AMD 1

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 3:
General-Purpose and
System Instructions

Publication No. Revision Date
24594 3.14 September 2007

Advanced Micro Devices &\

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

© 2002 — 2007 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

Trademarks

AMD, the AMD arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, and 3DNow! are trademarks,
and AMD-KE6 is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.
Windows NT is a registered trademark of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

AMDZ\

24594—Rev. 3.14—September 2007 AMDG64 Technology

Contents

ReVISION HIStOrY Xiii
PrefaCe. . . XV
About This BOOK.o e XV
AUAIBNCE . . o et e XV
Organizationttt ettt e et e e e e XV
Definitionst e XVvi
Related Documents.o e XXvi

1 INStruction FOrMats. o 1
1.1 Instruction Byte Order. e 1

1.2 Instruction Prefixes e 3
Summary of Legacy Prefixes. 3

Operand-Size Override Prefixo 4

Address-Size Override Prefix e 6
Segment-Override Prefixes 8

Lock Prefix e 8

Repeat Prefixes 9

REX Prefixes . . .ot 11

1.3 OPCOAE. . .ot 17

1.4 ModRM and SIB Bytesot e 17

1.5 Displacement Bytes e 19

1.6 Immediate Bytes o e 19

1.7 RIP-Relative Addressingovttit et e e e e e 19
Encoding 20

REX Prefix and RIP-Relative Addressing.o i, 20

Address-Size Prefix and RIP-Relative Addressing 20

2 INSErUCtioN OVEINVIBW. o e e 21
2.1 InStruction SUDSELS.ottt 21

2.2 Reference-Page Format 22

2.3 Summary of Registers and Data Typest 24
General-Purpose InStructions.ttt e 24

System INSIUCHIONSot e e 27

128-Bit Media InStructionsot 29

64-Bit Media InStructions ottt 32

x87 Floating-Point InStructions 34

24 Summary of EXCePLiONS.ot 35

2.5 NOTALION . . o .ttt e e e e e e e e e e e 37
MRemonic SYNTAXottt 37

OPCOde SYNLAX. . . oottt et e e e e e 39

Pseudocode Definitionsottt e 41

Contents

AMDA

AMDG64 Technology 24594—Rev. 3.14—September 2007

3 General-Purpose Instruction Reference i i 51
A A A . e e 53
A A DD . L 54
A AM L e 55
A A 56
ADC . L 57
AD D . 59
AN DD . Lo e e 61
BOUNDD . . e 63
B S 65
B R . 66
BSOS W AP . . 67
Bl e 68
BT C . 70
BT R .o e 72
Bl S e e 74
CALL (N . . vttt ittt e e e e e e e e e e e e 76
CALL (Far) . ..ot e e e e e e e e 78
CBW
CWDE
CDQE . . e 84
CWD
CDQ
(600 T 85
G L e e 86
LD . ot e e 87
CLELUSH . .o e 88
O . e 90
OOV CC . vt 91
OV P . e 94
CMPS
CMPSB
CMPSW
CMPSD
O P S . ot 97
CMPXCHG . . .o e e e e e 99
CMPXCHGSB
CMPXCHGIOB. . .. e e e e e e e e e e 101
CPUID . ..o e e e e 103
DA A . 105
DA e 106
DEC . o 107
DIV 109
ENTER .. e 111
DIV L e e 113
IMIU L . . . e 115
I 117

ii Contents

AMDZ\

24594—Rev. 3.14—September 2007

LODS
LODSB
LODSW
LODSD

LOOPNE
LOOPNZ

LOOPZ
LZCNT ..

MOVS
MOVSB
MOVSW
MOVSD

AMD64 Technology

Contents

iii

AMDA

AMDG64 Technology 24594—Rev. 3.14—September 2007
MU . 173
NEG . . 175
NP . . 177
NOT . 178
O R 179
OU T . o e 181
OUTS
OUTSB
OUTSW
OUTSD .o 182
PAUSE . . 184
PO . 185
POPA
POPAD. . . 187
POP N .. 188
POPF
POPFD
POPEQ . . . 190
PREFETCH
PREFETCHW e e e 193
PREFETCHIEVEL e 195
PUSH . . 197
PUSHA
PUSHAD . . o 199
PUSHF
PUSHFD
PUSHEFQ . .o 200
RO . 202
RO R . 204
RET (Near) . ..ot e e e e e e e e e e e et e e 206
RET (Far). . ..o e e e e 207
RO . . 211
RO . . 213
SAHE . 215
SAL
SHL . oo 216
S A R 219
SB B 221
SCAS
SCASB
SCASW
SCASD
SCASQ e 223
SE T . . oot 225
SFENCE . . .o e 227
SHL . o 228
SHL D . . o 229

iv Contents

AMDZ\

24594—Rev. 3.14—September 2007 AMDG64 Technology
SHRR . . e 231
SHERDD e 233
ST . e 235
S D oo 236
STOS
STOSB
STOSW
STOSD
ST OS Q. . oo 237
SUB o 239
TE ST . . 241
XADDD . . 243
XCHG . . 245
XL AT . . 247
XL AT B .o 247
XOR . . 248

4 System Instruction Reference. i 251
ARPL . . e 252
CLGI . .. e 254
CLL. . o e 255
CLT S .o e 257
HLT . 258
INT 3 259
IN VD . 262
INV L PG. . . 263
IN VL PG A . . e 264
IRET
IRETD
TRETQ . .. 265
L AR . 271
LG T . . o 273
LD . . 275
L DT . . o e 277
LM S W L 279
LS 280
LT R . . 282
MONITOR. . . 284
MOV (CRI) . .o e e e e e e 286
MOV (DRN) .o e 288
MW AT .. 290
RDMSR . .. 292
R PM C . 293
R T S C .o 294
R T SCP .o 295
)/ 297
SGD T . . e 299
ST T . . 300

Contents v

AMDA

AMDG64 Technology 24594—Rev. 3.14—September 2007
SKINIT .o 301

S DT . 303

S S W 304

STl . o 305

ST Gl . 307

ST R e 308

SWA PGS . . 309

SYSCALL . . o 311

SYSENTER. . ..o 315

SY SEXIT . .ot 317

SY S RET .. e 319

U 323

VER R . 324

VERW . 326

VMLOAD . .o 327

VMM CALL. . .o 329

VM RUN. 330

VM S AV E . . 335

WBIN Y D . 337

WRM S R . 338

Appendix A Opcode and Operand Encodingst e 339
A.l Opcode-Syntax NOTation oo v ottt ettt et e e e et 339

