragments and inline fragments.
9. Given each pair of members subfieldA and subfieldB in fieldsForName:

a. If SameResponseShape(subfieldA, subfieldB) is false, return false.
10. Return true.

Explanatory Text

If multiple field selections with the same response names are encountered during execution, the field and
arguments to execute and the resulting value should be unambiguous. Therefore any two field selections
which might both be encountered for the same object are only valid if they are equivalent.

During execution, the simultaneous execution of fields with the same response name is accomplished by
MergeSelectionSets() and CollectFields().

For simple hand‐written GraphQL, this rule is obviously a clear developer error, however nested fragments
can make this difficult to detect manually.

The following selections correctly merge:

fragment mergeIdenticalFields on Dog {

 name

 name

}

fragment mergeIdenticalAliasesAndFields on Dog {

 otherName: name

 otherName: name

}

The following is not able to merge:

fragment conflictingBecauseAlias on Dog {

 name: nickname

Example № 107

Counter Example № 108

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 94/165

 name

}

Identical arguments are also merged if they have identical arguments. Both values and variables can be
correctly merged.

For example the following correctly merge:

fragment mergeIdenticalFieldsWithIdenticalArgs on Dog {

 doesKnowCommand(dogCommand: SIT)

 doesKnowCommand(dogCommand: SIT)

}

fragment mergeIdenticalFieldsWithIdenticalValues on Dog {

 doesKnowCommand(dogCommand: $dogCommand)

 doesKnowCommand(dogCommand: $dogCommand)

}

The following do not correctly merge:

fragment conflictingArgsOnValues on Dog {

 doesKnowCommand(dogCommand: SIT)

 doesKnowCommand(dogCommand: HEEL)

}

fragment conflictingArgsValueAndVar on Dog {

 doesKnowCommand(dogCommand: SIT)

 doesKnowCommand(dogCommand: $dogCommand)

}

fragment conflictingArgsWithVars on Dog {

 doesKnowCommand(dogCommand: $varOne)

 doesKnowCommand(dogCommand: $varTwo)

}

fragment differingArgs on Dog {

 doesKnowCommand(dogCommand: SIT)

 doesKnowCommand

}

Example № 109

Counter Example № 110

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 95/165

The following fields would not merge together, however both cannot be encountered against the same object,
so they are safe:

fragment safeDifferingFields on Pet {

 ... on Dog {

 volume: barkVolume

 }

 ... on Cat {

 volume: meowVolume

 }

}

fragment safeDifferingArgs on Pet {

 ... on Dog {

 doesKnowCommand(dogCommand: SIT)

 }

 ... on Cat {

 doesKnowCommand(catCommand: JUMP)

 }

}

However, the field responses must be shapes which can be merged. For example, scalar values must not
differ. In this example, someValue might be a String or an Int :

fragment conflictingDifferingResponses on Pet {

 ... on Dog {

 someValue: nickname

 }

 ... on Cat {

 someValue: meowVolume

 }

}

Formal Specification

For each selection in the document

Example № 111

Counter Example № 112

Leaf Field Selections

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 96/165

Let selectionType be the result type of selection
If selectionType is a scalar or enum:

The subselection set of that selection must be empty
If selectionType is an interface, union, or object

The subselection set of that selection must NOT BE empty

Explanatory Text

Field selections on scalars or enums are never allowed, because they are the leaf nodes of any GraphQL
query.

The following is valid.

fragment scalarSelection on Dog {

 barkVolume

}

The following is invalid.

fragment scalarSelectionsNotAllowedOnInt on Dog {

 barkVolume {

 sinceWhen

 }

}

Conversely the leaf field selections of GraphQL queries must be of type scalar or enum. Leaf selections on
objects, interfaces, and unions without subfields are disallowed.

Let’s assume the following additions to the query root type of the schema:

extend type Query {

 human: Human

 pet: Pet

 catOrDog: CatOrDog

}

The following examples are invalid

Example № 113

Counter Example № 114

Example № 115

Counter Example № 116

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 97/165

query directQueryOnObjectWithoutSubFields {

 human

}

query directQueryOnInterfaceWithoutSubFields {

 pet

}

query directQueryOnUnionWithoutSubFields {

 catOrDog

}

Arguments are provided to both fields and directives. The following validation rules apply in both cases.

Formal Specification

For each argument in the document
Let argumentName be the Name of argument.
Let argumentDefinition be the argument definition provided by the parent field or definition named
argumentName.
argumentDefinition must exist.

Explanatory Text

Every argument provided to a field or directive must be defined in the set of possible arguments of that field
or directive.

For example the following are valid:

fragment argOnRequiredArg on Dog {

 doesKnowCommand(dogCommand: SIT)

}

fragment argOnOptional on Dog {

Arguments

Argument Names

Example № 117

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 98/165

 isHousetrained(atOtherHomes: true) @include(if: true)

}

the following is invalid since command is not defined on DogCommand .

fragment invalidArgName on Dog {

 doesKnowCommand(command: CLEAN_UP_HOUSE)

}

and this is also invalid as unless is not defined on @include .

fragment invalidArgName on Dog {

 isHousetrained(atOtherHomes: true) @include(unless: false)

}

In order to explore more complicated argument examples, let’s add the following to our type system:

type Arguments {

 multipleReqs(x: Int!, y: Int!): Int!

 booleanArgField(booleanArg: Boolean): Boolean

 floatArgField(floatArg: Float): Float

 intArgField(intArg: Int): Int

 nonNullBooleanArgField(nonNullBooleanArg: Boolean!): Boolean!

 booleanListArgField(booleanListArg: [Boolean]!): [Boolean]

 optionalNonNullBooleanArgField(optionalBooleanArg: Boolean! = false): Boolean!

}

extend type Query {

 arguments: Arguments

}

Order does not matter in arguments. Therefore both the following example are valid.

fragment multipleArgs on Arguments {

 multipleReqs(x: 1, y: 2)

}

Counter Example № 118

Counter Example № 119

Example № 120

Example № 121

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 99/165

fragment multipleArgsReverseOrder on Arguments {

 multipleReqs(y: 1, x: 2)

}

Fields and directives treat arguments as a mapping of argument name to value. More than one argument with
the same name in an argument set is ambiguous and invalid.

Formal Specification

For each argument in the Document.
Let argumentName be the Name of argument.
Let arguments be all Arguments named argumentName in the Argument Set which contains argument.
arguments must be the set containing only argument.

For each Field or Directive in the document.
Let arguments be the arguments provided by the Field or Directive.
Let argumentDefinitions be the set of argument definitions of that Field or Directive.
For each argumentDefinition in argumentDefinitions:

Let type be the expected type of argumentDefinition.
Let defaultValue be the default value of argumentDefinition.
If type is Non‐Null and defaultValue does not exist:

Let argumentName be the name of argumentDefinition.
Let argument be the argument in arguments named argumentName
argument must exist.
Let value be the value of argument.
value must not be the null literal.

Explanatory Text

Arguments can be required. An argument is required if the argument type is non‐null and does not have a
default value. Otherwise, the argument is optional.

For example the following are valid:

fragment goodBooleanArg on Arguments {

 booleanArgField(booleanArg: true)

Argument Uniqueness

Required Arguments

Example № 122

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 100/165

}

fragment goodNonNullArg on Arguments {

 nonNullBooleanArgField(nonNullBooleanArg: true)

}

The argument can be omitted from a field with a nullable argument.

Therefore the following query is valid:

fragment goodBooleanArgDefault on Arguments {

 booleanArgField

}

but this is not valid on a required argument.

fragment missingRequiredArg on Arguments {

 nonNullBooleanArgField

}

Providing the explicit value null is also not valid since required arguments always have a non‐null type.

fragment missingRequiredArg on Arguments {

 nonNullBooleanArgField(nonNullBooleanArg: null)

}

Formal Specification

Example № 123

Counter Example № 124

Counter Example № 125

Fragments

Fragment Declarations

Fragment Name Uniqueness

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 101/165

For each fragment definition fragment in the document
Let fragmentName be the name of fragment.
Let fragments be all fragment definitions in the document named fragmentName.
fragments must be a set of one.

Explanatory Text

Fragment definitions are referenced in fragment spreads by name. To avoid ambiguity, each fragment’s name
must be unique within a document.

Inline fragments are not considered fragment definitions, and are unaffected by this validation rule.

For example the following document is valid:

{

 dog {

 ...fragmentOne

 ...fragmentTwo

 }

}

fragment fragmentOne on Dog {

 name

}

fragment fragmentTwo on Dog {

 owner {

 name

 }

}

While this document is invalid:

{

 dog {

 ...fragmentOne

 }

}

fragment fragmentOne on Dog {

Example № 126

Counter Example № 127

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 102/165

 name

}

fragment fragmentOne on Dog {

 owner {

 name

 }

}

Formal Specification

For each named spread namedSpread in the document
Let fragment be the target of namedSpread
The target type of fragment must be defined in the schema

Explanatory Text

Fragments must be specified on types that exist in the schema. This applies for both named and inline
fragments. If they are not defined in the schema, the query does not validate.

For example the following fragments are valid:

fragment correctType on Dog {

 name

}

fragment inlineFragment on Dog {

 ... on Dog {

 name

 }

}

fragment inlineFragment2 on Dog {

 ... @include(if: true) {

 name

 }

}

Fragment Spread Type Existence

Example № 128

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 103/165

and the following do not validate:

fragment notOnExistingType on NotInSchema {

 name

}

fragment inlineNotExistingType on Dog {

 ... on NotInSchema {

 name

 }

}

Formal Specification

For each fragment defined in the document.
The target type of fragment must have kind UNION, INTERFACE, or OBJECT.

Explanatory Text

Fragments can only be declared on unions, interfaces, and objects. They are invalid on scalars. They can
only be applied on non‐leaf fields. This rule applies to both inline and named fragments.

The following fragment declarations are valid:

fragment fragOnObject on Dog {

 name

}

fragment fragOnInterface on Pet {

 name

}

fragment fragOnUnion on CatOrDog {

 ... on Dog {

 name

 }

}

Counter Example № 129

Fragments On Composite Types

Example № 130

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 104/165

and the following are invalid:

fragment fragOnScalar on Int {

 something

}

fragment inlineFragOnScalar on Dog {

 ... on Boolean {

 somethingElse

 }

}

Formal Specification

For each fragment defined in the document.
fragment must be the target of at least one spread in the document

Explanatory Text

Defined fragments must be used within a document.

