
©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 1� of 17� 

 

Packet Sniffing In a Switched Environment 
 

Tom King 
GSEC Practical v1.4, Option 1  

August 4th 2002, updated June/July 2006. 
 

Preface 
In this paper you'll learn about packet sniffing and how to better protect your 
networks from potential threats.  If you'd like more training on network security, we 
recommend taking the SANS SEC502 Firewalls, Perimeter Protection and VPNs 
course, available both online and via live classroom training. 

Abstract 
This paper focuses on the threat of packet sniffing in a switched environment, and 
briefly explores the effect in a non-switched environment.  Detail is given on a 
number of techniques, such as “ARP (Address Resolution Protocol) spoofing”, which 
can allow an attacker to eavesdrop on network traffic in a switched environment.  
 
Third party tools exist that permit sniffing on a switched network. The result of 
running some of these tools on an isolated, switched network is presented, and 
clearly demonstrates that the threat they pose is real and significant. 
 
The final section covers ways to mitigate the threat of network sniffing in both non-
switched and switched environments.  The thesis of this paper is that encryption is 
the only true defence to the threat of sniffing. 

A note about permission 

A number of techniques and tools to enable network sniffing are detailed in this 
paper. Tests have been run on an isolated network, constructed especially for this 
piece of work. 
 
If you want to use any of the tools or techniques listed in this paper on a network at 
your college or place of work, you should seek permission in writing from 
appropriate management.  It would also be prudent to talk to the network team at 
your site.  It is possible to severely disrupt a network through the inappropriate use 
of some of the tools described here. 
 

Introduction 
For most organizations, packet sniffing is largely an internal threat.  A third party on 
the Internet, for instance, could not easily use packet sniffing software to eavesdrop 
on traffic on a corporate LAN.  But since the greatest threat to corporate systems 
frequently is internal1, we should not take comfort from this. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 2� of 17� 

 
There are many reasons that businesses are updating their network infrastructure, 
replacing aging hubs with new switches.   A frequently stated driver for moving to a 
switched environment is that “it increases security”.  However, the thinking behind 
this is somewhat flawed.  Packet sniffing in a switched environment is possible -- 
anyone equipped with a laptop (and armed with a selection of freely available 
software) may be able to monitor communication between machines on a switched 
network. 
 
Packet sniffing tools have been available from the early days of networked 
computing environments. The tools are powerful software, which facilitate trouble-
shooting for network administrators.  However, in the hands of a malicious third 
party, they are a devastating hacking tool, which can be used to glean passwords 
and other sensitive information from a LAN. 
 
Traditionally, packet sniffers have been regarded as fairly obscure tools that require 
a certain technical competence to operate -– dangerous utilities, perhaps, but not 
easy to guide or operate.  All this has changed in the last few years, with specialized, 
easy to use password-detecting sniffers becoming widely obtainable.  Many of these 
“new generation”, specially tailored tools are freely available on the Internet.  With 
built-in logic allowing many network protocols to be decoded, they have the 
capability to filter the sniffed traffic on the fly, and highlight sensitive information 
such as usernames and passwords. 
 
Packet sniffing in a non-switched environment is a well understood technology.  A 
large number of commercial and non-commercial tools enable eavesdropping of 
network traffic.  The idea is that to eavesdrop on network traffic, a computer’s 
network card is put into a special “promiscuous” mode.  Once in this mode, all 
network traffic (irrespective of its destination) that reaches the network card can be 
accessed by an application (such as a packet sniffing program).   A detailed 
explanation of how packet sniffing works may be found in Robert Graham’s excellent 
FAQ on sniffing2. 
 
In a switched environment, it is more of a challenge to eavesdrop on network traffic. 
This is because usually switches will only send network traffic to the machine that it 
is destined for3.  However, there are a number of techniques that enable this 
functionality to be usurped.  Tools exist that combine the ability of sniffing on a 
switched network with the capability of filtering the traffic to highlight sensitive 
information.  
 
Packet Sniffing in a non-switched environment 
In a non-switched environment, the latest generation of packet sniffing tools is 
highly effective at reaping passwords and other sensitive information from the 
network. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 3� of 17� 

A large number of commonly used protocols either transmit data in plaintext (which 
can easily be sniffed), or they do not use strong enough encryption to prevent a 
sniffing and cracking attack.  Examples of plaintext protocols include smtp, pop3, 
snmp, ftp, telnet and http.  Perhaps the best known encrypted protocol that is 
vulnerable to sniffing and cracking attacks is Microsoft’s LM (LAN Manager) protocol, 
used for authenticating Windows clients.  
 