A2 Opcode Encodings.ottt e e 340
One-Byte Opcodes.ot 340

TWO-Byte Opcodesottt e 343

rFLAGS Condition Codes for Two-Byte Opcodesc. i, 348

ModRM Extensions to One-Byte and Two-Byte Opcodes 348

ModRM Extensions to Opcodes OF 01 and OFAE L., 351

BDNOW!T™ OpCOdES. . . . oottt e 351

X8T ENcodings . . . oot e 354

rFLAGS Condition Codes for x87 Opcodest 363

A3 Operand Encodingso 363
ModRM Operand References ittt 363

SIB Operand Referencesot i e 369

Appendix B General-Purpose Instructions in 64-BitMode 373
B.1 General Rules for 64-BitMode 373

B.2 Operation and Operand Size in 64-BitMode i, 374

B.3 Invalid and Reassigned Instructions in 64-BitMode 399

B4 Instructions with 64-Bit Default Operand Size 400

B.5 Single-Byte INC and DEC Instructions in 64-BitMode. 401

B.6 NOPin 64-Bit Modeo o 401

B.7 Segment Override Prefixes in 64-BitModeo, 402
Appendix C Differences Between Long Mode and Legacy Mode. 403
Vi Contents

AMDZ\

24594—Rev. 3.14—September 2007 AMDG64 Technology
Appendix D Instruction Subsets and CPUID Feature Sets......................... 405
D.1 Instruction SUDSeLS.t 405
D.2 CPUID Feature Sets.ttt e e e e e e et e et e e 407
D.3 Instruction List.o e 409
Appendix E Instruction Effectson RFLAGS 435
INOEX o 439

Contents

vii

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

viii Contents

AMDZ\

24594—Rev. 3.14—September 2007

Figures

AMD64 Technology

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 3-1.
Figure A-1.
Figure A-2.
Figure A-3.
Figure D-1.

Instruction Byte-Order
Little-Endian Byte-Order of Instruction Stored in Memory
Encoding Examples of REX-Prefix R, X, and B Bits
ModRM-Byte Format
SIB-Byte Format
Format of Instruction-Detail Pages
General Registers in Legacy and Compatibility Modes
General Registers in 64-Bit Mode
Segment Registers
General-Purpose Data Types
System Registers
System Data Structures
128-Bit Media Registers
128-Bit Media Data Types
64-Bit Media Registers
64-Bit Media Data Types
x87 Registers
x87 Data Types
Syntax for Typical Two-Operand Instruction
MOVD Instruction Operation
ModRM-Byte Fields
ModRM-Byte Format
SIB Byte Format

Instruction Subsets vs. CPUID Feature Sets

Figures

ix

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

X Figures

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

Tables

Table 1-1. Legacy Instruction Prefixes et 4
Table 1-2. Operand-Size OVEITidesottt e e e et et e e e e 5
Table 1-3. Address-Size OVEITides.ottt e e e 6
Table 1-4. Pointer and Count Registers and the Address-Size Prefix 7
Table 1-5. Segment-Override Prefixes. e 8
Table 1-6. REP Prefix Opcodesottt e e e e et 9
Table 1-7. REPE and REPZ Prefix Opcodest e e 10
Table 1-8. REPNE and REPNZ Prefix Opcodes i 11
Table 1-9. REX Instruction Prefixes e 12
Table 1-10. Instructions Not Requiring REX Size Prefix in 64-BitMode 12
Table 1-11. REX Prefix-Byte Fields e e e e 13
Table 1-12. Special REX Encodings for Registers it 16
Table 1-13. Encoding for RIP-Relative Addressing.ottt 20
Table 2-1. Interrupt-Vector Source and Cause.ot it 36
Table 2-2. +1b, +rw, +1d, and +rq Register Value 40
Table 3-1. Instruction Support Indicated by CPUID Feature Bits 51
Table 3-2. Processor Vendor Return Values i 104
Table 3-3. Locality References for the Prefetch Instructions. 195
Table A-1. One-Byte Opcodes, Low Nibble O—7h i 341
Table A-2. One-Byte Opcodes, Low Nibble 8—Fh 342
Table A-3. Second Byte of Two-Byte Opcodes, Low Nibble O-7h 343
Table A-4. Second Byte of Two-Byte Opcodes, Low Nibble 8—Fh.............. 345
Table A-5. rFLAGS Condition Codes for CMOVcc, Jec, and SETCCo v oo 348
Table A-6. One-Byte and Two-Byte Opcode ModRM Extensions 349
Table A-7. Opcode OF 01 and OF AE ModRM EXtensionsc.uuuiiiuinrenennenn... 351
Table A-8. Immediate Byte for 3DNow!™ Opcodes, Low Nibble O-7h. 352
Table A-9. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8&Fh. 353
Table A-10. x87 Opcodes and ModRM EXtensionst 355
Table A-11. rFLAGS Condition Codes for FCMOVCCt 363
Table A-12. ModRM Register References, 16-Bit Addressing i .. 364
Table A-13. ModRM Memory References, 16-Bit Addressingt .. 365
Table A-14. ModRM Register References, 32-Bit and 64-Bit Addressing 367
Table A-15. ModRM Memory References, 32-Bit and 64-Bit Addressing 368
Table A-16. SIB base Field Referencest 370

Tables Xi

AMDA

AMDG64 Technology 24594—Rev. 3.14—September 2007
Table A-17. SIB Memory References. e 371
Table B-1. Operations and Operands in 64-BitMode 374
Table B-2. Invalid Instructions in 64-Bit Mode i 399
Table B-3. Reassigned Instructions in 64-Bit Mode. 400
Table B-4. Invalid Instructionsin Long Mode i i 400
Table B-5. Instructions Defaulting to 64-Bit Operand Sizeo .. 400
Table C-1. Differences Between Long Mode and Legacy Mode 403
Table D-1. Instruction Subsets and CPUID Feature Sets 409
Table E-1. Instruction Effects on RFLAGS e 435

Xii

Tables

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

Revision History

Date Revision | Description

September Added minor clarifications and corrected typographical and
3.14 .
2007 formatting errors.

Added the following instructions: “LZCNT” on page 153, “POPCNT”
on page 188, “MONITOR” on page 284, and “MWAIT” on page 290.

Reformatted information on instruction support indicated by CPUID

July 2007 3.13 feature bits into Table 3-1.
Added minor clarifications and corrected typographical and
formatting errors.
September Added minor clarifications and corrected typographical and
3.12 ,
2006 formatting errors.
December 3.11 Added SVM instructions; added PAUSE instructions; made factual
2005 ' changes.
Januar Clarified CPUID information in exception tables on instruction pages.
2005y 3.10 Added information under “CPUID” on page 103. Made numerous

small corrections.

Corrected table of valid descriptor types for LAR and LSL instructions

September 3.09 and made several minor formatting, stylistic and factual corrections.
2003 o) -
Clarified several technical definitions.
Corrected description of the operation of flags for RCL, RCR, ROL,
and ROR instructions. Clarified description of the MOVSXD and
IMUL instructions. Corrected operand specification for the STOS
April 2003 3.08 instruction. Corrected opcode of SETcc, Jcc, instructions. Added

thermal control and thermal monitoring bits to CPUID instruction.
Corrected exception tables for POPF, SFENCE, SUB, XLAT, IRET,
LSL, MOV(CRn), SGDT/SIDT, SMSW, and STl instructions.
Corrected many small typos and incorporated branding terminology.

Revision History Xiii

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

Xiv Revision History

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMDG64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume (Volume 3) is intended for all programmers writing application or system software for a
processor that implements the AMDG64 architecture. Descriptions of general-purpose instructions
assume an understanding of the application-level programming topics described in Volume 1.
Descriptions of system instructions assume an understanding of the system-level programming topics
described in Volume 2.

Organization

Volumes 3, 4, and 5 describe the AMD64 architecture’s instruction set in detail. Together, they cover
each instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:
* General-purpose instructions

e System instructions

e 128-bit media instructions

* 64-bit media instructions

* x87 floating-point instructions
Several instructions belong to—and are described identically in—multiple instruction subsets.

This volume describes the general-purpose and system instructions. The index at the end cross-
references topics within this volume. For other topics relating to the AMD64 architecture, and for

Preface XV

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents™ on page xxvi for descriptions of the legacy x86 architecture.

Terms and Notation

In addition to the notation described below, “Opcode-Syntax Notation” on page 339 describes notation
relating specifically to opcodes.

1011b
A binary value—in this example, a 4-bit value.

FOEAh

A hexadecimal value—in this example a 2-byte value.

[1.2)
A range that includes the left-most value (in this case, 1) but excludes the right-most value (in this
case, 2).

7-4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

128-bit media instructions

Instructions that use the 128-bit XMM registers. These are a combination of the SSE and SSE2
instruction sets.

64-bit media instructions

Instructions that use the 64-bit MMX registers. These are primarily a combination of MMX™ and
3DNow!™ jnstruction sets, with some additional instructions from the SSE and SSE2 instruction
sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

Xvi Preface

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP) with error code of 0.

absolute
Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

biased exponent
The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

CRO-CR4

A register range, from register CRO through CR4, inclusive, with the low-order register first.

CRO.PE=1
Notation indicating that the PE bit of the CRO register has a value of 1.

direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data

Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

Preface XVii

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword

Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSl

The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER.LME =0
Notation indicating that the LME bit of the EFER register has a value of 0.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

FF /0

Notation indicating that FF is the first byte of an opcode, and a subopcode in the ModR/M byte has
a value of 0.

flush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

xviii Preface

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

GDT
Global descriptor table.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB

The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT

Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents™ on page xxvi for descriptions of the legacy
x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMDG64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

long mode

An operating mode unique to the AMDG64 architecture. A processor implementation of the
AMDG64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

Isb
Least-significant bit.

LSB
Least-significant byte.

Preface Xix

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory
Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
A combination of 128-bit media instructions and 64-bit media instructions.

octword
Same as double quadword.

offset
Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

XX Preface

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ or IGN (see definitions).

Software must not depend on the state of a reserved field, nor upon the ability of such fields to
return to a previously written state.

If areserved field is not marked with one of the above qualifiers, software must not change the state
of that field; it must reload that field with the same values returned from a prior read.

REX
An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

Preface XXi

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index

(I), and base (B).
SIMD
Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3
Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CR8).

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SIMD (single-instruction multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

XXii Preface

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH-DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL-DL.

AL-DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.

AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B—R15B registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS

Code segment register.

eAX—-eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX—rSP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

Preface XXiii

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

elP
16-bit or 32-bit instruction-pointer register. Compare riP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8-rl5

The 8-bit RSB-R15B registers, or the 16-bit REW-R15W registers, or the 32-bit RSD-R15D
registers, or the 64-bit R§—R15 registers.

rAX-rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

XxXiv Preface

AMDZ\

24594—Rev. 3.14—September 2007

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

riP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR

AMD64 Technology

Task priority register, a new register introduced in the AMDG64 architecture to speed interrupt

management.

TR

Task register.

Preface

XXv

AMDA

AMDG64 Technology 24594—Rev. 3.14—September 2007

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Related Documents

Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume Il, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.
AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994,

Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

XXVi Preface

AMDZ\

24594—Rev. 3.14—September 2007 AMDG64 Technology

William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium IIl,
www.x86.org/articles/sse_ptl/ simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

Preface XXVii

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

e Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

» Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

* Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

e SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

» Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
» John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
* Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

XXViii Preface

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

1 Instruction Formats

The format of an instruction encodes its operation, as well as the locations of the instruction’s initial
operands and the result of the operation. This section describes the general format and parameters used
by all instructions. For information on the specific format(s) for each instruction, see:

e Chapter 3, “General-Purpose Instruction Reference.”
e Chapter 4, “System Instruction Reference.”

e “128-Bit Media Instruction Reference” in Volume 4.
e “64-Bit Media Instruction Reference” in Volume 5.

e “x87 Floating-Point Instruction Reference” in Volume 5.

1.1 Instruction Byte Order

An instruction can be between one and 15 bytes in length. Figure 1-1 shows the byte order of the
instruction format.

Legacy REX Opcode Displacement Immediate
Prefix Prefix (1 or 2 bytes) ModRM SIB (1, 2, 4, or 8 bytes) (1, 2, 4, or 8 bytes)

T 7] 7 — > %7 >

‘ Instruction Length < 15 Bytes |

»le

Figure 1-1. Instruction Byte-Order

Instructions are stored in memory in little-endian order. The least-significant byte of an instruction is
stored at its lowest memory address, as shown in Figure 1-2 on page 2.

