
An Analysis of Port Knocking and

Single Packet Authorization

MSc Thesis

Sebastien Jeanquier
info () securethoughts ! net
GPG Key ID: 0xBE4D6CE8
Supervisor: Dr. Alex Dent

Information Security Group
Royal Holloway College, University of London

September 9, 2006

Contents

List of Figures v

Executive Summary vii

I Introduction and Theory 1

1 Introduction 3
1.1 A Short History of Network Security 3
1.2 Enter Port Knocking . 4

2 Technical Theory 7
2.1 Networking . 7

2.1.1 Ports . 7
2.1.2 TCP, UDP and ICMP . 8
2.1.3 Three-Way Handshake . 8
2.1.4 Firewalls . 9

2.2 Cryptography and One-Way Hash Functions 11
2.2.1 Symmetric Cryptography 12
2.2.2 Asymmetric Cryptography 13
2.2.3 Cryptographic One-Way Hash Functions 14

II Port Knocking 101 17

3 Basic Port Knocking 19
3.1 Vanilla Port Knocking . 19
3.2 Vanilla Single Packet Authorzation 22
3.3 Threats . 23

4 Port Knocking - A Firewall Authentication Scheme 25
4.1 Security through Obscurity . 28
4.2 Attacks . 30

4.2.1 Direct Attacks . 30
4.2.2 Interception and Impersonation Attacks 33
4.2.3 Methods for Detecting Port Knocking 35

iv CONTENTS

III Real-World Port Knocking 37

5 Practicalities, Limitations
and Improvements 39
5.1 Practicalities, Limitations and Improvements of Port Knocking

Mechanisms . 39
5.1.1 Network Address Translation 39
5.1.2 Authentication-Connection Association 41
5.1.3 Out-of-Order Delivery . 42
5.1.4 Single Shared Secrets and Multiple Users 42
5.1.5 Password-Based Cryptographic Keys 43

6 Implementation Analysis 45
6.1 Port Knocking Perl Prototype (PKPP) 45

6.1.1 Security . 46
6.2 fwknop - FireWall KNock OPerator 48

6.2.1 Security . 49
6.2.2 Dictionary Attack on fwknop 54

7 Further Research 57
7.1 Port Knocking in Malware (Backdoors) 57
7.2 Port Knocking in Enterprise Environments 57

8 Conclusion 59

Bibliography 63

List of Figures

2.1 Three-Way Handshake . 10
2.2 Symmetric Cryptography Encryption and Decryption 12
2.3 Signing and Verifying a Message using Digital Signatures 14

3.1 Using Port Knocking to Open Port 22 21
3.2 Network-view of threats against Port Knocking 24

4.1 Port Knocking as an additional layer in the Defence in Depth
‘onion’. 26

4.2 Port Knocking Fails Safely - all ports are closed. 27
4.3 Port Knocking Fails Open - attacker must authenticate to un-

derlying service. 27
4.4 Intercepting Knocks through Passive Eavesdropping 34
4.5 Port Knocking Man-in-the-Middle Attack 35

6.1 Routing Data over the Tor Onion Network 53
6.2 Sample run of fwknop da . 55

vi LIST OF FIGURES

Executive Summary

This thesis will analyse the network security concept of Port Knocking and
its younger brother Single Packet Authorization and assess their suitability as
‘Firewall Authentication’ mechanisms for opening network ports or performing
certain actions on servers using these mechanisms.

The introduction provides a short history of network security and why this
concept has come about at the start of this century. It will also cover the
basics of networking and cryptography required to understand the fundamental
workings of port knocking systems and the threats and attacks pertinent to
them. An overview of both port knocking and single packet authorization and
the security aspects involved, including the debated topic of security through
obscurity, will enable a clearer understanding of port knocking in actual use
and the analysis of implementations of both forms of firewall authentication
schemes.

The aim of this thesis is to analyse the security offered by both systems
and assess which threats exist in theory and in the real world, and outline
the practicalities of using port knocking as part of defence in depth. Finally,
this thesis attempts to mention certain possible improvements to port knocking
schemes, as well as an overview of alternate uses of port knocking in other
aspects of information security.

The two primary implementations that will be analysed are Martin Krzy-
winski’s Port Knocking Perl Prototype and Michael Rash’s single packet autho-
rization Firewall Knock Operator (fwknop). In actual use, it was found that the
Perl Prototype may be more restrictive due to the long ‘knocks’ required when
encryption is used, and anti-replay features require that state be maintained on
both the server and client. The extremely low transmission rate and delivery-
order issues involved with port knocking make it less suitable where more data
may be required for a secure and practical knock. On the other hand, the sin-
gle packet authorization implementation, fwknop, uses single UDP packets to
transmit authorization data, much in the fashion described in ISO/IEC 9798-
2 on entity authentication, but loses the ‘knocking’ aspect of port knocking,
which is a novel and unique delivery mechanism. In its default configuration,
fwknop is quite vulnerable to dictionary attacks, simply due to the way in which
passphrases are turned into cryptographic keys. A will present a simple tool,
fwknop da, designed to illustrate how a live attacker could intercept fwknop
authorization packets and crack them.

viii Executive Summary

Part I

Introduction and Theory

Chapter 1

Introduction

1.1 A Short History of Network Security

An important problem in the domain of network security is the plethora of
services running on networked machines, and more specifically, the open ports
which allow any user to connect to those services and attempt to attack them in
any one of countless ways. In the early years of its inception, around the 1980s,
the Internet was designed purely with interoperability in mind. The engineers
involved wanted machines to communicate easily, unhindered by the obstacles
brought upon by ‘unnecessary’ security features such as authentication and
access control. In fact, security features were, for the most part, unheard of,
and programming flaws in network-enabled software coupled with weaknesses
in early networks brought about many opportunities for attacks.

So, over the years, we have seen many improvements to protocols and even
the network stack itself with the aim of making them more resistant to at-
tack. One primary concern was the notion of authentication, to which there are
many solutions, a popular one being the requirement for users to enter a user-
name and password before a service can be used. Many SMTP (email sending)
servers now require clients to authenticate themselves by sending some form of
username and password before they are allowed to transmit an email message.
Previously, SMTP servers were open to anyone who wished to use them. One
could simply connect to them using a telnet client, enter a fake FROM address,
and send a spoofed email to any recipient. This problem is still highly prevalent
today, although on a far smaller scale than we used to see. Security has also
been applied at different places in the TCP/IP protocol stack including the
invention of IPSec that aims to protect packets at the IP Layer, and SSL/TLS
which protects packets at the Transport Layer [60]. Confidentiality, Integrity,
and Authentication1 have become the primary concerns for protocols carrying
sensitive traffic. Without these precautions, the information sent over the net-
work could be vulnerable to unauthorised disclosure, modification, or we would
simply be unsure as to whom actually sent that information.

In today’s world of vulnerability disclosure, exploit releases, worms, and

1Traditional information security usually relies on the notions of Confidentiality, Integrity,
and Availability however the latter does not formally apply to network transmissions.

4 Introduction

script kiddies2, the Internet has become an increasingly hostile environment for
businesses and home users alike. Advanced tools which are at anyone’s disposal
allow attackers to easily discover networked machines, enumerate ports and
services running on them, and even whether or not those particular services
are vulnerable to a particular exploit [10, 11]. A simple ping sweep and port
scan will reveal a large majority of machines and their services, whether or not
the scanning machine is authorised to view those resources. Many machines
now run some form of Firewall (see Section 2.1.4) to help prevent unauthorised
connections to open ports, however, if the machine is needed to run services
accessible to the Internet then this is not always an option. There are countless
ways to protect information flowing over a network, but if the software running
those services has bugs, then protecting that machine against attacks becomes
a much bigger problem.

1.2 Enter Port Knocking

One major difficulty in protecting networked machines (especially those running
services) is that they are, for the most part, visible and happy to disclose
information to anyone who asks. If a hacker3 finds a corporate FTP server,
he can connect to it and it will gladly tell him exactly what version of what
FTP software it is running (if the FTP server hasn’t been hardened, which
is usually still the case). He can then use this information to check whether
or not that version of the software is vulnerable to a particular attack which
would give him root (admin) access to the server machine (or attempt to brute
force the username and password). Many people, unfortunately, do not always
have the time to keep all of their machines patched and up-to-date, and even
then, many services have so-called 0day4 exploits for which patches do not even
exist yet! So how can they protect themselves against this? One simple answer
is to turn off all unnecessary services; another is to use a Firewall to prevent
anyone, except a specific group of IPs, from connecting to that service, which
is obviously very restrictive in terms of who is able to connect.

How does one try to keep a machine hidden from would-be attackers, yet
allow legitimate users to connect to services running on that machine? Enter
Port Knocking. In broad terms, port knocking is a method for transmitting
information across closed ports, with the aim of authenticating users before
allowing them, and only them, to access a protected service. The name “Port
Knocking” originated with Martin Krzywinski5 in 2003 [32], and refers to the
concept of sending packets to predetermined network ports (see Section 2.1.1),
essentially forming what can be compared to as a ‘secret knock’ on those ports.

2In the security field, an unskilled attacker is usually referred to as a ‘script kiddie’ due
to the fact that such attackers mostly scripts that require little-to-no knowledge of security
and/or what the attacks actually do. Such attackers are also often quite young.

3I apologise in advance to all of the legitimate “hackers” out there, for giving in to the
modern-day trend of referring to “crackers” as “hackers”.

4Zero Day: exploits which are un-released and unknown to the security community or the
vendor of the software.

5Martin Krzywinski - http://www.portknocking.org

1.2 Enter Port Knocking 5

The basic idea was discussed as early as 2001, posted on a German Linux User
Group mailing list [7].

This thesis will also cover port knocking’s younger brother Single Packet Au-
thorization (SPA), which was developed concurrently by two different groups of
researchers. MadHat Unspecific and Simple Nomad are one team of researchers
who presented their ideas at BlackHat 2005 [37]. One popular implementation
of SPA which has been gaining interest in the security community is fwknop,
developed by independent researcher Michael Rash [46], and will be the main
SPA implementation covered in this thesis. Both port knocking and SPA have
the same goal, however the methods they employ are significantly different.

In this thesis, both standard port knocking techniques as well as single packet
authorization will be referred to as ‘Port Knocking’ for simplicity, as all im-
plementations are essentially ‘firewall authentication mechanisms’ and aim to
perform the same basic task of user authentication at the networking level.

6 Introduction

Chapter 2

Technical Theory

2.1 Networking

Port Knocking schemes are, for the most part, network security methods for
authenticating users and authorizing them to use a specific service (this may
include performing an action on the protected machine). For these reasons
it will be important to grasp the basics in host-based networking in order to
understand how port knocking schemes function. This chapter will serve as a
very basic introduction to the aspects of networking which the author feels are
most relevant to achieving this understanding.

2.1.1 Ports

Those unaccustomed to host-based networking sometimes have trouble coming
to terms with the notion of a ‘port’ on a computer. In the simplest of terms
a port is a virtual door (represented by a 16-bit integer) which allows the
computer to keep track of which pieces of data are destined for which application
or service. A computer has 65535 of these ports [60]. Networking (transport
layer) protocols such as TCP (Transmission Control Protocol) and UDP (User
Datagram Protocol) both use the concept of a port when transmitting packets
to and from networked hosts. Some other protocols such as ICMP, however, do
not use ports when transmitting information.

The port number (when used) is included in networking packets and is
interpreted not only by sending and receiving hosts, but also by intermediate
routers and firewalls. A firewall can be configured to allow or deny certain
packets based on their destination port. When a service is listening for requests
on a port, that port is said to be open, and clients can connect to the service.
If no service is listening, then the port is considered closed. A client cannot
connect to a closed port.

Many ports, especially those within the 0-1023 range, are reserved for use
with specific services. The vast majority of web servers, for example, run on
port 80. There exist many services with their own port numbers such as File
Transfer Protocol (port 21), SSH (port 22) and the Post Office Protocol (port
110). Although these port numbers are ‘reserved’ for those services, it is still
possible to run a web server, for example, on port 22, if the administrator felt

8 Technical Theory

like doing so. The Internet Assigned Numbers Authority (IANA) is responsible
for assigning TCP and UDP port numbers to specific services, and their list of
officially assigned port numbers is regularly updated [26].

2.1.2 TCP, UDP and ICMP

TCP, UDP and ICMP are three of the most important networking protocols
used regularly in modern networks. Transmission Control Protocol (TCP) is
a stateful protocol that allows the two machines to create a connection be-
tween themselves and exchange information. A connection can be defined as
two machines that have mutually ‘agreed’ to communicate. Such a connection
is established by performing the ‘Three-Way Handshake’ (see Section 2.1.3).
This can be compared to making a telephone call: the initiator dials the num-
ber, the receiver picks up and says “Hello?”, at which point the initiator also
says “Hello!”, and the conversation can begin until it is ended by either end.
Most applications, such as Email, Web Browsing, and File Transfers, use TCP
connections to transfer information.

The opposite of TCP is the User Datagram Protocol (UDP) which is state-
less and so no formal connection is established between communicating hosts.
This can be compared to a postal letter: the sender writes a letter and sends
it off to its destination. The letter might arrive at its destination, or it might
not, either way the sender will not receive any confirmation. A host sending
UDP packets to another host will receive no acknowledgement as to whether
or not the packets have been received, this makes UDP a lot faster than TCP,
although far less reliable. UDP is suitable for applications which require a rapid
rate of transmission, and where reliability is not of up-most importance, such
as Audio/Video Chat.

The Internet Control Message Protocol (ICMP) is one of the core protocols
of the Internet protocol suite, and is used by networked computers to send er-
ror messages, for example when a specified port cannot be reached (see Section
3.1). In the case that a service is not available or a host cannot be reached,
there are a number of ‘control messages’ that end hosts or intermediate routers
can use in order to inform other devices of these errors. One example is the
ICMP PORT UNREACHABLE (ICMP Type 3, Code 3) which informs a re-
questing host that the requested port cannot be reached for some reason [27].

Applications do not tend to use the ICMP protocol directly (except for
the ping command), but in certain cases ICMP can be used to transmit small
amounts of information within the data field of the ICMP packet.

2.1.3 Three-Way Handshake

The Three-Way Handshake is the protocol that computers use in order to es-
tablish a TCP connection with each other.

1. The initiating machine will send a ‘Hello’ (formally called a SYN) packet
to a specified host on a specified port. For example, if you browse to

2.1 Networking 9

http://www.foo.com, your computer will first send the server a SYN
packet on port 80 (the default web server port) to the server at www.foo.com.
If port 80 is not open on the web server, then your client will not receive
a reply (and the connection will fail).

2. However, if port 80 is open, then the web server is listening and will reply
to the client with a SYN/ACK packet, acknowledging that it received
the first (SYN) packet and requesting a confirmation to complete the
connection.

3. Finally, the client will send back an ACK packet, signalling that it con-
firms the connection (see Figure 2.1).

At this point, both computers keep track that they are connected to each other.
It is also important to note that some machines will only log a connection1 once
the full Three-Way Handshake has been performed.