Microsoft has tried to address the glaring weaknesses in LM, with the introduction of 
NTLM (V1 and V2).  NTLM is an improvement, but is still susceptible to a sniffing and 
cracking attack.  Hidenobu Seki, the author of ScoopLM and BeatLM tools (qv) gave a 
fascinating presentation4 covering the detail of LM, NTLM v1 and v2 and how it can 
be cracked at BlackHat’s “Windows Security 2002 Briefings and Training”. 
 
Since the first draft of this paper, Kerberos has become widely used as the 
authentication protocol of choice in modern Windows environments (Windows XP 
clients, Windows 2003 servers).  The move from LANMAN/ NTLM to Kerberos was 
widely thought to cure the problem of sniffing (then cracking) Microsoft passwords5.  
This is not the case, however.  Tools such as KerbCrack6 enable cracking of Kerberos 
logins.  
 
Tools to sniff in a non-switched environment 
A quick search on the Internet will reveal a large number of freely available sniffing 
tools.  In this section, I focus on two tools, dsniff and ScoopLM, which excel at 
sniffing sensitive information. 
 
dsniff 

For plaintext protocols, to eavesdrop on username, password and other sensitive 
information, a very useful tool is dsniff from Dug Song7.  The dsniff tool is 
available for various flavours of Unix, and there is a port (of an older version of the 
software) for Windows8.  
 
In addition to sniffing the plaintext protocols mentioned above (and others), dsniff is 
exceptionally good at filtering the sniffed traffic to display only “interesting” 
information such as usernames and passwords.  In their esteemed Hacking Exposed 
book9, McClure, Scambray and Kurtz describe dsniff as offering “passwords on a 
silver platter”.  It makes eavesdropping on sensitive information a trivial exercise. 
 
A sample run of dsniff is depicted in Figure 1, showing the Windows port of dsniff 
harvesting passwords on a small network. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 4� of 17� 

 
Figure 1 - dsniff sniffing plaintext protocols in a non-switched environment 

 
ScoopLM 

L0phtcrack is a well-known password sniffing and cracking tool, which is capable of 
eavesdropping Windows NT/ 2000 usernames and encrypted passwords from a 
network. It is a commercial tool, available from @Stake10.  However, there are other 
freely available tools that can perform a similar job, and are very simple to use. 
 
A great example is the ScoopLM tool11, which is freeware and downloadable from the 
Internet.  ScoopLM will sniff NT/ 2000 usernames and LM/ NTLM encrypted 
passwords.  Its brother, BeatLM12, enables cracking of encrypted passwords that 
ScoopLM has harvested by brute-force or dictionary attacks.  Together, they are a 
significant threat to the security of Microsoft networking in a non-switched 
environment.  
 
Figure 2 shows a sample run of ScoopLM, sniffing NT usernames and encrypted 
passwords.  The sniffed usernames and passwords can then be saved to a temporary 
file, and loaded into BeatLM to be cracked. 
 

 
Figure 2 - ScoopLM in action, sniffing NT usernames and encrypted passwords 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 5� of 17� 

 
The above examples demonstrate how simple it is to discover sensitive information 
by eavesdropping on a non-switched network. This fact has helped drive businesses 
to replace hubs in their network by switches. There are many other good reasons for 
doing this -- increasing network performance, for example.  Replacing hubs by 
switches in the belief that it will cure the problem of sniffing is misguided.  The 
following section will demonstrate why. 

Packet Sniffing in a switched environment 
Switches 
On the surface, it would seem that replacing hubs by switches will mitigate the 
packet sniffing threat to a large extent.  The fact that switches will only send 
network traffic to the machine that it is destined for implies that if machine A is 
communicating with machine B, machine C will not be able to eavesdrop on their 
conversation.  In Figure 3, let us assume that machine A instigates a telnet 
connection to machine B. 
 

 
Figure 3 - Three machines connected via a switch. Traffic flowing from A to B is 
illustrated by the arrowed lines. 