Instruction Formats 1

AMDA

AMDG64 Technology 24594—Rev. 3.14—September 2007
7 0
[Most-significant Immediate | %
(highest) address mmedine |+
Immediate | *
Immediate | *

Displacement | *
Displacement | *
Displacement | *
Displacement | *

SIB *
<15 Bytes ViodRM .
Opcode *

Opcode (all two-byte opcodes have OFh as their first byte)
REX Prefix | + (available only in 64-bit mode)
Legacy Prefix [+

Legacy Prefix [+
Least-significant tegacy Ere?X + * opti.onal, de_pending_on the_instruction
i (IOWESt) address egacy rrenx g+ + optional, with most instructions

513-304.eps

Figure 1-2. Little-Endian Byte-Order of Instruction Stored in Memory

The basic operation of an instruction is specified by an opcode. The opcode is one or two bytes long, as
described in “Opcode” on page 17. An opcode can be preceded by any number of legacy prefixes.
These prefixes can be classified as belonging to any of the five groups of prefixes described in
“Instruction Prefixes” on page 3. The legacy prefixes modify an instruction’s default address size,
operand size, or segment, or they invoke a special function such as modification of the opcode, atomic
bus-locking, or repetition. The REX prefix can be used in 64-bit mode to access the register extensions
illustrated in “Application-Programming Register Set” in Volume 1. If a REX prefix is used, it must
immediately precede the first opcode byte.

An instruction’s opcode consists of one or two bytes. In several 128-bit and 64-bit media instructions,
a legacy operand-size or repeat prefix byte is used in a special-purpose way to modify the opcode. The
opcode can be followed by a mode-register-memory (ModRM) byte, which further describes the
operation and/or operands. The opcode, or the opcode and ModRM byte, can also be followed by a
scale-index-base (SIB) byte, which describes the scale, index, and base forms of memory addressing.
The ModRM and SIB bytes are described in “ModRM and SIB Bytes” on page 17, but their legacy
functions can be modified by the REX prefix (“Instruction Prefixes” on page 3).

The 15-byte instruction-length limit can only be exceeded by using redundant prefixes. If the limit is
exceeded, a general-protection exception occurs.

2 Instruction Formats

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

1.2 Instruction Prefixes

The instruction prefixes shown in Figure 1-1 on page 1 are of two types: legacy prefixes and REX
prefixes. Each of the legacy prefixes has a unique byte value. By contrast, the REX prefixes, which
enable use of the AMD64 register extensions in 64-bit mode, are organized as a group of byte values in
which the value of the prefix indicates the combination of register-extension features to be enabled.

1.2.1 Summary of Legacy Prefixes

Table 1-1 on page 4 shows the legacy prefixes—that is, all prefixes except the REX prefixes, which are
described on page 11. The legacy prefixes are organized into five groups, as shown in the left-most
column of Table 1-1. A single instruction should include a maximum of one prefix from each of the
five groups. The legacy prefixes can appear in any order within the position shown in Figure 1-1 for
legacy prefixes. The result of using multiple prefixes from a single group is unpredictable.

Some of the restrictions on legacy prefixes are:

» Operand-Size Override—This prefix affects only general-purpose instructions and a few x87
instructions. When used with 128-bit and 64-bit media instructions, this prefix acts in a special
way to modify the opcode.

» Address-Size Override—This prefix affects only memory operands.
» Segment Override—In 64-bit mode, the CS, DS, ES, and SS segment override prefixes are ignored.
* LOCK Prefix—This prefix is allowed only with certain instructions that modify memory.

* Repeat Prefixes—These prefixes affect only certain string instructions. When used with 128-bit
and 64-bit media instructions, these prefixes act in a special way to modify the opcode.

Instruction Formats 3

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

Table 1-1. Legacy Instruction Prefixes

. Prefix I
i 1 Mnemonic Description
Prefix Group Byte (Hex) P
. : Changes the default operand size of a memory or
- 2
Operand-Size Override | none 66 register operand, as shown in Table 1-2 on page 5.
Address-Size Override | none 673 Changes t_he default address size of a memory operand,
as shown in Table 1-3 on page 6.
4 Forces use of the current CS segment for memory
CS 2E
operands.
DS 34 Forces use of the current DS segment for memory
operands.
ES o6t Forces use of the current ES segment for memory
. operands.
Segment Override
Forces use of the current FS segment for memory
FS 64
operands.
Forces use of the current GS segment for memory
GS 65
operands.
ss 364 Forces use of the current SS segment for memory
operands.
Lock LOCK F05 _Causes_ certain kinds of memory read-modify-write
instructions to occur atomically.
REP Repeats a string operation (INS, MOVS, OUTS, LODS,
and STOS) until the rCX register equals 0.
REPE or F3% Repeats a compare-string or scan-string operation
Repeat REPZ (CMPSx and SCASXx) until the rCX register equals 0 or
P the zero flag (ZF) is cleared to 0.
REPNE or Repeats a compare-string or scan-string operation
Fob (CMPSx and SCASXx) until the rCX register equals 0 or
REPNZ :
the zero flag (ZF) is set to 1.
Note:

1. A single instruction should include a maximum of one prefix from each of the five groups.

2. When used with 128-bit and 64-bit media instructions, this prefix acts in a special way to modify the opcode. The
prefix is ignored by 64-bit media floating-point (3DNow!™) instructions. See “Instructions that Cannot Use the Oper-
and-Size Prefix” on page 5.

3. This prefix also changes the size of the RCX register when used as an implied count register.

4. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

5. The LOCK prefix should not be used for instructions other than those listed in “Lock Prefix” on page 8.

6. This prefix should be used only with compare-string and scan-string instructions. When used with 128-bit and 64-
bit media instructions, the prefix acts in a special way to modify the opcode.

1.2.2 Operand-Size Override Prefix

The default operand size for an instruction is determined by a combination of its opcode, the D
(default) bit in the current code-segment descriptor, and the current operating mode, as shown in
Table 1-2. The operand-size override prefix (66h) selects the non-default operand size. The prefix can

4 Instruction Formats

AMDZ1
AMD64 Technology

24594—Rev. 3.14—September 2007

be used with any general-purpose instruction that accesses non-fixed-size operands in memory or
general-purpose registers (GPRs), and it can also be used with the x87 FLDENYV, FNSTENYV,
FNSAVE, and FRSTOR instructions.

In 64-bit mode, the prefix allows mixing of 16-bit, 32-bit, and 64-bit data on an instruction-by-
instruction basis. In compatibility and legacy modes, the prefix allows mixing of 16-bit and 32-bit
operands on an instruction-by-instruction basis.