The connection is ended by one side or the other, by sending a FIN packet
to the other end, who then replies with a FIN&ACK packet, and finally the
initiating side sends back a final ACK packet.

2.1.4 Firewalls

Firewalls are an essential network component when it comes to controlling the
flow of access in networked environments. In short, the goal of a firewall is to
allow controlled connectivity between areas of differing trust levels, through the
enforcement of a security policy and connectivity model, based on the principle
of least privilege2 [60]. Firewalls can be either hardware, which sits on a net-
work between a trusted side and an untrusted side; or software, which runs on
the hosts themselves3. In both cases the purpose of the firewall is to provide a
logical barrier to prevent unauthorized or unwanted communications between
different areas of a computer network.

The ‘Access Control’ mechanisms offered by a firewall rely on a set of administrator-
defined rules, which are then applied to each and every packet flowing through
the firewall. The default rule, which helps satisfy the principle of least privilege,
is the ‘default deny’ rule where all traffic is rejected unless explicitly allowed. In
this manner, one can be sure that no access is allowed except for the rules that
specify an ‘allow’ condition. In most firewall packages there are two distinct
ways that a firewall can deny traffic [55]:

• Reject/Deny: Different firewalls refer to this rule as Reject or Deny
although they both perform the same action. Using the REJECT/DENY

1Logging a connection can be defined as: writing the details of the connection (source,
destination, port, etc) to a log file of some sort, usually used to keep track of which hosts have
connected to the local machine.

2“The principle of least privilege states that a subject should be given only those privileges
that it needs in order to complete its task. If the subject does not need an access right, then
the subject should not have that access right.” [6]

3IPTables/netfilter (http://www.netfilter.org) is one of the more widely used packet filter-
ing firewalls on Linux machines, and ipfw is the firewall on BSD-based Unix.

10 Technical Theory

Client Server

SYN
Requesting Connection

SYN/ACK

Confirm Request

ACKConnection Confirmed

Figure 2.1: Three-Way Handshake

2.2 Cryptography and One-Way Hash Functions 11

rule will instruct the firewall to drop packets4 and send an ICMP PORT UNREACHABLE
back to the initiator. The connection will be rejected, but the initiator
will know that a host exists at that IP, and is denying access.

• Drop: Using the DROP rule instructs the firewall to be more silent in its
denial. Packets that arrive are dropped without sending an ICMP PORT UNREACHABLE
back to the initiator. The connection will be rejected, but the initiator
will simply assume that no service is running on the target host (or that
the target host does not exist).

The distinction between these two rules will become clearer as the port
knocking mechanisms are explained.

As mentioned above, firewalls are purely access control mechanisms – with a
fundamental lack of authentication. A firewall will simply compare an incoming
packet to see whether or not its requested access is allowed by the firewall rules.
There is no mechanism to allow or deny access based on some form of strong
authentication of the user requesting access. Due to this, firewall configuration
is either extremely restrictive (eg. access restricted to certain IP addresses5),
or unrestrictive (eg. anyone can access the FTP port). In such a way, it is
difficult to configure a firewall to protect a host which must be accessible to
clients whose IPs are not known prior to them connecting.

2.2 Cryptography and One-Way Hash Functions

Cryptography (from Greek kryptós, “hidden”, and gráphein, “to write”), the
transformation of data into a form unreadable by anyone without a secret de-
cryption key, is said to be about “communication in the presence of adversaries”
[51].

Cryptography has the ability to provide a number of services which aid us
in protecting our information in various ways as it is sent across networks or
stored on physical media. Confidentiality is a crucial element of network com-
munications when private information is being stored or transmitted. The use
of encryption has allowed us to protect such information and prevent it being
disclosed to unauthorised parties. Similarly, data integrity ensures that our
information is not modified in transit, and that we can trust that the infor-
mation received is as-intended. The slightly more contemporary field of public
key cryptography has the added ability of providing non-repudiation whereby
it can be proven that an individual did indeed send a particular piece of infor-
mation. Cryptography has proven to be extremely important in authentication
protocols, as it is necessary for certain pieces of information to be protected
from unauthorised modification in order to result in successful authentication.

Cryptographic algorithms can be divided into two main categories, Symmet-
ric (Secret Key) Cryptography, and Asymmetric (Public Key) Cryptography.

4Dropping a packet simply means to discard/ignore it, as it will not be needed.
5An IP address is a unique number that devices use in order to communicate over a network.

Each host has its own IP address, much like each house has its own postal address.

12 Technical Theory

Each category has its own unique set of features and abilities which may apply
to different situations.

2.2.1 Symmetric Cryptography

Symmetric cryptography refers to algorithms which use the same key to en-
crypt and decrypt data (see Figure 2.2). These keys usually represent a ‘shared
secret’ between all users who may need to communicate using the same algo-
rithm. An example of a symmetric algorithm is the Data Encryption Stan-
dard (DES) which was selected as an official Federal Information Processing
Standard (FIPS) for the United States in 1976 [43]. DES was replaced by
the Advanced Encryption Standard (AES) in 2001 [44]. Both DES and AES
are known as block ciphers. Block ciphers are algorithms which operate on a
groups of n-bits of data called blocks, where n (the size of the block) is de-
pendent on the algorithm being used. DES encrypts data in blocks of 64-bits
using a keylength of 56-bits, whereas AES encrypts data in blocks of 128-bits
and supports keylengths of 128, 192 or 256-bits [54]. Symmetric block ciphers
make use of different modes of operation when encrypting data. These modes
of operation allow for messages longer than the encryption algorithm’s block
length to be encrypted. Cipher Block Chaining (CBC) mode, for example, is
a popular mode of operation that helps increase the security of a block cipher.
It works by ensuring that each each ciphertext block depends on the values of
all previous message blocks. Each new ciphertext block relies on the current
plaintext block and the previous ciphertext block [54]. Thanks to this mecha-
nism, if two identical plaintext blocks exist within a given message, they will
both produce different ciphertext blocks, which makes it much more difficult to
notice a particular plaintext block from its ciphertext.

A Message Authentication Code (MAC) is a short piece of information,
similar to a hash code (see Section 2.2.3), which provides both origin authen-
tication and integrity protection of a message. MACs are generated by block
ciphers and use symmetric secret keys to ensure that only those who know the
key can modify, or verify the message. MACs on their own, however, do not
provide any confidentiality. As the data must be sent together along with its
corresponding MAC. A popular MAC algorithm is the CBC-MAC based on the
CBC mode of operation.

Encrypt

Secret Key

Plaintext Ciphertext
Decrypt

Secret Key

Plaintext

Figure 2.2: Symmetric Cryptography Encryption and Decryption

2.2 Cryptography and One-Way Hash Functions 13

Due to the fact that a group of users communicating securely, using sym-
metric cryptography, must share the same key, this creates certain key man-
agement issues when a single user leaves the group. A new key must then be
generated and distributed to the remaining group members in order for further
communications to remain confidential.

2.2.2 Asymmetric Cryptography

Asymmetric cryptography, also known as Public Key Cryptography (PKC),
refers to the fact that different keys are used in the encryption and decryption
processes. These keys are mathematically related, but the private key cannot
be derived from the public key. In public key cryptography, the private key
is kept secret, whilst the public key can be distributed freely. In such a way,
anyone can use a user’s public key in order to encrypt a message to them, but
only the user holding the corresponding private key can decrypt that message
[54]. This can be compared to the notion of giving someone a padlock for them
to send you private information. They can use the padlock to secure the con-
tainer, but only the padlock’s owner (and key holder) can unlock it and recover
the contents of the container. The key cannot be re-created by examining the
lock.

One of the popular public key algorithm is called RSA, developed by Ron Rivest,
Adi Shamir, and Len Adleman at MIT in 1978 [52]. The RSA algorithm relies
on the inherent difficulty involved in factoring the product of two large prime
numbers. Another popular algorithm is ElGamal, which relies on the difficulty
of calculating discrete logarithms [20]. Due to their mathematical nature, most
public key algorithms are very slow compared to their symmetric counterparts.
Pretty Good Privacy (PGP), originally designed by Phil Zimmermann in 1991,
is a hybrid cryptosystem, whereby it employs both symmetric and asymmet-
ric techniques. PGP also provides a means for binding public keys to users’
identities. In general use, PGP operates as a ‘web of trust’ where users sign
each others’ keys in order to show that their keys are trusted by other users,
although PGP now supports the use of Public Key Infrastructures [54].

Public key cryptography introduces some interesting key management is-
sues when a user wants to verify that a public key actually belongs to a given
person, and not an attacker. Due to this, many environments using widespread
public key cryptography must set up a Public Key Infrastructure (PKI), where
a Trusted Third Party (TTP) is set up to vouch for users’ identities and digi-
tally ‘sign’ people’s public keys, enabling other users to verify the identity of a
public key’s owner.

Digital Signatures

Digital Signature schemes are cryptographic schemes derived from public key
cryptography, which allow a recipient to verify the origin and integrity of a
message. In such schemes, each user has their own Signing Key and Verification
Key. In this case the verification key can be freely distributed to those who will

14 Technical Theory

need to verify signatures created by the signer. A digital signature is produced
by inputting the message and secret signing key into a signature algorithm. The
signature is then sent along with the message to the recipient. To verify the
signature, the recipient inputs the message and the signature into a verification
algorithm which outputs a ‘yes/no’ to indicate whether or not the signature
on this message is valid. If the signature is valid it provides the verifier with
confirmation that the message did indeed come from a given sender, and that
the message was not altered in transit [39] (see Figure 2.3).

Signature
Algorithm

Message Signature Verification
Algorithm

Signing Key

Valid Signature?

Verification Key

Yes / No

Figure 2.3: Signing and Verifying a Message using Digital Signatures

Bruce Schneier describes the aim of signatures as follows [54]:

1. The signature is authentic. The signature convinces the document’s re-
cipient that the signed deliberately signed the document.

2. The signature is unforgeable. The signature is proof that the signed, and
no one else, deliberately signed the document.

3. The signature is not reusable. The signature is part of the document; an
unscrupulous person cannot move the signature to a different document.

4. The signed document is unalterable. After the document is signed, it
cannot be altered.

5. The signature cannot be repudiated. The signer cannot later claim that
they did not sign it.

Digital signatures bind the identity of a person to a document, whilst ensur-
ing that any modifications to that document would be easily detectable. The
non-repudiation aspect of digital signatures is one of the features of asymmetric
cryptography which make it so appealing.

2.2.3 Cryptographic One-Way Hash Functions

Hash functions are algorithms which take an arbitrary-length input, and pro-
duce a fixed-length output, often called a message digest or a hash. Crypto-
graphic One-Way Hash Functions are expected to have the following attributes
[54]:

2.2 Cryptography and One-Way Hash Functions 15

1. Pre-image Resistance: Given a hash h, it should be hard to find any
other message m such that h = hash(m).

2. Second Pre-image Resistance: Given an input m1, it should be hard
to find another input m2 such that hash(m1) = hash(m2).

3. Collision Resistance: It should be hard to find two messages m1 and
m2, such that hash(m1) = hash(m2).

By including a ‘secret’ value and some form of timestamp together with the
input, the resulting hash is unique to that time and to the group of people who
know the secret value (often a password). The notion of a timestamp will prove
to be extremely important, as it will allow the recipient to check exactly when
the hash code was produced. It will also make it a lot more difficult for an
attacker to capture the hash code and successfully replay it at a later time.

MD5 and SHA

Two widely used hashing algorithms are MD5 (Message Digest Algorithm 5),
designed by Ron Rivest in 1991 [53], and the SHA (Secure Hash Algorithm)
family of hash algorithms, designed by the National Security Agency (NSA)
and published as a US government FIPS standard in 1993 [41]. MD5 creates a
128-bit hash, whereas SHA-1 creates a 160-bit hash [54]. Below is an example
of MD5 in use:

MD5 (“Hello World!”) = ed076287532e86365e841e92bfc50d8c
MD5 (“Hello World”) = b10a8db164e0754105b7a99be72e3fe5

An important feature of good hash functions is that a small change in the
input should produce a large change in the output. In the example above,
the two inputs only differ by one character, however, the resulting hashes are
completely different. Although both MD5 and SHA-1 have been ‘broken’ [31,
63] in the past couple years, their use is still widespread as the chance of an
attacker orchestrating a successful attack based on a collision is still considered
to be quite low.

SHA-1 is the hash algorithm of choice for various security applications and
protocols such as TLS, SSL, SSH, S/MIME, IPSec and PGP. Many cryptog-
raphers have recommended that the SHA-26 group of algorithms be adopted
to replace MD5 and SHA-1 where possible, as these algorithms produce much
longer hashes, thus significantly reducing the chance of finding collisions.

6The SHA-2 group of algorithms produce 224, 256, 384 or 512-bit hashes [42].

16 Technical Theory

Part II

Port Knocking 101

Chapter 3

Basic Port Knocking

The concept of port knocking has been the topic of heated debates in the
security community, with large numbers of posts being posted on technology
and security site Slashdot.org [40, 34, 56, 57, 58, 59, 23]. Interestingly enough
the benefits of port knocking as a security mechanism, although contested, have
never been ruled out. In other words, the security community has yet to find a
good place for port knocking, but at the same time cannot reach the conclusion
that port knocking is insecure or useless. The ongoing discussions about port
knocking tend to revolve about what it is exactly that the mechanism tries to
achieve.

When it comes down to it, port knocking’s primary aim is to provide an
extra layer of protection through the use of authentication with the added
benefit of concealment. As described in Section 1.1, networks were originally
designed to work seamlessly, and thus we find ourselves relying on a structure
which offers no authentication before one machine can connect to another. Port
Knocking attempts to fill the void by adding (not replacing) a layer of security,
which can be used to authenticate users before they are given access. From a
security standpoint it should be blindingly obvious that there is no good reason
for the average unskilled attacker to be able to detect SSH running on port 22
of a server. If only authorized users are allowed to use the SSH service, then it
should make sense that only authorized users should be allowed to connect to
it in the first place.

Port Knocking allows administrators to keep the (potentially vulnerable)
service hidden from the public, whilst making it available to authorized users,
without the risk of making the machine vulnerable should the port knocking
mechanism fail. More on this later, see Chapter 4.

3.1 Vanilla Port Knocking

In order to analyse port knocking as a security mechanism, it is essential to
outline its basic workings. The crucial element of port knocking relies on a
completely closed firewall which is set to DROP all packets that arrive. This
means that all received packets should be dropped and no response sent out
(as opposed to the REJECT/DENY state which drops packets and sends a

20 Basic Port Knocking

ICMP PORT UNREACHABLE back to the client). The significant difference
is that one gives away the presence of a listening host, whereas the other remains
absolutely silent and so makes it impossible to determine whether or not a
machine exists at that address (unless sniffing - see Section 4.2.2). At this point
we have a completely silent, inaccessible machine. This is relatively secure, yet
also relatively useless.

