
10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 1/14

GraphQL Learn Code Community Spec Code of Conduct Foundation

Landscape

Queries and Mutations
On this page, you'll learn in detail about how to query a GraphQL server.

Fields

At its simplest, GraphQL is about asking for speci�c �elds on objects.
Let's start by looking at a very simple query and the result we get when
we run it:

You can see immediately that the query has exactly the same shape as
the result. This is essential to GraphQL, because you always get back
what you expect, and the server knows exactly what �elds the client is
asking for.

The �eld name returns a String type, in this case the name of the main
hero of Star Wars, "R2-D2" .

Oh, one more thing - the query above is interactive. That means you
can change it as you like and see the new result. Try adding an

LEARN

Introduction

Queries and

Mutations

Fields
Arguments
Aliases
Fragments
Operation Name
Variables
Directives
Mutations
Inline Fragments

Schemas and

Types

Type System
Type Language
Object Types and
Fields
Arguments
The Query and
Mutation Types
Scalar Types
Enumeration
Types
Lists and Non-
Null
Interfaces
Union Types
Input Types

Validation

Search docs...

{
 hero {
 name
 }
}

{
 "data": {
 "hero": {
 "name": "R2-D2"
 }
 }
}

https://graphql.org/
https://graphql.org/learn/
https://graphql.org/code/
https://graphql.org/community/
https://graphql.github.io/graphql-spec/
https://graphql.org/codeofconduct/
https://foundation.graphql.org/
https://l.graphql.org/
https://graphql.org/learn/
https://graphql.org/learn/queries/
https://graphql.org/learn/schema/
https://graphql.org/learn/schema/#type-system
https://graphql.org/learn/schema/#type-language
https://graphql.org/learn/schema/#object-types-and-fields
https://graphql.org/learn/schema/#arguments
https://graphql.org/learn/schema/#the-query-and-mutation-types
https://graphql.org/learn/schema/#scalar-types
https://graphql.org/learn/schema/#enumeration-types
https://graphql.org/learn/schema/#lists-and-non-null
https://graphql.org/learn/schema/#interfaces
https://graphql.org/learn/schema/#union-types
https://graphql.org/learn/schema/#input-types
https://graphql.org/learn/validation/

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 2/14

appearsIn �eld to the hero object in the query, and see the new
result.

In the previous example, we just asked for the name of our hero which
returned a String, but �elds can also refer to Objects. In that case, you can
make a sub-selection of �elds for that object. GraphQL queries can
traverse related objects and their �elds, letting clients fetch lots of related
data in one request, instead of making several roundtrips as one would
need in a classic REST architecture.

Note that in this example, the friends �eld returns an array of items.
GraphQL queries look the same for both single items or lists of items,
however we know which one to expect based on what is indicated in the
schema.

Arguments

If the only thing we could do was traverse objects and their �elds,
GraphQL would already be a very useful language for data fetching. But
when you add the ability to pass arguments to �elds, things get much
more interesting.

Execution

Introspection

BEST PRACTICES

Introduction

Thinking in

Graphs

Serving over

HTTP

Authorization

Pagination

Global Object

Identi�cation

Caching

{
 hero {
 name
 # Queries can have comments!
 friends {
 name
 }
 }
}

{
 "data": {
 "hero": {
 "name": "R2-D2",
 "friends": [
 {
 "name": "Luke Skywalker"
 },
 {
 "name": "Han Solo"
 },

{

{
 human(id: "1000") {
 name
 height
 }

{
 "data": {
 "human": {
 "name": "Luke Skywalker",
 "height": 1.72

https://graphql.org/learn/execution/
https://graphql.org/learn/introspection/
https://graphql.org/learn/best-practices/
https://graphql.org/learn/thinking-in-graphs/
https://graphql.org/learn/serving-over-http/
https://graphql.org/learn/authorization/
https://graphql.org/learn/pagination/
https://graphql.org/learn/global-object-identification/
https://graphql.org/learn/caching/

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 3/14

In a system like REST, you can only pass a single set of arguments - the
query parameters and URL segments in your request. But in GraphQL,
every �eld and nested object can get its own set of arguments, making
GraphQL a complete replacement for making multiple API fetches. You
can even pass arguments into scalar �elds, to implement data
transformations once on the server, instead of on every client separately.

Arguments can be of many different types. In the above example, we
have used an Enumeration type, which represents one of a �nite set of
options (in this case, units of length, either METER or FOOT). GraphQL
comes with a default set of types, but a GraphQL server can also declare
its own custom types, as long as they can be serialized into your
transport format.