Table 1-2. Operand-Size Overrides

Default | Effective Instruction Prefix'
Operating Mode Operand Op;;a;nd s6h 3
i i REX.W
Size (Bits) (Bits)
64 don’t care yes
64-Bit 2
Mode 32 32 no no
16 yes no
Long
Mode 39 32 no
Compatibility 16 yes
Mode 32 yes
16
16 no Not Appli-
32 no cable
32
Legacy Mode. 16 yes
(Protected, Virtual-8086,
or Real Mode) 16 32 yes
16 no
Note:
1. A “no’ indicates that the default operand size is used.
2. This is the typical default, although some instructions default to other operand
sizes. See Appendix B, “General-Purpose Instructions in 64-Bit Mode,” for details.
3. See “REX Prefixes” on page 11.

In 64-bit mode, most instructions default to a 32-bit operand size. For these instructions, a REX prefix
(page 13) can specify a 64-bit operand size, and a 66h prefix specifies a 16-bit operand size. The REX
prefix takes precedence over the 66h prefix. However, if an instruction defaults to a 64-bit operand
size, it does not need a REX prefix and it can only be overridden to a 16-bit operand size. It cannot be
overridden to a 32-bit operand size, because there is no 32-bit operand-size override prefix in 64-bit
mode. Two groups of instructions have a default 64-bit operand size in 64-bit mode:

¢ Near branches. For details, see “Near Branches in 64-Bit Mode” in Volume 1.

* All instructions, except far branches, that implicitly reference the RSP. For details, see “Stack
Operation” in Volume 1.

Instructions that Cannot Use the Operand-Size Prefix. The operand-size prefix should be used
only with general-purpose instructions and the x87 FLDENYV, FNSTENYV, FNSAVE, and FRSTOR

Instruction Formats 5

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

instructions, in which the prefix selects between 16-bit and 32-bit operand size. The prefix is ignored
by all other x87 instructions and by 64-bit media floating-point (3DNow!™) instructions.

When used with 64-bit media integer instructions, the 66h prefix acts in a special way to modify the
opcode. This modification typically causes an access to an XMM register or 128-bit memory operand
and thereby converts the 64-bit media instruction into its comparable 128-bit media instruction. The
result of using an F2h or F3h repeat prefix along with a 66h prefix in 128-bit or 64-bit media
instructions is unpredictable.

Operand-Size and REX Prefixes. The REX operand-size prefix takes precedence over the 66h
prefix. See “REX.W: Operand Width” on page 13 for details.

1.2.3 Address-Size Override Prefix

The default address size for instructions that access non-stack memory is determined by the current
operating mode, as shown in Table 1-3. The address-size override prefix (67h) selects the non-default
address size. Depending on the operating mode, this prefix allows mixing of 16-bit and 32-bit, or of
32-bit and 64-bit addresses, on an instruction-by-instruction basis. The prefix changes the address size
for memory operands. It also changes the size of the RCX register for instructions that use RCX
implicitly.

For instructions that implicitly access the stack segment (SS), the address size for stack accesses is
determined by the D (default) bit in the stack-segment descriptor. In 64-bit mode, the D bit is ignored,
and all stack references have a 64-bit address size. However, if an instruction accesses both stack and
non-stack memory, the address size of the non-stack access is determined as shown in Table 1-3.

Table 1-3. Address-Size Overrides

Address-
Default Effective Size Prefix
Operating Mode Address | Address Size (67h)'
Size (Bits Bits
() () Required?
-Bi 64 no
64-Bit 64
Mode 32 yes
32 no
Long Mode 32
Compatibility 16 yes
Mode 32 yes
16
16 no
32 32 no
Legacy Mode_ 16 yes
(Protected, Virtual-8086, or Real
Mode) 32 yes
16
16 no
Note:
1. A “no” indicates that the default address size is used.

6 Instruction Formats

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

As Table 1-3 shows, the default address size is 64 bits in 64-bit mode. The size can be overridden to 32
bits, but 16-bit addresses are not supported in 64-bit mode. In compatibility and legacy modes, the
default address size is 16 bits or 32 bits, depending on the operating mode (see “Processor
Initialization and Long Mode Activation” in Volume 2 for details). In these modes, the address-size
prefix selects the non-default size, but the 64-bit address size is not available.

Certain instructions reference pointer registers or count registers implicitly, rather than explicitly. In
such instructions, the address-size prefix affects the size of such addressing and count registers, just as
it does when such registers are explicitly referenced. Table 1-4 lists all such instructions and the
registers referenced using the three possible address sizes.

Table 1-4. Pointer and Count Registers and the Address-Size Prefix

Pointer or Count Register
Instruction 16-Bit 32-Bit 64-Bit
Address Size | Address Size | Address Size

CMPS, CMPSB, CMPSW,
CMPSD, CMPSQ—Compare SI, DI, CX | ESI, EDI, ECX | RSI, RDI, RCX
Strings
INS, INS.B’ INSW, INSD— DI, CX EDI, ECX RDI, RCX
Input String
JCXZ, JECXZ, JRCXZ—Jump
on CX/ECX/RCX Zero CX ECX RCX
LODS, LODSB, LODSW,
LODSD, LODSQ—Load Sl, CX ESI, ECX RSI, RCX
String
LOOP, LOOPE, LOOPNZ,
LOOPNE, LOOPZ—Loop CX ECX RCX
MOVS, MOVSB, MOVSW,
MOVSD, MOVSQ—Move SI, DI, CX | ESI, EDI, ECX | RSI, RDI, RCX
String
OUTS, OUTSB, OUTSW,
OUTSD—Output String SlI, CX ESI, ECX RSI, RCX
REP, REPE, REPNE, REPNZ,
REPZ—Repeat Prefixes CX ECX RCX
SCAS, SCASB, SCASW,
SCASD, SCASQ—Scan DI, CX EDI, ECX RDI, RCX
String
STOS, STOSB, STOSW,
STOSD, STOSQ—Store DI, CX EDI, ECX RDI, RCX
String
XLAT, X.LATB—TabIe Look-up BX EBX RBX
Translation

Instruction Formats 7

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

1.2.4 Segment-Override Prefixes

Segment overrides can be used only with instructions that reference non-stack memory. Most
instructions that reference memory are encoded with a ModRM byte (page 17). The default segment
for such memory-referencing instructions is implied by the base register indicated in its ModRM byte,
as follows:

» Instructions that Reference a Non-Stack Segment—If an instruction encoding references any base
register other than rBP or rSP, or if an instruction contains an immediate offset, the default segment
is the data segment (DS). These instructions can use the segment-override prefix to select one of
the non-default segments, as shown in Table 1-5.

e String Instructions—String instructions reference two memory operands. By default, they
reference both the DS and ES segments (DS:rSI and ES:rDI). These instructions can override their
DS-segment reference, as shown in Table 1-5, but they cannot override their ES-segment
reference.