For example the following is an invalid document:

fragment nameFragment on Dog { # unused

 name

}

{

 dog {

 name

 }

}

Counter Example № 131

Fragments Must Be Used

Counter Example № 132

Fragment Spreads

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 105/165

Field selection is also determined by spreading fragments into one another. The selection set of the target
fragment is unioned with the selection set at the level at which the target fragment is referenced.

Formal Specification

For every namedSpread in the document.
Let fragment be the target of namedSpread
fragment must be defined in the document

Explanatory Text

Named fragment spreads must refer to fragments defined within the document. It is a validation error if the
target of a spread is not defined.

{

 dog {

 ...undefinedFragment

 }

}

Formal Specification

For each fragmentDefinition in the document
Let visited be the empty set.
DetectCycles(fragmentDefinition, visited)

DetectCycles(fragmentDefinition, visited) :

Let spreads be all fragment spread descendants of fragmentDefinition
For each spread in spreads

visited must not contain spread
Let nextVisited be the set including spread and members of visited
Let nextFragmentDefinition be the target of spread
DetectCycles(nextFragmentDefinition, nextVisited)

Explanatory Text

Fragment spread target defined

Counter Example № 133

Fragment spreads must not form cycles

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 106/165

The graph of fragment spreads must not form any cycles including spreading itself. Otherwise an operation
could infinitely spread or infinitely execute on cycles in the underlying data.

This invalidates fragments that would result in an infinite spread:

{

 dog {

 ...nameFragment

 }

}

fragment nameFragment on Dog {

 name

 ...barkVolumeFragment

}

fragment barkVolumeFragment on Dog {

 barkVolume

 ...nameFragment

}

If the above fragments were inlined, this would result in the infinitely large:

{

 dog {

 name

 barkVolume

 name

 barkVolume

 name

 barkVolume

 name

 # forever...

 }

}

This also invalidates fragments that would result in an infinite recursion when executed against cyclic data:

Counter Example № 134

Example № 135

Counter Example № 136

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 107/165

{

 dog {

 ...dogFragment

 }

}

fragment dogFragment on Dog {

 name

 owner {

 ...ownerFragment

 }

}

fragment ownerFragment on Dog {

 name

 pets {

 ...dogFragment

 }

}

Formal Specification

For each spread (named or inline) defined in the document.
Let fragment be the target of spread
Let fragmentType be the type condition of fragment
Let parentType be the type of the selection set containing spread
Let applicableTypes be the intersection of GetPossibleTypes(fragmentType) and
GetPossibleTypes(parentType)
applicableTypes must not be empty.

GetPossibleTypes(type) :

1. If type is an object type, return a set containing type
2. If type is an interface type, return the set of types implementing type
3. If type is a union type, return the set of possible types of type

Explanatory Text

Fragments are declared on a type and will only apply when the runtime object type matches the type
condition. They also are spread within the context of a parent type. A fragment spread is only valid if its type

Fragment spread is possible

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 108/165

condition could ever apply within the parent type.

In the scope of an object type, the only valid object type fragment spread is one that applies to the same type
that is in scope.

For example

fragment dogFragment on Dog {

 ... on Dog {

 barkVolume

 }

}

and the following is invalid

fragment catInDogFragmentInvalid on Dog {

 ... on Cat {

 meowVolume

 }

}

In scope of an object type, unions or interface spreads can be used if the object type implements the interface
or is a member of the union.

For example

fragment petNameFragment on Pet {

 name

}

fragment interfaceWithinObjectFragment on Dog {

 ...petNameFragment

}

Object Spreads In Object Scope

Example № 137

Counter Example № 138

Abstract Spreads in Object Scope

Example № 139

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 109/165

is valid because Dog implements Pet.

Likewise

fragment catOrDogNameFragment on CatOrDog {

 ... on Cat {

 meowVolume

 }

}

fragment unionWithObjectFragment on Dog {

 ...catOrDogNameFragment

}

is valid because Dog is a member of the CatOrDog union. It is worth noting that if one inspected the
contents of the CatOrDogNameFragment you could note that no valid results would ever be returned.
However we do not specify this as invalid because we only consider the fragment declaration, not its body.

Union or interface spreads can be used within the context of an object type fragment, but only if the object
type is one of the possible types of that interface or union.

For example, the following fragments are valid:

fragment petFragment on Pet {

 name

 ... on Dog {

 barkVolume

 }

}

fragment catOrDogFragment on CatOrDog {

 ... on Cat {

 meowVolume

 }

}

Example № 140

Object Spreads In Abstract Scope

Example № 141

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 110/165

petFragment is valid because Dog implements the interface Pet. catOrDogFragment is valid because Cat is
a member of the CatOrDog union.

By contrast the following fragments are invalid:

fragment sentientFragment on Sentient {

 ... on Dog {

 barkVolume

 }

}

fragment humanOrAlienFragment on HumanOrAlien {

 ... on Cat {

 meowVolume

 }

}

Dog does not implement the interface Sentient and therefore sentientFragment can never return meaningful
results. Therefore the fragment is invalid. Likewise Cat is not a member of the union HumanOrAlien, and it
can also never return meaningful results, making it invalid.

Union or interfaces fragments can be used within each other. As long as there exists at least one object type
that exists in the intersection of the possible types of the scope and the spread, the spread is considered valid.

So for example

fragment unionWithInterface on Pet {

 ...dogOrHumanFragment

}

fragment dogOrHumanFragment on DogOrHuman {

 ... on Dog {

 barkVolume

 }

}

is consider valid because Dog implements interface Pet and is a member of DogOrHuman.

Counter Example № 142

Abstract Spreads in Abstract Scope

Example № 143

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 111/165

However

fragment nonIntersectingInterfaces on Pet {

 ...sentientFragment

}

fragment sentientFragment on Sentient {

 name

}

is not valid because there exists no type that implements both Pet and Sentient.

Format Specification

For each input Value value in the document.
Let type be the type expected in the position value is found.
value must be coercible to type.

Explanatory Text

Literal values must be compatible with the type expected in the position they are found as per the coercion
rules defined in the Type System chapter.

The type expected in a position include the type defined by the argument a value is provided for, the type
defined by an input object field a value is provided for, and the type of a variable definition a default value is
provided for.

The following examples are valid use of value literals:

fragment goodBooleanArg on Arguments {

 booleanArgField(booleanArg: true)

}

Counter Example № 144

Values

Values of Correct Type

Example № 145

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 112/165

fragment coercedIntIntoFloatArg on Arguments {

 # Note: The input coercion rules for Float allow Int literals.

 floatArgField(floatArg: 123)

}

query goodComplexDefaultValue($search: ComplexInput = { name: "Fido" }) {

 findDog(complex: $search)

}

Non‐coercible values (such as a String into an Int) are invalid. The following examples are invalid:

fragment stringIntoInt on Arguments {

 intArgField(intArg: "123")

}

query badComplexValue {

 findDog(complex: { name: 123 })

}

Formal Specification

For each Input Object Field inputField in the document
Let inputFieldName be the Name of inputField.
Let inputFieldDefinition be the input field definition provided by the parent input object type named
inputFieldName.
inputFieldDefinition must exist.

Explanatory Text

Every input field provided in an input object value must be defined in the set of possible fields of that input
object’s expected type.

For example the following example input object is valid:

{

 findDog(complex: { name: "Fido" })

}

Counter Example № 146

Input Object Field Names

Example № 147

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 113/165

While the following example input‐object uses a field “favoriteCookieFlavor” which is not defined on the
expected type:

{

 findDog(complex: { favoriteCookieFlavor: "Bacon" })

}

Formal Specification

For each input object value inputObject in the document.
For every inputField in inputObject

Let name be the Name of inputField.
Let fields be all Input Object Fields named name in inputObject.
fields must be the set containing only inputField.

Explanatory Text

Input objects must not contain more than one field of the same name, otherwise an ambiguity would exist
which includes an ignored portion of syntax.

For example the following query will not pass validation.

{

 field(arg: { field: true, field: false })

}

Formal Specification

For each Input Object in the document.
Let fields be the fields provided by that Input Object.
Let fieldDefinitions be the set of input field definitions of that Input Object.

For each fieldDefinition in fieldDefinitions:
Let type be the expected type of fieldDefinition.
Let defaultValue be the default value of fieldDefinition.

Counter Example № 148

Input Object Field Uniqueness

Counter Example № 149

Input Object Required Fields

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 114/165

If type is Non‐Null and defaultValue does not exist:
Let fieldName be the name of fieldDefinition.
Let field be the input field in fields named fieldName
field must exist.
Let value be the value of field.
value must not be the null literal.

Explanatory Text

Input object fields may be required. Much like a field may have required arguments, an input object may
have required fields. An input field is required if it has a non‐null type and does not have a default value.
Otherwise, the input object field is optional.

Formal Specification

For every directive in a document.
Let directiveName be the name of directive.
Let directiveDefinition be the directive named directiveName.
directiveDefinition must exist.

Explanatory Text

GraphQL servers define what directives they support. For each usage of a directive, the directive must be
available on that server.

Formal Specification

For every directive in a document.
Let directiveName be the name of directive.
Let directiveDefinition be the directive named directiveName.
Let locations be the valid locations for directiveDefinition.
Let adjacent be the AST node the directive affects.
adjacent must be represented by an item within locations.

Directives

Directives Are Defined

Directives Are In Valid Locations

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 115/165

Explanatory Text

GraphQL servers define what directives they support and where they support them. For each usage of a
directive, the directive must be used in a location that the server has declared support for.

For example the following query will not pass validation because @skip does not provide QUERY as a valid
location.

query @skip(if: $foo) {

 field

}

Formal Specification

For every location in the document for which Directives can apply:
Let directives be the set of Directives which apply to location.
For each directive in directives:

Let directiveName be the name of directive.
Let namedDirectives be the set of all Directives named directiveName in directives.
namedDirectives must be a set of one.

Explanatory Text

Directives are used to describe some metadata or behavioral change on the definition they apply to. When
more than one directive of the same name is used, the expected metadata or behavior becomes ambiguous,
therefore only one of each directive is allowed per location.

For example, the following query will not pass validation because @skip has been used twice for the same
field:

query ($foo: Boolean = true, $bar: Boolean = false) {

 field @skip(if: $foo) @skip(if: $bar)

}

However the following example is valid because @skip has been used only once per location, despite being
used twice in the query and on the same named field:

Counter Example № 150

Directives Are Unique Per Location

Counter Example № 151

Example № 152

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 116/165

query ($foo: Boolean = true, $bar: Boolean = false) {

 field @skip(if: $foo) {

 subfieldA

 }

 field @skip(if: $bar) {

 subfieldB

 }

}

Formal Specification

For every operation in the document
For every variable defined on operation

Let variableName be the name of variable
Let variables be the set of all variables named variableName on operation
variables must be a set of one

Explanatory Text

If any operation defines more than one variable with the same name, it is ambiguous and invalid. It is invalid
even if the type of the duplicate variable is the same.

query houseTrainedQuery($atOtherHomes: Boolean, $atOtherHomes: Boolean) {

 dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

 }

}

It is valid for multiple operations to define a variable with the same name. If two operations reference the
same fragment, it might actually be necessary:

query A($atOtherHomes: Boolean) {

 ...HouseTrainedFragment

Variables

Variable Uniqueness

Counter Example № 153

Example № 154

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 117/165

}

query B($atOtherHomes: Boolean) {

 ...HouseTrainedFragment

}

fragment HouseTrainedFragment {

 dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

 }

}

Formal Specification

For every operation in a document
For every variable on each operation

Let variableType be the type of variable
IsInputType(variableType) must be true

Explanatory Text

Variables can only be input types. Objects, unions, and interfaces cannot be used as inputs.

For these examples, consider the following typesystem additions:

input ComplexInput { name: String, owner: String }

extend type Query {

 findDog(complex: ComplexInput): Dog

 booleanList(booleanListArg: [Boolean!]): Boolean

}

The following queries are valid:

query takesBoolean($atOtherHomes: Boolean) {

 dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

Variables Are Input Types

Example № 155

Example № 156

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 118/165

 }

}

query takesComplexInput($complexInput: ComplexInput) {

 findDog(complex: $complexInput) {

 name

 }

}

query TakesListOfBooleanBang($booleans: [Boolean!]) {

 booleanList(booleanListArg: $booleans)

}

The following queries are invalid:

query takesCat($cat: Cat) {

 # ...

}

query takesDogBang($dog: Dog!) {

 # ...

}

query takesListOfPet($pets: [Pet]) {

 # ...

}

query takesCatOrDog($catOrDog: CatOrDog) {

 # ...

}

Formal Specification

For each operation in a document
For each variableUsage in scope, variable must be in operation‘s variable list.
Let fragments be every fragment referenced by that operation transitively
For each fragment in fragments

Counter Example № 157

All Variable Uses Defined

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 119/165

For each variableUsage in scope of fragment, variable must be in operation‘s variable list.

Explanatory Text

Variables are scoped on a per‐operation basis. That means that any variable used within the context of an
operation must be defined at the top level of that operation

For example:

query variableIsDefined($atOtherHomes: Boolean) {

 dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

 }

}

is valid. $atOtherHomes is defined by the operation.

By contrast the following query is invalid:

query variableIsNotDefined {

 dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

 }

}

$atOtherHomes is not defined by the operation.

Fragments complicate this rule. Any fragment transitively included by an operation has access to the
variables defined by that operation. Fragments can appear within multiple operations and therefore variable
usages must correspond to variable definitions in all of those operations.

For example the following is valid:

query variableIsDefinedUsedInSingleFragment($atOtherHomes: Boolean) {

 dog {

 ...isHousetrainedFragment

 }

}

fragment isHousetrainedFragment on Dog {

Example № 158

Counter Example № 159

Example № 160

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 120/165

 isHousetrained(atOtherHomes: $atOtherHomes)

}

since isHousetrainedFragment is used within the context of the operation
variableIsDefinedUsedInSingleFragment and the variable is defined by that operation.

On the other hand, if a fragment is included within an operation that does not define a referenced variable,
the query is invalid.

query variableIsNotDefinedUsedInSingleFragment {

 dog {

 ...isHousetrainedFragment

 }

}

fragment isHousetrainedFragment on Dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

}

This applies transitively as well, so the following also fails:

query variableIsNotDefinedUsedInNestedFragment {

 dog {

 ...outerHousetrainedFragment

 }

}

fragment outerHousetrainedFragment on Dog {

 ...isHousetrainedFragment

}

fragment isHousetrainedFragment on Dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

}

Variables must be defined in all operations in which a fragment is used.

Counter Example № 161

Counter Example № 162

Example № 163

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 121/165

query housetrainedQueryOne($atOtherHomes: Boolean) {

 dog {

 ...isHousetrainedFragment

 }

}

query housetrainedQueryTwo($atOtherHomes: Boolean) {

 dog {

 ...isHousetrainedFragment

 }

}

fragment isHousetrainedFragment on Dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

}

However the following does not validate:

query housetrainedQueryOne($atOtherHomes: Boolean) {

 dog {

 ...isHousetrainedFragment

 }

}

query housetrainedQueryTwoNotDefined {

 dog {

 ...isHousetrainedFragment

 }

}

fragment isHousetrainedFragment on Dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

}

This is because housetrainedQueryTwoNotDefined does not define a variable $atOtherHomes but that
variable is used by isHousetrainedFragment which is included in that operation.

Counter Example № 164

All Variables Used

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 122/165

Formal Specification

For every operation in the document.
Let variables be the variables defined by that operation
Each variable in variables must be used at least once in either the operation scope itself or any
fragment transitively referenced by that operation.

Explanatory Text

All variables defined by an operation must be used in that operation or a fragment transitively included by
that operation. Unused variables cause a validation error.

For example the following is invalid:

query variableUnused($atOtherHomes: Boolean) {

 dog {

 isHousetrained

 }

}

because $atOtherHomes is not referenced.

These rules apply to transitive fragment spreads as well:

query variableUsedInFragment($atOtherHomes: Boolean) {

 dog {

 ...isHousetrainedFragment

 }

}

fragment isHousetrainedFragment on Dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

}

The above is valid since $atOtherHomes is used in isHousetrainedFragment which is included by
variableUsedInFragment.

If that fragment did not have a reference to $atOtherHomes it would be not valid:

Counter Example № 165

Example № 166

Counter Example № 167

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 123/165

query variableNotUsedWithinFragment($atOtherHomes: Boolean) {

 dog {

 ...isHousetrainedWithoutVariableFragment

 }

}

fragment isHousetrainedWithoutVariableFragment on Dog {

 isHousetrained

}

All operations in a document must use all of their variables.

As a result, the following document does not validate.

query queryWithUsedVar($atOtherHomes: Boolean) {

 dog {

 ...isHousetrainedFragment

 }

}

query queryWithExtraVar($atOtherHomes: Boolean, $extra: Int) {

 dog {

 ...isHousetrainedFragment

 }

}

fragment isHousetrainedFragment on Dog {

 isHousetrained(atOtherHomes: $atOtherHomes)

}

This document is not valid because queryWithExtraVar defines an extraneous variable.

Formal Specification

For each operation in document:
Let variableUsages be all usages transitively included in the operation.
For each variableUsage in variableUsages:

Let variableName be the name of variableUsage.

Counter Example № 168

All Variable Usages are Allowed

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 124/165

Let variableDefinition be the VariableDefinition named variableName defined within operation.
IsVariableUsageAllowed(variableDefinition, variableUsage) must be true.

IsVariableUsageAllowed(variableDefinition, variableUsage) :

1. Let variableType be the expected type of variableDefinition.
2. Let locationType be the expected type of the Argument, ObjectField, or ListValue entry where

variableUsage is located.
3. If locationType is a non‐null type AND variableType is NOT a non‐null type:

a. Let hasNonNullVariableDefaultValue be true if a default value exists for variableDefinition
and is not the value null.

b. Let hasLocationDefaultValue be true if a default value exists for the Argument or
ObjectField where variableUsage is located.

c. If hasNonNullVariableDefaultValue is NOT true AND hasLocationDefaultValue is NOT
true, return false.

d. Let nullableLocationType be the unwrapped nullable type of locationType.
e. Return AreTypesCompatible(variableType, nullableLocationType).

4. Return AreTypesCompatible(variableType, locationType).

AreTypesCompatible(variableType, locationType) :

1. If locationType is a non‐null type:
a. If variableType is NOT a non‐null type, return false.
b. Let nullableLocationType be the unwrapped nullable type of locationType.
c. Let nullableVariableType be the unwrapped nullable type of variableType.
d. Return AreTypesCompatible(nullableVariableType, nullableLocationType).

2. Otherwise, if variableType is a non‐null type:
a. Let nullableVariableType be the nullable type of variableType.
b. Return AreTypesCompatible(nullableVariableType, locationType).

3. Otherwise, if locationType is a list type:
a. If variableType is NOT a list type, return false.
b. Let itemLocationType be the unwrapped item type of locationType.
c. Let itemVariableType be the unwrapped item type of variableType.
d. Return AreTypesCompatible(itemVariableType, itemLocationType).

4. Otherwise, if variableType is a list type, return false.
5. Return true if variableType and locationType are identical, otherwise false.

Explanatory Text

Variable usages must be compatible with the arguments they are passed to.

Validation failures occur when variables are used in the context of types that are complete mismatches, or if
a nullable type in a variable is passed to a non‐null argument type.

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 125/165

Types must match:

query intCannotGoIntoBoolean($intArg: Int) {

 arguments {

 booleanArgField(booleanArg: $intArg)

 }

}

$intArg typed as Int cannot be used as a argument to booleanArg, typed as Boolean.