The next step is to find a way to connect to the server or perform some
kind of action on it. A port knocking daemon sits on the server and watches
packets as they are dropped, waiting for a sequence of packets arriving at a
predetermined set of ports in order. The client who wishes to connect to the
server sends SYN packets (the first packet in a TCP connection) to the pre-
determined ports in order, for example: ports 100, 110, 120, 130. The server
will receive these packets and drop them silently, however, the port knocking
daemon will see these incoming packets and recognise the valid ‘knock’ on the
ports. Once the proper ports have been knocked on, the daemon can execute
any predetermined action, for example: open port 22 (SSH) for the IP that
knocked (see Figure 3.1). The user who knocked can then connect to the pro-
tected machine, and if set up properly, can knock on ports 200, 190, 180, 170
in order to close port 22. Most good implementations, however, simply close
the port automatically after a given amount of time has elapsed.

The significant features we can see so far are:

1. Concealment: the server’s firewall is set to DROP all packets and so a
scanning or probing attacker will have no clues as to whether or not the
server exists, let alone what services it is running.

2. Service Protection: services running on the host (such as SSH) are
protected from attacks on unpatched vulnerabilities. This feature serves
as a useful stop-gap and gives administrators time to patch their vulner-
able systems. One important aspect of this port knocking feature is the
fact that it can actually protect against 0day attacks, which are consid-
ered extremely difficult to defend against. Even if an attacker possesses
an exploit for a vulnerable version of a service running on the protected
server, they have no way to mount an attack and deliver that exploit, as
all ports on the server are closed to the attacker.

3. User Authentication: by watching the incoming traffic for a predeter-
mined knock, which essentially acts as a secret key known only to the
users trusted to use the protected server, the port knocking daemon is
able to authenticate the user at the other end before allowing them to
connect to any (potentially vulnerable) services.

Even without going into much depth, it is easy to see that this basic system
is fundamentally flawed. Anyone able to monitor the network traffic between
the Client and the Server will be able to pick up the proper knock sequence
and use it for themselves. Although such a system is fine for protecting the
server from the average script kiddie looking for open ports, a more determined

3.1 Vanilla Port Knocking 21

Client Server

SSH
Port 22

Port
Knocking

Client

100 110 120 130

Client Server

SSHd
Port 22

Port
Knocking

Client

SSH
Client

Attacker

SSH
Client

Allow access from Client IP

SSH
Client

Figure 3.1: Using Port Knocking to Open Port 22

22 Basic Port Knocking

hacker has numerous options at his disposal should he choose to attack this
system. An extremely basic ‘implementation’ by Daniel De Graaf [16] is possible
using Linux’s built-in firewall, IPtables, simply by adding a few lines to the
configuration file, requiring a client to ‘knock’ on one or more pre-determined
ports before access to port 22 will be granted. A more advanced implementation
of port knocking, by one of the pioneers of the concept, Martin Krzywinski [33],
will be covered in detail in Section 6.1.

3.2 Vanilla Single Packet Authorzation

Single Packet Authorization (SPA) and port knocking have the same aim but
significantly different delivery mechanisms. In SPA the knock, which is called
an Authorization Packet (AP), is encoded within a single packet. This can pro-
vide certain advantages not found in traditional port knocking schemes, such
as eliminating the problem of out-of-order packet delivery. In traditional port
knocking, if a knock sequence arrives out of order, which can easily happen as
the server is not sending back any acknowledgements, then the port knocking
daemon will not recognise the knock and thus access will not be allowed (see
Section 5.1). SPA simplifies the process by encoding all of the necessary infor-
mation into a single packet, typically UDP or ICMP. The information encoded
in these packets can be as simple as a timestamp (for replay protection), client
IP address, and password combination, for example:

• Timestamp: 200608062127 (21:27 6th August 2006)

• Client IP: 192.168.1.1001

• Password: secretpassword

In this very simple example, the server would be configured for a single user
and would execute a single command, for example to open SSH port 22 for the
client IP for 5 minutes. The server would also be set up to keep a record of the
last valid authorization packet it received, in order to prevent an attacker from
replaying an old AP (see Section 4.2.2). The resulting AP that is sent to the
server is usually constructed by feeding the fields above into a hash function
(see Section 2.2.3). In this case the resulting hash, using MD5, would be:

MD5 (“200608062127:192.168.1.100:secretpassword”) = 9c6f2af8e1a0f841467f0a1de39f53c8

This hash would then be packed into a UDP packet and sent off to the server.
Upon receiving the packet, the SPA daemon would recalculate the hash by
hashing the password (which it knows), the current date and time (accurate in
minutes), and the IP address of the client that knocked (which can be found in
the IP header of the UDP packet [60]). If the resulting hash is the same as the

1For the purposes of this example we are assuming that both the client and the server
are on the same local network. A private IP address can create problems for port knocking
schemes due to Network Address Translation (NAT). See Section 5.1.

3.3 Threats 23

one received, then port 22 would be opened for the client IP. If the hashes do
not match, or the received hash had already been received previously (ie. the
hash is a replay of an old hash), then no action is performed. An extremely ba-
sic implementation of SPA, that offers no replay protection, is ‘coarseknocking’
by Andre Luiz Rodrigues Ferreira [21]. A more advanced implementation of
SPA, Firewall Knock Operator (fwknop) by Michael Rash [46], will be covered
in detail in Section 6.2.

3.3 Threats

Before we delve into more detail about the threats against port knocking, it is
essential to enumerate our key players.

• Server: this machine is the one protected by port knocking and runs a
completely closed Firewall, and a port knocking or SPA daemon capable
of executing commands on the server (such as manipulate firewall rules).

• Client: this machine will be attempting to connect to the server by
providing the correct knock sequence (or authorization packet).

• Eve (attacker): is a passive eavesdropper. She has the ability to observe
all of the interactions between the Client and the Server but can not
modify data in transit between the two.

• Mallory (attacker): is an active attacker. He has the ability to sit be-
tween the Client and the Server on the network and watch and manipulate
the traffic flowing between them.

• Trudy (attacker): this attacker has no access to any protocol exchanges
between the Client and the Server, and thus has no ability to observe nor
modify to those exchanges. Trudy must attempt to compromise the Server
by other means. This is the most common type of attacker.

• Trent: this machine is a Trusted Third Party (TTP) which can be used to
send traffic from the Client to the Server via another route, thus bypassing
Eve and/or Mallory. Note: this is not always possible depending on the
position of Eve and/or Mallory on the network!

Port knocking, as with any network authentication protocol, is potentially
vulnerable to various kinds of attacks from a number of different vectors. As
illustrated above, is it important to design an authentication mechanism with
the assumption that an attacker could potentially place himself anywhere on
the network. Most attackers will not have access to any network traffic, such as
Trudy, and will have to resort to simpler methods such as brute force in order
to bypass strong authentication mechanisms. It is essential, however, to assume
that all attackers have the knowledge and capabilities of a user such as Mallory,
with the ability to watch and modify all network traffic between the client and
the server.

24 Basic Port Knocking

Trudy

ServerClient Mallory

Eve

Trent

Figure 3.2: Network-view of threats against Port Knocking

Chapter 4

Port Knocking - A Firewall
Authentication Scheme

Now that the basic forms of port knocking have been outlined, it is possible to
assess such schemes in terms of their viability as network security mechanisms.
There exists a very important concept in the field of information security which
is commonly referred to as ‘Defence in Depth’. This refers to the act of securing
one’s resources without solely relying on a single protection mechanism. Some-
times this relies on the use of redundancy in the security mechanisms which
are put in place, or several mechanisms may be used to protect a particular
resource. In plain English it can be compared to not putting all of your eggs in
one basket.

Security, and more precisely in this case ‘network security’, can be thought of
as an onion - where each layer of the onion provides an extra layer of protection.
It is essential to understand what layers exist in any given security system and
what purpose they serve. Many people question the viability of port knocking
for a number of reasons. Some assume that it is an authentication layer that is
supposed to replace the authentication of the services running below it. Others
coin the term ‘Security through Obscurity’ when they discredit port knocking,
which shows that either they misunderstand security through obscurity, or they
misunderstand the concept of port knocking.

As this seems to be a highly misunderstood area surrounding this topic, I
will aim to clarify why port knocking and SPA are neither security through
obscurity, nor redundant authentication mechanisms.

Peeling the Onion

Most current-day network services require some form of user authentication
before a connection can be made. Services such as SSH1 and FTP both re-
quire a username and password when a connection is opened. Alternatively,
SSH has the option of only allowing cryptographic keys to be used in the au-
thentication process, denying the use of username and password combinations.

1SSH will be used in these examples as it is a service which allows full remote access to the
machine on which it is running. This is often a desirable service for system administrators,
yet is open to the same vulnerabilities as any other networked service.

26 Port Knocking - A Firewall Authentication Scheme

So in essence, SSH and FTP are layers which exist to protect the system and
authenticate users before some kind of access is granted. The problem with net-
worked services is that they are potentially vulnerable to attack, for example,
by exploiting bugs in their code, or to simple dictionary attacks2.

For these reasons, port knocking allows the services to be hidden from the
world, until a valid authenticated user attempts to connect. Figure 4.1 below
depicts how a system running SSH could be protected using a port knocking
layer. Remember that in this configuration, the firewall (see Section 2.1.4) is set
to drop all traffic silently until a port is opened by the port knocking daemon.

Port Knocking
Firewall

SSH

SYSTEM

Figure 4.1: Port Knocking as an additional layer in the Defence in Depth ‘onion’.

One major concern about port knocking is the question of what would hap-
pen if the mechanism failed. This turns out to be quite a simple scenario to
assess, due to the fact that port knocking operates with a completely closed
firewall. Figure 4.2 depicts a situation where the port knocking daemon fails
‘safely’. The firewall remains closed, meaning that nobody can connect to any
services. Admittedly this results in a classic Denial of Service (DoS), but the
system remains secure which may be the preferred result in certain environ-
ments.

The other way that port knocking can fail, depicted in Figure 4.3, is the
‘fail open’. This situation can happen, for example, if a user knocks to open
a port, and the port knocking daemon fails and thus the port is not closed
automatically as it should be. Here the firewall is left in an open state3, thus

2A Dictionary attack is where the attacker uses a dictionary of words and attempts to
login to a specified username, trying each word in the dictionary as the password, one by one.
Dictionary attacks are easier to detect and block, whereas unknown exploits are much more
difficult to defend against.

3Note that an ‘open state’ usually means that only some ports are left open (eg. only port
22 open), and not necessarily “all ports open”. The firewall could be all-closed except for one
port.

27

Port Knocking
Firewall

SSH

SYSTEM

Attacker

Figure 4.2: Port Knocking Fails Safely - all ports are closed.

Port Knocking
Firewall

SSH

SYSTEM

Attacker

Authentication
Required

Figure 4.3: Port Knocking Fails Open - attacker must authenticate to underly-
ing service.

28 Port Knocking - A Firewall Authentication Scheme

allowing connections to the SSH daemon on port 22. This state may result in a
DoS for any additional users who wish to connect, and in most cases does not
result in an overly open system, as most port knocking implementations only
open the port to the IP of the client that knocked. However, a less complex
implementation could open ports fully (ie. to any IP), and although this means
that the port knocking mechanism has been circumvented, from an attacker’s
perspective, he would still have to either authenticate to the underlying service
or attempt to exploit it - the attacker is essentially back to square one, just as
he would have been had port knocking not been employed in the first place!
More importantly, compromise of the port knocking mechanism does not result
in the penetration of the underlying system [34]!

4.1 Security through Obscurity

“Security through Obscurity” is when the details about a security implemen-
tation or mechanism are hidden, in order to protect the mechanism from being
analysed and flaws discovered, which may enable the mechanism to be compro-
mised in some manner.

This quote from the preface of Applied Cryptography by Bruce Schneier [54]
presents a good example of how ‘obscurity’ is used in attempts to increase
security:

“If I take a letter, lock it in a safe, hide the safe somewhere in New
York, then tell you to read the letter, that’s not security. Thats
obscurity. On the other hand, if I take a letter and lock it in a
safe, and then give you the safe along with the design specifications
of the safe and a hundred identical safes with their combinations
so that you and the worlds best safecrackers can study the locking
mechanism – and you still can’t open the safe and read the letter –
thats security.”

Looking again at the concept of port knocking, and indeed all of the mul-
titudes of implementations that exist, it should be quite clear that there is
nothing inherently obscure about it. The concept of port knocking is clearly
described, in all its forms, and practically every implementation available is
open source and available for peer review. The confusion arrives due to the
fact that one of port knocking’s aims is to hide a server from unauthenticated
access requests. That’s not obscurity. . . that’s concealment.

Concealment in itself is a benefit, but port knocking schemes do not rely
on the assumption that the protected host must stay concealed! It makes no
difference if, by some means, an attacker should discover that port knocking is
being used to control the opening and closing of ports. In Section 4.2, attacks
are outlined in which an attacker does exactly this, however in no way does this
decrease the effectiveness of port knocking as a whole.

This author has tested an analysed several implementations of port knocking,

4.1 Security through Obscurity 29

nearly all of which involve concealing the host by means of closed ports (see
Section 3.1). Due to the open source nature of these implementations it was
possible to determine which implementations offer what levels of security, and
which offered barely any security at all. Had the concept port knocking relied
on obscurity in hopes to increase security, the attempts to analyse the different
mechanisms would surely have been less successful.

The notion of concealment being used for security can be easily compared
to Bruce Schneier’s quote above about the letter in the safe. If he first gives
the safe “along with the design specifications of the safe and a hundred identi-
cal safes with their combinations so that you and the worlds best safecrackers
can study the locking mechanism”, and then hides the safe somewhere in New
York – he is not trying to obscure the workings of the safe, as he actually sub-
mits the safe for peer review, and by hiding his (presumably) secure safe, he is
only making it more difficult for an attacker to try and recover the letter within.

Now it should probably be stressed that security through obscurity is not in-
herently bad! It is only a weakness when it is the sole mechanism for security.
Assuming a group of the most competent security engineers can design a scheme
which is secure, deciding to keep the workings of their scheme a secret does not
make their scheme any weaker. Obviously, in reality almost any scheme or
implementation has flaws, and the argument of submitting it for analysis by
peers is simply that it provides a better chance of finding flaws, should they
exist. The primary reason why security through obscurity is undesirable is be-
cause it is very difficult, for those who do not know the workings of the security
mechanism, to test how strong that mechanism actually is.

The following, taken from Jay Beale’s paper on security through obscurity
[2, 36], is a good example of true security through obscurity: A company’s
web server, used to store highly sensitive data, runs the web service on a non-
standard port and/or uses long URLs for the content in an attempt to protect
the data from being discovered. In this scenario, the sole form of security is
through obscurity, which is bad, and bypassing the ‘security’ mechanism yields
access to the server’s contents. This can be taken in contrast to port knocking,
where bypass of the port knocking mechanism does not provide the attacker
with any more access than they would otherwise have had, had port knocking
not been used.

This is an important aspect of defence in depth, whereby security is applied
at various levels in order to minimise the attack vectors available to a malicious
user. Port Knocking mechanisms assist in this goal quite effectively (without
obscurity) by allowing us to harvest the ‘low-hanging fruit’ of vulnerabilities,
whilst ensuring that compromise of the mechanism itself does not pose any
additional threat to the overall security of the system. Even the most basic
form of port knocking, albeit completely insecure in many aspects, would be
sufficient in thwarting 90% of unskilled attackers (eg. script kiddies and worms).

