
10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 1/11

Content Security Policy (CSP)

Sign in

English ▼

Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate
certain types of attacks, including Cross Site Scripting (XSS) and data injection attacks. These
attacks are used for everything from data theft to site defacement to distribution of malware.

CSP is designed to be fully backward compatible (except CSP version 2 where there are some
explicitly-mentioned inconsistencies in backward compatibility; more details here section 1.1).
Browsers that don't support it still work with servers that implement it, and vice-versa: browsers
that don't support CSP simply ignore it, functioning as usual, defaulting to the standard same-
origin policy for web content. If the site doesn't offer the CSP header, browsers likewise use the
standard same-origin policy.

To enable CSP, you need to configure your web server to return the Content-Security-

Policy HTTP header. (Sometimes you may see mentions of the X-Content-Security-

Policy header, but that's an older version and you don't need to specify it anymore.)

Alternatively, the <meta> element can be used to configure a policy, for example: <meta

http-equiv="Content-Security-Policy" content="default-src 'self'; img-

src https://*; child-src 'none';">

Mitigating cross site scripting

A primary goal of CSP is to mitigate and report XSS attacks. XSS attacks exploit the browser's
trust of the content received from the server. Malicious scripts are executed by the victim's
browser because the browser trusts the source of the content, even when it's not coming from
where it seems to be coming from.

Threats

https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/users/account/signup-landing?next=/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Glossary/CSP
https://developer.mozilla.org/en-US/docs/Glossary/XSS
https://www.w3.org/TR/CSP2
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 2/11

CSP makes it possible for server administrators to reduce or eliminate the vectors by which
XSS can occur by specifying the domains that the browser should consider to be valid sources
of executable scripts. A CSP compatible browser will then only execute scripts loaded in source
files received from those allowlisted domains, ignoring all other script (including inline scripts
and event-handling HTML attributes).

As an ultimate form of protection, sites that want to never allow scripts to be executed can opt
to globally disallow script execution.

Mitigating packet sniffing attacks

In addition to restricting the domains from which content can be loaded, the server can specify
which protocols are allowed to be used; for example (and ideally, from a security standpoint), a
server can specify that all content must be loaded using HTTPS. A complete data transmission
security strategy includes not only enforcing HTTPS for data transfer, but also marking all
cookies with the secure attribute and providing automatic redirects from HTTP pages to their

HTTPS counterparts. Sites may also use the Strict-Transport-Security HTTP header

to ensure that browsers connect to them only over an encrypted channel.

Configuring Content Security Policy involves adding the Content-Security-Policy HTTP

header to a web page and giving it values to control what resources the user agent is allowed
to load for that page. For example, a page that uploads and displays images could allow
images from anywhere, but restrict a form action to a specific endpoint. A properly designed
Content Security Policy helps protect a page against a cross site scripting attack. This article
explains how to construct such headers properly, and provides examples.

Specifying your policy

You can use the Content-Security-Policy HTTP header to specify your policy, like this:

Using CSP

Content-Security-Policy: policy

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 3/11

The policy is a string containing the policy directives describing your Content Security Policy.

Writing a policy

A policy is described using a series of policy directives, each of which describes the policy for a
certain resource type or policy area. Your policy should include a default-src policy

directive, which is a fallback for other resource types when they don't have policies of their own
(for a complete list, see the description of the default-src directive). A policy needs to

include a default-src or script-src directive to prevent inline scripts from running, as

well as blocking the use of eval() . A policy needs to include a default-src or style-

src directive to restrict inline styles from being applied from a <style> element or a style

attribute. There are specific directives for a wide variety of types of items, so that each type can
have its own policy, including fonts, frames, images, audio and video media, scripts, and
workers.

This section provides examples of some common security policy scenarios.

Example 1

A web site administrator wants all content to come from the site's own origin (this excludes
subdomains.)

Example 2

A web site administrator wants to allow content from a trusted domain and all its subdomains (it
doesn't have to be the same domain that the CSP is set on.)

Examples: Common use cases

Content-Security-Policy: default-src 'self'

Content-Security-Policy: default-src 'self' *.trusted.com

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/style-src
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/style

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 4/11

Example 3

A web site administrator wants to allow users of a web application to include images from any
origin in their own content, but to restrict audio or video media to trusted providers, and all
scripts only to a specific server that hosts trusted code.

Here, by default, content is only permitted from the document's origin, with the following
exceptions:

Images may load from anywhere (note the "*" wildcard).

Media is only allowed from media1.com and media2.com (and not from subdomains of
those sites).

Executable script is only allowed from userscripts.example.com.

Example 4

A web site administrator for an online banking site wants to ensure that all its content is loaded
using TLS, in order to prevent attackers from eavesdropping on requests.

The server permits access only to documents being loaded specifically over HTTPS through
the single origin onlinebanking.jumbobank.com.

Example 5

A web site administrator of a web mail site wants to allow HTML in email, as well as images
loaded from anywhere, but not JavaScript or other potentially dangerous content.

Content-Security-Policy: default-src 'self'; img-src *; media-src

media1.com media2.com; script-src userscripts.example.com

Content-Security-Policy: default-src

https://onlinebanking.jumbobank.com

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 5/11

Note that this example doesn't specify a script-src ; with the example CSP, this site uses

the setting specified by the default-src directive, which means that scripts can be loaded

only from the originating server.

To ease deployment, CSP can be deployed in report-only mode. The policy is not enforced, but
any violations are reported to a provided URI. Additionally, a report-only header can be used to
test a future revision to a policy without actually deploying it.