List cardinality must also be the same. For example, lists cannot be passed into singular values.

query booleanListCannotGoIntoBoolean($booleanListArg: [Boolean]) {

 arguments {

 booleanArgField(booleanArg: $booleanListArg)

 }

}

Nullability must also be respected. In general a nullable variable cannot be passed to a non‐null argument.

query booleanArgQuery($booleanArg: Boolean) {

 arguments {

 nonNullBooleanArgField(nonNullBooleanArg: $booleanArg)

 }

}

For list types, the same rules around nullability apply to both outer types and inner types. A nullable list
cannot be passed to a non‐null list, and a list of nullable values cannot be passed to a list of non‐null values.
The following is valid:

query nonNullListToList($nonNullBooleanList: [Boolean]!) {

 arguments {

 booleanListArgField(booleanListArg: $nonNullBooleanList)

 }

}

However, a nullable list cannot be passed to a non‐null list:

Counter Example № 169

Counter Example № 170

Counter Example № 171

Example № 172

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 126/165

query listToNonNullList($booleanList: [Boolean]) {

 arguments {

 nonNullBooleanListField(nonNullBooleanListArg: $booleanList)

 }

}

This would fail validation because a [T] cannot be passed to a [T]! . Similarly a [T] cannot be passed to a
[T!] .

Allowing optional variables when default values exist

A notable exception to typical variable type compatibility is allowing a variable definition with a nullable
type to be provided to a non‐null location as long as either that variable or that location provides a default
value.

query booleanArgQueryWithDefault($booleanArg: Boolean) {

 arguments {

 optionalNonNullBooleanArgField(optionalBooleanArg: $booleanArg)

 }

}

In the example above, an optional variable is allowed to be used in an non‐null argument which provides a
default value.

query booleanArgQueryWithDefault($booleanArg: Boolean = true) {

 arguments {

 nonNullBooleanArgField(nonNullBooleanArg: $booleanArg)

 }

}

In the example above, a variable provides a default value and can be used in a non‐null argument. This
behavior is explicitly supported for compatibility with earlier editions of this specification. GraphQL
authoring tools may wish to report this is a warning with the suggestion to replace Boolean with
Boolean! .

The value null could still be provided to a such a variable at runtime. A non‐null argument must produce a
field error if provided a null value.

Counter Example № 173

Example № 174

Example № 175

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 127/165

GraphQL generates a response from a request via execution.

A request for execution consists of a few pieces of information:

The schema to use, typically solely provided by the GraphQL service.
A Document which must contain GraphQL OperationDefinition and may contain FragmentDefinition.
Optionally: The name of the Operation in the Document to execute.
Optionally: Values for any Variables defined by the Operation.
An initial value corresponding to the root type being executed. Conceptually, an initial value represents
the “universe” of data available via a GraphQL Service. It is common for a GraphQL Service to always
use the same initial value for every request.

Given this information, the result of ExecuteRequest() produces the response, to be formatted according to
the Response section below.

To execute a request, the executor must have a parsed Document and a selected operation name to run if the
document defines multiple operations, otherwise the document is expected to only contain a single
operation. The result of the request is determined by the result of executing this operation according to the
“Executing Operations” section below.

ExecuteRequest(schema, document, operationName, variableValues, initialValue) :

1. Let operation be the result of GetOperation(document, operationName).
2. Let coercedVariableValues be the result of CoerceVariableValues(schema, operation,

variableValues).
3. If operation is a query operation:

a. Return ExecuteQuery(operation, schema, coercedVariableValues, initialValue).
4. Otherwise if operation is a mutation operation:

a. Return ExecuteMutation(operation, schema, coercedVariableValues, initialValue).
5. Otherwise if operation is a subscription operation:

a. Return Subscribe(operation, schema, coercedVariableValues, initialValue).

GetOperation(document, operationName) :

1. If operationName is null:
a. If document contains exactly one operation.

i. Return the Operation contained in the document.

Execution

Executing Requests

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 128/165

b. Otherwise produce a query error requiring operationName.
2. Otherwise:

a. Let operation be the Operation named operationName in document.
b. If operation was not found, produce a query error.
c. Return operation.

As explained in the Validation section, only requests which pass all validation rules should be executed. If
validation errors are known, they should be reported in the list of “errors” in the response and the request
must fail without execution.

Typically validation is performed in the context of a request immediately before execution, however a
GraphQL service may execute a request without immediately validating it if that exact same request is
known to have been validated before. A GraphQL service should only execute requests which at some point
were known to be free of any validation errors, and have since not changed.

For example: the request may be validated during development, provided it does not later change, or a
service may validate a request once and memoize the result to avoid validating the same request again in the
future.

If the operation has defined any variables, then the values for those variables need to be coerced using the
input coercion rules of variable’s declared type. If a query error is encountered during input coercion of
variable values, then the operation fails without execution.

CoerceVariableValues(schema, operation, variableValues) :

1. Let coercedValues be an empty unordered Map.
2. Let variableDefinitions be the variables defined by operation.
3. For each variableDefinition in variableDefinitions:

a. Let variableName be the name of variableDefinition.
b. Let variableType be the expected type of variableDefinition.
c. Assert: IsInputType(variableType) must be true.
d. Let defaultValue be the default value for variableDefinition.
e. Let hasValue be true if variableValues provides a value for the name variableName.
f. Let value be the value provided in variableValues for the name variableName.
g. If hasValue is not true and defaultValue exists (including null):

i. Add an entry to coercedValues named variableName with the value defaultValue.

Validating Requests

Coercing Variable Values

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 129/165

h. Otherwise if variableType is a Non‐Nullable type, and either hasValue is not true or value is
null, throw a query error.

i. Otherwise if hasValue is true:
i. If value is null:

1. Add an entry to coercedValues named variableName with the value null.
ii. Otherwise:

1. If value cannot be coerced according to the input coercion rules of variableType,
throw a query error.

2. Let coercedValue be the result of coercing value according to the input coercion
rules of variableType.

3. Add an entry to coercedValues named variableName with the value
coercedValue.

4. Return coercedValues.

This algorithm is very similar to CoerceArgumentValues().

The type system, as described in the “Type System” section of the spec, must provide a query root object
type. If mutations or subscriptions are supported, it must also provide a mutation or subscription root object
type, respectively.

If the operation is a query, the result of the operation is the result of executing the query’s top level selection
set with the query root object type.

An initial value may be provided when executing a query.

ExecuteQuery(query, schema, variableValues, initialValue) :

1. Let queryType be the root Query type in schema.
2. Assert: queryType is an Object type.
3. Let selectionSet be the top level Selection Set in query.
4. Let data be the result of running ExecuteSelectionSet(selectionSet, queryType, initialValue,

variableValues) normally (allowing parallelization).
5. Let errors be any field errors produced while executing the selection set.
6. Return an unordered map containing data and errors.

Note

Executing Operations

Query

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 130/165

If the operation is a mutation, the result of the operation is the result of executing the mutation’s top level
selection set on the mutation root object type. This selection set should be executed serially.

It is expected that the top level fields in a mutation operation perform side‐effects on the underlying data
system. Serial execution of the provided mutations ensures against race conditions during these side‐effects.

ExecuteMutation(mutation, schema, variableValues, initialValue) :

1. Let mutationType be the root Mutation type in schema.
2. Assert: mutationType is an Object type.
3. Let selectionSet be the top level Selection Set in mutation.
4. Let data be the result of running ExecuteSelectionSet(selectionSet, mutationType, initialValue,

variableValues) serially.
5. Let errors be any field errors produced while executing the selection set.
6. Return an unordered map containing data and errors.

If the operation is a subscription, the result is an event stream called the “Response Stream” where each
event in the event stream is the result of executing the operation for each new event on an underlying
“Source Stream”.

Executing a subscription creates a persistent function on the server that maps an underlying Source Stream
to a returned Response Stream.

Subscribe(subscription, schema, variableValues, initialValue) :

1. Let sourceStream be the result of running CreateSourceEventStream(subscription, schema,
variableValues, initialValue).

2. Let responseStream be the result of running MapSourceToResponseEvent(sourceStream,
subscription, schema, variableValues)

3. Return responseStream.

In large scale subscription systems, the Subscribe() and ExecuteSubscriptionEvent() algorithms may be run
on separate services to maintain predictable scaling properties. See the section below on Supporting
Subscriptions at Scale.

As an example, consider a chat application. To subscribe to new messages posted to the chat room, the client
sends a request like so:

Mutation

Subscription

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 131/165

subscription NewMessages {

 newMessage(roomId: 123) {

 sender

 text

 }

}

While the client is subscribed, whenever new messages are posted to chat room with ID “123”, the selection
for “sender” and “text” will be evaluated and published to the client, for example:

{

 "data": {

 "newMessage": {

 "sender": "Hagrid",

 "text": "You're a wizard!"

 }

 }

}

The “new message posted to chat room” could use a “Pub‐Sub” system where the chat room ID is the
“topic” and each “publish” contains the sender and text.

Event Streams

An event stream represents a sequence of discrete events over time which can be observed. As an example, a
“Pub‐Sub” system may produce an event stream when “subscribing to a topic”, with an event occurring on
that event stream for each “publish” to that topic. Event streams may produce an infinite sequence of events
or may complete at any point. Event streams may complete in response to an error or simply because no
more events will occur. An observer may at any point decide to stop observing an event stream by cancelling
it, after which it must receive no more events from that event stream.

Supporting Subscriptions at Scale

Supporting subscriptions is a significant change for any GraphQL service. Query and mutation operations
are stateless, allowing scaling via cloning of GraphQL server instances. Subscriptions, by contrast, are
stateful and require maintaining the GraphQL document, variables, and other context over the lifetime of the
subscription.

Consider the behavior of your system when state is lost due to the failure of a single machine in a service.
Durability and availability may be improved by having separate dedicated services for managing

Example № 176

Example № 177

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 132/165

subscription state and client connectivity.

Delivery Agnostic

GraphQL subscriptions do not require any specific serialization format or transport mechanism.
Subscriptions specifies algorithms for the creation of a stream, the content of each payload on that stream,
and the closing of that stream. There are intentionally no specifications for message acknoledgement,
buffering, resend requests, or any other quality of service (QoS) details. Message serialization, transport
mechanisms, and quality of service details should be chosen by the implementing service.

A Source Stream represents the sequence of events, each of which will trigger a GraphQL execution
corresponding to that event. Like field value resolution, the logic to create a Source Stream is application‐
specific.