30 Port Knocking - A Firewall Authentication Scheme

4.2 Attacks

Attacks on port knocking schemes can be divided into main two categories:
‘interception/impersonation’ and ‘direct attacks’. The former relates to the act
of intercepting packets on their way from the client to the server, which requires
the attacker to have some amount of access to the network traffic between the
client and the server. The latter refers to attacking the server directly, such as
through brute force, which can be done by an unprivileged attacker who does
not have access to network traffic. The descriptions of the attacks below are
on the ‘vanilla’ versions of both port knocking and single packet authorzation
(see Sections 3.1 and 3.2). The analysis of actual implementations in Chapter
6 will cover whether any of these attacks pose a threat.

4.2.1 Direct Attacks

These attacks form part of the more ‘realistic’ every-day attacks. As described
in Section 3.3, the majority of attackers, which include script kiddies and worms,
are like the attacker labelled as ‘Trudy’ and do not have any access to any of the
network traffic between the client and the server. In describing these attacks we
can assume that the attacker has knowledge of how the port knocking scheme
functions.

Brute Force

Basic port knocking is essentially like a password used to pre-authenticate one-
self to the server, before being granted access to the underlying service. The
password can be of any length, and each knock in the sequence can be any-
where, hypothetically, between ports 1 and 65535. If the attacker knows that
a given implementation of port knocking uses knocks containing a sequence of
x ports, he can then construct a program that would knock on every possible
combination of x ports, and check after each attempt whether or not the tar-
get port is open. Assuming the full range of ports are available, there would
be 65535x possible combinations, which quickly amounts to a large number of
combinations. That said, the attacker may not necessarily know which port will
be opened by the correct knock, and so may have to resort to port scanning the
entire port range after every knock attempt (which may, in itself, corrupt the
knock).

In his ‘Critique of Port Knocking’ [40], Arvind Narayanan states:

“Suppose you decide on a list of 32 valid ports (the current imple-
mentation allows up to 256). How long does the port knock sequence
need to be? You might think that since each port is a 16-bit integer,
you need 8 knocks, so that you get 8*16 bits or 128 bits of security
(virtually unbreakable). But since each port has only 32 possible
values (5 bits), what you actually get is only 8*5=40 bits of security
(trivially breakable)!”

4.2 Attacks 31

This description seems to imply a naive understanding of what keylengths
actually represent. In cryptographic terms, the size of the chosen key must be
selected with regard to which algorithm it will be used with. Arjen Lenstra
and Eric Verheul’s paper on ‘Selecting Cryptographic Key Sizes’ [35] describes
the key sizes recommended for different cryptographic algorithms. More im-
portantly, the strength of a cryptographic key is based on an attacker’s ability
to perform his attacks ‘offline’. This means that the attacker who has captured
an encrypted message, can test every possible key to decrypt that message on
his own computer without needing to interact with either of the communicating
parties. This is not the same with the basic form of port knocking, which is
described in Section 3.1, and which Arvind Narayanan describes above. Due to
the fact that the key (knock sequence) must be sent to the server in order to
know if it is valid, the brute force attack must be performed ‘online’ by sending
every possible knock combination to the server – in which case attempting to
brute force 240 possibilities becomes far less feasible. As we will see in Section
6.2, single packet authorization schemes are more vulnerable to offline attacks.

There is one counter-argument against brute force attacks against port knocking
systems, and it is that such attacks are very ‘loud’. This means that it would
be trivial to notice when an attacker was attempting a brute force attack due to
the fact that it would involve an enormous number of ‘knocks’ on the firewall.
Imagine you and your friends have a secret knock which must be done before
anyone is allowed into the house, and one day you start hearing completely ran-
dom knocks, and lots of them. It’s obvious that someone may be trying to guess
your knock! In a simple example where the knock consists of only 2 ports, as-
suming the full port range is available, this amounts to 655352 = 4, 294, 836, 225
possible combinations (far less than 240 as described above), which clearly can-
not be brute forced without being noticed, not to mention the fact that such an
attack would take a very long time. Assuming that each ‘knock’ is sent every
0.5 seconds (in order to prevent out-of-order delivery), each full attempt would
require 1 second, thus attempting every possible combination of knocks would
take approximately 136 years.

In order to counter such attacks it would be simple to implement a system,
either in the port knocking daemon itself, or within an Intrusion Detection
System (IDS), to automatically block further knocks from a host that has at-
tempted more than x knocks4. Furthermore, to protect against the attacker
spoofing many IP addresses during its brute force attacks, further connections
can be blocked once a given number of IPs have attempted more than x knocks.
It must be mentioned, however, that this could be used to carry out a denial
of service attack against the client(s), by spoofing the clients’ IP addresses and
brute forcing the server!

4Daniel De Graaf [16] presents a simple IPtables ruleset which automatically blocks,
for one hour, IPs attempting to connect to an unused port 4 times in a row.
http://daniel.6dns.org/info/iptables/portscan

32 Port Knocking - A Firewall Authentication Scheme

Attacking the Daemon

Port knocking and SPA both require some kind of ‘daemon’ whose task it is
to observe the knock sequences (and authorization packets) in some way, and
then execute a given command should a valid ‘knock’ be received. Due to the
fact that the daemon is a piece of software, then it is possible to assume that
there might some way to attack it directly with the aim of gaining access to
the system that way.

However, it is important to point out that a port knocking daemon is not
a traditional networking daemon. At no point in the port knocking authenti-
cation process does the client actually connect to the daemon (obviously since
all ports are closed), unlike SSH for example, where the SSH daemon actually
accepts incoming connections from clients. This is an important aspect of port
knocking implementations, as the ability to connect directly to a port knock-
ing daemon could make it easier to exploit the running process, for example
with a buffer overflow, and gain access to the system via remote code execution.

There are two main types of port knocking daemons used in implementations:

• Log Readers: Traditional port knocking schemes have the option to
read IP headers of the dropped packets in the firewall logs. The firewall
logs are in a standard format, and since the daemon is only interested
in which IP knocked, and which port it knocked on, it would be difficult
to attempt to corrupt the port knocking daemon by crafting a malicious
SYN packet.

• Packet Sniffers: Most port knocking and SPA daemons, use packet snif-
fers (such as libpcap) which allow them to read incoming knocks straight
off the wire. This is necessary, in the case of single packet authorization,
as the daemon must have access to the payload of the knock packet, and
not just the headers. Due to the fact that the daemon is reading the
actual packet content and then parsing it to obtain the enclosed knock, it
could be possible to create a malicious packet with the aim of exploiting
the single packet authorization daemon.

It is theoretically possible to exploit the packet sniffer (eg. libpcap), or the
part of the firewall which reads packets. However, libpcap, for example, is
amongst the most widely used application programming interfaces (APIs) for
network packet captures. Due to this, and its open source nature, its source code
is constantly reviewed by a very large number of people, and vulnerabilities, if
any, are rapidly eliminated.

Furthermore, due to the closed nature of the firewall used in port knocking,
it would be extremely difficult for an attacker to perform OS fingerprinting5

on the server, without having access to network traffic, in order to determine
what operating system and/or platform it was running on. This can be a

5OS Fingerprinting, also known as TCP/IP stack fingerprinting, is a technique used to
determine the identity of a remote host’s operating system by analyzing packets from that
host [22].

4.2 Attacks 33

further advantage, because if a vulnerability in a port knocking daemon were
discovered, it would be far more difficult to exploit that vulnerability if the
attacker did not know the operating system and/or platform of his target.
That said, an attacker could simply try to guess what OS is running, or try a
number of different exploits in the hope of striking lucky.

Another advantage of port knocking mechanisms is that they are relatively
simple by design, and as such, their security can be analysed far easier than
a full-blown package, such as OpenSSH, which performs many actions, and so
has many lines of code.

4.2.2 Interception and Impersonation Attacks

These attacks require an attacker with heightened capabilities, and require the
ablity to either observe or intercept and then replay the original, or modified
packets to the server. This is possible, for example, if the attacker sits some-
where on an area of the network through which all of the packets from the client
to the server must pass (eg. an Internet Service Provider), or by sniffing packets
on a wireless network. From the players outlined in Section 3.3, the attackers
that would be involved in the following attacks would be Eve or Mallory. It
should also be mentioned that Eve and Mallory can also perform any of the
direct attacks mentioned in Section 4.2.1.

Eavesdropping and Replay

As depicted in Figure 4.4, an eavesdropper on the network may have the abil-
ity to observe traffic between the client and the server. In some cases this
means that the port knocking sequence could potentially be observed, and then
replayed by Eve to the server.

With regard to basic port knocking, and even some SPA schemes, this is a
real threat as the server has no way of knowing whether or not the incoming
knock is a replay, or a legitimate knock coming from a client. In order to defend
against replay attacks, the knock must contain some kind of unique value which
will never again be used, thus allowing the server to track which packets it has
already received, or which packets are old packets that were never received. In
entity authentication protocols, such as those mentioned in ISO/IEC 9798, one
crucial element that must be included is the notion of ‘freshness’ which provides
a method for checking that a message was recently generated.

The two most common ways to provide freshness is by using time stamps
(clock-based or logical), or nonces (numbers used once). It is also essential to
protect the integrity of freshness elements by using some sort of MDC6. With
timestamps the server can easily see if a packet is old by comparing the time
in the knock (or authorization packet) with the time on the local machine. By
using a nonce from a large enough space, the server can be relatively confident

6A Manipulation Detection Code (MDC) is a block of data that is appended to the end
of a message. This can be a MAC or a simple hash can be used and then encrypted together
with the message.

34 Port Knocking - A Firewall Authentication Scheme

ServerClient

Eve

Trent

Figure 4.4: Intercepting Knocks through Passive Eavesdropping

that the same number will not occur again anytime soon. Some implementa-
tions, such as fwknop (see Section 6.2), use both, although if the timestamp is
not checked then it partially defies the point of including it.

A passive attacker may also come across encrypted packets or knock se-
quences, which can be attacked offline (locally) in the hopes of discovering the
password or key used to encrypt (see Section 5.1.5). If the correct key is dis-
covered, then the attacker can craft his own valid authorization request, and
gain access to the server.

Man In The Middle

Man in the middle (MITM) attacks are amongst the most difficult to defend
against in network security. In this scenario, Mallory has the ability to intercept,
modify, block, etc, any network traffic from the client to the server which passes
through him (see Figure 4.5). Being in this position offers more sophisticated
channels of attack, some of which can be executed in real-time. In its most
‘powerful’ form a MITM attacker has the ability to spoof traffic to either side
of a network conversation, masquerading as the other entity.

Man in the middle attacks on port knocking and SPA are primarily implementation-
based, especially considering that both schemes use very different delivery mech-
anisms. For example a static port knocking system using OTK (One-Time
Knocks) is theoretically secure against replay attacks by a passive adversary,
but an active adversary such as Mallory can simply intercept the static knock
and forward it to the server, thus gaining access for himself. On the other

4.2 Attacks 35

hand, an implementation which binds the authorization request to the client’s
IP, begins to complicate the task of performing a successful replay attack, as
the attacker would need to be able to connect to the server from the client’s IP.

There are a number of ways that a MITM attacker can attack a particular
implementation, including spoofing public IP address requests, DNS requests,
and network time protocol requests to name a few (see Sections 5.1.1, 6.1.1,
6.2.1).

Due to the unauthenticated nature of post-authentication connection at-
tempts (see Section 5.1.2), the simplest attack that an active attacker could
perform is to wait for the client to open a port on the server, at which point
the attacker can impersonate the client and connect to the server. This attack
essentially circumvents the port knocking layer, however, the attacker will still
have to authenticate with the underlying service or attempt to exploit it (see
Chapter 4 and Figure 4.3). This is not a weakness in the port knocking or SPA
schemes, as these kinds of ‘session hijack’ attacks can be used against numerous
protocols.

In the end, a powerful attacker in a MITM position has the ability to fully
impersonate both the client and the server, including the ability to send packets
with a source IP identical to that of the client or the server, thus making it
impossible for either party to know that they are actually communicating via
someone else. The only way to possibly defend against such attacks if for all
post-authentication connections to be associated with the initial authentication
in some way, see Section 5.1.2 for a discussion of some possible solutions.

ServerClient Mallory

Trent

Figure 4.5: Port Knocking Man-in-the-Middle Attack

4.2.3 Methods for Detecting Port Knocking

In order to begin attacking port knocking systems, attackers must first have
the ability to detect when a port knocking system is in place. Naturally, this
should be difficult in most circumstances as one of the aims of port knocking is

36 Port Knocking - A Firewall Authentication Scheme

that of concealment. An attacker in an non-privileged position (such as Trudy,
see Section 3.3), would have a hard time figuring out that a host is protected
by a port knocking mechanism, by using purely network-based approaches.

It is important to outline how different port knocking schemes could be
detected, not only from an attacker’s perspective, but also from a defensive
perspective. Standard port knocking would probably be detected by most IDS’s
as it appears (and functions) very similar to port scans. However, detection can
be avoided by increasing the time between sending packets. Most port knocking
implementations wouldn’t mind if the full knock took 30 seconds as long as all
packets arrived in the correct order. Many IDS’s would not raise a flag in this
case.

On the other hand, single packet authorization mechanisms employ a UDP
packet with a small, seemingly random payload. Many protocols use UDP
to communicate, and where encrypted traffic is concerned, it is difficult for
IDS’s to differentiate malicious from acceptable traffic. One method that could
be recommended for detecting SPA-like activity would be to watch for single
packets (UDP, ICMP or even DNS) which are shortly followed by an actual
TCP connection. However, not only would this represent a much heavier load
for the IDS, but are also many ways that this could be defeated by using time
delays or even instructing the server to connect back to the client (which can
be done to bypass certain firewall rules).

Implementation-specific versions of SPA could be tracked using an IDS by
programming it to recognise the distinguishing characteristics of the packets
created by those implementations. Due to the fact that most SPA payloads are
seemingly random, it is difficult to obtain an exact match, however, an example
for detecting fwknop packets is given in Section 6.2.

Part III

Real-World Port Knocking

Chapter 5

Practicalities, Limitations
and Improvements

5.1 Practicalities, Limitations and Improvements of
Port Knocking Mechanisms

There are certain practicality issues when using port knocking in the real world.
In all of the examples included, the client and the server have been on the same
(local) network. Obviously port knocking mechanisms are more interesting, and
indeed more useful, when used to access remote machines. The first significant
issue which applies to both port knocking and SPA, is the issue of Network
Address Translation (NAT) and its effects on the authorization granted to the
client.

5.1.1 Network Address Translation

Network Address Translation is used to share a single public IP address amongst
a private network of machines, and as such, each computer on the local network
appears with the same IP on the Internet. Due to the fact that the port
knocking daemon must open the requested port for a specific IP, this raises
two sub-problems. Firstly, the knocking client must provide the server with
its public IP address. The daemon cannot set a rule in the firewall to allow
network traffic coming from the Internet with a private IP like 192.168.1.10.
With this in mind it is clear that the client is left with the not-so-simple task of
having to discover its public IP address. . . securely. The main way to discover
one’s public IP is simply to ask another server on the Internet what IP they see
when you connect to them1. If an attacker can send a spoofed reply containing
his IP address, then the client’s knock will enable the attacker to connect the
server.

