
PHP Magic Tricks: Type Juggling

PHP Magic Tricks: Type Juggling

Who Am I

Chris Smith (@chrismsnz)

Previously:
▪ Polyglot Developer - Python, PHP, Go + more
▪ Linux Sysadmin

Currently:
▪ Pentester, Consultant at Insomnia Security
▪ Little bit of research

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Insomnia Security Group Limited
Founded in 2007 by Brett Moore.

New Zealand-based company.

Offices in Auckland and Wellington, as well as global partners.

Brings together a team of like-minded, highly technically skilled, results-driven, security professionals.

CREST Certified Testers.

Regularly perform work for customers in such differing industries as:

▪ Tele- and Mobile Communications;

▪ Banking, Finance, and Card Payment;

▪ E-Commerce and Online Retail;

▪ Software and Hardware Vendors;

▪ Broadcasting and Media; and

▪ Local and National Government.

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Conventions

Types:
▪ "string" for strings
▪ int(0), float(0) for numbers
▪ TRUE, FALSE for booleans

Terms:
▪ "Zero-like" - an expression that PHP will loosely compare to
int(0)

OWASP Day 2015 PHP Magic Tricks: Type Juggling

What is Type Juggling?

Present in other languages, but in PHP, specifically:

▪ Has two main comparison modes, lets call them loose (==)
and strict (===).

▪ Loose comparisons have a set of operand conversion rules to
make it easier for developers.

▪ Some of these are a bit weird.

OWASP Day 2015 PHP Magic Tricks: Type Juggling

PHP Comparisons: Strict

OWASP Day 2015 PHP Magic Tricks: Type Juggling

PHP Comparisons: Loose

OWASP Day 2015 PHP Magic Tricks: Type Juggling

PHP Comparisons: Loose

When comparing a string to a number, PHP will attempt to
convert the string to a number then perform a numeric
comparison

▪ TRUE: "0000" == int(0)
▪ TRUE: "0e12" == int(0)
▪ TRUE: "1abc" == int(1)
▪ TRUE: "0abc" == int(0)
▪ TRUE: "abc" == int(0) // !!

OWASP Day 2015 PHP Magic Tricks: Type Juggling

PHP Comparisons: Loose

It gets weirder... If PHP decides that both operands look like
numbers, even if they are actually strings, it will convert them
both and perform a numeric comparison:
▪ TRUE: "0e12345" == "0e54321"
▪ TRUE: "0e12345" <= "1"
▪ TRUE: "0e12345" == "0"
▪ TRUE: "0xF" == "15"

Less impact, but still important.

OWASP Day 2015 PHP Magic Tricks: Type Juggling

PHP Type Juggling Bugs

Very common, as == is the default comparison in other
languages

Difficult to actually exploit, due to usually not being able to input
typed data via HTTP, only strings

Usually manifest as bugs in hardening or protections, allowing
you to exploit other bugs that would otherwise be mitigated

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #1 - Laravel CSRF Protection Bypass

I discovered this bug November 2014

Was looking around at different places Type Juggling bugs could
affect application security.

Bug was very easy to find - first place I looked

A bit harder to exploit

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #1: The Bug

if (Session::token() != Input::get('_token'))

{

throw new Illuminate\Session\TokenMismatchException;

}

Session::token() is the CSRF token retrieved from the session
Input::get('_token') is a facade that corresponds to HTTP
request input ... sometimes

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #1: The Trick

▪ CSRF token is a "RaNdOmStRiNg123"

▪ What type of juggling can take place here?

▪ What if: If the CSRF token starts with a letter, or the number 0
(~85% chance)?

▪ Comparing it with an integer means that PHP will juggle the
CSRF token to int(0)

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #1: The Exploit

Cool story, but how can we make Input::get('_token') return
int(0)?

HTTP Parameters are always strings, never other types

JSON?