CreateSourceEventStream(subscription, schema, variableValues, initialValue) :

1. Let subscriptionType be the root Subscription type in schema.
2. Assert: subscriptionType is an Object type.
3. Let groupedFieldSet be the result of CollectFields(subscriptionType, selectionSet, variableValues).
4. If groupedFieldSet does not have exactly one entry, throw a query error.
5. Let fields be the value of the first entry in groupedFieldSet.
6. Let fieldName be the name of the first entry in fields. Note: This value is unaffected if an alias is

used.
7. Let field be the first entry in fields.
8. Let argumentValues be the result of CoerceArgumentValues(subscriptionType, field,

variableValues)
9. Let fieldStream be the result of running ResolveFieldEventStream(subscriptionType, initialValue,

fieldName, argumentValues).
10. Return fieldStream.

ResolveFieldEventStream(subscriptionType, rootValue, fieldName, argumentValues) :

1. Let resolver be the internal function provided by subscriptionType for determining the resolved
event stream of a subscription field named fieldName.

2. Return the result of calling resolver, providing rootValue and argumentValues.

This ResolveFieldEventStream() algorithm is intentionally similar to ResolveFieldValue() to enable
consistency when defining resolvers on any operation type.

Source Stream

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 133/165

Each event in the underlying Source Stream triggers execution of the subscription selection set using that
event as a root value.

MapSourceToResponseEvent(sourceStream, subscription, schema, variableValues) :

1. Return a new event stream responseStream which yields events as follows:
2. For each event on sourceStream:

a. Let response be the result of running ExecuteSubscriptionEvent(subscription, schema,
variableValues, event).

b. Yield an event containing response.
3. When responseStream completes: complete this event stream.

ExecuteSubscriptionEvent(subscription, schema, variableValues, initialValue) :

1. Let subscriptionType be the root Subscription type in schema.
2. Assert: subscriptionType is an Object type.
3. Let selectionSet be the top level Selection Set in subscription.
4. Let data be the result of running ExecuteSelectionSet(selectionSet, subscriptionType, initialValue,

variableValues) normally (allowing parallelization).
5. Let errors be any field errors produced while executing the selection set.
6. Return an unordered map containing data and errors.

The ExecuteSubscriptionEvent() algorithm is intentionally similar to ExecuteQuery() since this is how each
event result is produced.

Unsubscribe cancels the Response Stream when a client no longer wishes to receive payloads for a
subscription. This may in turn also cancel the Source Stream. This is also a good opportunity to clean up any
other resources used by the subscription.

Unsubscribe(responseStream) :

1. Cancel responseStream

Response Stream

Note

Unsubscribe

Executing Selection Sets

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 134/165

To execute a selection set, the object value being evaluated and the object type need to be known, as well as
whether it must be executed serially, or may be executed in parallel.

First, the selection set is turned into a grouped field set; then, each represented field in the grouped field set
produces an entry into a response map.

ExecuteSelectionSet(selectionSet, objectType, objectValue, variableValues) :

1. Let groupedFieldSet be the result of CollectFields(objectType, selectionSet, variableValues).
2. Initialize resultMap to an empty ordered map.
3. For each groupedFieldSet as responseKey and fields:

a. Let fieldName be the name of the first entry in fields. Note: This value is unaffected if an
alias is used.

b. Let fieldType be the return type defined for the field fieldName of objectType.
c. If fieldType is defined:

i. Let responseValue be ExecuteField(objectType, objectValue, fields, fieldType,
variableValues).

ii. Set responseValue as the value for responseKey in resultMap.
4. Return resultMap.

resultMap is ordered by which fields appear first in the query. This is explained in greater detail in the Field
Collection section below.

Errors and Non‐Null Fields

If during ExecuteSelectionSet() a field with a non‐null fieldType throws a field error then that error must
propagate to this entire selection set, either resolving to null if allowed or further propagated to a parent
field.

If this occurs, any sibling fields which have not yet executed or have not yet yielded a value may be
cancelled to avoid unnecessary work.

See the Errors and Non‐Nullability section of Field Execution for more about this behavior.

Normally the executor can execute the entries in a grouped field set in whatever order it chooses (normally
in parallel). Because the resolution of fields other than top‐level mutation fields must always be side effect‐
free and idempotent, the execution order must not affect the result, and hence the server has the freedom to
execute the field entries in whatever order it deems optimal.

Note

Normal and Serial Execution

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 135/165

For example, given the following grouped field set to be executed normally:

{

 birthday {

 month

 }

 address {

 street

 }

}

A valid GraphQL executor can resolve the four fields in whatever order it chose (however of course
birthday must be resolved before month , and address before street).

When executing a mutation, the selections in the top most selection set will be executed in serial order,
starting with the first appearing field textually.

When executing a grouped field set serially, the executor must consider each entry from the grouped field set
in the order provided in the grouped field set. It must determine the corresponding entry in the result map for
each item to completion before it continues on to the next item in the grouped field set:

For example, given the following selection set to be executed serially:

{

 changeBirthday(birthday: $newBirthday) {

 month

 }

 changeAddress(address: $newAddress) {

 street

 }

}

The executor must, in serial:

Run ExecuteField() for changeBirthday , which during CompleteValue() will execute the
{ month } sub‐selection set normally.
Run ExecuteField() for changeAddress , which during CompleteValue() will execute the
{ street } sub‐selection set normally.

Example № 178

Example № 179

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 136/165

As an illustrative example, let’s assume we have a mutation field changeTheNumber that returns an object
containing one field, theNumber . If we execute the following selection set serially:

{

 first: changeTheNumber(newNumber: 1) {

 theNumber

 }

 second: changeTheNumber(newNumber: 3) {

 theNumber

 }

 third: changeTheNumber(newNumber: 2) {

 theNumber

 }

}

The executor will execute the following serially:

Resolve the changeTheNumber(newNumber: 1) field
Execute the { theNumber } sub‐selection set of first normally
Resolve the changeTheNumber(newNumber: 3) field
Execute the { theNumber } sub‐selection set of second normally
Resolve the changeTheNumber(newNumber: 2) field
Execute the { theNumber } sub‐selection set of third normally

A correct executor must generate the following result for that selection set:

{

 "first": {

 "theNumber": 1

 },

 "second": {

 "theNumber": 3

 },

 "third": {

 "theNumber": 2

 }

}

Example № 180

Example № 181

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 137/165

Before execution, the selection set is converted to a grouped field set by calling CollectFields(). Each entry
in the grouped field set is a list of fields that share a response key (the alias if defined, otherwise the field
name). This ensures all fields with the same response key included via referenced fragments are executed at
the same time.

As an example, collecting the fields of this selection set would collect two instances of the field a and one
of field b :

{

 a {

 subfield1

 }

 ...ExampleFragment

}

fragment ExampleFragment on Query {

 a {

 subfield2

 }

 b

}

The depth‐first‐search order of the field groups produced by CollectFields() is maintained through execution,
ensuring that fields appear in the executed response in a stable and predictable order.

CollectFields(objectType, selectionSet, variableValues, visitedFragments) :

1. If visitedFragments if not provided, initialize it to the empty set.
2. Initialize groupedFields to an empty ordered map of lists.
3. For each selection in selectionSet:

a. If selection provides the directive @skip , let skipDirective be that directive.
i. If skipDirective‘s if argument is true or is a variable in variableValues with the value

true, continue with the next selection in selectionSet.
b. If selection provides the directive @include , let includeDirective be that directive.

i. If includeDirective‘s if argument is not true and is not a variable in variableValues
with the value true, continue with the next selection in selectionSet.

c. If selection is a Field:
i. Let responseKey be the response key of selection (the alias if defined, otherwise the

field name).

Field Collection

Example № 182

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 138/165

ii. Let groupForResponseKey be the list in groupedFields for responseKey; if no such list
exists, create it as an empty list.

iii. Append selection to the groupForResponseKey.
d. If selection is a FragmentSpread:

i. Let fragmentSpreadName be the name of selection.
ii. If fragmentSpreadName is in visitedFragments, continue with the next selection in

selectionSet.
iii. Add fragmentSpreadName to visitedFragments.
iv. Let fragment be the Fragment in the current Document whose name is

fragmentSpreadName.
v. If no such fragment exists, continue with the next selection in selectionSet.

vi. Let fragmentType be the type condition on fragment.
vii. If DoesFragmentTypeApply(objectType, fragmentType) is false, continue with the next

selection in selectionSet.
viii. Let fragmentSelectionSet be the top‐level selection set of fragment.

ix. Let fragmentGroupedFieldSet be the result of calling CollectFields(objectType,
fragmentSelectionSet, visitedFragments).

x. For each fragmentGroup in fragmentGroupedFieldSet:
1. Let responseKey be the response key shared by all fields in fragmentGroup.
2. Let groupForResponseKey be the list in groupedFields for responseKey; if no

such list exists, create it as an empty list.
3. Append all items in fragmentGroup to groupForResponseKey.

e. If selection is an InlineFragment:
i. Let fragmentType be the type condition on selection.

ii. If fragmentType is not null and DoesFragmentTypeApply(objectType, fragmentType)
is false, continue with the next selection in selectionSet.

iii. Let fragmentSelectionSet be the top‐level selection set of selection.
iv. Let fragmentGroupedFieldSet be the result of calling CollectFields(objectType,

fragmentSelectionSet, variableValues, visitedFragments).
v. For each fragmentGroup in fragmentGroupedFieldSet:

1. Let responseKey be the response key shared by all fields in fragmentGroup.
2. Let groupForResponseKey be the list in groupedFields for responseKey; if no

such list exists, create it as an empty list.
3. Append all items in fragmentGroup to groupForResponseKey.

4. Return groupedFields.

DoesFragmentTypeApply(objectType, fragmentType) :

1. If fragmentType is an Object Type:
a. if objectType and fragmentType are the same type, return true, otherwise return false.

2. If fragmentType is an Interface Type:
a. if objectType is an implementation of fragmentType, return true otherwise return false.