One solution to this issue, when the client resides in a controlled NAT’ed
environment, is to set up a simple server on the machine which sits at the
boundary of the private network, and this device will usually know its public

1One popular website which provides this service is www.whatismyip.com, which can be
used by fwknop to discover its public IP in a NAT-situation.

40
Practicalities, Limitations

and Improvements

IP. By querying the boundary device, the client can securely discover its public
IP. Although the queried IP could still be compromised by an attacker sitting
on the same local network, there is less point as both the client and the attacker
will have the same public IP (unless the attacker wants to open a port on the
server to an external IP).

Another solution, suggested by Rennie deGraaf, John Aycock and Michael
Jacobson Jr. [14], can be implemented with SPA schemes. In particular fwknop
(see Section 6.2) which could be modified to perform a challenge-response (uni-
lateral or mutual) authentication similar to that described in ISO 9798-4.

They propose a solution to the NAT problem which deviates slightly from
the standard ‘silent server’ setup found in port knocking and SPA. The solu-
tion involves a three-pass mutual authentication protocol (whereas port knock-
ing and SPA were provided only unilateral authentication until now), although
their protocol assumes that the client will only send certain pre-configured ac-
cess requests. Below is a slight modification to their protocol which allows for
dynamic access requests to be sent:

1: A → B: req,NB,MACKAB
(req,NB)

2: B → A: PIDA, MACKAB
(NB, P IDB, P IDA), NA

3: A → B: MACKAB
(NA, P IDA, P IDB)

Where:
A is the client
B is the server
req is the requested access2.
PIDX is the public IP address of host X.
NX is a nonce sent to host X.
KAB is a key shared by A and B.
MAC is a cryptographic message authentication code.
, (a comma) represents concatenation.

This mutual authentication protocol helps resolve the issue of public IP dis-
covery on the client side, whilst ensuring that no single ‘authorization packet’
is generated which could potentially be replayed by an attacker. However, noth-
ing stops a privileged attacker from spoofing the client’s IP address and gaining
access once the client has performed valid authorization exchange. This prob-
lem is due to the lack of association between the authentication session and the
subsequent connection (see Section 5.1.2).

However, even once the issue of IP discovery is put aside, we are left with
the issue of who is actually authorized at the end of the port knocking process.
For example, if you are in a cybercafe and wish to access one of your servers.
Once you have completed the knock the server will open a hole in the firewall
for your IP, but if NAT is in use at the cybercafe, everyone else will also have
access to the server. Of course in actual use, implementations attempt to deal

2In [14], the server must be pre-configured with a set of authentication requests, and
thus, the requests do not need to be integrity protected.

5.1 Practicalities, Limitations and Improvements of Port
Knocking Mechanisms 41

with this issue by setting a very low timeout before the port is closed, leaving
only a small window during which the client (or anyone else) can connect. It
may be useful to consider closing the port immediately after a connection is
made to the requested port (depending on the protocol used).

5.1.2 Authentication-Connection Association

Up until now we have observed port knocking as performing a simple action, au-
thenticating the client who knocked. This process can be achieved successfully,
but what about subsequent connections? It is important to point out that there
is no formal association between the client who knocked and the client who is
actually attempting to connect to the opened port. So a successfully opened
port can then be hijacked by an attacker with the ability to impersonate the
client (see Section 4.2.2). A number of possible solutions exist, some discussed
briefly by deGraaf et al [14].

Protocol Wrapping and Sequence Numbers

One way to protect a successful authentication from being used by an attacker
is to wrap post-authentication connections within an encrypted session. By
using a key shared only by the client and the server, the attacker, who does not
possess the key, would have no way of crafting valid packets. Invalid packets
received on the server-side could be dropped before reaching the underlying
service, thus ensuring that only clients with valid keys could get through to
the protected service. IPSec or SSL could be used to provide authentication at
the TCP/IP layers. Of course this would require some kind of ‘wrapper’ pro-
gram which would handle the encryption and verification of post-authentication
connections. Not to mention that the added cryptographic operations will un-
doubtedly increase the load on the server.

Another possibility is the idea of generating TCP Sequence Numbers (SN) in
a randomised and authentication-dependent manner, thus allowing the server
to verify whether the connection is coming from the client who previously au-
thenticated itself with the port knock or SPA authorization packet.

In their paper [14], deGraaf et al propose that an Initial Sequence Number
(ISN) be transmitted in the initial authentication phase, so that the server will
know what to look for in a subsequent connection attempt. Although this will
work in implementations that do not open ports based on the client’s IP (ie.
they open the port to any IP), or when the client is behind a NAT, an active
attacker in a MITM position can simply intercept the client’s connection at-
tempt, steal the ISN, and use it on his own spoofed packet to the server. The
benefit of their technique, however, is that it does not require any modification
to be made in the way the client and server check sequence numbers of incoming
packets.
For the most part these techniques add a layer of complexity on top of the
initially simple concepts of port knocking and SPA. Both of these would also
require the client to have a heightened privileges in order to manipulate TCP/IP

42
Practicalities, Limitations

and Improvements

packet fields, which is possible in the case where the client is an admin connect-
ing remotely from his own laptop, but less feasible where the client is sitting
at a computer in an internet cafe. The problem lies, in this case, not with the
authentication mechanisms provided by port knocking or SPA, but in the fact
that TCP connections cannot natively, by design, be bound to a previously
authentication session.

5.1.3 Out-of-Order Delivery

The Internet is a vast network of varying latencies. Although basic port knock-
ing may work flawlessly in local network tests, the delays inherent in network
communications may be a problem when attempting to use the mechanism in
practice. Port knocking requires that the knock sequence arrive in the correct
order for the sequence to decode properly. If a single knock arrives out of or-
der, the sequence will be broken and the server will not perform any action,
ultimately resulting in a denial of service. Similarly, should an unprivileged
attacker, such as Trudy, aim to perform a DoS on a particular client, he can
simply send one packet per second to a random port on the server, spoofing the
client’s IP address as the source address. The server will be unable to differ-
entiate between the attacker’s and the client’s packets and so the sequence will
be broken and authentication will fail.

Another suggestion by deGraaf et al [14] introduces the idea of dividing the
bits representing the port number, into data bits and sequence number bits. In
such a way it becomes possible for the server to reorder packets correctly before
decoding the knock sequence. This technique would even defend against an
attacker trivially spoofing knock packets, in an attempt to cause a DoS, as the
server would be able to determine that the attacker’s knocks are invalid, and
thus discard them. Of course an active attacker like Mallory can easily break
such a system, but then again, an active attacker has many other options at
hand for performing DoS attacks.

5.1.4 Single Shared Secrets and Multiple Users

Many port knocking and SPA implementations available at the moment only
support the use of a single shared secret value, thus meaning that each user
is given equivalent rights, or there is only a single user supported. In port
knocking schemes a knock can easily take 10 seconds to complete, and it is
crucial that all packets arrive in order (see Section 5.1.3). The question of what
happens should two users knock at once must not be overlooked. Luckily, there
is a simple solution to this problem.

By tracking the knocks received by IP address it is possible to build a
‘chain’ of the ports knocked on by any number of client IPs. This way, the port
knocking daemon is able to differentiate between knocking clients and authorize
each one in turn as the correct knock sequence is received and decoded. If a
port knocking implementation does not track knocks by IP address, then two
clients knocking concurrently will result in a DoS for both of them, as each
others’ knocks will break their respective sequences. Naturally, SPA schemes

5.1 Practicalities, Limitations and Improvements of Port
Knocking Mechanisms 43

do not have this problem as authorization material is sent in a single packet.
In the case of implementations which involve encrypting (or hashing) the

knock (or authorization data) using a shared secret, we are presented with
an additional overhead on the server-side as it does not know which client is
authenticating (without the client sending a username along in clear text). The
server must then resort to attempting every possible password in the server’s
user database and hope that a valid knock or authorization packet is decrypted.
Once a valid plaintext is decrypted, the server can proceed to carry out the
actions specified in the knock (authorization packet) or configuration. It can be
questioned, however, whether or not this brute force method would be suitable
for use on a system with many users. An attacker may try to use this to bog
down the server with decryption attempts by flooding the server with ‘junk’
ciphertext (spoofing many IPs if necessary).

One solution to this problem, with single packet authorization, is to use a
single strong secret (ie. cryptographic key) to encrypt the authorization data, in-
clude a username (sent in cleartext) inside the authorization packet, and include
that user’s password in the hash of the authorization data. The server knows
which key to use for decryption, as the username is supplied. This method
increases the complexity of the system, but partially reduces the vulnerability
of attack from external users to internal users. It has now become unfeasible
to brute force the encrypted packet (whereas a password-based encryption key
would have been prone to dictionary attacks - see Section 5.1.5).

Another solution is to use public key cryptography, whereby each user has
his own private key which can be used to sign the authorization data when
the data is encrypted with the server’s public key. Public key cryptography,
such as GPG, provides data origin authentication and, where applicable, non-
repudiation. The use of GPG keys may simplify the issue of multiple users by
allowing the server to easily determine which client is requesting authorization
simply by decrypting and verifying the ciphertext. Due to the fact that only
one encryption key (the server’s public key) is required. It is trivial to transmit
information securely to the server without having to resort to the brute-force
method involved with symmetric keys, as described above.

5.1.5 Password-Based Cryptographic Keys

One simple fact exists in the realm of information security: if humans could
remember 32-byte values, authentication would be a much simpler process. The
fact of the matter is that passwords are used in a large number of authentication
mechanisms, which may make the underlying mechanism prone to dictionary or
brute force attacks. The simple example below demonstrates how a basic SPA
scheme (described in Section 3.2) can be attacked using a simple dictionary
attack.

The authorization data is obtained by hashing the three fields (timestamp,
client IP and password) together, using MD5, to produce:

MD5 (“200608062127:192.168.1.100:secretpassword”) = 9c6f2af8e1a0f841467f0a1de39f53c8

44
Practicalities, Limitations

and Improvements

An attacker with the ability to sniff network traffic from the client to the server,
such as Eve, may be able to obtain this ‘authorization hash’. One she has the
hash she can mount a dictionary attack by simply guessing the user’s password
and recalculating the hash. The timestamp included in the hash can be guessed
by looking at the local clock (assuming both the client and attacker have the
correct time set), and the IP address included in the hash can be recovered
from the IP header of the client’s authorization packet. The attacker now has
two out of three of the values needed to calculate the correct hash, so she can
simply try to ‘guess’ the last value, the client’s password, until it produces a
hash that matches the one contained in the client’s authorization packet.

This attack can also be applied to port knocking schemes, although, due to
the ‘single packet’ nature of SPA, it is much easier carry out on these types of
schemes. Fwknop uses Rijndael encryption instead of hashing, but the same
principle applies. Section 6.2.2, where I present a proof-of-concept tool called
fwknop da, goes into more detail as to how this attack is carried out.

Chapter 6

Implementation Analysis

6.1 Port Knocking Perl Prototype (PKPP)

Martin Krzywinski [32, 33], who coined the term “Port Knocking”, also created
the first prototype of such a system in Perl1. Obviously, this implementation
is a form of traditional port knocking (where the client sends a different packet
to each port in the knock sequence), but with a twist. The ‘vanilla’ flavour
of port knocking as described in Section 3.1 would rarely be used in real life2,
simply due to the fact that its capabilities are extremely limited, and anyone
with access to the knock sequence would immediately be able to replay it to
the server and gain access.

A good definition of a port knocking scheme, as created by Martin Krzy-
winski, is “a method for delivery of information via closed ports” [36]. The
notion of “delivery of information” is crucial, as it is this that allows a static
knock, to be turned into a dynamic knock which actually provides the server
with specific information relating to the knock and the access being requested.
Krzywinski’s Perl prototype achieves this by encoding the port knock data onto
the range of admin-selected ports which will be used for knocking. Due to the
fact that the port number field in TCP packets is 16-bits long, the maximum
amount of data that can be transmitted per knock packet is 2 bytes.

The PKPP allows the admin setting up the system to define what fields a
valid knock will consist of. A simple knock will include: the sender’s IP, a port
number (to be opened), optional Flag values, optional time-based (or random)
values, and a checksum (consisting of the sum of all fields in the knock mod
256). For example:

Client IP: 192.168.1.10
Port: 22
Flag0: 30
Checksum: 167

1Perl is an interpreted programming language with features inspired from many other
languages - http://www.perl.com

2Unless a One-Time Pad of knocks were used, or we weren’t too concerned about the
presence of eavesdropping/active attackers.

46 Implementation Analysis

Produces the following knock sequence: 192 168 1 10 0 22 30 167

The resulting knock sequence is then mapped onto the admin-defined port span.
There also exists the option to encrypt the original knock sequence using Blow-
fish, a 64-bit block cipher with a keylength of 448-bits, and a password-derived
key, to protect the confidentiality of the knock. If the plaintext knock sequence
(above) is encrypted using Blowfish in CBC mode, then the ciphertext is then
converted to bits and mapped onto the port span. Allowing unencrypted knock
sequences with this implementation is very dangerous as it would be quite easy
for any attacker to have a given port opened for his IP simply by crafting a
valid knock in a similar fashion to the one described, there is no secret value
included in the unencrypted knock sequence.

The knock daemon has the ability to read knocks out of the firewall log, or
directly off of the wire using libpcap. Due to the way that this implementation
deals directly with the bit-representation of the knocked ports, it would be quite
difficult to compromise the daemon itself with maliciously crafted packets.

6.1.1 Security

The major differentiating factor between this form of ‘original’ port knocking
and single packet authorization schemes, is the nature in which information is
transmitted to the server. As explained above, information is actually encoded
into strings of bits which can be represented as decimals that are used to knock
on specific ports on the server. In some ways this makes the mechanism ex-
tremely noisy, yet also quite stealthy. Knocks are more likely to be seen as
a random port scan, as they are sent as SYN packets. Although this brings
attention to the knocking process, it may also go unnoticed since the packets
themselves have no payload. A knowledgeable attacker eavesdropping on the
network traffic would notice that port knocking is in use as soon as a network
connection is opened to a seemingly non-existent host.

From a protocol perspective, there are points pertinent to the security of this
implementation. Firstly is the very basic checksum which is obviously only there
to allow the server to check whether a properly formatted knock was decoded.
Such a checksum does not provide true integrity protection and cannot be used
to track which knocks have already been used, in order to protect against replay
attacks. Martin Krzywinski recommends that the knock be encrypted, and this
would indeed provide a higher level of protection against analysis. Knowing
the port span being used by a given server is essential to using the system, but
also when attempting to decode intercepted knocks. Given some time and a
given amount of observed knock sequences it should be quite easy to determine
the port span, although it seems that the best port span to use would be many
small non-contiguous ranges, as this would make it harder for an attacker to
determine exactly where each range starts and ends.