 
In the situation depicted above, Machine C cannot easily see the network traffic for 
the telnet session passing between machines A and B. The switch ensures that this 
traffic does not travel over any unnecessary ports – it only flows over the ports that 
machines A and B are connected to. 
 
However, a number of techniques exist that will subvert the above, enabling C to 
snoop on the network traffic between A and B. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 6� of 17� 

How to sniff in a switched environment 
It’s all about the “man-in-the-middle”13.   Sniffing traffic in a switched environment 
is achieved by setting up a “man–in-the-middle” attack.  The attacker uses a variety 
of techniques to force network traffic to/ from the victim to go to the attacker’s 
machine.  When this occurs, the attacker can inspect (or even modify) the victim’s 
network traffic. 
 
There are a large number of techniques that permit sniffing in a switched 
environment.  Common techniques include ARP spoofing, MAC flooding, MAC 
duplicating, ICMP redirection, DHCP spoofing and port stealing. 
 
The tools covered in this paper all use the ARP spoofing technique, so this is covered 
in detail.  An excellent description of ARP spoofing, MAC flooding and other 
techniques can be found in Sean Whalen’s paper on the Packet Storm website14. 
Another useful resource describing popular approaches to switched network sniffing 
is the main page for the sniffing tool, ettercap15. 
 
ARP spoofing is a reasonably straightforward technique, a classic man-in-the-
middle16 attack.  This is best explained by an example.  Taking the above example of 
machines A, B, and C, assume C wanted to eavesdrop on network traffic between A 
and B.  For a man–in-the-middle attack, C pretends to A that it is in fact B.  Then, 
when A sends traffic destined for B, it is intercepted by C.  C passes this information 
on to B, pretending that it came from A.  Similarly, C also performs a comparable 
role for traffic from B, which is destined for A.  The goal of the man–in-the-middle 
attack is depicted in Figure 4. 
 

 
Figure 4 – The man in the middle attack. C intercepts network traffic from A which is 
destined for B. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 7� of 17� 

 
In more detail, using ARP spoofing to complete the man-in-the-middle-attack, two 
steps, detailed below, need to be performed. 
 
First, however, we need to understand how A and B will normally communicate.  
 
For this to happen, A requires B’s MAC address.  To get this, A will check in its ARP 
cache to see if it already has B’s MAC address.  

 
If this is the case, it will use the MAC address pulled from the ARP cache.  
 
If this is not the case, A will broadcast an ARP request.  B will respond with its 
MAC (and IP) address.  B’s IP address and corresponding MAC address will be 
stored in A’s ARP cache, for future use. 
 

A can now send packets of data to B.  For B to communicate with A, a similar process 
will take place. 

 
Let us now assume that A and B have established each other’s MAC addresses, and 
are communicating through a switch. How can C eavesdrop on the conversation? 
This is where ARP spoofing comes into play. 
 

1. The first step is for C to pretend to A that it is in fact B.  If this can be 
achieved, network traffic destined for B will be routed to C.  Likewise, C must 
pretend to B that it is in fact A.  How can this be achieved?  The answer is that 
C “poisons” the ARP cache on A and B.  This is straightforward, because: 

 
“ARP is a stateless protocol that does not require authentication, so a simple 
ARP replay packet sent to each host will force an update in their ARP cache”17 

 
So, C sends a spoofed ARP packet to A, instructing A to send packets 
destined for B to C.  The spoofed ARP packet C sends forces A to update its 
own ARP cache.  In A’s updated ARP cache, B’s IP address maps to C’s MAC 
address.  This means future communication from A which is destined for B 
will go via C.  
 
The following tables show what happens to A’s ARP cache. 
 

Machine A’s ARP Cache – before C sends spoofed ARP packet 
 

IP Addresses MAC Addresses 
[B’s IP Address] [B’s MAC Address] 
[C’s IP Address] [C’s MAC Address] 

… … 
 

 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 8� of 17� 

Machine A’s ARP Cache – after C sends spoofed ARP packet 
 

IP Addresses MAC Addresses 
[B’s IP Address] [C’s MAC Address] 
[C’s IP Address] [C’s MAC Address] 

… ... 
 
C also does something similar to B.  It sends a spoofed ARP packet to B, 
instructing B to update its ARP cache so that A’s IP address maps to C’s MAC 
address. 
 
Once this has been done, packets that A attempts to send to B are routed to 
C.  Packets that B attempts to send to A are routed to C as well.  
 

2. There is one more important step.  Machine C also has to ensure that traffic it 
receives is sent on to its true destination.  So, for example, when A sends 
traffic destined for B, it is intercepted by C, but sent on from C to B.  This can 
easily be achieved by IP forwarding, a facility supported by many operating 
systems.  Alternatively, an application can take responsibility for forwarding 
the traffic to its true destination. 

 
Once the above steps have been performed, C will be intercepting network traffic 
between A and B. 
 
“Re-poisoning” the ARP Cache 
It is worth noting that once a spoofed ARP packet has been sent to a target machine, 
the attacker will need to re-send this information on a regular basis, to “re-poison” 
the ARP cache. This is because operating systems automatically refresh ARP caches 
on a frequent basis (every 30 seconds is a typical refresh rate). 
 
Susceptibility of Operating Systems to ARP poisoning 
As of 2006, most modern operating systems (including Windows XP SP2) are still 
susceptible to this attack.  Although Solaris was viewed as being resistant by some18, 
this is not the case -– ettercap has techniques that allow the ARP cache on a Solaris 
machine to be subverted19.  
 
“Port security” and ARP spoofing 
Many switches now offer a configurable “port security” option, to help network 
administrators lock down which machines can connect to switches. Put simply, “port 
security” allows us to lock down a port on a switch to a given MAC address. This 
helps prevent un-trusted machines connecting to the switch. 
 
However, there is significant administration overhead to widely deploy and support 
“port security” on anything more than a very small network. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 9� of 17� 

Further, “port security” does not prevent ARP spoofing20.  With ARP spoofing, we are 
just poisoning the ARP cache on target machines (in the above example, machines A 
and B); this is not something that “port security” on a switch prevents. 
 
Session hijacking – made possible by ARP spoofing 
An interesting side-effect is made possible through eavesdropping by ARP spoofing/ 
IP forwarding.  Because we are performing a man–in-the-middle attack, we can alter 
(add, modify or delete) packets we intercept, or even create brand new packets. 
 
This enables us to hijack certain types of sessions, telnet, for example.  In addition 
to sniffing the telnet traffic, we can forge commands made by the client, or replies 
made by the server.  This enables all sorts of nefarious activities – how about forging 
a “mail hacker@hack.com </etc/passwd” command, from the client, for 
instance? 
 
Session hijacking is not just a theoretical possibility. Tools such as ettercap21  
and hunt22 make it simple to achieve. 
 
Since the original draft of this paper, a number of tools (including ettercap and 
Cain) have built on the session hijacking idea to offer an attack against SSL data 
streams. This can be used to intercept highly sensitive data in transit to https sites. 
 
Wireless networks 
Since the first draft of this paper, wireless networks have gone mainstream, and are 
now found in many businesses and home setups. 
 
Many wireless networks -- especially public hotspots -- have no security at all.  On 
such networks, packet sniffing via man-in-the-middle techniques can be very 
powerful.  Any sensitive information (such as usernames and passwords) that is not 
using secure protocols can be discovered trivially.  Further, attacks against secure 
protocols such as SSL undermine commonly held dogmas that browsing to https 
sites (even on untrusted networks) is safe. 
 
Tools to sniff in a switched environment 
The number of tools that enable sniffing in a switched environment is on the 
increase.  In this section, I focus on two tools in particular, ettercap and Cain. 
Both tools excel at sniffing sensitive information on a switched network. 
 
Setup of isolated network 
An isolated network was set up to investigate sniffing in a switched environment. 
Three machines (A, B and C) were set up, following the example detailed above.  As 
above, A and B are the victim machines and C is the attacking machine, which runs 
the sniffing software. The following table summarizes the setup of the machines on 
the isolated network. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 10� of 17� 

Machine Name IP Address MAC Address 
A 192.168.0.1 00-02-e3-0a-ee-e4 
B 192.168.0.2 00-50-22-88-f1-48 
C 192.168.0.3 00-00-39-ca-13-81 
 
All machines were setup to run Windows 2000 Professional SP2. The switch used in 
the isolated network was a simple 5 port 10/100Mb switch, manufactured by Unex 
Innovation Corp. 
 
ettercap 
First, we cover ettercap, a tool that describes itself as “a powerful and flexible 
tool for man-in-the-middle attacks”.  It runs on many of the leading platforms 
including Windows, Linux, xBSD and Mac OS X.  
 
ettercap was downloaded from 

http://ettercap.sourceforge.net/download.php then installed on machine C.  
Before running ettercap, the ARP cache on machines A and B were checked, via 
the arp /a command.  As expected, the ARP cache on A was storing the true IP 
and MAC addresses of B and C: 
 

 
Figure 5 - the ARP cache on machine A prior to running ettercap 

 
Similarly, the ARP cache on B was storing the true IP and MAC addresses of A and C. 
 

 
Figure 6 - the ARP cache on machine B prior to running ettercap 

 
Next, ettercap was run on machine C, and set to sniff traffic between A and B.  At 
this stage, ettercap performs ARP spoofing to set up the man-in-the-middle 
attack.  Re-examining the ARP caches on A and B is illuminating: note how machine 
C’s MAC address replaces the true MAC addresses for machines A and B: 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 11� of 17� 

 
Figure 7 - the ARP cache on machine A now ettercap is running 

 
Figure 8 - the ARP cache on machine B now ettercap is running 

 
Now traffic between A and B was being intercepted by C.  Similar to dsniff, 
ettercap has in-built knowledge of a large number of network protocols.  It can 
highlight interesting areas of sniffed traffic, such as usernames and passwords.  The 
following diagram depicts ettercap eavesdropping the start of a telnet session 
between A and B:  
 

 
Figure 9 - ettercap sniffing a telnet session between A and B 

 
During a sniffing session, ettercap may detect a large number of usernames and 
passwords. The data may be saved to a simple ASCII file for examination at a later 
date. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 12� of 17� 

Cain 
Another tool that is capable of sniffing in a switched environment is Cain23. 
Available for Windows only, this tool can do far more than just sniff traffic on a 
switched network. 
 
In a similar vein to dsniff and ettercap, Cain has built-in knowledge of 
various network protocols, and can highlight interesting areas of sniffed traffic.  
 
Cain also has built in cracking technology to enable brute-force and dictionary 
attacks against encrypted passwords that it sniffs from the network.  In a similar 
manner to BeatLM, Cain can attempt attacks against Microsoft’s authentication 
protocols (including LM, NTLMv1, NTLMv2).  However, it goes further than BeatLM 
by offering the facility of cracking Cisco MD5 hashes, encrypted APOP passwords and 
others. 
 
Highlights of other facilities built in to Cain include various networking utilities 
(including traceroute and tools to analyze routing protocols), and the capability of 
enumerating NT users and shares from remote machines.  
 
The breadth of functionality covered by Cain is impressive. It is amazing that a 
single tool can cover most of the key roles offered by better known sniffing/ 
enumeration/ password cracking tools such as L0phtcrack, Revelation24, 
userdump25, pwltool26, john the ripper27 and ettercap.  
 
Cain was downloaded from http://www.oxid.it, and installed onto machine C. 
The ARP caches on machines A and B were checked, and found to contain the 
expected data (as in Figures 5 and 6).  Next, Cain was configured to use ARP 
spoofing - referred to as APR (ARP poisoned routing) within the application - to 
intercept network traffic between machines A and B.  This is depicted in Figure 10: 
 

 
Figure 10 - Cain uses ARP spoofing to intercept data between machines A and B 

 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 13� of 17� 

Once this had been done, Cain used its built-in knowledge of network protocols to 
enable key data to be displayed. As with the test with ettercap, a telnet session 
between machines A and B was initiated. For many protocols, Cain simply captures 
the username and password. For telnet sessions, the entire session (including the 
username and password) is captured and logged to a text file, as shown in Figure 11: 
 

 
Figure 11 - Cain recording a telnet session between two machines 

 
The above tests demonstrate that tools such as ettercap and Cain present a 
very real threat to many network environments.  What can be done to protect against 
this threat? 
 

Recommendations for mitigating the threat from packet sniffing 

Detecting packet sniffers 
One way to mitigate against the threat of packet sniffing tools is to try to detect if 
they are used on the network.  
 
a) Detecting in a non-switched environment 
Detecting tools designed to run in a non-switched environment is difficult.  This is 
because the tools are usually “passive”.  They work by putting the network interface 
card into promiscuous mode, allowing any network traffic that reaches the card to be 
examined.   Akin to a radio receiver, sniffers do not necessarily cause extra, 
suspicious traffic to be transmitted on the network, so how can they be discovered? 
 
A number of techniques can be used to try to detect machines whose network cards 
are running in promiscuous mode, and likely to be sniffing traffic.  Many of the 
techniques used rely on detecting specific weaknesses in TCP/IP stacks.  L0pht’s 
antisniff28 employs knowledge of the idiosyncrasies of TCP/IP stacks in NT and Unix 
to detect machines running in promiscuous mode.  
 
b) Detecting in a switched environment 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 14� of 17� 

As indicated previously, sniffing in a switched environment implies a man-in-the-
middle attack.  Eavesdropping in this case will be “active” in that network traffic will 
be delivered to the attacking machine, then forwarded onto the true recipient. 
Detecting this is somewhat easier than detecting the “passive” tools.  
 
It is possible to detect techniques such as ARP spoofing – software such as LBNL’s 
arpwatch29 can detect suspicious ARP network traffic, and inform a network 
administrator.  
 
Newer tools, such as Security Friday’s promiscan30 use multiple techniques to 
detect sniffers.  
 
Ultimately, however, software cannot be relied upon to reliably detect all instances of 
network sniffing with one hundred percent accuracy. 
 
Locking down the network environment 
Imagine it were possible to prevent network sniffing software being installed on any 
machine on the network.  Is this possible? 
 
Solutions such as Microsoft’s Software Restriction Policies and AppSense31 can help 
to ensure that only approved software is run -– packet sniffing tools and other 
hacking tools could be prevented from executing.   However AppSense is not 
relevant in all environments since it only supports Microsoft Windows.  Furthermore, 
AppSense cannot prevent unauthorized machines (for instance a rogue laptop 
running eavesdropping software) from connecting to the network. 
 
Another approach to securing the network environment against sniffing is to make 
extensive use of “virtual LANs” (vlans) to segment a network into logical segments. 
Sniffing across vlans is not easily achieved.  
 
Encryption  
The most viable solution to protect against packet sniffing is encryption. 
 
In the FAQ32 for dsniff, Dug Song advises as follows: “Don't allow proprietary, 
insecure application protocols or legacy cleartext protocols on your network”.  This 
is valuable advice.  Substituting insecure protocols (such as telnet) with their secure, 
encrypted counterparts (such as ssh) presents a significant barrier to eavesdropping. 
Replacing all insecure protocols, however, is unlikely to be feasible in many 
environments. 
 
Instead of halting the use of cleartext protocols, one possibility is to encrypt all 
network traffic by using IPSec33.   By encrypting using IPSec, it is possible to continue 
to use plaintext protocols –- all data is encapsulated by IPSec, and is encrypted for 
its transfer across the network.  Thus legacy applications that may rely on using 
older, plaintext protocols will be unaffected. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 15� of 17� 

 
IPSec is completely transparent to applications and to users.  It is an open standard, 
supported by many vendors, including Microsoft and Cisco. Furthermore, many Unix 
implementations support IPSec. The easy configurability of IPSec within Windows 
2000 and XP further increases its accessibility. 
 
Implementation of a layer three encryption technology such as IPSec solves the 
sniffing problem completely.  The scalability, widespread availability and seamless 
operation of IPSec highlight it as a pragmatic solution to the problem of network 
eavesdropping.  
 
This paper covered packet sniffing and how to better protect your networks from 
potential threats.  If you'd like more training on network security, we recommend 
taking the SANS SEC502 Firewalls, Perimeter Protection and VPNs course, available 
both online and via live classroom training.



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 16� of 17� 

References 
                                            
1  Verton, Dan. “Analysts: Insiders may pose security threat”. 10 October 
2001. URL: 
http://www.computerworld.com/securitytopics/security/story/0,10801,64774,00.
html 
 
2  Graham, Robert. “Sniffing (network wiretap, sniffer) FAQ”. Version 0.3.3. 
14 September 2000. URL: http://www.robertgraham.com/pubs/sniffing-faq.html. 
Note: the “official” URL no longer works as of June 2006. However, a copy of this 
useful FAQ can be found at 
http://www.windowsecurity.com/whitepapers/Sniffing_network_wiretap_sniffer_F
AQ_.html 
 
3  Tyson, Jeff. “How LAN Switches Work”. URL: 
http://www.howstuffworks.com/lan-switch.htm 
 
4  Seki, Hidenobu. “Cracking NTLMv2 Authentication”. URL: 
http://www.blackhat.com/presentations/win-usa-02/urity-winsec02.ppt   
 
5  “The feasibility of attacking Windows 2000 Kerberos passwords”, March 
2002. URL: http://www.securiteam.com/windowsntfocus/5BP0H0A6KM.html 
 
6  Vidstrom, Arne. “Kerbcrack”, URL: 
http://www.ntsecurity.nu/toolbox/kerbcrack/ 
 
7  Song, Dug. “dsniff”. URL: http://monkey.org/~dugsong/dsniff 
 
8  Davis, Michael. “dsniff”. URL: 
http://www.datanerds.net/~mike/dsniff.html. 
 
9  McClure, Stuart. Scambray, Joel. Kurtz, George. “Hacking Exposed (Third 
Edition)”. McGraw-Hill, 2001. pages 464-465. 
 
10  “L0phtcrack 4”. http://www.atstake.com/research/lc/index.html. Note 
since @stake was taken over by Symantec, this URL no longer functions. 
 
11  Seki, Hidenobu. “ScoopLM”. January 2002. URL: 
http://www.securityfriday.com/ToolDownload/ScoopLM/scooplm_doc.html  
 
12  Seki, Hidenobu. “ScoopLM”. February 2002. URL: 
http://www.securityfriday.com/ToolDownload/BeatLM/beatlm_doc.html  
 
13  “Man-in-the-middle attack”. URL: 
http://en.wikipedia.org/wiki/Man_in_the_middle 
 
14  Whalen, Sean. “An Introduction to ARP Spoofing”. Revision 1. April 2001. 
URL: 
http://www.packetstormsecurity.org/papers/protocols/intro_to_arp_spoofing.pdf 
 
15  Ettercap’s homepage. URL: http://ettercap.sourceforge.net  
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

 

Page 17� of 17� 

                                                                                                                             
16  Cohen, Fred. “The All.Net Security Database”. May 1999. URL: 
http://www.all.net/CID/Attack/Attack74.html  
 
17  Montoro, Massimiliano. “Introduction to ARP Poison Routing (APR)”. 
Revision 1.0. URL: http://www.oxid.it  
 
18  Beeky, Mike. “ARP Vulnerabilities: Indefensible Local Network Attacks?” 
2001. URL: http://www.blackhat.com/presentations/bh-usa-01/MikeBeekey/bh-
usa-01-Mike-Beekey.ppt 
 
19  “Iverson”. “ARP Poisoning HowTo”. URL: 
http://ettercap.sourceforge.net/forum/viewtopic.php?t=2392 
 
20  “Ettercap effects on switches”. URL: 
http://ettercap.sourceforge.net/forum/viewtopic.php?t=2 
 
21  Ettercap’s homepage. URL: http://ettercap.sourceforge.net  
 
22  Krauz, Pavel. “Hunt Project”. Original URL no longer works: 
http://lin.fsid.cvut.cz/~kra/index.html#HUNT. However, Hunt can be found at 
http://www.packetstormsecurity.org/sniffers/hunt/  
 
23  Montoro, Massimiliano. “Homepage for Cain”. URL: http://www.oxid.it  
 
24  “Snadboy Software”. URL: http://www.snadboy.com    
 
25  “Hammer of God Utilities”. URL: 
http://www.hammerofgod.com/download.htm  
 
26  “Lastbit Software”. URL: http://lastbit.com/vitas/pwltool.asp 
 
27  “John the Ripper password cracker”. URL: http://www.openwall.com/john  
 
28  “Antisniff 1.021” URL: 
http://www.packetstormsecurity.org/sniffers/antisniff  
 
29  “arpwatch” URL: ftp://ftp.ee.lbl.gov/arpwatch.tar.gz  
 
30  “Promiscan”. URL: 
http://www.securityfriday.com/products/promiscan.html 
 
31  “AppSense Application Manager”. URL: 
http://www.appsense.net/content/products/products.asp#amde 
 
32  Song, Dug. “dsniff Frequently Asked Questions”. URL: 
http://monkey.org/~dugsong/dsniff/faq.html  
 
33  “IPSec”. URL: http://en.wikipedia.org/wiki/Ipsec   