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 139/165

3. If fragmentType is a Union:
a. if objectType is a possible type of fragmentType, return true otherwise return false.

Each field requested in the grouped field set that is defined on the selected objectType will result in an entry
in the response map. Field execution first coerces any provided argument values, then resolves a value for
the field, and finally completes that value either by recursively executing another selection set or coercing a
scalar value.

ExecuteField(objectType, objectValue, fieldType, fields, variableValues) :

1. Let field be the first entry in fields.
2. Let fieldName be the field name of field.
3. Let argumentValues be the result of CoerceArgumentValues(objectType, field, variableValues)
4. Let resolvedValue be ResolveFieldValue(objectType, objectValue, fieldName, argumentValues).
5. Return the result of CompleteValue(fieldType, fields, resolvedValue, variableValues).

Fields may include arguments which are provided to the underlying runtime in order to correctly produce a
value. These arguments are defined by the field in the type system to have a specific input type.

At each argument position in a query may be a literal Value, or a Variable to be provided at runtime.

CoerceArgumentValues(objectType, field, variableValues) :

1. Let coercedValues be an empty unordered Map.
2. Let argumentValues be the argument values provided in field.
3. Let fieldName be the name of field.
4. Let argumentDefinitions be the arguments defined by objectType for the field named fieldName.
5. For each argumentDefinition in argumentDefinitions:

a. Let argumentName be the name of argumentDefinition.
b. Let argumentType be the expected type of argumentDefinition.
c. Let defaultValue be the default value for argumentDefinition.
d. Let hasValue be true if argumentValues provides a value for the name argumentName.
e. Let argumentValue be the value provided in argumentValues for the name argumentName.
f. If argumentValue is a Variable:

i. Let variableName be the name of argumentValue.
ii. Let hasValue be true if variableValues provides a value for the name variableName.

Executing Fields

Coercing Field Arguments

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 140/165

iii. Let value be the value provided in variableValues for the name variableName.
g. Otherwise, let value be argumentValue.
h. If hasValue is not true and defaultValue exists (including null):

i. Add an entry to coercedValues named argumentName with the value defaultValue.
i. Otherwise if argumentType is a Non‐Nullable type, and either hasValue is not true or value

is null, throw a field error.
j. Otherwise if hasValue is true:

i. If value is null:
1. Add an entry to coercedValues named argumentName with the value null.

ii. Otherwise, if argumentValue is a Variable:
1. Add an entry to coercedValues named argumentName with the value value.

iii. Otherwise:
1. If value cannot be coerced according to the input coercion rules of variableType,

throw a field error.
2. Let coercedValue be the result of coercing value according to the input coercion

rules of variableType.
3. Add an entry to coercedValues named argumentName with the value

coercedValue.
6. Return coercedValues.

Variable values are not coerced because they are expected to be coerced before executing the operation in
CoerceVariableValues(), and valid queries must only allow usage of variables of appropriate types.

While nearly all of GraphQL execution can be described generically, ultimately the internal system exposing
the GraphQL interface must provide values. This is exposed via ResolveFieldValue, which produces a value
for a given field on a type for a real value.

As an example, this might accept the objectType Person , the field "soulMate", and the objectValue
representing John Lennon. It would be expected to yield the value representing Yoko Ono.

ResolveFieldValue(objectType, objectValue, fieldName, argumentValues) :

1. Let resolver be the internal function provided by objectType for determining the resolved value of
a field named fieldName.

2. Return the result of calling resolver, providing objectValue and argumentValues.

Note

Value Resolution

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 141/165

It is common for resolver to be asynchronous due to relying on reading an underlying database or networked
service to produce a value. This necessitates the rest of a GraphQL executor to handle an asynchronous
execution flow.

After resolving the value for a field, it is completed by ensuring it adheres to the expected return type. If the
return type is another Object type, then the field execution process continues recursively.

CompleteValue(fieldType, fields, result, variableValues) :

1. If the fieldType is a Non‐Null type:
a. Let innerType be the inner type of fieldType.
b. Let completedResult be the result of calling CompleteValue(innerType, fields, result,

variableValues).
c. If completedResult is null, throw a field error.
d. Return completedResult.

2. If result is null (or another internal value similar to null such as undefined or NaN), return null.
3. If fieldType is a List type:

a. If result is not a collection of values, throw a field error.
b. Let innerType be the inner type of fieldType.
c. Return a list where each list item is the result of calling CompleteValue(innerType, fields,

resultItem, variableValues), where resultItem is each item in result.
4. If fieldType is a Scalar or Enum type:

a. Return the result of “coercing” result, ensuring it is a legal value of fieldType, otherwise
null.

5. If fieldType is an Object, Interface, or Union type:
a. If fieldType is an Object type.

i. Let objectType be fieldType.
b. Otherwise if fieldType is an Interface or Union type.

i. Let objectType be ResolveAbstractType(fieldType, result).
c. Let subSelectionSet be the result of calling MergeSelectionSets(fields).
d. Return the result of evaluating ExecuteSelectionSet(subSelectionSet, objectType, result,

variableValues) normally (allowing for parallelization).

Resolving Abstract Types

When completing a field with an abstract return type, that is an Interface or Union return type, first the
abstract type must be resolved to a relevant Object type. This determination is made by the internal system
using whatever means appropriate.

Value Completion

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 142/165

A common method of determining the Object type for an objectValue in object‐oriented environments, such
as Java or C#, is to use the class name of the objectValue.

ResolveAbstractType(abstractType, objectValue) :

1. Return the result of calling the internal method provided by the type system for determining the
Object type of abstractType given the value objectValue.

Merging Selection Sets

When more than one fields of the same name are executed in parallel, their selection sets are merged
together when completing the value in order to continue execution of the sub‐selection sets.

An example query illustrating parallel fields with the same name with sub‐selections.

{

 me {

 firstName

 }

 me {

 lastName

 }

}

After resolving the value for me , the selection sets are merged together so firstName and lastName can be
resolved for one value.

MergeSelectionSets(fields) :

1. Let selectionSet be an empty list.
2. For each field in fields:

a. Let fieldSelectionSet be the selection set of field.
b. If fieldSelectionSet is null or empty, continue to the next field.
c. Append all selections in fieldSelectionSet to selectionSet.

3. Return selectionSet.

If an error is thrown while resolving a field, it should be treated as though the field returned null, and an
error must be added to the "errors" list in the response.

Note

Example № 183

Errors and Non-Nullability

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 143/165

If the result of resolving a field is null (either because the function to resolve the field returned null or
because an error occurred), and that field is of a Non-Null type, then a field error is thrown. The error must
be added to the "errors" list in the response.

If the field returns null because of an error which has already been added to the "errors" list in the
response, the "errors" list must not be further affected. That is, only one error should be added to the
errors list per field.

Since Non-Null type fields cannot be null, field errors are propagated to be handled by the parent field. If
the parent field may be null then it resolves to null, otherwise if it is a Non-Null type, the field error is
further propagated to it’s parent field.

If a List type wraps a Non-Null type, and one of the elements of that list resolves to null, then the entire
list must resolve to null. If the List type is also wrapped in a Non-Null , the field error continues to
propagate upwards.

If all fields from the root of the request to the source of the field error return Non-Null types, then the
"data" entry in the response should be null.

When a GraphQL server receives a request, it must return a well‐formed response. The server’s response
describes the result of executing the requested operation if successful, and describes any errors encountered
during the request.

A response may contain both a partial response as well as encountered errors in the case that a field error
occurred on a field which was replaced with null.

A response to a GraphQL operation must be a map.

If the operation encountered any errors, the response map must contain an entry with key errors . The value
of this entry is described in the “Errors” section. If the operation completed without encountering any errors,
this entry must not be present.

Response

Response Format

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 144/165

If the operation included execution, the response map must contain an entry with key data . The value of
this entry is described in the “Data” section. If the operation failed before execution, due to a syntax error,
missing information, or validation error, this entry must not be present.

The response map may also contain an entry with key extensions . This entry, if set, must have a map as its
value. This entry is reserved for implementors to extend the protocol however they see fit, and hence there
are no additional restrictions on its contents.

To ensure future changes to the protocol do not break existing servers and clients, the top level response map
must not contain any entries other than the three described above.

When errors is present in the response, it may be helpful for it to appear first when serialized to make it
more clear when errors are present in a response during debugging.

The data entry in the response will be the result of the execution of the requested operation. If the operation
was a query, this output will be an object of the schema’s query root type; if the operation was a mutation,
this output will be an object of the schema’s mutation root type.

If an error was encountered before execution begins, the data entry should not be present in the result.

If an error was encountered during the execution that prevented a valid response, the data entry in the
response should be null .

The errors entry in the response is a non‐empty list of errors, where each error is a map.

If no errors were encountered during the requested operation, the errors entry should not be present in the
result.

If the data entry in the response is not present, the errors entry in the response must not be empty. It must
contain at least one error. The errors it contains should indicate why no data was able to be returned.

If the data entry in the response is present (including if it is the value null), the errors entry in the
response may contain any errors that occurred during execution. If errors occurred during execution, it
should contain those errors.

Error result format

Note

Data

Errors

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 145/165

Every error must contain an entry with the key message with a string description of the error intended for
the developer as a guide to understand and correct the error.

If an error can be associated to a particular point in the requested GraphQL document, it should contain an
entry with the key locations with a list of locations, where each location is a map with the keys line and
column , both positive numbers starting from 1 which describe the beginning of an associated syntax
element.

If an error can be associated to a particular field in the GraphQL result, it must contain an entry with the key
path that details the path of the response field which experienced the error. This allows clients to identify
whether a null result is intentional or caused by a runtime error.

This field should be a list of path segments starting at the root of the response and ending with the field
associated with the error. Path segments that represent fields should be strings, and path segments that
represent list indices should be 0‐indexed integers. If the error happens in an aliased field, the path to the
error should use the aliased name, since it represents a path in the response, not in the query.

For example, if fetching one of the friends’ names fails in the following query:

{

 hero(episode: $episode) {

 name

 heroFriends: friends {

 id

 name

 }

 }

}

The response might look like:

{

 "errors": [

 {

 "message": "Name for character with ID 1002 could not be fetched.",

 "locations": [{ "line": 6, "column": 7 }],

 "path": ["hero", "heroFriends", 1, "name"]

 }

],

 "data": {

Example № 184

Example № 185

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 146/165

 "hero": {

 "name": "R2-D2",

 "heroFriends": [

 {

 "id": "1000",

 "name": "Luke Skywalker"

 },

 {

 "id": "1002",

 "name": null

 },

 {

 "id": "1003",

 "name": "Leia Organa"

 }

]

 }

 }

}

If the field which experienced an error was declared as Non-Null , the null result will bubble up to the next
nullable field. In that case, the path for the error should include the full path to the result field where the
error occurred, even if that field is not present in the response.

For example, if the name field from above had declared a Non-Null return type in the schema, the result
would look different but the error reported would be the same:

{

 "errors": [

 {

 "message": "Name for character with ID 1002 could not be fetched.",

 "locations": [{ "line": 6, "column": 7 }],

 "path": ["hero", "heroFriends", 1, "name"]

 }

],

 "data": {

 "hero": {

 "name": "R2-D2",

 "heroFriends": [

 {

Example № 186

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 147/165

 "id": "1000",

 "name": "Luke Skywalker"

 },

 null,

 {

 "id": "1003",

 "name": "Leia Organa"

 }

]

 }

 }

}

GraphQL services may provide an additional entry to errors with key extensions . This entry, if set, must
have a map as its value. This entry is reserved for implementors to add additional information to errors
however they see fit, and there are no additional restrictions on its contents.

{

 "errors": [

 {

 "message": "Name for character with ID 1002 could not be fetched.",

 "locations": [{ "line": 6, "column": 7 }],

 "path": ["hero", "heroFriends", 1, "name"],

 "extensions": {

 "code": "CAN_NOT_FETCH_BY_ID",

 "timestamp": "Fri Feb 9 14:33:09 UTC 2018"

 }

 }

]

}

GraphQL services should not provide any additional entries to the error format since they could conflict with
additional entries that may be added in future versions of this specification.

Previous versions of this spec did not describe the extensions entry for error formatting. While non‐
specified entries are not violations, they are still discouraged.

Example № 187

Note

Counter Example № 188

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 148/165

{

 "errors": [

 {

 "message": "Name for character with ID 1002 could not be fetched.",

 "locations": [{ "line": 6, "column": 7 }],

 "path": ["hero", "heroFriends", 1, "name"],

 "code": "CAN_NOT_FETCH_BY_ID",

 "timestamp": "Fri Feb 9 14:33:09 UTC 2018"

 }

]

}

GraphQL does not require a specific serialization format. However, clients should use a serialization format
that supports the major primitives in the GraphQL response. In particular, the serialization format must at
least support representations of the following four primitives:

Map
List
String
Null

A serialization format should also support the following primitives, each representing one of the common
GraphQL scalar types, however a string or simpler primitive may be used as a substitute if any are not
directly supported:

Boolean
Int
Float
Enum Value

This is not meant to be an exhaustive list of what a serialization format may encode. For example custom
scalars representing a Date, Time, URI, or number with a different precision may be represented in
whichever relevant format a given serialization format may support.

Serialization Format

JSON Serialization

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 149/165

JSON is the most common serialization format for GraphQL. Though as mentioned above, GraphQL does
not require a specific serialization format.

When using JSON as a serialization of GraphQL responses, the following JSON values should be used to
encode the related GraphQL values:

GraphQL Value JSON Value

Map Object

List Array

Null null

String String

Boolean true or false

Int Number

Float Number

Enum Value String

For consistency and ease of notation, examples of responses are given in JSON format throughout this
document.

Since the result of evaluating a selection set is ordered, the serialized Map of results should preserve this
order by writing the map entries in the same order as those fields were requested as defined by query
execution. Producing a serialized response where fields are represented in the same order in which they
appear in the request improves human readability during debugging and enables more efficient parsing of
responses if the order of properties can be anticipated.

Serialization formats which represent an ordered map should preserve the order of requested fields as
defined by CollectFields() in the Execution section. Serialization formats which only represent unordered
maps but where order is still implicit in the serialization’s textual order (such as JSON) should preserve the
order of requested fields textually.

For example, if the request was { name, age } , a GraphQL service responding in JSON should respond
with { "name": "Mark", "age": 30 } and should not respond with
{ "age": 30, "name": "Mark" } .

Note

Serialized Map Ordering

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 150/165

While JSON Objects are specified as an unordered collection of key‐value pairs the pairs are represented in
an ordered manner. In other words, while the JSON strings { "name": "Mark", "age": 30 } and
{ "age": 30, "name": "Mark" } encode the same value, they also have observably different property
orderings.

This does not violate the JSON spec, as clients may still interpret objects in the response as unordered Maps
and arrive at a valid value.

This specification document contains a number of notation conventions used to describe technical concepts
such as language grammar and semantics as well as runtime algorithms.

This appendix seeks to explain these notations in greater detail to avoid ambiguity.

A context‐free grammar consists of a number of productions. Each production has an abstract symbol called
a “non‐terminal” as its left‐hand side, and zero or more possible sequences of non‐terminal symbols and or
terminal characters as its right‐hand side.

Starting from a single goal non‐terminal symbol, a context‐free grammar describes a language: the set of
possible sequences of characters that can be described by repeatedly replacing any non‐terminal in the goal
sequence with one of the sequences it is defined by, until all non‐terminal symbols have been replaced by
terminal characters.

Terminals are represented in this document in a monospace font in two forms: a specific Unicode character
or sequence of Unicode characters (ex. = or terminal), and a pattern of Unicode characters defined by a
regular expression (ex /[0-9]+/).

Non‐terminal production rules are represented in this document using the following notation for a non‐
terminal with a single definition:

NonTerminalWithSingleDefinition :

Note

Appendix: Notation Conventions

Context-Free Grammar

☰

https://tools.ietf.org/html/rfc7159#section-4

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 151/165

NonTerminal terminal

While using the following notation for a production with a list of definitions:

NonTerminalWithManyDefinitions :
OtherNonTerminal terminal
terminal

A definition may refer to itself, which describes repetitive sequences, for example:

ListOfLetterA :
a

ListOfLetterA a

The GraphQL language is defined in a syntactic grammar where terminal symbols are tokens. Tokens are
defined in a lexical grammar which matches patterns of source characters. The result of parsing a sequence
of source Unicode characters produces a GraphQL AST.

A Lexical grammar production describes non‐terminal “tokens” by patterns of terminal Unicode characters.
No “whitespace” or other ignored characters may appear between any terminal Unicode characters in the
lexical grammar production. A lexical grammar production is distinguished by a two colon :: definition.

Word ::
/[A-Za-z]+/

A Syntactical grammar production describes non‐terminal “rules” by patterns of terminal Tokens.
Whitespace and other ignored characters may appear before or after any terminal Token. A syntactical
grammar production is distinguished by a one colon : definition.

Sentence :
Noun Verb

This specification uses some additional notation to describe common patterns, such as optional or repeated
patterns, or parameterized alterations of the definition of a non‐terminal. This section explains these short‐
hand notations and their expanded definitions in the context‐free grammar.

Lexical and Syntactical Grammar

Grammar Notation

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 152/165

Constraints

A grammar production may specify that certain expansions are not permitted by using the phrase “but not”
and then indicating the expansions to be excluded.

For example, the production:

SafeName :
Name but not SevenCarlinWords

means that the nonterminal SafeName may be replaced by any sequence of characters that could replace
Name provided that the same sequence of characters could not replace SevenCarlinWords.

A grammar may also list a number of restrictions after “but not” separated by “or”.

For example:

NonBooleanName :
Name but not true or false

Optionality and Lists

A subscript suffix “Symbolopt” is shorthand for two possible sequences, one including that symbol and one

excluding it.

As an example:

Sentence :
Noun Verb Adverbopt

is shorthand for

Sentence :
Noun Verb
Noun Verb Adverb

A subscript suffix “Symbollist” is shorthand for a list of one or more of that symbol.

As an example:

Book :
Cover Pagelist Cover

is shorthand for

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 153/165

Book :
Cover Page_list Cover

Page_list :
Page
Page_list Page

Parameterized Grammar Productions

A symbol definition subscript suffix parameter in braces “Symbol[Param]” is shorthand for two symbol

definitions, one appended with that parameter name, the other without. The same subscript suffix on a
symbol is shorthand for that variant of the definition. If the parameter starts with “?”, that form of the
symbol is used if in a symbol definition with the same parameter. Some possible sequences can be included
or excluded conditionally when respectively prefixed with “[+Param]” and “[~Param]”.

As an example:

Example[Param] :

A
B[Param]

C[?Param]

[+Param] D
[~Param] E

is shorthand for

Example :
A
B_param
C
E

Example_param :
A
B_param
C_param
D

Grammar Semantics

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 154/165

This specification describes the semantic value of many grammar productions in the form of a list of
algorithmic steps.

For example, this describes how a parser should interpret a string literal:

StringValue :: ""

1. Return an empty Unicode character sequence.

StringValue :: " StringCharacterlist "

1. Return the Unicode character sequence of all StringCharacter Unicode character values.

This specification describes some algorithms used by the static and runtime semantics, they’re defined in the
form of a function‐like syntax with the algorithm’s name and the arguments it accepts along with a list of
algorithmic steps to take in the order listed. Each step may establish references to other values, check various
conditions, call other algorithms, and eventually return a value representing the outcome of the algorithm for
the provided arguments.

For example, the following example describes an algorithm named Fibonacci which accepts a single
argument number. The algoritm’s steps produce the next number in the Fibonacci sequence:

Fibonacci(number) :

1. If number is 0:
a. Return 1.

2. If number is 1:
a. Return 2.

3. Let previousNumber be number - 1.
4. Let previousPreviousNumber be number - 2.
5. Return Fibonacci(previousNumber) + Fibonacci(previousPreviousNumber).

Algorithms described in this document are written to be easy to understand. Implementers are encouraged to
include equivalent but optimized implementations.