If the attacker knows the port span then he could easily run a dictio-
nary/brute force attack against the ciphertext (see Section 5.1.5), simply by
checking the resulting plaintext for the presence of known values. For ex-
ample, if the client knocks on the server and then connects to SSH port 22

6.1 Port Knocking Perl Prototype (PKPP) 47

from its IP, the attacker knows that the client’s IP and the value 22 must be
present somewhere within the plaintext. Although in this implementation the
format of knocks can be defined by the administrator, the IP of the knocker
(eg. 192.168.1.10) will be quite unique in a knock string. That said, it may
be slightly more difficult to automate this in a live attack, as there are no
‘static’ values as-such in a port knock. Port knocking uses no particular field
delimiters, nor any static strings which could be identified in the plaintext. An
incorrectly decrypted plaintext could still be parsed normally by reading the
binary bits and converting them back to decimal values. If the attacker knows
that the ‘checksum’ is used in the knock and its supposed position in the knock
sequence, he could check whether a given plaintext is valid. Alternatively the
attacker could simply assume that the client is requesting authorization for its
IP, and search the plaintext for the client’s IP.

The primary concern with this implementation is that of replay attacks.
Although there are some anti-replay features, some of them require that state
be maintained on both the server and client side. This is especially inconvenient
for the client side where the knocking may not always be performed from the
same machine. If only time-based features are used, however, and if two servers
are running the same configuration of port knocking, an attacker could intercept
the knock for one server and replay it on the other. No indication of destination
is included in the knock which would alert the server if it was being sent a knock
destined for another server.

If this implementation is used with full timestamps (for replay protection),
One Time Knocks using incrementing flag values (also for replay protection),
a strong cryptographic key (ie. 448 random bits - with Blowfish), and a large
port span, then this implementation becomes more resistant to replay attacks
but starts to become more bloated in terms of knock length.

Drawbacks

This implementation can only really be used with encryption enabled, as un-
encrypted knocks offer no protection against replay attacks, and contain no
‘secret’ value meaning that anyone could potentially send a valid knock and
gain access. However, when encryption is used, the knock sequences can be-
come quite long (eg.16 knocks), especially if a small port span is used. This
makes the port knocking process extremely loud and obvious, thus making it
much easier to detect through simple traffic analysis. Combined with the issue
of out-of-order delivery which is inherent in port knocking, it is essential to
ensure that there is enough time between knocks to compensate for network
delay. In total, a knock can take approximately 10 seconds to execute which
may or may not be acceptable in certain circumstances, or to certain users.

With regard to the network ‘noise’ involved with port knocking, it may be
an issue that port knocking may experience problems when used in conjunction
with some form of IDS. Knocks can easily be mistaken for port scans, thus
resulting in the client’s IP being temporarily blacklisted and a denial of service
will occur.

Due to the fact that information is transmitted through the port numbers

48 Implementation Analysis

(and only 2 bytes of data can be transmitted per packet), it is essential to
keep the knock sequence as short as possible to ensure that knocks do not take
too long. Unfortunately due to the message expansion involved in the use of
asymmetric cryptography, it is not practical to use GPG3 to encrypt the knock
sequences with the PKPP, as the resulting knock sequence would be extremely
long. There would be several benefits to using public keys to produce the knock
sequence. Firstly the knock sequence would provide origin authentication of the
knocker, and supporting multiple users would be a simpler task.

6.2 fwknop - FireWall KNock OPerator

Firewall Knock Operator (fwknop) is the SPA implementation by Michael Rash
[45, 46, 47, 49]. Fwknop (also programmed in Perl) used to be a port knock-
ing implementation, but with the appearance of the single packet authorization
concept, its primary mode of operation is now SPA over UDP (although TCP
and ICMP are also supported). From the couple of SPA implementations that
were tested, fwknop definitely seems to be the most flexible in terms of how
the system can be set up. Fwknop, as with most SPA implementations, sets up
a knock string which is then packed into a UDP packet, utilising the payload
available, and sent off to the server. In SPA the ‘knock’ is called an authoriza-
tion packet.

In fwknop, the authorization packet consists of five pieces of data:

Random data: 3765661773077220 (16 bytes of random data)
Username: admin (local username)
Timestamp: 1155665551 (local timestamp)
Version: 0.9.7 (fwknop version)
Action: 1 (access or command mode)
Access: 10.0.0.1,tcp/22 (desired access or command)
MD5 sum: qZayT4TNoK1pCOI66Wr0oA

The MD5 is calculated over all of the fields in order to allow the server to
check whether the authorization data was received correctly. The Username,
Access and MD5 sum fields are Base64 encoded. These strings are then con-
catenated together, delimited by colons (:), to form the plaintext authorization
data:

3765661773077220:YWRtaW4=:1155665551:0.9.7:1:MTAuMC4wLjEsdGNwLzIy:
qZayT4TNoK1pCOI66Wr0oA

The resulting string is encrypted using Rijndael, in Cipher Block Chain-
ing (CBC) mode, with a block size of 128-bits and a key length of 256-bits.
By encrypting the authorization string, that contains a hash of the data, the
plaintext becomes integrity-protected, and thus an attacker would be unable to

3GNU Privacy Guard is an open source implementation of Phil Zimmermann’s popular
PGP (Pretty Good Privacy) hybrid public key crypto-system. See Section 2.2.2.

6.2 fwknop - FireWall KNock OPerator 49

modify the plaintext (through ciphertext manipulation) without those modifica-
tions being detected. The cryptographic key in fwknop’s default configuration,
however, is derived from a user-entered passphrase (8-16 characters in length4)
through a series of MD5 hashes5, meaning that there are only approximately
9516 (100-bits) possible keys (there are 95 printable ASCII characters, and a
maximum of 16 characters per password), far less than the full 256-bits of a
Rijndael key. The encrypted authorization data is then packed into a UDP
packet and sent off to the specified server.

On the server, the fwknop daemon (fwknopd) watches on UDP port 62201
(by using libpcap to sniff the wire) for inbound authorization packets. When
a packet is received fwknopd attempts to decrypt it, parse the decrypted data
by finding the colon (:) delimiters, and checks that the MD5 hash of the fields
matches the MD5 hash included in the packet. The daemon also has the abil-
ity to use p0f6 to perform passive OS fingerprinting of the client, and can be
configured to only allow access to certain types of machines. Although this can
easily be circumvented, the attacker must first know which types of machines
are being granted access, which would again require access to network traffic to
fingerprint a valid client.

As stated in Section 4.2.3, detecting SPA packets is more difficult than
detecting port knocks as SPA packets are less obvious than long and ‘loud’
port knocks, and contain seemingly random data which can potentially blend
in with normal network traffic. In the case of fwknop, however, there are some
indicators which could be programmed into an IDS to flag that fwknop may
be in use on the network. Fwknop packets go to port 62201 by default, so
a rule could be defined to watch for traffic to that port, although this would
easily be circumvented by changing to a custom port. Alternatively, an IDS
can attempt to track fwknop packets by checking the data length of the UDP
packets. An fwknop packet encrypted using Rijndael will be anywhere between
80 and 160 bytes in length. A packet encrypted using GPG will be anywhere
between 500 and 1600 bytes in length [50]. Although a quick test of such a
rule on my machine, running several common applications, reveals that about
15 packets meet the above requirements every 10 seconds. Obviously this rule
would generate far too many false positives. Thus, the only way to successfully
track for fwknop packets would be to track packets of the lengths mentioned
above, going to UDP port 62201 of a machine.

6.2.1 Security

From an entity authentication perspective, fwknop is basically an implementa-
tion of ISO/IEC 9798-2 mechanism 1, a one-pass method for providing unilat-
eral authentication using timestamps and encryption, which has been applied

4If the user-entered passphrase is less than 16 characters long then it is padded with zeros
until it is exactly 16 characters long.

5The Perl Crypt::CBC module is responsible for turning the user-entered passphrase into
a 256-bit key suitable for use with the Rijndael algorithm, by running the passphrase through
a series of MD5 hash operations.

6p0f is a popular tool developed by Michal Zalewski which performs passive OS fingerprint-
ing. http://lcamtuf.coredump.cx/p0f.shtml

50 Implementation Analysis

to the concept of ‘firewall authentication’ (although fwknop does not follow
the actual standard). This provides effective authentication of the client re-
questing authorization to the server, and helps protect against replay, although
the timestamp used in fwknop is not actually checked against the clock on the
server. Both the timestamp and the random data fields are used as fresh values
or ‘randomisers’ which help ensure that each authorization packet will yield a
unique MD5 sum which can be logged to check for replays.

However, in this lack of timestamp checking exists a possibility for a man
in the middle attack where the attacker intercepts and blocks an authorization
packet from the client. Due to the fact that the packet never reaches the server,
its MD5 hash will not be logged, and the timestamp will not be checked for
freshness at the time of delivery. Although a replay of this intercepted packet at
a later date will only open the requested port for the IP included in the packet
(probably the client’s IP at the time), this can still be used to the attacker’s
advantage should he have the ability to connect from the same location as the
client, or masquerade as the client on the network.

These issues of ‘block and replay’ attacks can be reduced by implementing
a ‘window of acceptance’ against which the timestamp is checked before any
action is performed. The window of acceptance can be set to compensate for
standard clock drift, although a client with incorrect time may experience a
denial of service as the client’s timestamp will not match the valid time on the
server when the timestamp is checked. By checking the timestamp and making
sure that it’s within the window of acceptance, the server is able to reject any
potential replays that are outside the accepted timeframe.

Fwknop does not include the identity of the server in the authorization
packet, which means that two servers with an identical setup (same users and
keys), are vulnerable to replay attacks of each others’ authorization packets -
especially if timestamps are not checked. An attacker could simply intercept a
valid authorization packet on route to one of the servers, and immediately (or
at a later date, if no timestamp check is implemented) replay it to the second
server.

Network Address Translation

If the client is on a network that uses NAT, then it must use some mechanism
in order to discover its public IP address (see Section 5.1.1). Fwknop has
the option to do this (--whatismyip) by accessing www.whatismyip.com7 and
parsing the returned IP address. The attacker can use this to his advantage
by spoofing any requests that the client sends out to discover its public IP.
The result of this attack is that the client will use the spoofed IP address in
the authorization packet, hence, by intercepting and blocking this packet, the
attacker has successfully obtained a free pass to open the requested port for
an IP of the attacker’s choice. Similarly, fwknop allows the client to enter a

7Although fwknop uses whatismyip.com as the default, it can be configured to use any
other website which returns the IP address in the title of the web page.

6.2 fwknop - FireWall KNock OPerator 51

hostname8 to which access must be granted. Beware when using this feature
as the fwknop client first performs a DNS lookup to obtain the IP address
of that hostname, which it then puts into the authorization packet. Spoofing
DNS requests quite a simple attack, and an attacker could simply return the
IP address of his choice which would then be the one used in the authorization
packet, resulting in the same compromise as mentioned above.

Fwknop also has the option (--source-IP) to instruct the server to grant
access to the source IP of the authorization packet (in cases where the client
cannot successfully discover its public IP address). If an attacker is able to
intercept and block a packet constructed in this way, then he has obtained a
free pass to grant access to any IP he wants, at any time, without performing
any spoofing of any kind! For a live attack, the attacker can simply modify the
source IP of the authorization packet as it passes through his network, and the
server will grant access to an IP of the attacker’s choice, and not the client’s.
This option should be avoided as it is the least secure (especially without times-
tamp checks), and manually setting one’s external IP in fwknop should be done
wherever possible9.

For the sake of completeness it should be mentioned that a MITM attack could
still be performed to obtain a valid authorization packet for a specific date/time
if the client uses the Network Time Protocol (NTP) to update its local clock.
By spoofing the client’s NTP requests, together with spoofing the client’s pub-
lic IP requests (where applicable), the attacker is able to intercept and block a
valid authorization packet which would later authorize access to the server at
the date/time and from the IP of his choice!

Also note the fact that using fwknop to run commands on the server, as
opposed to opening ports on the firewall, is mostly immune to the issues of
NAT and to some extent replay attacks as well. An observer would have no
way of knowing what action was carried out on the server10, thus making client-
spoofing and ‘block and replay’ attacks useless.

Weak Passwords

As mentioned previously, due to the fact that weak passwords can (and of-
ten are) be used to generate the cryptographic key used to encrypt fwknop
packets with Rijndael, the default configuration is quite vulnerable to a sim-
ple dictionary attack. Section 6.2.2 describes this attack and presents a tool
(fwknop da) that I designed for this purpose, which can crack any fwknop au-
thorization packet encrypted, with Rijndael, using a dictionary word in less
than a minute. Although using a 16 character passphrase containing the full

8A hostname is a unique name used to identify devices on a network. Each hostname is as-
signed to an IP address. For example www.apple.com is the hostname for the IP 17.112.152.32.
Some services, such as DynDNS.org provide

9The fwknop help recommends that the --whatismyip option be used instead. Although
this method can still be spoofed by an attacker, as detailed above, it is significantly better
than using --source-IP.

10When an SPA packet is sent to open a specific port, the attacker immediately knows that
access was being requested for that port from the client’s IP.

52 Implementation Analysis

uppercase, lowercase, digits and symbols would probably be sufficient to defeat
a dictionary attack, it would still be significantly less than the full 2256 possi-
bilities of a Rijndael key. I have already recommended that fwknop be enabled
to use random 256-bit Rijndael keys, as this would ensure that any kind of
brute-force attack be unfeasible, although it would make key management a
more complex issue, as most people cannot remember 256-bit values.

It should be mentioned, however, that fwknop does have one major advan-
tage over the PPKP. Thanks to the larger payloads available in UDP packets11,
fwknop supports asymmetric encryption through GPG which creates signifi-
cantly larger ciphertexts. This allows strong encryption to be provided together
with entity authentication and non-repudiation. Due to the public-key nature
of GPG, each user possesses their own public/private key pair, so it is easy
to verify who has sent a particular GPG signed and encrypted message, and
also gain the assurance that only that person could have sent that message (as
only they possess their private/signing keys). This effectively eliminates the is-
sues revolving around multiple-users, and also eliminates the issue of dictionary
attacks on weak passwords.

Anonymity

Fwknop has recently gained the ability to send authorization packets over the
Tor onion network [18, 49]. Although using this feature requires the daemon to
run an actual listening TCP socket for the client to connect to12, this mechanism
loses the design goal of concealment, but gaining the anonymity offered by the
Tor network. The Tor network functions by sending encrypted packets over a
random path through several servers (onion routers). The key element is that
no individual router knows the complete path through the onion network (the
network of onion routers) from the client to the server (see Figure 6.1). This
makes it impossible to track exactly where a packet is coming from, and thus
traffic analysis becomes a much more difficult task. It would also be possible
to make use of Tor’s ‘hidden service’ feature to conceal which server a client
is sending authorization packets to. As it is no longer possible to track the
origin of packets, and all traffic must routed over the Tor network, an attacker
who used to be in a MITM position can no longer carry out any of his attacks
against the client nor the server.