* Instructions that Reference the Stack Segment—If an instruction’s encoding references the rBP or
rSP base register, the default segment is the stack segment (SS). All instructions that reference the
stack (push, pop, call, interrupt, return from interrupt) use SS by default. These instructions cannot
use the segment-override prefix.

Table 1-5. Segment-Override Prefixes

Mnemonic Pre(f;z)?)yte Description
cs’ 2E Forces use of current CS segment for memory operands.
DS' 3E Forces use of current DS segment for memory operands.
ES’ 26 Forces use of current ES segment for memory operands.
FS 64 Forces use of current FS segment for memory operands.
GS 65 Forces use of current GS segment for memory operands.
SS! 36 Forces use of current SS segment for memory operands.
Note:
1. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

Segment Overrides in 64-Bit Mode. In 64-bit mode, the CS, DS, ES, and SS segment-override
prefixes have no effect. These four prefixes are not treated as segment-override prefixes for the
purposes of multiple-prefix rules. Instead, they are treated as null prefixes.

The FS and GS segment-override prefixes are treated as true segment-override prefixes in 64-bit mode.
Use of the FS or GS prefix causes their respective segment bases to be added to the effective address
calculation. See “FS and GS Registers in 64-Bit Mode” in Volume 2 for details.

1.2.5 Lock Prefix

The LOCK prefix causes certain kinds of memory read-modify-write instructions to occur atomically.
The mechanism for doing so is implementation-dependent (for example, the mechanism may involve

8 Instruction Formats

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

bus signaling or packet messaging between the processor and a memory controller). The prefix is
intended to give the processor exclusive use of shared memory in a multiprocessor system.

The LOCK prefix can only be used with forms of the following instructions that write a memory
operand: ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHGS8B, CMPXCHG16B, DEC,
INC, NEG, NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-opcode exception occurs if
the LOCK prefix is used with any other instruction.

1.2.6 Repeat Prefixes

The repeat prefixes cause repetition of certain instructions that load, store, move, input, or output
strings. The prefixes should only be used with such string instructions. Two pairs of repeat prefixes,
REPE/REPZ and REPNE/REPNZ, perform the same repeat functions for certain compare-string and
scan-string instructions. The repeat function uses rCX as a count register. The size of rCX is based on
address size, as shown in Table 1-4 on page 7.

REP. The REP prefix repeats its associated string instruction the number of times specified in the
counter register (rCX). It terminates the repetition when the value in rCX reaches 0. The prefix can be
used with the INS, LODS, MOVS, OUTS, and STOS instructions. Table 1-6 shows the valid REP
prefix opcodes.

Table 1-6. REP Prefix Opcodes

Mnemonic Opcode

REP INS reg/mem8, DX
REP INSB

REP INS reg/mem16/32, DX
REP INSW F3 6D
REP INSD

REP LODS mem8
REP LODSB

REP LODS mem16/32/64
REP LODSW

REP LODSD

REP LODSQ

REP MOVS mem8, mem8
REP MOVSB

REP MOVS mem16/32/64, mem16/32/64
REP MOVSW

REP MOVSD

REP MOVSQ

REP OUTS DX, reg/mem8
REP OUTSB

F36C

F3 AC

F3 AD

F3 A4

F3 A5

F3 6E

Instruction Formats 9

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

Table 1-6. REP Prefix Opcodes (continued)

Mnemonic Opcode

REP OUTS DX, reg/mem16/32
REP OUTSW F3 6F
REP OUTSD

REP STOS mem8

REP STOSB

REP STOS mem16/32/64
REP STOSW

REP STOSD

REP STOSQ

F3 AA

F3 AB

REPE and REPZ. REPE and REPZ are synonyms and have identical opcodes. These prefixes repeat
their associated string instruction the number of times specified in the counter register (rCX). The
repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is cleared to 0. The
REPE and REPZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS, SCASB,
SCASD, and SCASW instructions. Table 1-7 shows the valid REPE and REPZ prefix opcodes.

Table 1-7. REPE and REPZ Prefix Opcodes

Mnemonic Opcode

REPx CMPS mem8, mem8
REPx CMPSB

REPx CMPS mem16/32/64, mem16/32/64
REPx CMPSW

REPx CMPSD

REPx CMPSQ

REPx SCAS mem8

REPx SCASB

REPx SCAS mem16/32/64

REPx SCASW

REPx SCASD

REPx SCASQ

F3 A6

F3 A7

F3 AE

F3 AF

REPNE and REPNZ. REPNE and REPNZ are synonyms and have identical opcodes. These prefixes
repeat their associated string instruction the number of times specified in the counter register (rCX).
The repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is set to 1. The
REPNE and REPNZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS,
SCASB, SCASD, and SCASW instructions. Table 1-8 on page 11 shows the valid REPNE and
REPNZ prefix opcodes.

10 Instruction Formats

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

Table 1-8. REPNE and REPNZ Prefix Opcodes

Mnemonic Opcode

REPNx CMPS mem8, mem8
REPNx CMPSB

REPNx CMPS mem16/32/64, mem16/32/64
REPNx CMPSW
REPNx CMPSD
REPNx CMPSQ

REPNx SCAS mem8
REPNx SCASB

REPNx SCAS mem16/32/64
REPNx SCASW
REPNx SCASD
REPNx SCASQ

F2 A6

F2 A7

F2 AE

F2 AF

Instructions that Cannot Use Repeat Prefixes. In general, the repeat prefixes should only be used
in the string instructions listed in tables 1-6, 1-7, and 1-8, and in 128-bit or 64-bit media instructions.
When used in media instructions, the F2h and F3h prefixes act in a special way to modify the opcode
rather than cause a repeat operation. The result of using a 66h operand-size prefix along with an F2h or
F3h prefix in 128-bit or 64-bit media instructions is unpredictable.

Optimization of Repeats. Depending on the hardware implementation, the repeat prefixes can have a
setup overhead. If the repeated count is variable, the overhead can sometimes be avoided by substituting
a simple loop to move or store the data. Repeated string instructions can be expanded into equivalent
sequences of inline loads and stores or a sequence of stores can be used to emulate a REP STOS.

For repeated string moves, performance can be maximized by moving the largest possible operand
size. For example, use REP MOVSD rather than REP MOVSW and REP MOVSW rather than REP
MOVSB. Use REP STOSD rather than REP STOSW and REP STOSW rather than REP MOVSB.