Yep. Laravel feeds any request with '/json' in the Content-Type
header through a JSON parser and shoves the result into the
Input facade

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #1: The Exploit

$.ajax("http://<laravel app>/sensitiveaction", {

type: 'post',

contentType: 'application/x-www-form-urlencoded; charset=UTF-8; /json',

data: '{"sensitiveparam": "sensitive", "_token": 0}',

});

The content type doesn't trigger CORS restrictions (Firefox 34, Chrome
39) but does trigger Laravel JSON parsing

_token parameter passes the CSRF check, most of the time

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #1: The Aftermath

▪ Untested, but using TRUE as token value should pass 100%
▪ Reported to Laravel, promptly fixed
▪ However, the bug did not exist in the framework (which could

be patched by composer in a Laravel point release)
▪ Rather, it was in project template code used to bootstrap new

projects - everyone who used the default CSRF protection had
to manually apply the patch to their project!

▪ JSON bug/weakness still stands (Laravel 4)

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #2: Laravel Cryptographic MAC Bypass

Laravel again!

Discovered and published by MWR Information Security, June
2013

Bug was in cryptographic library used throughout the framework

The library powered Laravel's authentication system and exposed
for use by any Laravel applications

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #2: The Bug

A Laravel "encryption payload" looks like this:
{
 "iv": "137f87545d8d2f994c65a6f336507747",
 "value": "c30fbe54e025b2a509db7a1fc174783c35d023199f9a0e24ae23a934277aec66"
 "mac": "68f6611d14aa021a80c3fc09c638de6de12910486c0c82703315b5d83b8229bb",
}

The MAC check code looked like this:
$payload = json_decode(base64_decode($payload), true);

if ($payload['mac'] != hash_hmac('sha256', $payload['value'], $this->key))
 throw new DecryptException("MAC for payload is invalid.");

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #2: The Trick

The calculated MAC (i.e. the result of hash_hmac()) is a string
containing hexadecimal characters

The use of a loose comparison means that if an integer was
provided in the JSON payload, the HMAC string will be juggled to
a number

▪ "7a5c2...72c933" == int(7)
▪ "68f66...8229bb" == int(68)
▪ "092d1...c410a9" == int(92)

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #2: The Exploit

If the calculated MAC is "68f66...8229bb" then the following
payload will pass the MAC check:

{
 "iv": "137f87545d8d2f994c65a6f336507747",
 "value": "c30fbe54e025b2a509db7a1fc174783c35d023199f9a0e24ae23a934277aec66"
 "mac": 68,
}

Now you can alter the ciphertext, "value", to whatever you
please, then repeat the request until a matching MAC input is
found

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #2: The Aftermath

The MAC bug allows an attacker to submit arbitrary ciphertexts and
IV's which are processed by the server in CBC mode

Arbitrary ciphertexts + CBC + poor error handling = Padding Oracle!

With a Padding Oracle, you can:
▪ Decrypt any encrypted ciphertexts
▪ Forge valid ciphertexts for arbitrary plaintexts

Without knowing the underlying encryption key

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #2: The Aftermath

Laravel's encryption library powered its "Remember Me"
authentication functionality

s:4:"1337"; + <padding>

This juggling bug allowed exploitation of the crypto flaws, leading to:
▪ Impersonation of any application user via. Remember Me cookie
▪ Remote Code Execution by leveraging PHP serialisation bugs:

▪ Magic Method execution of existing classes
▪ Other bugs (including recent DateTime Use After Free RCE)

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #3: Wordpress Authentication Bypass

Publicised by MWR Information Security (again) November 2014

Fun and interesting attack, but limited practicality

Probably easier ways to own Wordpress

Following is a simplified explanation of the bug

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #3: The Bug

$hash = hash_hmac('md5', $username . '|' . $expiration, $key);

if ($hmac != $hash) {
 // bad cookie
}

$username, $expiration and $hmac are provided by the user
in the cookie value

$key for all intents and purposes is secret

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #3: The Trick

The calculated hash, the result of hash_hmac(), looks like:
"596440eae1a63306035942fe604ed854"

The provided hash, given by the user in their cookie, may be any string

If we can make the calculated hash string Zero-like, and provide "0" in the
cookie, the check will pass

"0e768261251903820937390661668547" == "0"