Read more about the GraphQL type system here.

Aliases

If you have a sharp eye, you may have noticed that, since the result object
�elds match the name of the �eld in the query but don't include
arguments, you can't directly query for the same �eld with different
arguments. That's why you need aliases - they let you rename the result
of a �eld to anything you want.

} }
 }
}

{
 human(id: "1000") {
 name
 height(unit: FOOT)
 }
}

{
 "data": {
 "human": {
 "name": "Luke Skywalker",
 "height": 5.6430448
 }
 }
}

https://graphql.org/learn/schema

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 4/14

In the above example, the two hero �elds would have con�icted, but
since we can alias them to different names, we can get both results in
one request.

Fragments

Let's say we had a relatively complicated page in our app, which lets us
look at two heroes side by side, along with their friends. You can imagine
that such a query could quickly get complicated, because we would need
to repeat the �elds at least once - one for each side of the comparison.

That's why GraphQL includes reusable units called fragments. Fragments
let you construct sets of �elds, and then include them in queries where
you need to. Here's an example of how you could solve the above
situation using fragments:

{
 empireHero: hero(episode: EMPIRE)
 name
 }
 jediHero: hero(episode: JEDI) {
 name
 }
}

{
 "data": {
 "empireHero": {
 "name": "Luke Skywalker"
 },
 "jediHero": {
 "name": "R2-D2"
 }
 }
}

{
 leftComparison: hero(episode: EMP
 ...comparisonFields
 }
 rightComparison: hero(episode: JE
 ...comparisonFields
 }
}

fragment comparisonFields on Charac
 name
 appearsIn
 friends {
 name
 }
}

{
 "data": {
 "leftComparison": {
 "name": "Luke Skywalker",
 "appearsIn": [
 "NEWHOPE",
 "EMPIRE",
 "JEDI"
],
 "friends": [
 {
 "name": "Han Solo"
 },
 {
 "name": "Leia Organa"
 },
 {

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 5/14

You can see how the above query would be pretty repetitive if the �elds
were repeated. The concept of fragments is frequently used to split
complicated application data requirements into smaller chunks,
especially when you need to combine lots of UI components with
different fragments into one initial data fetch.

Using variables inside fragments

It is possible for fragments to access variables declared in the query or
mutation. See variables.

Operation name

Up until now, we have been using a shorthand syntax where we omit both
the query keyword and the query name, but in production apps it's useful

VARIABLESVARIABLES

 "name": "C-3PO"
}

query HeroComparison($first: Int =
 leftComparison: hero(episode: EMP
 ...comparisonFields
 }
 rightComparison: hero(episode: JE
 ...comparisonFields
 }
}

fragment comparisonFields on Charac
 name
 friendsConnection(first: $first)
 totalCount
 edges {
 node {
 name
 }
 }
 }
}

{
 "data": {
 "leftComparison": {
 "name": "Luke Skywalker",
 "friendsConnection": {
 "totalCount": 4,
 "edges": [
 {
 "node": {
 "name": "Han Solo"
 }
 },
 {
 "node": {
 "name": "Leia Organa"
 }
 },
 {
 "node": {
 "name": "C-3PO"
 }
 }
]
 }

}

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 6/14

to use these to make our code less ambiguous.

Here’s an example that includes the keyword query as operation type
and HeroNameAndFriends as operation name :

The operation type is either query, mutation, or subscription and
describes what type of operation you're intending to do. The operation
type is required unless you're using the query shorthand syntax, in which
case you can't supply a name or variable de�nitions for your operation.

The operation name is a meaningful and explicit name for your operation.
It is only required in multi-operation documents, but its use is encouraged
because it is very helpful for debugging and server-side logging. When
something goes wrong (you see errors either in your network logs, or in
the logs of your GraphQL server) it is easier to identify a query in your
codebase by name instead of trying to decipher the contents. Think of
this just like a function name in your favorite programming language. For
example, in JavaScript we can easily work only with anonymous
functions, but when we give a function a name, it's easier to track it down,
debug our code, and log when it's called. In the same way, GraphQL query
and mutation names, along with fragment names, can be a useful
debugging tool on the server side to identify different GraphQL requests.