Due to the way Tor pre-establishes TCP connections for the client, this
makes it unsuitable for port knocking schemes which require the ability to send
SYN packets to a non-listening host. It is no longer possible to perform ‘data
transmission across closed ports’, which is the way that port knocking schemes,
such as PKPP, function.

11Remember that port knocking mechanisms can only transmit 2 bytes of data per ‘knock’
packet. See Section 6.1.

12Tor does not allow UDP or ICMP packets to be sent through the Tor network. Only once
the Tor exit node establishes a TCP connection with the server (see Section 2.1.3), does Tor
start routing data from the client over the established TCP connection to the server [18].

6.2 fwknop - FireWall KNock OPerator 53

Server

Client

Entry Router

Exit Router

Tor Router 'Cloud'

Green links are encrypted
Red links are unencrypted

Figure 6.1: Routing Data over the Tor Onion Network

Drawbacks

The main drawback to fwknop seems to be the way that cryptographic keys
are generated (when using passphrases), and multiple users are handled using
symmetric encryption. Although fwknop makes a good attempt at managing
multiple users, the implementation still requires that received authorization
packets be brute forced. Apart from being a less-than-elegant way of managing
multiple users, it is unsure, without further testing and benchmarking, whether
or not this issue would have a large impact on a server used by many users
(for example to protect the VPN ports of a large company’s Virtual Private
Network13).

In order to help reduce the risk of dictionary attacks, without resorting to
the use of GPG, it may be beneficial to allow users to use randomly generated
Rijndael keys, as previously mentioned. Finally, it is important to fix the lack
of timestamp checks in fwknop, to greatly reduce the possibility of ‘block and
replay’ attacks.

13A Virtual Private Network is a private communications network used to protect the con-
fidentiality of data flowing from a remote user to the internal network of an organisation.

54 Implementation Analysis

6.2.2 Dictionary Attack on fwknop

As described in Section 6.2, fwknop is primarily vulnerable to dictionary or
brute force attacks on the default configuration.

A passive or active attacker can intercept the authorization packet f(P,D)
where P is the password used to encrypt (or be hashed with) the authorization
data D. A basic offline dictionary attack can be performed by the attacker by
testing a list of possible passwords P ′, and comparing the value f(P ′, D) with
f(P,D). If the two values match, then the correct password has been discovered.
This is known as the password-authenticated key exchange problem, which has
been pondered over for over a decade [5, 4, 8].

To illustrate such an attack in progress I developed a proof of concept tool
called fwknop da (dictionary attack), which takes in a fwknop ciphertext from
the command line, the network, or from a file full of ciphertexts, and uses a
user-defined dictionary file to attempt to recover the plaintext authorization
packet. If this is successful, the attacker can essentially authenticate himself to
the server and instruct it to open any port or perform any command (depending
on the configuration of the server and what ports/commands are enabled for
the client).

As described above, this script tries each password in the password file in
succession, using Rijndael, and employing the same passphrase-padding used in
fwknop (see Section 6.2). The script tests each decrypted plaintext by search-
ing for an fwknop version number. If this is found then the correct password
has been found, and the plaintext authorization data can be parsed. This tool
could be expanded to recalculate the MD5 of the fields and compare it to the
MD5 contained in the packet.

The original dictionary file used to run this attack was 40Mb in size and con-
tained just under 4 million words (there are just under 1 million words in
the English language). However, due to the fact that fwknop only accepts
passphrases between 8 and 16 characters long, any shorter or longer words were
removed from the dictionary leaving us with a 30Mb file containing 2.8 million
words.

Figure 6.2 shows a sample run of fwknop da running in network mode,
intercepting an encrypted authorization packet, and testing many passwords
before finding and parsing the correct plaintext. This simple tool tests ap-
proximately 2600 words per second on an Apple Powerbook G4 1.67 GHz, and
over 5,000 words per second on an Apple MacBook Core Duo 2.0 GHz (util-
ising only one core). Assuming a constant rate of 5,000 words per second, it
would take approximately 560 seconds, or just under 10 minutes, to try every
possible word in the 30Mb dictionary file! Of course the dictionary file can
be improved by adding commonly-used numbers and symbols in the place of
certain letters, whilst still keeping the time required to try every combination
relatively low. It should also be mentioned that brute-forcing all 9516 (100-bits)
possible passphrases in such a way is not feasible, without a more dedicated and
optimised implementation.

After some further testing, I discovered that fwknop can be modified to

6.2 fwknop - FireWall KNock OPerator 55

$ perl fwknop_da.pl -b -d 1

[+] Starting fwknop_da.
[+] ** Running in debug mode 1 **
[+] ** Running in benchmark mode **
Path to Wordlist: /all2

[+] Listening for knocks on network (port 62201)...

[+] Received message: U2FsdGVkX19cfskOKeZ01VpD2Fo5qNcGeZ2R1h/+o
FQEzwzMPJd0/JYv58Ewixml7pc/BHBAHsGaxaOeRYCiDFhBfaPYRJJijeDGotl0
BnZ2pQjsYnqoTsZ8CMZDJocy7jcEz9SMC12cBky9JKm9vg

[+] Starting Dictionary Attack...
10000 words tried.
20000 words tried.
30000 words tried.
40000 words tried.
50000 words tried.
60000 words tried.
70000 words tried.
80000 words tried.
90000 words tried.

[+] Password found: indoxylsulphuric
[+] 92436 words tried.
[+] Knock Version: 0.9.7
[+] Decoded message: 8121860749824944:admin:1156789640:0.9.7:1:

192.168.1.1,tcp/22:Gk7819P3dRn273h/XDVV7Q
[+] Packet fields:

Random data: 8121860749824944
Username: admin
Remote time: 1156789640
Remote ver: 0.9.7
Action type: 1
Action: 192.168.1.1,tcp/22
MD5 sum: Gk7819P3dRn273h/XDVV7Q

[+] Time elapsed: 35 seconds (2641 words/sec).

Figure 6.2: Sample run of fwknop da

56 Implementation Analysis

fully support arbitrary-length passphrases, which would allow users to use long
passphrases, significantly reducing the threat of dictionary attacks14. Although
this greatly reduces the threat of dictionary attacks, a memorable passphrase
would have to be 39 characters long before it was of similar strength to a 256-bit
key15.

Another way to slightly improve passphrase security could be to combine
the user’s username together with the passphrase that is used to derive the en-
cryption key. Since the username is not used as a public identifier in this case,
it may as well be used to reinforce passphrases. This is essentially like ‘salting’
the password and means that any given password produces a vast amount of
different cryptographic keys. In theory this would square the difficulty of run-
ning a dictionary attack on keys generated in such a way. In practice, however,
one would find that common usernames can probably narrowed down to a short
list, especially if we know some information about the users of the system (such
as their names)16.

14Since passphrases are a combination of multiple words (potentially dictionary words), a
exhaustive search for every possible ‘phrase’ would require a larger amount of time and effort.

15A randomly-generated 256-bit key would still be significantly harder to brute force than
a memorable 39-character passphrase.

16Common usernames would be attempted first, for example: admin, administrator, first-
name.lastname (if we know the users of a system).

Chapter 7

Further Research

7.1 Port Knocking in Malware (Backdoors)

The concealment aspect of port knocking is a feature which may be of interest
to malware writers, especially when a newly-opened port may be indicative that
a host has been compromised and is running a ‘listener’ to allow the attacker to
connect to the machine. Similarly, an open port may allow other attackers to
discover the already-compromised machine and claim it as their own. Worms
spread automatically, sometimes by scanning the local network (or the Internet)
and connecting to vulnerable services running on discovered machines in order
to exploit them (exactly one threat that port knocking aims to protect against),
and it is in the worm owner’s interest to maintain control over his network of
compromised computers.

By implementing a form of port knocking into their worms, the authors
can maintain control over machines that become compromised. This is already
believed to be in use in trojans and worms, although no actual malware has
actually been found to contain a port knocking implementation yet. There do
exist two implementations of port knocking that are particularly well suited for
use in malware. Both of these implementations allow for the server to listen
for a valid knock before opening a backdoor server for an attacker to connect.
SAdoor and its predecessor cd00r [12, 9], both have this functionality with,
and are particularly well suited for use as backdoors as opposed to normal port
knocking mechanisms.

It would be interesting to see whether port knocking becomes more widespread
in malware, as the malware authors continue to try and conceal the presence of
their programs. The simplicity of most port knocking implementations would
easily allow for such mechanisms to be used in malware which is limited in size.

7.2 Port Knocking in Enterprise Environments

Port knocking and SPA remain relatively novel ideas which have not been fully
considered by the security community, and most implementations currently
available are proof-of-concepts, with very few exceptions. Due to this, users
in enterprise environments may be reluctant to adopt these mechanisms to

58 Further Research

help protect some of their vital servers for fear of unwanted side-effects or
excessive server loads. Port knocking and SPA have probably never been tested
to actively protect a system with more than 10 users, and if they have, the
results of such trials would be highly interesting.

However, limiting the use of such authentication mechanisms to the purpose
of administrating servers, for example to allow admins to open port 22, or to
allow them to run commands directly on the server without having to connect
to them, is entirely within the scope of the current implementations.

As Dawn Isabel mentions in her analysis of traditional port knocking schemes
[28], an important aspect which must be addressed before we can see any
widespread adoption of ‘firewall authentication’ mechanisms, is a certain ‘sta-
bility’ in the implementations which will ensure that the port knocking layer
would fail gracefully, ensuring that the outcome of such a failure be acceptable
by its users. Port knocking implementations would also have to be checked
and re-checked for potential vulnerabilities in the daemon itself, although the
programming language used by the implementation would play an important
role in the risk of having such vulnerabilities.

Port knocking systems would also have to have a certain degree of audit-ability
in order to check whether the system was performing its functions correctly
and that nothing out-of-the-ordinary was occurring on the system. As such, it
would be important for the mechanism to keep suitable logs for this purpose,
something which most implementations do not offer at all.

The important concept of password rotation which is mandatory in many
large corporations would also need to be worked into the port knocking schemes
in order to ensure a similar assurance of security and to prevent passwords being
discovered after a long period of time. In her paper Dawn Isabel also presents
the idea of using the company’s pre-existing LDAP directory to provide an in-
terface for changing passwords to port knocking accounts. This would, however,
add another attack vector where “an attacker [...] could simply compromise a
less secure application to obtain a valid single sign-on password” [28].

The use of a single port knocking or SPA host at the boundary of a com-
pany’s network may be a unique way to allow remote users to access several
different services by enabling the port knocking server to open and forwarding
ports from the outside to specific hosts on the inside of the network. Obviously
there are many issues which would need to be resolved before such mechanisms
could be widely used, however, none these issues are not due to any obvious
weaknesses the port knocking or SPA mechanisms, and it is a matter of time be-
cause a unique solution is presented which offers to address many of the points
raised in this thesis.

Chapter 8

Conclusion

During my analysis of port knocking as a network security mechanism it has
been become clearer how it must be viewed. Many of the criticisms about port
knocking come from those who are looking for the be-all end-all of network
authentication mechanisms, no wonder they’re disappointed. When looking at
port knocking schemes it becomes clear that certain issues crop up time and
time again.

What is port knocking? Port knocking is essentially an extension of defence
in depth - another layer in our security onion - and another tool in the security
specialist’s box of tricks which aims to perform a very specific task. That aim,
from a bird’s-eye view is to harvest a large number of ‘low hanging fruit’ in
terms of host-based vulnerabilities whilst offering extra services in the process.

Although the design aim of concealment is not a necessity in port knocking,
it is a significant advantage when it comes to protecting a host running services.
By hiding services in such a way, they can be protected from attacks against
which there may not exist a simple defence. Port knocking schemes also help to
reinforce the notion of least privilege by removing access from those who have no
reason having access in the first place, attackers in all forms. By authenticating
a client before granting access, there is a significant improvement in security
over no-authentication access that exists without port knocking.

The two primary concerns that remain with port knocking schemes are
denial of service and man in the middle attacks. As with any protocol, there are
indeed ways to perform DoS attacks on port knocking, although in certain cases
this may actually be preferable as it results in a more secure machine. Should
port knocking fail, however, the failure itself will not result in compromise of
the underlying host and the attacker will have to attack the underlying service
just as he would have if port knocking had not been used. Replay attacks are
possible to protect against using both port knocking and SPA implementations,
and it is important to remember that even if a replay attack is successfully
carried out, the firewall will only be opened for the original client’s IP, and
not the attacker’s IP, thus eliminating all but the highly skilled and privileged
attackers.

It is clear that implementations currently have an issue with the way crypto-
graphic keys are generated from passphrases, however, with the use of randomly

60 Conclusion

generated full-length keys, or asymmetric cryptography such as GPG, it is pos-
sible to use strong, encrypted, authentication protocols. On critical systems,
or even small systems which receive very little use, it can be argued that port
knocking provides useful protection against a variety of everyday attacks, whilst
giving users the freedom to use the server as they normally would. Ultimately,
implementing port knocking is a trade-off of effort against the benefits gained.
Is would be essential to take into account the computational overhead required
in running such a system on a large scale.

Even the most basic ‘single packet port knock’ mechanism, albeit insecure in
many ways, would be adequate to protect against a large majority of everyday
attacks, such as script kiddies and worms. For example a simple iptables rule,
such as this one [16] by Daniel De Graaf, requires that a secret port be knocked
on before port 22 is opened to the client IP1. Admittedly part of the bonus
of using a ‘firewall authentication’ scheme is partially due to the relatively low
number of hosts that implement such schemes at this point in time. It is im-
portant to remember that staying one-step ahead in the security domain can
make an important difference to the security of one’s systems.

By taking advantage of tried and tested entity authentication protocols,
SPA schemes such as fwknop can be reasonably confident that the design goal
of authentication will be carried out successfully. The increased amount of
data which can be transported in an SPA packet allows for cryptographically-
strong authentication data to be sent to the server, without worrying about
out-of-order delivery, or lengthy knock-times. Similarly, the use of public key
cryptography may help to simplify such mechanisms in multi-user environments,
especially where a PKI system is already in place.

One significant issue that seems to exist in both port knocking and SPA
schemes, however, is the issue of Network Address Translation. Not so much
when it comes to the client discovering it’s public IP, but more so the notion of
who actually has access to the server at the end of a successful authentication.
The lack of association between the authentication and subsequent connections
is as-of-yet an unresolved issue which, in the presence of a privileged attacker,
may result in unauthorised access being granted to him.

Although ‘firewall authentication’ schemes such as port knocking and SPA may
have some outstanding issues, it is my opinion that these schemes do an excellent
job of reducing the number of threats, and thus the risks, to a service-running
host. A large majority of attackers would be thwarted using these mechanisms,
and should the popularity of port knocking and SPA increase significantly in
the future, I strongly believe that bypassing these schemes will prove difficult
regardless. Most importantly port knocking and SPA provide a realistic defence
against 0day attacks, which is not something that can be found in very many,
if any, security mechanisms currently available.

Port knocking and SPA seem particularly well suited to administrative ac-

1Trivially sniffable and replayable, although his implementation does protect, somewhat,
against port scans and brute force attacks.