Depending on the hardware implementation, string moves with the direction flag (DF) cleared to 0
(up) may be faster than string moves with DF set to 1 (down). DF =1 is only needed for certain cases
of overlapping REP MOVS, such as when the source and the destination overlap.

1.2.7 REX Prefixes

REX prefixes are a group of instruction-prefix bytes that can be used only in 64-bit mode. They enable
access to the AMD64 register extensions. Figure 1-1 on page 1 and Figure 1-2 on page 2 show how a
REX prefix fits within the byte order of instructions. REX prefixes enable the following features in 64-
bit mode:

* Use of the extended GPR (Figure 2-3 on page 25) or XMM registers (Figure 2-8 on page 30).
* Use of the 64-bit operand size when accessing GPRs.

Instruction Formats 11

AMDA
AMDG64 Technology

24594—Rev. 3.14—September 2007

* Use of the extended control and debug registers, as described in “64-Bit-Mode Extended Control
Registers” in Volume 2 and “64-Bit-Mode Extended Debug Registers” in Volume 2.

e Use of the uniform byte registers (AL-R15).

Table 1-9 shows the REX prefixes. The value of a REX prefix is in the range 40h through 4Fh,
depending on the particular combination of AMD64 register extensions desired.

Table 1-9. REX Instruction Prefixes

. . Prefix Code i
Prefix Type Mnemonic (Hex) Description
REX.W
40! ,
. . REX.R Access an AMD64 register
Register Extensions through .
REX.X 4F extension.
REX.B
Note:
1. See Table 1-11 for encoding of REX prefixes.

A REX prefix is normally required with an instruction that accesses a 64-bit GPR or one of the
extended GPR or XMM registers. Only a few instructions have an operand size that defaults to (or is
fixed at) 64 bits in 64-bit mode, and thus do not need a REX prefix. These exceptions to the normal

rule are listed in Table 1-10.

Table 1-10. Instructions Not Requiring REX Size Prefix in 64-Bit Mode
CALL (Near) POP reg/mem
ENTER POP reg

Jec POP FS

JrCXz POP GS

JMP (Near) POPFQ

LEAVE PUSH imm8
LGDT PUSH imm32
LIDT PUSH reg/mem
LLDT PUSH reg
LOOP PUSH FS
LOOPcc PUSH GS

LTR PUSHFQ

MOV CR(n) RET (Near)
MOV DR(n)

An instruction can have only one REX prefix, although the prefix can express several extension
features. If a REX prefix is used, it must immediately precede the first opcode byte in the instruction
format. Any other placement of a REX prefix, or any use of a REX prefix in an instruction that does

12 Instruction Formats

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

not access an extended register, is ignored. The legacy instruction-size limit of 15 bytes still applies to
instructions that contain a REX prefix.

REX prefixes are a set of sixteen values that span one row of the main opcode map and occupy entries
40h through 4Fh. Table 1-11 and Figure 1-3 on page 15 show the prefix fields and their uses.

Table 1-11. REX Prefix-Byte Fields

Mnemonic Bit Position Definition
— 7-4 0100
0 = Default operand size

REX-W 3 1 = 64-bit operand size
1-bit (high) extension of the ModRM reg
REX.R 2 field', thus permitting access to 16
registers.
REX X 1 1-bit (high) extension of the SIB index field,

thus permitting access to 16 registers.
1-bit (high) extension of the ModRM r/m

REX.B 0 field', SIB base field', or opcode reg field,
thus permitting access to 16 registers.

Note:

1. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on
page 17.

REX.W: Operand Width. Setting the REX.W bit to 1 specifies a 64-bit operand size. Like the
existing 66h operand-size prefix, the REX 64-bit operand-size override has no effect on byte
operations. For non-byte operations, the REX operand-size override takes precedence over the 66h
prefix. If a 66h prefix is used together with a REX prefix that has the REX.W bit set to 1, the 66h
prefix is ignored. However, if a 66h prefix is used together with a REX prefix that has the REX.W bit
cleared to 0, the 66h prefix is not ignored and the operand size becomes 16 bits.

REX.R: Register. The REX.R bit adds a 1-bit (high) extension to the ModRM reg field (page 17)
when that field encodes a GPR, XMM, control, or debug register. REX.R does not modify ModRM reg
when that field specifies other registers or opcodes. REX.R is ignored in such cases.

REX.X: Index. The REX.X bit adds a 1-bit (high) extension to the SIB index field (page 17).

REX.B: Base. The REX.B bit adds a 1-bit (high) extension to either the ModRM r/m field to specify
a GPR or XMM register, or to the SIB base field to specify a GPR. (See Table 2-2 on page 40 for more
about the REX.B bit.)

Encoding Examples. Figure 1-3 on page 15 shows four examples of how the R, X, and B bits of
REX prefixes are concatenated with fields from the ModRM byte, SIB byte, and opcode to specify
register and memory addressing. The R, X, and B bits are described in Table 1-11 on page 13.

Instruction Formats 13

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

Byte-Register Addressing. In the legacy architecture, the byte registers (AH, AL, BH, BL, CH, CL,
DH, and DL, shown in Figure 2-2 on page 24) are encoded in the ModRM reg or r/m field or in the
opcode reg field as registers O through 7. The REX prefix provides an additional byte-register
addressing capability that makes the least-significant byte of any GPR available for byte operations
(Figure 2-3 on page 25). This provides a uniform set of byte, word, doubleword, and quadword
registers better suited for register allocation by compilers.

Special Encodings for Registers. Readers who need to know the details of instruction encodings
should be aware that certain combinations of the ModRM and SIB fields have special meaning for
register encodings. For some of these combinations, the instruction fields expanded by the REX prefix
are not decoded (treated as don’t cares), thereby creating aliases of these encodings in the extended
registers. Table 1-12 on page 16 describes how each of these cases behaves.

Implications for INC and DEC Instructions. The REX prefix values are taken from the 16 single-
byte INC and DEC instructions, one for each of the eight GPRs. Therefore, these single-byte opcodes
for INC and DEC are not available in 64-bit mode, although they are available in legacy and
compatibility modes. The functionality of these INC and DEC instructions is still available in 64-bit
mode, however, using the ModRM forms of those instructions (opcodes FF /0 and FF /1).