Variables

query HeroNameAndFriends {
 hero {
 name
 friends {
 name
 }
 }
}

{
 "data": {
 "hero": {
 "name": "R2-D2",
 "friends": [
 {
 "name": "Luke Skywalker"
 },
 {
 "name": "Han Solo"

}

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 7/14

So far, we have been writing all of our arguments inside the query string.
But in most applications, the arguments to �elds will be dynamic: For
example, there might be a dropdown that lets you select which Star Wars
episode you are interested in, or a search �eld, or a set of �lters.

It wouldn't be a good idea to pass these dynamic arguments directly in
the query string, because then our client-side code would need to
dynamically manipulate the query string at runtime, and serialize it into a
GraphQL-speci�c format. Instead, GraphQL has a �rst-class way to factor
dynamic values out of the query, and pass them as a separate dictionary.
These values are called variables.

When we start working with variables, we need to do three things:

1. Replace the static value in the query with $variableName

2. Declare $variableName as one of the variables accepted by the
query

3. Pass variableName: value in the separate, transport-speci�c
(usually JSON) variables dictionary

Here's what it looks like all together:

Now, in our client code, we can simply pass a different variable rather
than needing to construct an entirely new query. This is also in general a

VARIABLESVARIABLES

query HeroNameAndFriends($episode:
 hero(episode: $episode) {
 name
 friends {
 name
 }
 }
}

{
 "episode": "JEDI"
}

{
 "data": {
 "hero": {
 "name": "R2-D2",
 "friends": [
 {
 "name": "Luke Skywalker"
 },
 {
 "name": "Han Solo"
 },
 {
 "name": "Leia Organa"
 }
]

}

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 8/14

good practice for denoting which arguments in our query are expected to
be dynamic - we should never be doing string interpolation to construct
queries from user-supplied values.

Variable de�nitions

The variable de�nitions are the part that looks like ($episode: Episode)
in the query above. It works just like the argument de�nitions for a
function in a typed language. It lists all of the variables, pre�xed by $,
followed by their type, in this case Episode .

All declared variables must be either scalars, enums, or input object
types. So if you want to pass a complex object into a �eld, you need to
know what input type that matches on the server. Learn more about input
object types on the Schema page.

Variable de�nitions can be optional or required. In the case above, since
there isn't an ! next to the Episode type, it's optional. But if the �eld you
are passing the variable into requires a non-null argument, then the
variable has to be required as well.

To learn more about the syntax for these variable de�nitions, it's useful to
learn the GraphQL schema language. The schema language is explained
in detail on the Schema page.

Default variables

Default values can also be assigned to the variables in the query by
adding the default value after the type declaration.

query HeroNameAndFriends($episode: Episode = JEDI) {
 hero(episode: $episode) {
 name
 friends {
 name
 }
 }
}

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 9/14

When default values are provided for all variables, you can call the query
without passing any variables. If any variables are passed as part of the
variables dictionary, they will override the defaults.

Directives

We discussed above how variables enable us to avoid doing manual
string interpolation to construct dynamic queries. Passing variables in
arguments solves a pretty big class of these problems, but we might also
need a way to dynamically change the structure and shape of our queries
using variables. For example, we can imagine a UI component that has a
summarized and detailed view, where one includes more �elds than the
other.

Let's construct a query for such a component:

Try editing the variables above to instead pass true for withFriends ,
and see how the result changes.

We needed to use a new feature in GraphQL called a directive. A directive
can be attached to a �eld or fragment inclusion, and can affect execution
of the query in any way the server desires. The core GraphQL

VARIABLESVARIABLES

query Hero($episode: Episode, $with
 hero(episode: $episode) {
 name
 friends @include(if: $withFrien
 name
 }
 }
}

{
 "episode": "JEDI",
 "withFriends": false
}

{
 "data": {
 "hero": {
 "name": "R2-D2"
 }
 }
}

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 10/14

speci�cation includes exactly two directives, which must be supported by
any spec-compliant GraphQL server implementation:

@include(if: Boolean) Only include this �eld in the result if the
argument is true .

@skip(if: Boolean) Skip this �eld if the argument is true .

Directives can be useful to get out of situations where you otherwise
would need to do string manipulation to add and remove �elds in your
query. Server implementations may also add experimental features by
de�ning completely new directives.

Mutations

Most discussions of GraphQL focus on data fetching, but any complete
data platform needs a way to modify server-side data as well.

In REST, any request might end up causing some side-effects on the
server, but by convention it's suggested that one doesn't use GET
requests to modify data. GraphQL is similar - technically any query could
be implemented to cause a data write. However, it's useful to establish a
convention that any operations that cause writes should be sent explicitly
via a mutation.