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #3: The Exploit

You have control over 3 elements in the cookie:
▪ $username - username you are targetting, probably "admin"
▪ $hmac - the provided hash, "0"
▪ $expiration - a UNIX timestamp, must be in the future

hash_hmac(admin|1424869663) -> "e716865d1953e310498068ee39922f49"

hash_hmac(admin|1424869664) -> "8c9a492d316efb5e358ceefe3829bde4"

hash_hmac(admin|1424869665) -> "9f7cdbe744fc2dae1202431c7c66334b"

hash_hmac(admin|1424869666) -> "105c0abe89825a14c471d4f0c1cc20ab"

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #3: The Exploit

Increment the expiration timestamp enough times and you will
eventually get a Zero-like calculated HMAC:

hash_hmac(admin|1835970773) -> "0e174892301580325162390102935332"

Which makes the comparison:
"0e174892301580325162390102935332" == "0"

Enough times = 300,000,000 requests avg, ~30 days @ 100
req/s

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Bug #3: The Aftermath

Can (eventually) impersonate any user of the Wordpress
installation

Code has since been updated:
▪ SHA1/256 instead of MD5, much harder to get a Zero-like

hash
▪ Updated to use hash_equals() instead of ==, constant time,

type safe
▪ Also now includes another unique token

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Recap

PHP's Type Juggling magic trick, a developer convenience, has
unexpected behaviour that might bite you

Difficult to exploit, as HTTP Request parameters are usually
always strings, but even then you can cause PHP to juggle

Security-sensitive developers need to know how PHP acts in
these situations, unpredictability can be catastrophic

OWASP Day 2015 PHP Magic Tricks: Type Juggling

Recommendations

Use === as your default comparison. Only reach for == if you
really need it

If you need to convert types, perform explicit type conversions
using a cast

(int)"0e23812" === (int)"0e48394832"

Be very mindful of these issues when writing security-sensitive code

OWASP Day 2015 PHP Magic Tricks: Type Juggling

OWASP Day 2015

Chris Smith - @chrismsnz

 For sales enquiries: sales@insomniasec.com
 All other enquiries: enquiries@insomniasec.com

 Auckland office: +64 (0)9 972 3432
 Wellington office: +64 (0)4 974 6654

www.insomniasec.com

PHP Magic Tricks: Type Juggling

References

CSRF Vulnerability in Laravel 4
http://blog.laravel.com/csrf-vulnerability-in-laravel-4/

Laravel Cookie Forgery, Decryption and RCE
https://labs.mwrinfosecurity.com/blog/2014/04/11/laravel-cookie-forgery-decryption-and-rce/

Wordpress Auth Cookie Forgery
https://labs.mwrinfosecurity.com/blog/2014/04/11/wordpress-auth-cookie-forgery/

Writing Exploits for Exotic Bug Classes: PHP Type Juggling
https://www.alertlogic.com/blog/writing-exploits-for-exotic-bug-classes-php-type-juggling/

PHP Documentation: Type Juggling
http://php.net/manual/en/language.types.type-juggling.php

OWASP Day 2015 PHP Magic Tricks: Type Juggling

BONUS BUG

Lets take strcmp():
int strcmp(string $str1, string $str2)

▪ Returns -1 if $str1 < $str2
▪ Returns 0 if $str1 === $str2
▪ Returns +1 if $str1 > $str2

OWASP Day 2015 PHP Magic Tricks: Type Juggling

BONUS BUG

How would you use this function?

if (strcmp($_POST['password'], 'thePassword') == 0) {

 // do authenticated things

}

You control $_POST['password'], can you do anything to disrupt
this check?

OWASP Day 2015 PHP Magic Tricks: Type Juggling

BONUS BUG

Instead of POSTING a password string:
password=notThePassword

Submit an array:
password[]=

PHP translates POST variables like this to an empty array which
causes strcmp() to barf:

strcmp(array(), "thePassword") -> NULL

OWASP Day 2015 PHP Magic Tricks: Type Juggling

BONUS BUG

Lets take a look at the strcmp usage again:

if (strcmp($_POST['password'], 'thePassword') == 0) {

 // do authenticated things

}

Lucky for us, thanks to type juggling, NULL == 0. Auth bypass!

OWASP Day 2015 PHP Magic Tricks: Type Juggling