You can use the Content-Security-Policy-Report-Only HTTP header to specify your

policy, like this:

If both a Content-Security-Policy-Report-Only header and a Content-Security-

Policy header are present in the same response, both policies are honored. The policy

specified in Content-Security-Policy headers is enforced while the Content-

Security-Policy-Report-Only policy generates reports but is not enforced.

By default, violation reports aren't sent. To enable violation reporting, you need to specify the
report-uri policy directive, providing at least one URI to which to deliver the reports:

Content-Security-Policy: default-src 'self' *.mailsite.com; img-src *

Testing your policy

Content-Security-Policy-Report-Only: policy

Enabling reporting

Content-Security-Policy: default-src 'self'; report-uri

http://reportcollector.example.com/collector.cgi

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy-Report-Only
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy-Report-Only
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/report-uri

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 6/11

Then you need to set up your server to receive the reports; it can store or process them in
whatever manner you determine is appropriate.

The report JSON object contains the following data:

blocked-uri
The URI of the resource that was blocked from loading by the Content Security Policy. If the
blocked URI is from a different origin than the document-uri , then the blocked URI is

truncated to contain just the scheme, host, and port.

disposition
Either "enforce" or "report" depending on whether the Content-Security-

Policy-Report-Only header or the Content-Security-Policy header is used.

document-uri
The URI of the document in which the violation occurred.

effective-directive
The directive whose enforcement caused the violation.

original-policy
The original policy as specified by the Content-Security-Policy HTTP header.

referrer
The referrer of the document in which the violation occurred.

script-sample
The first 40 characters of the inline script, event handler, or style that caused the violation.

status-code
The HTTP status code of the resource on which the global object was instantiated.

violated-directive

Violation report syntax

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy-Report-Only

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 7/11

The name of the policy section that was violated.

Let's consider a page located at http://example.com/signup.html . It uses the following

policy, disallowing everything but stylesheets from cdn.example.com .

The HTML of signup.html looks like this:

Can you spot the mistake? Stylesheets are allowed to be loaded only from
cdn.example.com , yet the website tries to load one from its own origin

(http://example.com). A browser capable of enforcing CSP would send the following

violation report as a POST request to http://example.com/_/csp-reports , when the

document is visited:

Sample violation report

Content-Security-Policy: default-src 'none'; style-src

cdn.example.com; report-uri /_/csp-reports

<!DOCTYPE html>

<html>

 <head>

 <title>Sign Up</title>

 <link rel="stylesheet" href="css/style.css">

 </head>

 <body>

 ... Content ...

 </body>

</html>

1

2

3

4

5

6

7

8

9

10

{

 "csp-report": {

 "document-uri": "http://example.com/signup.html",

 "referrer": "",

 "blocked-uri": "http://example.com/css/style.css",

1

2

3

4

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 8/11

Update compatibility data on GitHub

As you can see, the report includes the full path to the violating resource in blocked-uri .

This is not always the case. For example, if the signup.html attempted to load CSS from

http://anothercdn.example.com/stylesheet.css , the browser would not include the

full path, but only the origin (http://anothercdn.example.com). The CSP specification

gives an explanation of this odd behaviour. In summary, this is done to prevent leaking
sensitive information about cross-origin resources.

 "violated-directive": "style-src cdn.example.com",

 "original-policy": "default-src 'none'; style-src cdn.example.c

 }

}

5

6

7

8

9

Browser compatibility

Content-Security-Policy

25Chrome

14Edge

23Firefox

10IE

15Opera

7Safari

YesWebView Android

YesChrome Android

23Firefox Android

YesOpera Android

7Safari iOS

YesSamsung Internet Android

https://github.com/mdn/browser-compat-data
http://www.w3.org/TR/CSP/#security-violation-reports
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 9/11

Last modified: Jun 2, 2020, by MDN contributors

What are we missing?

Full support

See implementation notes.

Uses a non-standard name.

A specific incompatibility exists in some versions of the Safari web browser, whereby if a
Content Security Policy header is set, but not a Same Origin header, the browser will block self-
hosted content and off-site content, and incorrectly report that this is due to a the Content
Security Policy not allowing the content.

Content-Security-Policy HTTP Header

Content-Security-Policy-Report-Only HTTP Header

Content Security in WebExtensions

CSP in Web Workers

Privacy, permissions, and information security

CSP Evaluator - Evaluate your Content Security Policy

See also

Related Topics

Guides:

▶ Resources and URIs

▶ HTTP guide

HTTP

https://wiki.developer.mozilla.org/en-US/docs/Web/HTTP/CSP$history
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy-Report-Only
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_Security_Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy#CSP_in_workers
https://developer.mozilla.org/en-US/docs/Web/Privacy
https://github.com/google/csp-evaluator
https://developer.mozilla.org/en-US/docs/Web/HTTP

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 10/11

▶ HTTP security

References:

▶ HTTP headers

▶ HTTP request methods

▶ HTTP response status codes

▶ CSP directives

▶ CORS errors

▶ Feature-Policy directives

HTTP access control (CORS)

HTTP authentication

HTTP caching

HTTP compression

HTTP conditional requests

HTTP content negotiation

HTTP cookies

HTTP range requests

HTTP redirects

HTTP specifications

Feature policy

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Compression
https://developer.mozilla.org/en-US/docs/Web/HTTP/Conditional_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Content_negotiation
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Range_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections
https://developer.mozilla.org/en-US/docs/Web/HTTP/Resources_and_specifications
https://developer.mozilla.org/en-US/docs/Web/HTTP/Feature_Policy

10/15/2020 Content Security Policy (CSP) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 11/11

Learn the best of web development
Get the latest and greatest from MDN delivered straight to your inbox.

you@example.com

Sign up now