Just like in queries, if the mutation �eld returns an object type, you can
ask for nested �elds. This can be useful for fetching the new state of an
object after an update. Let's look at a simple example mutation:

VARIABLESVARIABLES

mutation CreateReviewForEpisode($ep
 createReview(episode: $ep, review
 stars
 commentary
 }
}

{
 "data": {
 "createReview": {
 "stars": 5,
 "commentary": "This is a grea
 }
 }
}

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 11/14

Note how createReview �eld returns the stars and commentary �elds
of the newly created review. This is especially useful when mutating
existing data, for example, when incrementing a �eld, since we can
mutate and query the new value of the �eld with one request.

You might also notice that, in this example, the review variable we
passed in is not a scalar. It's an input object type, a special kind of object
type that can be passed in as an argument. Learn more about input types
on the Schema page.

Multiple �elds in mutations

A mutation can contain multiple �elds, just like a query. There's one
important distinction between queries and mutations, other than the
name:

While query �elds are executed in parallel, mutation �elds run in series,
one after the other.

This means that if we send two incrementCredits mutations in one
request, the �rst is guaranteed to �nish before the second begins,
ensuring that we don't end up with a race condition with ourselves.

Inline Fragments

Like many other type systems, GraphQL schemas include the ability to
de�ne interfaces and union types. Learn about them in the schema guide.

{
 "ep": "JEDI",
 "review": {
 "stars": 5,
 "commentary": "This is a great
 }
}

https://graphql.org/learn/schema/#interfaces

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 12/14

If you are querying a �eld that returns an interface or a union type, you will
need to use inline fragments to access data on the underlying concrete
type. It's easiest to see with an example:

In this query, the hero �eld returns the type Character , which might be
either a Human or a Droid depending on the episode argument. In the
direct selection, you can only ask for �elds that exist on the Character
interface, such as name .

To ask for a �eld on the concrete type, you need to use an inline fragment
with a type condition. Because the �rst fragment is labeled as ... on
Droid , the primaryFunction �eld will only be executed if the Character
returned from hero is of the Droid type. Similarly for the height �eld for
the Human type.

Named fragments can also be used in the same way, since a named
fragment always has a type attached.

Meta �elds

Given that there are some situations where you don't know what type
you'll get back from the GraphQL service, you need some way to
determine how to handle that data on the client. GraphQL allows you to

VARIABLESVARIABLES

query HeroForEpisode($ep: Episode!)
 hero(episode: $ep) {
 name
 ... on Droid {
 primaryFunction
 }
 ... on Human {
 height
 }
 }
}

{
 "ep": "JEDI"
}

{
 "data": {
 "hero": {
 "name": "R2-D2",
 "primaryFunction": "Astromech
 }
 }
}

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 13/14

request __typename , a meta �eld, at any point in a query to get the name
of the object type at that point.

In the above query, search returns a union type that can be one of three
options. It would be impossible to tell apart the different types from the
client without the __typename �eld.

GraphQL services provide a few meta �elds, the rest of which are used to
expose the Introspection system.

Continue Reading →

Schemas and Types

Learn

Introduction

Code

Servers

Community

Upcoming Events

More

GraphQL Speci�cation

{
 search(text: "an") {
 __typename
 ... on Human {
 name
 }
 ... on Droid {
 name
 }
 ... on Starship {
 name
 }
 }
}

{
 "data": {
 "search": [
 {
 "__typename": "Human",
 "name": "Han Solo"
 },
 {
 "__typename": "Human",
 "name": "Leia Organa"
 },
 {
 "__typename": "Starship",
 "name": "TIE Advanced x1"
 }
]
}

https://graphql.org/learn/introspection/
https://graphql.org/learn/schema

10/16/2020 Queries and Mutations | GraphQL

https://graphql.org/learn/queries/ 14/14

Query Language

Type System

Execution

Best Practices

Clients

Tools

Stack Over�ow

Facebook Group

Twitter

GraphQL Foundation

GraphQL GitHub

Edit this page ✎

Copyright © 2020 The GraphQL Foundation. All rights reserved. The Linux Foundation has registered
trademarks and uses trademarks. For a list of trademarks of The Linux Foundation, please see our

Trademark Usage page. Linux is a registered trademark of Linus Torvalds. Privacy Policy and Terms of Use.

https://www.linuxfoundation.org/trademark-usage
http://www.linuxfoundation.org/privacy
http://www.linuxfoundation.org/terms