Algorithms

Note

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 155/165

SourceCharacter ::
/[\u0009\u000A\u000D\u0020-\uFFFF]/

Ignored ::
UnicodeBOM
WhiteSpace
LineTerminator
Comment
Comma

UnicodeBOM ::
Byte Order Mark (U+FEFF)

WhiteSpace ::
Horizontal Tab (U+0009)
Space (U+0020)

LineTerminator ::
New Line (U+000A)
Carriage Return (U+000D) [lookahead ≠ New Line (U+000A)]
Carriage Return (U+000D) New Line (U+000A)

Comment ::
CommentCharlist, opt

CommentChar ::
SourceCharacter but not LineTerminator

Comma ::
,

Token ::

Appendix: Grammar Summary

Ignored Tokens

Lexical Tokens

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 156/165

Punctuator
Name
IntValue
FloatValue
StringValue

Punctuator :: one of
! $ () ... : = @ [] { | }

Name ::
/[_A-Za-z][_0-9A-Za-z]*/

IntValue ::
IntegerPart

IntegerPart ::
NegativeSignopt 0

NegativeSignopt NonZeroDigit Digitlist, opt

NegativeSign ::
-

Digit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit ::
Digit but not 0

FloatValue ::
IntegerPart FractionalPart
IntegerPart ExponentPart
IntegerPart FractionalPart ExponentPart

FractionalPart ::
. Digitlist

ExponentPart ::
ExponentIndicator Signopt Digitlist

ExponentIndicator :: one of
e E

Sign :: one of
+ -

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 157/165

StringValue ::
" StringCharacterlist, opt "

""" BlockStringCharacterlist, opt """

StringCharacter ::
SourceCharacter but not " or \ or LineTerminator
\u EscapedUnicode
\ EscapedCharacter

EscapedUnicode ::
/[0-9A-Fa-f]{4}/

EscapedCharacter :: one of
" \ / b f n r t

BlockStringCharacter ::
SourceCharacter but not """ or \"""
\"""

Block string values are interpreted to exclude blank initial and trailing lines and uniform indentation with
BlockStringValue().

Document :
Definitionlist

Definition :
ExecutableDefinition
TypeSystemDefinition
TypeSystemExtension

ExecutableDefinition :
OperationDefinition
FragmentDefinition

OperationDefinition :
SelectionSet
OperationType Nameopt VariableDefinitionsopt Directivesopt SelectionSet

Note

Document

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 158/165

OperationType : one of
query mutation subscription

SelectionSet :
{ Selectionlist }

Selection :
Field
FragmentSpread
InlineFragment

Field :
Aliasopt Name Argumentsopt Directivesopt SelectionSetopt

Alias :
Name :

Arguments[Const] :

(Argument[?Const]list)

Argument[Const] :

Name : Value[?Const]

FragmentSpread :
... FragmentName Directivesopt

InlineFragment :
... TypeConditionopt Directivesopt SelectionSet

FragmentDefinition :
fragment FragmentName TypeCondition Directivesopt SelectionSet

FragmentName :
Name but not on

TypeCondition :
on NamedType

Value[Const] :

[~Const] Variable
IntValue
FloatValue
StringValue

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 159/165

BooleanValue
NullValue
EnumValue
ListValue[?Const]

ObjectValue[?Const]

BooleanValue : one of
true false

NullValue :
null

EnumValue :
Name but not true or false or null

ListValue[Const] :

[]

[Value[?Const]list]

ObjectValue[Const] :

{ }

{ ObjectField[?Const]list }

ObjectField[Const] :

Name : Value[?Const]

VariableDefinitions :
(VariableDefinitionlist)

VariableDefinition :
Variable : Type DefaultValueopt

Variable :
$ Name

DefaultValue :
= Value[Const]

Type :
NamedType
ListType
NonNullType

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 160/165

NamedType :
Name

ListType :
[Type]

NonNullType :
NamedType !

ListType !

Directives[Const] :

Directive[?Const]list

Directive[Const] :

@ Name Arguments[?Const]opt

TypeSystemDefinition :
SchemaDefinition
TypeDefinition
DirectiveDefinition

TypeSystemExtension :
SchemaExtension
TypeExtension

SchemaDefinition :
schema Directives[Const]opt { OperationTypeDefinitionlist }

SchemaExtension :
extend schema Directives[Const]opt { OperationTypeDefinitionlist }

extend schema Directives[Const]

OperationTypeDefinition :
OperationType : NamedType

Description :
StringValue

TypeDefinition :
ScalarTypeDefinition
ObjectTypeDefinition
InterfaceTypeDefinition
UnionTypeDefinition

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 161/165

EnumTypeDefinition
InputObjectTypeDefinition

TypeExtension :
ScalarTypeExtension
ObjectTypeExtension
InterfaceTypeExtension
UnionTypeExtension
EnumTypeExtension
InputObjectTypeExtension

ScalarTypeDefinition :
Descriptionopt scalar Name Directives[Const]opt

ScalarTypeExtension :
extend scalar Name Directives[Const]

ObjectTypeDefinition :
Descriptionopt type Name ImplementsInterfacesopt Directives[Const]opt FieldsDefinitionopt

ObjectTypeExtension :
extend type Name ImplementsInterfacesopt Directives[Const]opt FieldsDefinition

extend type Name ImplementsInterfacesopt Directives[Const]

extend type Name ImplementsInterfaces

ImplementsInterfaces :
implements &opt NamedType

ImplementsInterfaces & NamedType

FieldsDefinition :
{ FieldDefinitionlist }

FieldDefinition :
Descriptionopt Name ArgumentsDefinitionopt : Type Directives[Const]opt

ArgumentsDefinition :
(InputValueDefinitionlist)

InputValueDefinition :
Descriptionopt Name : Type DefaultValueopt Directives[Const]opt

InterfaceTypeDefinition :

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 162/165

Descriptionopt interface Name Directives[Const]opt FieldsDefinitionopt

InterfaceTypeExtension :
extend interface Name Directives[Const]opt FieldsDefinition

extend interface Name Directives[Const]

UnionTypeDefinition :
Descriptionopt union Name Directives[Const]opt UnionMemberTypesopt

UnionMemberTypes :
= |opt NamedType

UnionMemberTypes | NamedType

UnionTypeExtension :
extend union Name Directives[Const]opt UnionMemberTypes

extend union Name Directives[Const]

EnumTypeDefinition :
Descriptionopt enum Name Directives[Const]opt EnumValuesDefinitionopt

EnumValuesDefinition :
{ EnumValueDefinitionlist }

EnumValueDefinition :
Descriptionopt EnumValue Directives[Const]opt

EnumTypeExtension :
extend enum Name Directives[Const]opt EnumValuesDefinition

extend enum Name Directives[Const]

InputObjectTypeDefinition :
Descriptionopt input Name Directives[Const]opt InputFieldsDefinitionopt

InputFieldsDefinition :
{ InputValueDefinitionlist }

InputObjectTypeExtension :
extend input Name Directives[Const]opt InputFieldsDefinition

extend input Name Directives[Const]

DirectiveDefinition :

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 163/165

Descriptionopt directive @ Name ArgumentsDefinitionopt on DirectiveLocations

DirectiveLocations :
|opt DirectiveLocation

DirectiveLocations | DirectiveLocation

DirectiveLocation :
ExecutableDirectiveLocation
TypeSystemDirectiveLocation

ExecutableDirectiveLocation : one of
QUERY

MUTATION

SUBSCRIPTION

FIELD

FRAGMENT_DEFINITION

FRAGMENT_SPREAD

INLINE_FRAGMENT

TypeSystemDirectiveLocation : one of
SCHEMA

SCALAR

OBJECT

FIELD_DEFINITION

ARGUMENT_DEFINITION

INTERFACE

UNION

ENUM

ENUM_VALUE

INPUT_OBJECT

INPUT_FIELD_DEFINITION

Alias
AreTypesCompatible

Argument
Arguments

ArgumentsDefinition
BlockStringCharacter

Index

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 164/165

BlockStringValue
BooleanValue
CoerceArgumentValues
CoerceVariableValues
CollectFields
Comma
Comment
CommentChar
CompleteValue
CreateSourceEventStream
DefaultValue
Definition
Description
Digit
Directive
DirectiveDefinition
DirectiveLocation
DirectiveLocations
Directives
Document
DoesFragmentTypeApply
EnumTypeDefinition
EnumTypeExtension
EnumValue
EnumValueDefinition
EnumValuesDefinition
EscapedCharacter
EscapedUnicode
ExecutableDefinition
ExecutableDirectiveLocation
ExecuteField
ExecuteMutation
ExecuteQuery
ExecuteRequest
ExecuteSelectionSet
ExecuteSubscriptionEvent
ExponentIndicator
ExponentPart
Field

FieldDefinition
FieldsDefinition
FieldsInSetCanMerge
FloatValue
FractionalPart
FragmentDefinition
FragmentName
FragmentSpread
GetOperation
GetPossibleTypes
Ignored
ImplementsInterfaces
InlineFragment
InputFieldsDefinition
InputObjectTypeDefinition
InputObjectTypeExtension
InputValueDefinition
IntValue
IntegerPart
InterfaceTypeDefinition
InterfaceTypeExtension
IsInputType
IsOutputType
IsVariableUsageAllowed
LineTerminator
ListType
ListValue
MapSourceToResponseEvent
MergeSelectionSets
Name
NamedType
NegativeSign
NonNullType
NonZeroDigit
NullValue
ObjectField
ObjectTypeDefinition
ObjectTypeExtension
ObjectValue

OperationDefinition
OperationType
Punctuator
ResolveAbstractType
ResolveFieldEventStream
ResolveFieldValue
RootOperationTypeDefinition
SameResponseShape
ScalarTypeDefinition
ScalarTypeExtension
SchemaDefinition
SchemaExtension
Selection
SelectionSet
Sign
SourceCharacter
StringCharacter
StringValue
Subscribe
Token
Type
TypeCondition
TypeDefinition
TypeExtension
TypeSystemDefinition
TypeSystemDirectiveLocation
TypeSystemExtension
UnicodeBOM
UnionMemberTypes
UnionTypeDefinition
UnionTypeExtension
Unsubscribe
Value
Variable
VariableDefinition
VariableDefinitions
WhiteSpace

☰

8/10/2020 GraphQL

https://spec.graphql.org/June2018/ 165/165

Written in Spec Markdown.
☰

http://leebyron.com/spec-md/