61

cess, or protecting services which are particularly vulnerable to various kinds
of attacks - all while allowing a maximum amount of flexibility to the system’s
users. All-in-all I feel that port knocking and SPA are worthwhile additions to
defence in depth, which require a minimum amount of effort and resources to
set-up and maintain. Hopefully these schemes will become continue to grow in
popularity, so that their security can be more widely tested (which is a require-
ment for any new security mechanism), and hopefully improvements can be
made that will justify their place as the outermost layer of the security onion.

Out of the implementations I have seen, fwknop seems to provide the most
robust mechanisms and the most comprehensive set of features. Although it
still supports its previous mode of traditional port knocking, which may be
appealing to use in some scenarios, SPA is now the default mechanism. With
support for both symmetric and asymmetric encryption, users can choose to
use the mode that is best suited to their needs. I have recommended several
fixes and improvements to Michael Rash’s implementation, most of which are
mentioned in this thesis, which would reinforce the security of fwknop . The
fact that fwknop runs in Perl allows the client utility to run on a large number
of platforms, although the fwknop daemon can only run on Linux-based hosts
due to the requirement for IPtables.

62 Conclusion

Bibliography

[1] Barham P. et al (2002) ‘Techniques for Lightweight Concealment and
Authentication in IP Networks’. Intel Research Berkeley. July 2002.
Available at: http://www.intel-research.net/Publications/Berkeley/012720031106_111.pdf

[2] Beale, J. (2000) “‘Security through Obscurity” Ain’t What They Think It
Is’ [Online].
Available at: http://www.bastille-linux.org/jay/obscurity-revisited.html

[3] Bejtlich R. (2006) ‘Single Packet Authorization with Fwknop’. TaoSecurity,
August 21, 2006.
Available at: http://taosecurity.blogspot.com/2006/08/
single-packet-authorization-with.html

[4] Bellare M, Pointcheval D, Rogaway P. (2000) ‘Authenticated Key Ex-
change Secure Against Dictionary Attacks’. Lecture Notes in Computer
Science.
Available at: http://www.iacr.org/archive/eurocrypt2000/1807/18070140-new.pdf

[5] Bellovin S, Merritt M. (1992) ‘Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks’. Proc. of the Symposium on
Security and Privacy, pages 7284. IEEE, 1992.
Available at: http://www.ussrback.com/docs/papers/cryptography/neke.ps

[6] Bishop M. (2005) Introduction to Computer Security. Addison Wesley,
Pearson Education.

[7] Borss C. (2001) ‘DROP/DENY vs. REJECT’. Listserv post to Braun-
schweiger Linux User Group (lug-bs@lk.etc.tu-bs.de).
Available at: http://www.lk.etc.tu-bs.de/lists/archiv/lug-bs/2001/msg05734.html

[8] Boyko V, MacKenzie P, Patel S. (2000) ‘Provably Secure Password-
Authenticated Key Exchange Using Diffie-Hellman’. Lecture Notes in
Computer Science.
Available at: http://www.iacr.org/archive/eurocrypt2000/1807/18070157-new.pdf

[9] FX. (2000) ‘cd00r: not listening remote UN*X shell’. [Online].
Available at: http://www.phenoelit.de/stuff/cd00rdescr.html

[10] Computer Emergency Response Team Coordination Center (CERT-CC)
(2002). ‘Overview of Attack Trends’. Carnegie Mellon University.
Available at: http://www.cert.org/archive/pdf/attack_trends.pdf

64 BIBLIOGRAPHY

[11] Computer Emergency Response Team Research (CERT) (2005). ‘CERT
Research 2005 Annual Report’. Carnegie Mellon University.
Available at: http://www.cert.org/archive/pdf/cert_rsch_annual_rpt_2005.pdf

[12] CMN. (2003) ‘SAdoor: A non-listening remote shell and execution server’.
[Online].
Available at: http://cmn.listprojects.darklab.org/

[13] Cormen T, Leiserson C, Rivest R, and Stein C. (2003) Introduction to
Algorithms. McGraw Hill, MIT, 2003.

[14] deGraaf R, Aycock C, and Jacobson M. (2005) ‘Improved Port Knocking
with Strong Authentication’. ACSAC 2005, pp. 409-418.
Available at: http://www.acsa-admin.org/2005/papers/156.pdf

[15] deGraaf R, Aycock C, and Jacobson M. (2005) ‘Improved Port Knocking
with Strong Authentication’. [Presentation]. Department of Computer Sci-
ence, University of Calgary.
Available at: http://pages.cpsc.ucalgary.ca/~degraaf/papers/
portknocking-presentation.pdf

[16] De Graaf, D. (2006) ‘complex’. [Online].
Available at: http://daniel.6dns.org/info/iptables/complex

[17] DiGioia P. (2004) ‘Behind Closed Doors: An Evaluation of Port Knocking
Authentication’. Donald Bren School of Information and Computer
Sciences, University of California, Irvine.
Available at: http://www.ics.uci.edu/~pdigioia/publications/essays/Port%20Knocking.pdf

[18] Dingledine R, Mathewson N, Syverson P. (2004) ‘Tor: The Second-
Generation Onion Router’. [Online]. The Freehaven Project. May 2004.
Available at: http://tor.freehaven.net/cvs/doc/design-paper/tor-design.html

[19] Doyle M. (2004) ‘Implementing a Port Knocking System in C’. Department
of Physics, University of Arkansas.
Available at: http://portknocking.sourceforge.net/files/
Implementing%20a%20Port%20Knocking%20System%20in%20C.pdf

[20] ElGamal T. (1985) ‘A Public-Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithm’. IEEE Transactions on Information Theory,
v. IT-31, n. 4, 1985, pp469472 or CRYPTO 84, pp1018, Springer-Verlag.
Available at: http://crypto.csail.mit.edu/classes/6.857/papers/elgamal.pdf

[21] Ferreira A. (2006) ‘Coarse Port Knocking’. [Online]. Accessed: January
2006.
Available at: http://coarseknocking.sourceforge.net/

[22] Fyodor (1998) ‘Remote OS detection via TCP/IP Stack FingerPrinting’
[Online]. Insecure.org
Available at: http://insecure.org/nmap/nmap-fingerprinting-article.txt

BIBLIOGRAPHY 65

[23] Google Groups (2006) ‘block ssh guessers’. April 16 2006.
Available at: http://groups.google.com/group/comp.os.linux.security/browse_thread/
thread/30c8a88ddeed53dc/b75ee069451189fe?#b75ee069451189fe

[24] Graham-Cumming J. (2004) ‘Practical Secure Port Knocking’. Dr. Dobb’s
Journal, November 2004, Issue 366, pp. 51-53.
Available at: http://www.ddj.com/184405890

[25] Hou JC. (2004) ‘Port Knocking’. [Presentation]. Department of Computer
Science, University of Illinois at Urbana Champaign.
Available at: http://lion.cs.uiuc.edu/courses/cs397hou/lectures/PortKnocking.ppt

[26] Internet Assigned Numbers Authority (2006) ‘Port Numbers’ [Online].
Available from: http://www.iana.org/assignments/port-numbers

[27] Internet Assigned Numbers Authority (2006) ‘ICMP Type Numbers’ [On-
line].
Available from: http://www.iana.org/assignments/icmp-parameters

[28] Isabel D. (2005) ‘Port Knocking: Beyond the Basics’. GIAC Security
Essentials Certification (GSEC). SANS Institute, March 9, 2005.
Available at: http://www.sans.org/reading_room/whitepapers/sysadmin/1634.php

[29] Kung L, Hou JC. (2004) ‘CS397 Network Systems Lab Project 5: Port
Knocking’. Department of Computer Science, University of Illinois at
Urbana Champaign.
Available at: http://lion.cs.uiuc.edu/courses/cs397hou/project5.pdf

[30] Krivis S. (2004) ‘Port Knocking: Helpful or Harmful? An Exploration of
Modern Network Threats’. SANS Institute, May 2004.
Available at: http://www.giac.org/practical/GSEC/Stuart_Krivis_GSEC.pdf

[31] Klima V. (2006) ‘Tunnels in Hash Functions: MD5 Collisions Within a
Minute’. Cryptology ePrint Archive, Report 2006/105.
Available at: http://eprint.iacr.org/2006/105

[32] Krzywinski M. (2003) ‘Port Knocking: Network Authentication Across
Closed Ports’. SysAdmin Magazine, pp 12:12-17.

[33] Krzywinski M. (2003) ‘Port Knocking’. Linux Journal, June 2003.
Available at: http://www.linuxjournal.com/article/6811

[34] Krzywinski M. (2004) ‘A Critique of Port Knocking - Author’s Response’
[Online].
Available at: http://www.portknocking.org/view/about/critique/

[35] Lenstra A.K, Verheul E.R (2001) ‘Selecting Cryptographic Key Sizes’.
Crypt, vol 14, no 4, 2001.
Available at: http://www.win.tue.nl/~klenstra/key.pdf#search=%22Selecting
%20Cryptographic%20Key%20Sizes%22

66 BIBLIOGRAPHY

[36] Maddock B. (2004) ‘Port Knocking: An Overview of Concepts, Issues and
Implementations’. SANS Institute, September 2004.
Available at: http://www.giac.org/practical/GSEC/Ben_Maddock_GSEC.pdf

[37] MadHat Unspecific and Simple Nomad (2005) ‘SPA: Single Packet
Authorization’. [Presentation]. BlackHat Briefings 2005.
Available at: http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-madhat.pdf

[38] Martin K. (2004) ‘Click on this, you muthas’. The Register, February 2004.
Available at: http://www.theregister.co.uk/2004/02/23/click_on_this_you_muthas/

[39] Menezes A. J., Oorschot P. C. V., und Vanstone S. A. (1997) Handbook of
Applied Cryptography. CRC Press, Boca Raton, FL. 1997.

[40] Narayanan A. (2004) ‘A Critique of Port Knocking’. Newsforge, August
2004.
Available at: http://software.newsforge.com/software/04/08/02/1954253.shtml

[41] National Institute of Standards and Technology (1995) FIPS PUB 180-1.
‘Secure Hash Standard’. National Institute of Standards and Technology,
100 Bureau Dr. Stop 8900, Gaithersburg, MD 20899-8900.
Available at: http://www.itl.nist.gov/fipspubs/fip180-1.htm

[42] National Institute of Standards and Technology (2002) FIPS PUB 180-2.
‘Secure Hash Standard’. National Institute of Standards and Technology,
100 Bureau Dr. Stop 8900, Gaithersburg, MD 20899-8900.
Available at: http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[43] National Institute of Standards and Technology (1999) FIPS PUB
46-3. ‘Data Encryption Standard (DES)’. National Institute of Standards
and Technology, 100 Bureau Dr. Stop 8900, Gaithersburg, MD 20899-8900.
Available at: http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[44] National Institute of Standards and Technology (2001) FIPS PUB 197.
‘Advanced Encryption Standard (AES)’. National Institute of Standards
and Technology, 100 Bureau Dr. Stop 8900, Gaithersburg, MD 20899-8900.
Available at: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[45] Rash M. (2004) ‘Combining Port Knocking With OS Fingerprinting’.
;login: The USENIX Magazine. December 2004, Volume 29, Number 6,
pp 19-25.
Available at: http://www.usenix.org/publications/login/2004-12/pdfs/fwknop.pdf

[46] Rash M. (2006) ‘Advances in Single Packet Authorization’. [Presentation].
SchmooCon, January 2006.
Available at: http://www.cipherdyne.com/fwknop/docs/talks/
shmoocon2006_fwknop_slides.pdf

[47] Rash M. (2006) ‘Single Packet Authorization with Fwknop’. ;login: The
USENIX Magazine. February 2006, Volume 31, Number 1, pp 63-69.
Available online (subscription): http://www.usenix.org/publications/login/2006-02/
pdfs/rash.pdf

BIBLIOGRAPHY 67

[48] Rash M. (2006) ‘Maximum Netfilter’. [Presentation]. OSCON, July 2006.
Available at: http://www.cipherdyne.com/fwknop/docs/talks/oscon2006_slides.pdf

[49] Rash M. (2006) ‘Service Cloaking and Anonymous Access; Combining
Tor with Single Packet Authorization (SPA)’. [Presentation]. DEF CON,
August 2006.
Available at: http://www.cipherdyne.com/fwknop/docs/talks/dc14_fwknop_slides.pdf

[50] Rash M. (mbr.at.cipherdyne.org). 30 August 2006. ‘Re: Interview’. [Per-
sonal Correspondence].

[51] Rivest R (1990) ‘Cryptography’. From the Handbook of Theoretical Com-
puter Science, edited by J. van Leeuwen, Elsevier Science Publishers B.V.,
1990.

[52] Rivest R, Shamir A, Adleman L. (1978) ‘A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems’. Communications of the ACM,
v. 21, n. 2, Feb 1978, pp. 120-126.
Available at: http://theory.lcs.mit.edu/~rivest/rsapaper.pdf

[53] Rivest R. (1993) ‘The MD5 Message-Digest Algorithm’. Networking Work-
ing Group, Request for Comments: 1321.
Available at: http://theory.lcs.mit.edu/~rivest/Rivest-MD5.txt

[54] Schneier B. (1996) Applied Cryptography: Protocols, Algorithms, and
Source Code in C (Second Edition). John Wiley & Sons.

[55] Shimonski R.J. et al. (2003) Best Damn Firewall Book Period. Syngress
Publishing.

[56] Slashdot (2004) “‘Port Knocking” for Added Security’. Accessed: 01/2006
Available at: http://slashdot.org/it/04/02/05/1834228.shtml?tid=126&tid=172

[57] Slashdot (2004) ‘Port Knocking in Action’. Accessed: 01/2006
Available at: http://it.slashdot.org/article.pl?sid=04/04/14/1832222

[58] Slashdot (2004) Author: Michael Rash. ‘Combining Port Knocking With
OS Fingerprinting’. Accessed: 01/2006
Available at: http://it.slashdot.org/it/04/08/01/0436204.shtml

[59] Slashdot (2005) Author: Michael Rash. ‘Going Beyond Port Knocking;
Single Packet Access’. Accessed: 01/2006
Available at: http://it.slashdot.org/article.pl?sid=05/05/30/1128209&tid=172&tid=106

[60] Stallings W. (2003) Network Security Essentials: Applications and Stan-
dards. Prentice Hall.

[61] Tan CK. and Capella. (2004) ‘Remote Server Management using Dynamic
Port Knocking and Forwarding’. Special Interest Group in Security and
Information Integrity (SIG2̂).
Available at: http://www.security.org.sg/code/sig2portknock.pdf

68 BIBLIOGRAPHY

[62] TBONIUS. ‘Introduction to Port Knocking’. Section 6.
Available at: http://www.section6.net/wiki/index.php/Introduction_to_Port_Knocking

[63] Wang W. et al (2005) ‘Finding Collisions in the Full SHA-1’. Shandong
University, Jinan 250100, China.
Available at: http://www.infosec.sdu.edu.cn/paper/sha1-crypto-auth-new-2-yao.pdf

