

D
e

fi
n

it
io

n
s

W
h

o
 u

se
s

th
e

m

 Idea originating in 1950’s

 Standard way to get Input and Output

 A source or sink of data

 C – stdin, stderr, stdout

 C++ iostream

 Perl IO

 Python io

 Java

 C#

Είναι πολύ σημαντικό να
κατανοήσουμε τους
όρους ότι το εγχειρίδιο
χρησιμοποιεί για να
εξηγήσει πώς PHP κάνει

ρέματα.

And NOT in Greek:

It is very important to
understand the terms that

the manual uses to
explain how PHP does
streams.

 Stream

 Socket

 Filter

 Transport

 Wrapper

 Context

 Scheme

 Target

 Stream

› Resource that exhibits a flow or sucession of

data

 Socket

› Bidirectional network stream that speaks a
protocol

 Filter

› Performs operations on data as it is read
from or written to a stream

 Transport

› Tells a network stream how to communicate

 Wrapper

› Tells a stream how to handle specific

protocols and encodings

 Context

› A set of parameters and options to tell a

stream (or socket or filter) how to behave

 Scheme
› The name of the wrapper to be used. file, http, https, ftp,

etc.

 Target
› Depends on the wrapper, filesystem uses a string path

name, ssh2 uses a PHP resource

home/bar/foo.txt
file:///home/bar/foo.txt
http://www.example.com/foo.txt
ftp://user:pass@ftp.example.com/foo.txt

php://filter/read=string.toupper|string.rot13/resource
=http://www.example.com

 EVERYTHING

 include/require _once

 stream functions

 file system functions

 many other extensions

What are and how to use

Streams, Sockets and Filters

Stream
Contexts

Stream
Transport

Stream
Wrapper

Stream
Filter

ALL IO

 Access input and output generically

 Can write and read linearly

 May or may not be seekable

 Comes in chunks of data

 flock

 transport and wrapper limitations

 non-existent pointers (infinite loops can

and will happen)

 error handling

 Performs operations on stream data

 Can be prepended or appended (even

on the fly)

 Can be attached to read or write

 When a filter is added for read and write,

two instances of the filter are created.

 Data has an input and output state

 When reading in chunks, you may need

to cache in between reads to make

filters useful

 Use the right tool for the job

 Network Stream, Network Transport,

Socket Transport

 Slightly different behavior from a file

stream

 Bi-directional data

 Sockets block

› stream_set_blocking

› stream_set_timeout

› stream_select

 feof means “connection_closed”?

 huge reads or writes (think 8K)

 stream_get_meta_data is READ ONLY

 New APIS in streams and filesystem

functions are replacements

 Extension is old and not really kept up to

date (bit rot)

 Extension is more low level

 stream_socket_server

 stream_socket_client

 Pipes

 STDIN, STDOUT, STDERR

 proc_open

 popen

 Parameters

 Options

 Modify or enhance a stream

 stream_context_set_param

 stream_context_set_option

 stream_context_create

Streams, Stream Transports,

and Filters all available by

default

 file://

 http://

 ftp://

 data://

 glob://

 SSL

› https://

› ftps://

› ssl://

› tls://

 SSH

› ssh2.shell://

› ssh2.exec://

› ssh2.tunnel://

› ssh2.sftp://

› ssh2.scp://

 Phar

› phar://

 Zlib

› compress.zlib://

› zlib://

 Bzip

› compress.bz2://

 string filters

› string.rot13

› string.toupper

› string.tolower

› string.strip_tags

 convert filters
› convert.*

 base64-encode

 base64-decode

 quoted-printable-encode

 quoted-printable-decode

 dechunk
› decode remote HTTP chunked encoding

streams

 consumed
› eats data (that’s all it does)

 bzip.compress and bzip.compress

 convert.iconv.*

 zlib.inflate and zlib.deflate

 mcrypt.* and mdecrypt.*

 tcp

 udp

 unix

 udg

 SSL extension
› ssl

› sslv2

› sslv3

› tls

 php://stdin

 php://stdout

 php://stderr

 php://output

 php://input

 php://filter (5.0.0)

 php://memory (5.1.0)

 php://temp (5.1.0)

Userland Filters and Streams

 There are no interfaces

 Implement as though there were an

interface

 Seekable is optional

 Flushable is optional

 Directory support is optional

In
fo

rm
a

ti
o

n
C

o
d

e

 fopen

 file_get_contents

 Return true or false

 $this->context will have any context

metadata

In
fo

rm
a

ti
o

n
C

o
d

e

 fread

 fgets

 file_get_contents

 etc…

 Return string data or false

 $this->context will have any context
metadata

In
fo

rm
a

ti
o

n
C

o
d

e

 fwrite

 file_put_contents

 get in a string of data to deal with

 return how many bytes you wrote

In
fo

rm
a

ti
o

n
C

o
d

e

 feof

 file_get_contents

 fread

 etc…

 Return true or false

 $this->context will have any context
metadata

In
fo

rm
a

ti
o

n
C

o
d

e

 fclose

 file_get_contents

 Don’t return anything

 any cleanup should go here

 fstat calls stream_stat

 EVERYTHING ELSE uses url_stat

 Good idea to do both

 Return an array of data identical to stat()

 stream_seek

 stream_tell

 stream_flush

 mkdir

 rmdir

 dir_closedir

 dir_opendir

 dir_readdir

 dir_rewinddir

 stream_lock

 stream_cast

 rename

 unlink

 Extend an internal class php_user_filter

 It’s not abstract…

 Yes that’s a horrible name

 Remember this pre-dates php 5.0

decisions

In
fo

rm
a

ti
o

n
C

o
d

e

 onCreate

 basically a constructor

 Called every time PHP needs a new filter

(on every stream)

 return true or false

 php_user_filter

› $this->filtername

› $this->params

› $this->stream

In
fo

rm
a

ti
o

n
C

o
d

e

 onClose

 basically a destructor

 no return

In
fo

rm
a

ti
o

n
C

o
d

e

 MUST return

› PSFS_PASS_ON

› PSFS_FEED_ME

› PSFS_ERR_FATAL

 You get buckets of data and do stuff to

them

 $in and $out are “bucket brigades”

containing opaque “buckets” of data

 You can only touch buckets and

brigades with the stream_bucket_*

functions

 You get a bucket using

stream_bucket_make_writeable

Use Case land – when streams

make sense

 Data in s3

 Data locally during development

 Easy switch out if alternative storage is

ever desired

 Storing image files

 Existing Zend Framework Code

 Register the s3:// wrapper

 Use a configuration setting for the stream

to use for all images on the system

 Store and edit template files in a

database

 Have the snappiness of including from

disk

 Minimal Configuration

 db:// stream

 simple stream wrapper that looks for the

template in the db, and writes it to the

filesystem before returning the data

 The cached location is FIRST in the

include path, so if it fails, the db stream

gets hit

 Talk to mercurial (hg binary)

 hg communicates via command line

 continue to pipe additional commands

 Use proc_open to keep a pipe to the

binary going

 Pass commands through stdin pipe as

necessary

 Abstract this out to other binaries that

are used by the system

 Elizabeth Marie Smith auroraeosrose@gmail.com

 http://php.net/streams

 http://php.net/filesystem

 http://ciaranmcnulty.com/blog/2009/04/simplifying

-file-operations-using-php-stream-wrappers

mailto:auroraeosrose@gmail.com
http://php.net/streams
http://php.net/filesystem
http://php.net/filesystem
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers

