

Reversing C++

As recent as a couple of years ago, reverse engineers can get by with just knowledge of C and

assembly to reverse most applications. Now, due to the increasing use of C++ in malware as

well as most moderns applications being written in C++, understanding the disassembly of C++

object oriented code is a must. This paper will attempt to fill that gap by discussing methods of

manually identifying C++ concepts in the disassembly, how to automate the analysis, and tools

we developed to enhance the disassembly based on the analysis done.

Paul Vincent Sabanal

Researcher, IBM Internet Security Systems X-Force R&D

Mark Vincent Yason

Researcher, IBM Internet Security Systems X-Force R&D

Reversing C++

 2

Table of Contents
Table of Contents ..2
I. Introduction and Motivation ..3
II. Manual Approach ..4

A. Identifying C++ Binaries and Constructs ..4
B. Identifying Classes ..9

1) Identifying Constructors/Destructors ...9
2) Polymorphic Class Identification via RTTI...12

D. Identifying Class Relationship...18
1. Class Relationship via Constructor Analysis ...18
2. Polymorphic Class Relationship via RTTI ...20

E. Identifying Class Members..22
III. Automation ...23

A. OOP_RE ...23
B. Why a Static Approach? ...23
C. Automated Analysis Strategies...23

1. Polymorphic Class Identification via RTTI ...23
2. Polymorphic Class Identification via vftables (w/o RTTI) ..25
3. Class Identification via Constructor / Destructor Search...25
4. Class Relationship Inferencing ..26
5. Class Member Identification ..27

D. Enhancing the Disassembly ...27
1. Reconstructing and Commenting Structures...27
2. Improving the Call Graph...28

E. Visualization: UML Diagrams..29
IV. Summary..30
V. References..31

Reversing C++

 3

I. Introduction and Motivation
As reverse engineers, it is important that we are able to understand C++ concepts as they are

represented in disassemblies and of course, have a big picture idea on what are the major

pieces (classes) of the C++ target and how these pieces relate together (class relationships). In

order to achieve this understanding, the reverse engineer must able to (1) Identify the classes

(2) Identify relationships between classes (3) Identify the class members. This paper attempts to

provide the reader information on how to achieve these three goals. First, this paper discusses

the manual approach on analyzing C++ targets in order to retrieve class information. Next, it

discusses ways on how to automate these manual approaches.

Understanding C++ constructs in a disassembly is indeed a good skill to have, but what are our

motivations behind learning this skill and writing this paper? The following are what motivated us

in producing this paper:

1) Increasing use of C++ code in malcode

Having experience as malcode analysts, there are cases in which the malcode we are

trying to understand is written in C++. Loading the malcode in IDA and performing static

analysis of virtual function calls is sometimes difficult because being an indirect call, it is

not easy to determine where these calls will go. Some example of notorious malcodes

that are written in C++ are Agobot, some variants of Mytob, we are also seeing some

new malcodes developed in C++ from our honeypot.

2) Most modern applications use C++

For large and complex applications and systems, C++ is one of the languages of choice.

This means that for binary auditing, reversers expects that there are targets that are

written in C++. Information about how C++ concepts are translated into binary and

being able to extract high level information such as class relationships is beneficial.

3) General lack of publicly available information regarding the subject of C++

reversing

We believe that being able to document the subject of C++ reversing and sharing it to

fellow reverse engineers is a good thing. It is indeed not easy to gather information

about this subject and there is only a handful of information that specifically focuses on

it.

Reversing C++

 4

II. Manual Approach
This section introduces the manual approach of analyzing C++ binaries; it specifically focuses

on identifying/extracting C++ classes and their corresponding members (variables, functions,

constructors/destructors) and relationships. Note

A. Identifying C++ Binaries and Constructs
As a natural way to start, the reverser must first determine if a specific target is indeed a

compiled C++ binary and is using C++ constructs. Below are some pertinent indications that the

binary being analyzed is a C++ binary and is using C++ constructs.

1) Heavy use of ecx (this ptr). One of the first things that a reverser may see is the

heavy use of ecx (which is used as the this pointer). One place the reverser may see it

is that it is being assigned a value just before a function is about to be called:

.text:004019E4 mov ecx, esi

.text:004019E6 push 0BBh

.text:004019EB call sub_401120 ; Class member function

Another place is if a function is using ecx without first initializing it, which suggests that

this is a possible class member function:

.text:004010D0 sub_4010D0 proc near

.text:004010D0 push esi

.text:004010D1 mov esi, ecx

.text:004010DD mov dword ptr [esi], offset off_40C0D0

.text:00401101 mov dword ptr [esi+4], 0BBh

.text:00401108 call sub_401EB0

.text:0040110D add esp, 18h

.text:00401110 pop esi

.text:00401111 retn

.text:00401111 sub_4010D0 endp

4) Calling Convention. Related to (1), Class member functions are called with the usual

function parameters in the stack and with ecx pointing to the class’s object (i.e. this

pointer.). Here is an example of a class instantiation, in which the allocated class object

(eax) will eventually be passed to ecx and then invocation of the constructor follows.

.text:00401994 push 0Ch

.text:00401996 call ??2@YAPAXI@Z ; operator new(uint)

.text:004019AB mov ecx, eax

:::

.text:004019AD call ClassA_ctor

Reversing C++

 5

Additionally, reversers will notice indirect function calls which are more likely virtual

functions; it is of course, difficult to follow where these calls go without first knowing the

actual class or running the code under a debugger. Consider the following virtual

function call example:

.text:00401996 call ??2@YAPAXI@Z ; operator new(uint)

:::

.text:004019B2 mov esi, eax

:::

.text:004019AD call ClassA_ctor

:::

.text:004019FF mov eax, [esi] ;EAX = virtual function table

.text:00401A01 add esp, 8

.text:00401A04 mov ecx, esi

.text:00401A06 push 0CCh

.text:00401A0B call dword ptr [eax]

In this case, the reverser must first know where the virtual function table (vftable) of

ClassA is located, and then determine the actual address of the function based from

the list of functions listed in the vftable.

5) STL Code and Imported DLLs. Another way to determine if a sample is a C++ binary

is if the target is using STL code, which can be determined via Imported functions or

library signature identification such as IDA’s FLIRT:

And the calls to STL code:

.text:00401201 mov ecx, eax

.text:00401203 call

ds:?sputc@?$basic_streambuf@DU?$char_traits@D@std@@@std@@QAEHD@Z ;

std::basic_streambuf<char,std::char_traits<char>>::sputc(char)

Reversing C++

 6

Class Instance Layout
Before going any further, the reverser should also be familiar with how classes are laid out in

memory. Let’s start with a very simple class.

class Ex1

{

int var1;

 int var2;

 char var3;

public:

 int get_var1();

};

The layout for this class will look like this:

class Ex1 size(12):

 +---

 0 | var1

 4 | var2

 8 | var3

 | <alignment member> (size=3)

 +---

Padding was added to the last member variable because it must align on a 4-byte boundary. In

Visual C++, member variables are placed in the memory in the same order as they are declared.

What if the class contains virtual functions?

class Ex2

{

 int var1;

public:

 virtual int get_sum(int x, int y);

 virtual void reset_values();

};

Here’s the class layout:

class Ex2 size(8):

 +---

 0 | {vfptr}

 4 | var1

 +---

Reversing C++

 7

Note that a pointer to the virtual functions table is added at the beginning of the layout. This

table contains the address of virtual functions in the order they are declared. The virtual

functions table for class Ex2 will look like this.

Ex2::$vftable@:

0 | &Ex2::get_sum

4 | &Ex2::reset_values

Now what if a class inherits from another class? Here’s what happens when a class inherits

from a single class i.e. single inheritance:

class Ex3: public Ex2

{

 int var1;

public:

 void get_values();

};

And the layout:

class Ex3 size(12):

 +---

 | +--- (base class Ex2)

 0 | | {vfptr}

 4 | | var1

 | +---

 8 | var1

 +---

As you can see, the layout of the derived class is simply appended to the layout of the base

class. In the case of multiple inheritance, here’s what happens:

class Ex4

{

 int var1;

 int var2;

public:

 virtual void func1();

 virtual void func2();

};

Reversing C++

 8

class Ex5: public Ex2, Ex4

{

 int var1;

public:

 void func1();

 virtual void v_ex5();

};

class Ex5 size(24):

 +---

 | +--- (base class Ex2)

 0 | | {vfptr}

 4 | | var1

 | +---

 | +--- (base class Ex4)

 8 | | {vfptr}

12 | | var1

16 | | var2

 | +---

20 | var1

 +---

Ex5::$vftable@Ex2@:

 0 | &Ex2::get_sum

 1 | &Ex2::reset_values

 2 | &Ex5::v_ex5

Ex5::$vftable@Ex4@:

 | -8

 0 | &Ex5::func1

 1 | &Ex4::func2

As you can see, a copy if each base class’s instance data will be embedded in the derived

class’s instance, and each base class that contains virtual functions will have their own vftable.

Take note that the fist base class shares a vftable with the current object. The current object’s

virtual functions will be appended at the end of the first base class’s virtual functions list

Reversing C++

 9

B. Identifying Classes
After identifying C++ binaries, discussing some important C++ constructs and how a class

instance is represented in memory, this part now present ways on identifying C++ classes used

in the target. The methods discussed below only tries to determine what are the classes (i.e. the

target has ClassA, ClassB, ClassC, etc). The next sections of this paper will discuss how to

infer relationships between these classes and determine their members

1) Identifying Constructors/Destructors
To identify classes in the binary, we need to examine how objects of these classes are created.

How their creation are implemented in the binary level can provide us with hints on identifying

them in the disassembly.

1) Global Object. Global objects, as the name implies, are objects declared as global

variables. Memory spaces for these objects are allocated at compile-time and are

placed in the data segment of the binary. The constructor is implicitly called before

main(), during C++ startup, and the destructor is called at program exit.

To identify a possible global object, look for a function called with a pointer to a global

variable as the this pointer. To locate the constructor and destructor, we have to

examine cross-references to this global variable. Look for locations where this variable

is passed as the this pointer to a function call. If this call lies between the path from

program entry point and main(), it is probably the constructor.

2) Local Object. Local objects are objects that are declared as local variables. The scope

of these objects are from the point of declaration until the block exit e.g. end of function,

closing braces. Space the size of the object is allocated in the stack. The constructor is

called at the point of object declaration, while the destructor is called at the end of the

scope.

A constructor for a local object can be identified if a function is called with a this pointer

that points to an uninitialized stack variable. The destructor is the last function called

with this this pointer in the same block where the constructor was called i.e. the block

where the object was declared.

Reversing C++

 10

Here’s an example:
.text:00401060 sub_401060 proc near

.text:00401060

.text:00401060 var_C = dword ptr -0Ch

.text:00401060 var_8 = dword ptr -8

.text:00401060 var_4 = dword ptr -4

.text:00401060

…(some code)…

.text:004010A4 add esp, 8

.text:004010A7 cmp [ebp+var_4], 5

.text:004010AB jle short loc_4010CE

.text:004010AB

.text:004010AB {  block begin

.text:004010AD lea ecx, [ebp+var_8] ; var_8 is uninitialized

.text:004010B0 call sub_401000 ; constructor

.text:004010B5 mov edx, [ebp+var_8]

.text:004010B8 push edx

.text:004010B9 push offset str->WithinIfX

.text:004010BE call sub_4010E4

.text:004010C3 add esp, 8

.text:004010C6 lea ecx, [ebp+var_8]

.text:004010C9 call sub_401020 ; destructor

.text:004010CE }  block end

.text:004010CE

.text:004010CE loc_4010CE: ; CODE XREF: sub_401060+4B� j

.text:004010CE mov [ebp+var_C], 0

.text:004010D5 lea ecx, [ebp+var_4]

.text:004010D8 call sub_401020.

3) Dynamically Allocated Object. These objects are dynamically created via the new

operator. The new operator is actually converted into a call to the new() function,

followed by a call to the constructor, The new() function takes the size of the object as

parameter, allocates memory of this size in the heap, then returns the address of this

buffer. The returned address is then passed to the constructor as the this pointer. The

destructor has to be invoked explicitly via the delete operator. The delete operator is

converted into a call to the destructor, followed by a call to free to deallocate the

memory allocated in the heap.

Reversing C++

 11

Here’s an example:

.text:0040103D _main proc near
.text:0040103D argc = dword ptr 8

.text:0040103D argv = dword ptr 0Ch

.text:0040103D envp = dword ptr 10h

.text:0040103D

.text:0040103D push esi

.text:0040103E push 4 ; size_t

.text:00401040 call ??2@YAPAXI@Z ; operator new(uint)

.text:00401045 test eax, eax ;eax = address of allocated

memory

.text:00401047 pop ecx

.text:00401048 jz short loc_401055

.text:0040104A mov ecx, eax

.text:0040104C call sub_401000 ; call to constructor

.text:00401051 mov esi, eax

.text:00401053 jmp short loc_401057

.text:00401055 loc_401055: ; CODE XREF: _main+B� j

.text:00401055 xor esi, esi

.text:00401057 loc_401057: ; CODE XREF: _main+16� j

.text:00401057 push 45h

.text:00401059 mov ecx, esi

.text:0040105B call sub_401027

.text:00401060 test esi, esi

.text:00401062 jz short loc_401072

.text:00401064 mov ecx, esi

.text:00401066 call sub_40101B ; call to destructor

.text:0040106B push esi ; void *

.text:0040106C call j__free ; call to free thunk function

.text:00401071 pop ecx

.text:00401072 loc_401072: ; CODE XREF: _main+25� j

.text:00401072 xor eax, eax

.text:00401074 pop esi

.text:00401075 retn

.text:00401075 _main endp

Reversing C++

 12

2) Polymorphic Class Identification via RTTI
Another way to identify classes, specifically polymorphic classes (classes with member virtual

functions) is via Run-time Type Information (RTTI). RTTI is a mechanism in which the type of an

object can be determined at runtime. This mechanism is the one being utilized by the typeid

and dynamic_cast operator. Both these operators need information about the classes

passed to them, such as class name and class hierarchy. In fact, the compiler will display a

warning if these operators are used without enabling RTTI. By default, RTTI is disabled on

MSVC 6.0.

On MSVC 2005, RTTI is enabled by default.

As a side note, there is a compiler switch that enables the MSVC compiler to generate class

layout, the switch is -d1reportAllClassLayout this switch generates a .layout file

which contains a wealth of information regarding the layout of a class including offsets of the

base classes within the derived class, virtual function table (vftable), virtual base class table

Reversing C++

 13

(vbtables, which is further described below), and member variables, etc.

To make RTTI possible, the compiler stores several data structures in the compiled code, these

data structures contains information about classes (specifically, polymorphic classes) in the

code. These data structures are as follows:

RTTICompleteObjectLocator

This structure contains pointers to two structures that identify (1) the actual class information

and (2) the class hierarchy:

Offset Type Name Description
0x00 DW signature Always 0?

0x04 DW offset
Offset of vftable within
the class

0x08 DW cdOffset

0x0C DW pTypeDescriptor Class Information

0x10 DW pClassHierarchyDescriptor
Class Hierarchy
Information

Below is an example how the RTTICompleteObjectLocator pointer is laid out. The pointer

to this data structure is just below the vftable of the class:

.rdata:00404128 dd offset ClassA_RTTICompleteObjectLocator

.rdata:0040412C ClassA_vftable dd offset sub_401000 ; DATA XREF:...

.rdata:00404130 dd offset sub_401050

.rdata:00404134 dd offset sub_4010C0

.rdata:00404138 dd offset ClassB_RTTICompleteObjectLocator

.rdata:0040413C ClassB_vftable dd offset sub_4012B0 ; DATA XREF:...

.rdata:00404140 dd offset sub_401300

.rdata:00404144 dd offset sub_4010C0

And this is an example of the actual RTTICompleteObjectLocator structure:

.rdata:004045A4 ClassB_RTTICompleteObjectLocator

 dd 0 ; signature

.rdata:004045A8 dd 0 ; offset

.rdata:004045AC dd 0 ; cdOffset

.rdata:004045B0 dd offset ClassB_TypeDescriptor

.rdata:004045B4 dd offset ClassB_RTTIClassHierarchyDescriptor ;

Reversing C++

 14

TypeDescriptor

This structure is pointed to by the 4th DWORD field in RTTICompleteObjectLocator, it

contains the class name, which if obtained will give the reverser a general idea what this class is

supposed to do.

This is an example of an actual TypeDescriptor:

.data:0041A098 ClassA_TypeDescriptor ; DATA XREF:

 dd offset type_info_vftable ; TypeDescriptor.pVFTable

.data:0041A09C dd 0 ; TypeDescriptor.spare

.data:0041A0A0 db '.?AVClassA@@',0 ; TypeDescriptor.name

RTTIClassHierarchyDescriptor

This structure contains information about the hierarchy of the class including the number of

base classes and an array of RTTIBaseClassDescriptor (discussed later) which will

eventually point to the TypeDescriptor of the base classes.

Offset Type Name Description
0x00 DW signature Always 0?

0x04 DW attributes
Bit 0 – multiple inheritance
Bit 1 – virtual inheritance

0x08 DW numBaseClasses

Number of base classes.
Count includes the class
itself

0x0C DW pBaseClassArray
Array of
RTTIBaseClassDescriptor

As an example, below is a class declaration of ClassG virtually inheriting from ClassA and

ClassE.

class ClassA {…}

class ClassE {…}

class ClassG: public virtual ClassA, public virtual ClassE {…}

Offset Type Name Description

0x00 DW pVFTable
Always point to type_info’s
vftable

0x04 DW spare ?

0x08 SZ name Class Name

Reversing C++

 15

And below is the actual RTTIClassHierarchyDescriptor for ClassG:

.rdata:004178C8 ClassG_RTTIClassHierarchyDescriptor ; DATA XREF: ...

.rdata:004178C8 dd 0 ; signature

.rdata:004178CC dd 3 ; attributes

.rdata:004178D0 dd 3 ; numBaseClasses

.rdata:004178D4 dd offset ClassG_pBaseClassArray ; pBaseClassArray

.rdata:004178D8 ClassG_pBaseClassArray

 dd offset RTTIBaseClassDescriptor@4178e8

.rdata:004178DC dd offset RTTIBaseClassDescriptor@417904

.rdata:004178E0 dd offset RTTIBaseClassDescriptor@417920

There are 3 base classes (including the count for ClassG itself), the attribute is 3 (multiple,

virtual inheritance), and finally, pBaseClassArray points to an array of pointers to

RTTIBaseClassDescriptors.

RTTIBaseClassDescriptor

This structure contains information about the base class, which includes a pointer to the base

class’s TypeDescriptor and RTTIClassHierarchyDescriptor and additionally contains

the PDM structure contains information on how the base class is laid out inside in the class.

Offset Type Name Description

0x00 DW pTypeDescriptor
TypeDescriptor of this base
class

0x04 DW numContainedBases
Number of direct bases of
this base class

0x08 DW PMD.mdisp
vftable offset (if PMD.pdisp
is -1)

0x0C DW PMD.pdisp

vbtable offset (-1: vftable
is at displacement PMD.mdisp
inside the class)

0x10 DW PMD.vdisp

Displacement of the base
class vftable pointer inside
the vbtable

0x14 DW attributes ?

0x18 DW pClassDescriptor
RTTIClassHierarchyDescriptor
of this base class

A vbtable (virtual base class table) is generated for multiple virtual inheritance.

Because it is sometimes necessary to upclass (casting to base classes), the exact location of

the base class needs to be determined. A vbtable contains a displacement of each base

class’ vftable which is effectively the beginning of the base class within the derived class.

Reversing C++

 16

Consider the ClassG class declaration previously shown; the compiler will generate the

following class structure:

class ClassG size(28):

 +---

 0 | {vfptr}

 4 | {vbptr}

 +---

 +--- (virtual base ClassA)

 8 | {vfptr}

12 | class_a_var01

16 | class_a_var02

 | <alignment member> (size=3)

 +---

 +--- (virtual base ClassE)

20 | {vfptr}

24 | class_e_var01

 +---

In this case, the vbtable is at offset 4 of the class. The vbtable, on the other hand contains

the displacement of the each base class inside the derived class:

ClassG::$vbtable@:

 0 | -4

 1 | 4 (ClassGd(ClassG+4)ClassA)

 2 | 16 (ClassGd(ClassG+4)ClassE)

To determine the exact offset of ClassE within ClassG, the offset of the vbtable needs to

fetched (4), then the displacement of ClassE from the vbtable (16) which if added equals to 20

(4 + 16).

The actual BaseClassDescriptor of ClassE within ClassG is as follows:

.rdata:00418AFC RTTIBaseClassDescriptor@418afc ; DATA XREF: ...

 dd offset oop_re$ClassE$TypeDescriptor

.rdata:00418B00 dd 0 ; numContainedBases

.rdata:00418B04 dd 0 ; PMD.mdisp

.rdata:00418B08 dd 4 ; PMD.pdisp

.rdata:00418B0C dd 8 ; PMD.vdisp

.rdata:00418B10 dd 50h ; attributes

.rdata:00418B14 dd offset oop_re$ClassE$RTTIClassHierarchyDescriptor ;

pClassDescriptor

PMD.pdisp is 4 which is the offset of the vbtable within ClassG, and PMD.vdisp is 8 which

means that 3rd DWORD within the vbtable.

The diagram below shows the how the overall RTTI data structures are connected and laid out.

Reversing C++

 17

vftable CompleteObjectLocator

ClassHierarchyDescriptor

TypeDescriptor

ClassA

TypeDescriptor

ClassB

TypeDescriptor

ClassC

CompleteObjectLocator

CompleteObjectLocator

Class A

vftableClass B

vftableClass C

Inherits from

Inherits from

BaseClassDescriptor

ClassHierarchyDescriptor

ClassHierarchyDescriptor

BaseClassDescriptor

BaseClassDescriptor

BaseClassArray

BaseClassArray

BaseClassDescriptor

BaseClassDescriptor

BaseClassArray

BaseClassDescriptor

Reversing C++

 18

D. Identifying Class Relationship

1. Class Relationship via Constructor Analysis
Constructors contain code that initializes the object, such as calling up constructors for base

classes and setting up vftables. As such, analyzing constructors can give us a pretty good idea

about this class’s relationship with other classes.

Single Inheritance

.text:00401010 sub_401010 proc near

.text:00401010

.text:00401010 var_4 = dword ptr -4

.text:00401010

.text:00401010 push ebp

.text:00401011 mov ebp, esp

.text:00401013 push ecx

.text:00401014 mov [ebp+var_4], ecx ; get this ptr to current object

.text:00401017 mov ecx, [ebp+var_4] ;

.text:0040101A call sub_401000 ; call class A constructor

.text:0040101F mov eax, [ebp+var_4]

.text:00401022 mov esp, ebp

.text:00401024 pop ebp

.text:00401025 retn

.text:00401025 sub_401010 endp

Let's assume that we have determined that this is function is a constructor using methods

mentioned in section II-B. Now, we see that a function is being called using the this pointer of

the current object. This can be a member function of the current class, or a constructor for the

base class.

How do we know which one is it? Actually, there's no way to perfectly distinguish between the

two just by looking at the code generated. However, in real world applications, there is a high

possibility that constructors will be identified as such prior to this step (see section II-B), so all

we have to do is correlate this info to come up with a more accurate identification. In other

words, if a function that was pre-determined to be a constructor is called inside another

constructor using the current object’s this pointer, it is probably a constructor for a base class.

Manually identifying this would entail checking other cross-references to this function and see if

this function is a constructor called somewhere else in the binary. We will discuss automatic

identification methods later in this document.

Reversing C++

 19

Multiple Inheritance

.text:00401020 sub_401020 proc near

.text:00401020

.text:00401020 var_4 = dword ptr -4

.text:00401020

.text:00401020 push ebp

.text:00401021 mov ebp, esp

.text:00401023 push ecx

.text:00401024 mov [ebp+var_4], ecx

.text:00401027 mov ecx, [ebp+var_4] ; ptr to base class A

.text:0040102A call sub_401000 ; call class A constructor

.text:0040102A

.text:0040102F mov ecx, [ebp+var_4]

.text:00401032 add ecx, 4 ; ptr to base class C

.text:00401035 call sub_401010 ; call class C constructor

.text:00401035

.text:0040103A mov eax, [ebp+var_4]

.text:0040103D mov esp, ebp

.text:0040103F pop ebp

.text:00401040 retn

.text:00401040

.text:00401040 sub_401020 endp

Multiple inheritance is actually much easier to spot than single inheritance. As with the single

inheritance example, the first function called could be a member function, or a base class

constructor. Notice that in the disassembly, 4 bytes is added to the this pointer prior to calling

the second function. This indicates that a different base class is being initialized.

Here's the layout for this class to help you visualize. The disassembly above belongs to the

constructor of class D. Class D is derived from two other classes, A and C:

class A size(4):

 +---

 0 | a1

 +---

class C size(4):

 +---

 0 | c1

 +---

Reversing C++

 20

class D size(12):

 +---

 | +--- (base class A)

 0 | | a1

 | +---

 | +--- (base class C)

 4 | | c1

 | +---

 8 | d1

 +---

2. Polymorphic Class Relationship via RTTI
As what had been discussed in section II-B, Run-time Type Information (RTTI) can be used to

identify class relationship of polymorphic classes, the related data structure used to determine

this is RTTIClassHierarchyDescriptor. Once again, below are the fields of

RTTIClassHierarchyDescriptor for the purpose of illustration:

Offset Type Name Description

0x00 DW signature Always 0?

0x04 DW attributes
Bit 0 – multiple inheritance
Bit 1 – virtual inheritance

0x08 DW numBaseClasses

Number of base classes.
Count includes the class
itself

0x0C DW pBaseClassArray
Array of
RTTIBaseClassDescriptor

RTTIClassHierarchyDescriptor contains a field named pBaseClassArray which is an

array of RTTIBaseClassDescriptor (BCD). These BCDs will then eventually point to the

TypeDescriptor of the actual base class.

Reversing C++

 21

As an example, consider the following class layout:

Class A

Class B

Class C

Inherits from

Inherits from

And here is the actual class declaration pertaining to the said class layout.

class ClassA {…}

class ClassB : public ClassA {…}

class ClassC : public ClassB {…}

To illustrate, below is a layout between the relationships of

RTTIClassHierarchyDescriptor, RTTIBaseClassDescriptor and TypeDescriptor

representing ClassC.

TypeDescriptor

ClassA

TypeDescriptor

ClassB

TypeDescriptor

ClassC
CompleteObjectLocatorvftableClass C

ClassHierarchyDescriptor

BaseClassDescriptor

BaseClassDescriptor

BaseClassDescriptor

BaseClassArray

As you would have noticed, one caveat is that pBaseClassArray also points to the BCD of

non-direct base classes. In this case, ClassA’s BaseClassDescriptor. One solution to this

is to also parse the ClassHierarchyDescriptor of ClassB and determine if ClassA is a

base class of ClassB, if it is, then ClassA is not a direct base of ClassC and the appropriate

inheritance can be deduced.

Reversing C++

 22

E. Identifying Class Members
Identifying class members is a straight-forward, albeit slow and tedious, process. We can

identify class member variables by looking for accesses to offsets relative to the this pointer:

.text:00401003 push ecx

.text:00401004 mov [ebp+var_4], ecx ; ecx = this pointer

.text:00401007 mov eax, [ebp+var_4]

.text:0040100A mov dword ptr [eax + 8], 12345h ; write to 3rd member

 ; variable

We can also identify virtual function members by looking for indirect calls to pointers located at

offsets relative to this objects virtual function table:

.text:00401C21 mov ecx, [ebp+var_1C] ; ecx = this pointer

.text:00401C24 mov edx, [ecx] ; edx = ptr to vftable

.text:00401C26 mov ecx, [ebp+var_1C]

.text:00401C29 mov eax, [edx+4] ; eax = address of 2nd virtual

 ; function in vftable

.text:00401C2C call eax ; call virtual function

Non-virtual member functions can be identified by checking if the this pointer is passed as a

hidden parameter to the function call.

.text:00401AFC push 0CCh

.text:00401B01 lea ecx, [ebp+var_C] ; ecx = this pointer

.text:00401B04 call sub_401110

To make sure that this is indeed a member function, we can check if the called function uses

ecx without first initializing it. Let’s look at sub_401110’s code

.text:00401110 push ebp

.text:00401111 mov ebp, esp

.text:00401113 push ecx

.text:00401114 mov [ebp+var_4], ecx ; ecx used

Reversing C++

 23

III. Automation
This section discusses that approaches we had used to automate extraction of class information.

For this purpose, we will discuss a tool we had created to perform this task and provide

information on how we implemented this tool.

A. OOP_RE
OOP_RE is the name of the tool we had created in-house to automate class information

extraction. The information extracted includes identified classes (including class name if RTTI is

available), class relationships and class members. It also enhances disassemblies by

commenting identified C++-related structures. OOP_RE is developed using python and runs in

the IDAPython platform. IDAPython allows us to quickly and efficiently write and debug

OOP_RE.

B. Why a Static Approach?
One of the first decisions we had to make is if we would develop a tool to perform static or

dynamic analysis. We chose the static approach because it is difficult to do runtime analysis on

some platforms that heavily use C++ such as Symbian - if the tool will be updated to handle

compiled Symbian applications. However, a hybrid approach (static plus dynamic analysis) is

also preferable since it may produce more accurate results.

C. Automated Analysis Strategies

1. Polymorphic Class Identification via RTTI
The first step the tool does is to collect RTTI information if it is available. Leveraging RTTI data

allows the tool to quickly and accurately extract the following:

1) Polymorphic Classes

2) Polymorphic class Name

3) Polymorphic class Hierarchy

4) Polymorphic class virtual table and virtual functions

5) Polymorphic class Constructors/Destructors

Reversing C++

 24

To search for RTTI-related structures, this tool first attempts to identify virtual function tables

since the structure RTTICompleteObjectLocator is just below these virtual function tables.

In order to identify virtual function tables, the tool perform the following checks:

1) If the Item is a DWORD

2) If the Item is a pointer to a Code

3) If the Item is being referenced by a Code and the instruction in this referencing code is

a MOV instruction (suggesting a vftable assignment)

Once the vftables are identified, the tool will verify if the DWORD below the vftable is an actual

RTTICompleteObjectLocator. This is verified by parsing RTTICompleteObject

Locator and verifying if RTTICompleteObjectLocator.pTypeDescriptor is a valid

TypeDescriptor. One method to verify a TypeDescriptor is by checking if

TypeDescriptor.name starts with a string “.?AV” which is used as a prefix for class names.

In the example below, the identified vftable is at 004165B4:

.rdata:004165B0 dd offset ClassB_RTTICompleteObjectLocator@00

.rdata:004165B4 ClassB_vftable

.rdata:004165B4 dd offset sub_401410 ; DATA XREF: sub_401280+38� o

.rdata:004165B4 ; sub_401320+29� o

.rdata:004165B8 dd offset sub_401460

.rdata:004165BC dd offset sub_401230

The tool will then identify if 004165B0 is a valid RTTICompleteObjectLocator, by

checking the TypeDescriptor pointed to by the RTTICompleteObjectLocator.

.rdata:00418A28 ClassB_RTTICompleteObjectLocator@00

.rdata:00418A28 dd 0 ; signature

.rdata:00418A2C dd 0 ; offset

.rdata:00418A30 dd 0 ; cdOffset

.rdata:00418A34 dd offset ClassB_TypeDescriptor

.rdata:00418A38 dd offset ClassB_RTTIClassHierarchyDescriptor

A TypeDescriptor is then validated by checking TypeDescriptor.name for “.?AV”

.data:0041B01C ClassB_TypeDescriptor

dd offset type_info_vftable

.data:0041B020 dd 0 ;spare

.data:0041B024 a_?avclassb@@ db '.?AVClassB@@',0 ; name

Reversing C++

 25

Once the all the RTTICompleteObjectLocator is verified, the tool will parse all RTTI-

related data structures to and create classes from the identified TypeDescriptors. Below is

a list class information that is extracted using RTTI data:

new_class

- Identified from TypeDescriptors

new_class.class_name

- Identified from TypeDescriptor.name

new_class.vftable/vfuncs

- Identified from vftable-RTTICompleteObjectLocator relationship

new_class.ctors_dtors

- Identified from functions referencing the vftable

new_class.base_classes

- Identified from RTTICompleteObjectLocator.pClassHierarchyDescriptor

2. Polymorphic Class Identification via vftables (w/o RTTI)
If RTTI data is not available, the tool will try to identify polymorphic classes by searching for

vftables (the method is described section C.1). Once a vftable is identified, the following class

information is extracted / generated:

new_class

- Identified from vftable

new_class.class_name

- Auto-generated (based from vftable address, etc.)

new_class.vftable/vfuncs

- Identified from vftable

new_class.ctors_dtors

- Identified from functions referencing the vftable

Notice that the base classes is not yet identified, the base classes of the identified class will be

identified by constructor analysis which is described later.

3. Class Identification via Constructor / Destructor Search
Automation techniques to be discussed from this point on require us to be able to track values in

registers and variables. To do this, we need to have a decent data flow analyzer. As most

researchers who have tackled this problem before will attest, data flow analysis is a hard

problem. Fortunately, we don’t have to cover general cases, and we can get by with a simple

data flow analyzer that will work in our specific case. At the very least, our data flow analyzer

should be able to do decent register and pointer tracking.

Out tool will track a register or variable from a specific starting point. Subsequent instructions

will be tracked and split into blocks. Each block will have a tracked variable assigned, which

Reversing C++

 26

indicates which register/pointer is being tracked in that particular block. During tracking, one of

the following things could occur:

1) If the variable/register is overwritten, stop tracking

2) If EAX is being tracked and a call is encountered, stop tracking. (We assume that all

calls return values in EAX).

3) If a call is encountered, treat the next instruction as a new block

4) If a conditional jump is encountered, follow the register/variable in both branches,

starting a new block on each branch.

5) If the register/variable was copied into another variable, start a new block and track both

the old variable and the new one starting on this block.

6) Otherwise, track next instruction.

To identify constructors for objects that are dynamically allocated, the following algorithm can be

applied:

1) Look for calls to new() .

2) Track the value returned in EAX

3) When tracking is done, look for the earliest call where the tracked register/variable is

ECX. Mark this function as constructor.

For local objects, we do the same thing. Instead of initially tracking returned values of new(), we

first locate instructions where an address of a stack variable is written to ECX, then start

tracking ECX

There is a possibility that some of the constructors identified are overloaded and actually belong

to one class. We can filter out non-overloaded constructors by checking the value passed to

new(). If the object size is unique, then the corresponding constructor is not overloaded. We can

then identify if the remaining constructors are overloaded by checking if their characteristics are

identical with other classes e.g. has the same vftable, has the same member functions, etc.

4. Class Relationship Inferencing
As discussed in section II-D, relationships between classes can be determined by analyzing

constructors. We can automate constructor analysis by tracking the current object’s this pointer

(ECX) within the constructor. When tracking is done, check blocks with ECX as the tracked

Reversing C++

 27

variable, and see if there is a call to a function that has been identified as a constructor. If there

is, this constructor is possibly a constructor for a base class. To handle multiple inheritance, our

tool should also be able to track pointers to offsets relative to the class’s address. We will then

track these pointers using the aforementioned procedure to identify other base classes.

5. Class Member Identification

Member Variable Identification

To identify member variables, we have to track the this pointer from the point the object is

initialized. We then note accesses to offsets relative to the this pointer. These offsets will then

be recorded as possible member variables.

Non-virtual Function Identification

The tool will track an initial register or pointer, which in our case should point to a this pointer for

the current class.

Once tracking is done, note all blocks where ECX is the tracked variable, then mark the call in

that block, if there is any, as a member of the current class.

Virtual Function Identification

To identify virtual functions, we simply have to locate vftables first through constructor analysis.

After all of this is done, we then reconstruct the class using the results of these analysis.

D. Enhancing the Disassembly

1. Reconstructing and Commenting Structures
Once class information is extracted, OOP_RE will reconstruct, name and comment C++-related

data structures using doDwrd(), make_ascii_string() and set_name().

For RTTI data, OOP_RE properly changes the data types of data structure members and add

comments to clarify the disassembly.

Reversing C++

 28

Here is an example for a vftable and RTTICompleteObjectLocator pointers:

Original

.rdata:004165A0 dd offset unk_4189E0

.rdata:004165A4 off_4165A4

 dd offset sub_401170 ; DATA XREF:...

.rdata:004165A8 dd offset sub_4011C0

.rdata:004165AC dd offset sub_401230

.rdata:004165B0 dd offset unk_418A28

Processed

.rdata:004165A0 dd offset oop_re$ClassA$RTTICompleteObjectLocator@00

.rdata:004165A4 oop_re$ClassA$vftable@00

 dd offset sub_401170 ; DATA XREF: ...

.rdata:004165A8 dd offset sub_4011C0

.rdata:004165AC dd offset sub_401230

.rdata:004165B0 dd offset oop_re$ClassB$RTTICompleteObjectLocator@00

And another example for the actual RTTICompleteObjectLocator structure:

Original

.rdata:004189E0 dword_4189E0 dd 0 ; DATA XREF:...

.rdata:004189E4 dd 0

.rdata:004189E8 dd 0

.rdata:004189EC dd offset off_41B004

.rdata:004189F0 dd offset unk_4189F4

Processed

.rdata:004189E0 oop_re$ClassA$RTTICompleteObjectLocator@00

 dd 0 ; RTTICompleteObjectLocator.signature

.rdata:004189E4 dd 0 ; RTTICompleteObjectLocator.offset

.rdata:004189E8 dd 0 ; RTTICompleteObjectLocator.cdOffset

.rdata:004189EC dd offset oop_re$ClassA$TypeDescriptor

.rdata:004189F0 dd offset oop_re$ClassA$RTTIClassHierarchyDescriptor

2. Improving the Call Graph

The results of the analysis done can be applied back to the IDA disassembly, for example, by

adding cross-references on virtual function calls. This will yield a more accurate call graph,

which in turn would result in improvements in the outcome of binary comparison tools such as

BinDiff and DarunGrim. Locating vtables can also be used in a binary diffing technique, as

described in Rafal Wojtczuk’s blog entry (see References).

Reversing C++

 29

E. Visualization: UML Diagrams
Finally, the coolest part – generating a UML class diagram for class members and class

hierarchy. For this purpose, we had used pydot. OOP_RE basically creates a node for each

class and then create edges from each of the base classes.

Below is an example of a generated OOP_RE-generated UML diagram:

This UML diagram represents the following class declaration:

class ClassA {...}

class ClassB : public ClassA {...}

class ClassC {...}

class ClassD : public ClassB, public ClassC {...}

Reversing C++

 30

Of course, there will be instances in which RTTI is not available; in this case, the class names

are auto-generated:

These UML diagrams provide a high-level overview of the classes and how they relate to each

other. This provides the reverser important information on how the application is structured in

terms of classes, the reverser can then have this structure in mind while further refining the

disassembly.

IV. Summary
In this paper, we had discussed ways on how to analyze and understand C++ compiled binaries.

Specifically, it discusses methods on how to extract class information and class relationships.

We hope that this paper will serve as a useful reference and encourage researchers to further

explore the subject of C++ reversing.

Reversing C++

 31

V. References
Reversing Microsoft Visual C++ Part II: Classes, Methods and RTTI

https://www.openrce.org/articles/full_view/23

Igor Skochinsky

RE 2006: New Challenges Need Changing Tools

Defcon 14 talk

Halvar Flake

Inside the C++ Object Model

Stanley B. Lippman

C++: Under the Hood – Jan Gray

http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/dnarvc/html/jangrayhood.asp

Microsoft C++ Name Mangling Scheme

http://sparcs.kaist.ac.kr/~tokigun/article/vcmangle.html#Microsoft

Binary code analysis: benefits of C++ virtual function tables detection

Rafal Wojtczuk

http://www.avertlabs.com/research/blog/?p=17

X86_RE_lib

www.sabre-security.com/x86_RE_lib.zip

Halvar Flake

IDAPython

http://d-dome.net/idapython

pydot

http://dkbza.org/pydot.html

Graphviz – Graph Visualization Software

http://www.graphviz.org