14 Instruction Formats

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

Case 1: Register-Register Addressing (No Memory Operand)

ModRM Byte
REX Prefix Opcode mod reg r/m
4WRx8 | | | [11]rrr|bbb] REXXisnotused
|
4
4
Rrrr Bbbb

Case 2: Memory Addressing Without an SIB Byte

ModRM Byte
REX Prefix Opcode mod reg r/m
4WRXB ' rrr[obb] REXXis notused
| I | I | | | I ModRM reg field = 100
4
4
Rrrr Bbbb

Case 3: Memory Addressing With an SIB Byte

ModRM Byte SIB Byte
REX Prefix Opcode mod reg r/m scale index base
4WRXB | | [!11 rrre|100] [bb|xxx]|bbb |
|
4 14
4
Rrrr Xxxx Bbbb

Case 4: Register Operand Coded in Opcode Byte

Opcode Byte
REX Prefix op reg
4WRXB | [bbb | REXRis not used
| REXXis not used
4
Bbbb 513-302.6ps

Figure 1-3. Encoding Examples of REX-Prefix R, X, and B Bits

Instruction Formats 15

AMDA

AMDG64 Technology

24594—Rev. 3.14—September 2007

Table 1-12. Special REX Encodings for Registers

ModRM and SIB

Meaning in Legacy and

Implications in Legacy
and Compatibility

Additional REX

e r/m' =100 (ESP)

SIB byte is present.

. 2 I . =
Encodings Compatibility Modes Modes Implications
REX prefix adds a fourth
. bit (b), which is decoded
ModRM Byte: . . and modifies the base
e mod =11 SIB byte is required for

ESP-based addressing.

register in the SIB byte.
Therefore, the SIB byte is
also required for R12-
based addressing.

ModRM Byte:
* mod =00

e r/m' =x101 (EBP)

Base register is not used.

Using EBP without a
displacement must be
done by setting mod = 01
with a displacement of 0
(with or without an index
register).

REX prefix adds a fourth
bit (x), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0.

SIB Byte:
« index' = x100 (ESP)

Index register is not used.

ESP cannot be used as
an index register.

REX prefix adds a fourth
bit (x), which is decoded.
Therefore, there are no
additional implications.
The expanded index field
is used to distinguish RSP
from R12, allowing R12 to
be used as an index.

SIB Byte:
* base =b101 (EBP)
* ModRM.mod = 00

Base register is not used
if ModRM.mod = 00.

Base register depends on
mod encoding. Using
EBP with a scaled index
and without a
displacement must be
done by setting mod = 01
with a displacement of 0.

REX prefix adds a fourth
bit (b), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0 (with or
without an index register).

Note:

1. The REX-prefix bit is shown in the fourth (most-significant) bit position of the encodings for the ModRM r/m, SIB
index, and SIB base fields. The lower-case “x” for ModRM r/m (rather than the upper-case “B” shown in Figure 1-3
on page 15) indicates that the REX-prefix bit is not decoded (don’t care).

2. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 17.

16

Instruction Formats

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

1.3 Opcode

Each instruction has a unique opcode, although assemblers can support multiple mnemonics for a
single instruction opcode. The opcode specifies the operation that the instruction performs and, in
certain cases, the kinds of operands it uses. An opcode consists of one or two bytes, but certain 128-bit
media instructions also use a prefix byte in a special way to modify the opcode. The 3-bit reg field of
the ModRM byte (“ModRM and SIB Bytes” on page 17) is also used in certain instructions either for
three additional opcode bits or for a register specification.

128-Bit and 64-Bit Media Instruction Opcodes. Many 128-bit and 64-bit media instructions
include a 66h, F2h, or F3h prefix byte in a special way to modify the opcode. These same byte values
can be used in certain general-purpose and x87 instructions to modify operand size (66h) or repeat the
operation (F2h, F3h). In 128-bit and 64-bit media instructions, however, such prefix bytes modify the
opcode. If a 128-bit or 64-bit media instruction uses one of these three prefixes, and also includes any
other prefix in the 66h, F2h, and F3h group, the result is unpredictable.

All opcodes for 64-bit media instructions begin with a OFh byte. In the case of 64-bit floating-point
(3DNow!) instructions, the OFh byte is followed by a second OFh opcode byte. A third opcode byte
occupies the same position at the end of a 3DNow! instruction as would an immediate byte. The value
of the immediate byte is shown as the third opcode byte-value in the syntax for each instruction in
“64-Bit Media Instruction Reference” in Volume 5. The format is:

OFh O0Fh ModRM [SIB] [displacement] 3DNow! third opcode byte

For details on opcode encoding, see Appendix A, “Opcode and Operand Encodings.”

1.4 ModRM and SIB Bytes

The ModRM byte is used in certain instruction encodings to:

* Define a register reference.

* Define a memory reference.

* Provide additional opcode bits with which to define the instruction’s function.

ModRM bytes have three fields—mod, reg, and r/m. The reg field provides additional opcode bits with
which to define the function of the instruction or one of its operands. The mod and r/m fields are used
together with each other and, in 64-bit mode, with the REX.R and REX.B bits of the REX prefix

(page 11), to specity the location of an instruction’s operands and certain of the possible addressing
modes (specifically, the non-complex modes).

Figure 1-4 on page 18 shows the format of a ModRM byte.

Instruction Formats 17

AMDA

AMDG64 Technology 24594—Rev. 3.14—September 2007
Bt 7 6 5 4 3 2 1 0
[mod | reg | r/m | Modrm
REX.R bit of REX prefix can —T
extend this field to 4 bits
REX.B bit of REX prefix can
extend this field to 4 bits

513-305.eps

Figure 1-4. ModRM-Byte Format

In some instructions, the ModRM byte is followed by an SIB byte, which defines memory addressing
for the complex-addressing modes described in “Effective Addresses” in Volume 1. The SIB byte has
three fields—scale, index, and base—that define the scale factor, index-register number, and base-
register number for 32-bit and 64-bit complex addressing modes. In 64-bit mode, the REX.B and
REX.X bits extend the encoding of the SIB byte’s base and index fields.

Figure 1-5 shows the format of an SIB byte.

Bts: 7 6 5 4 3 2 1 0
[scale | index | base | s

REX.X bit of REX prefix can —T
extend this field to 4 bits

513-306.eps

REX.B bit of REX prefix can
extend this field to 4 bits

Figure 1-5. SIB-Byte Format

The encodings of ModRM and SIB bytes not only define memory-addressing modes, but they also
specify operand registers. The encodings do this by using 3-bit fields in the ModRM and SIB bytes,
depending on the format:

e ModRM: the reg and r/m fields of the ModRM byte. (Case 1 in Figure 1-3 on page 15 shows an
example of this).

* ModRM with SIB: the reg field of the ModRM byte and the base and index fields of the SIB byte.
(Case 3 in Figure 1-3 on page 15 shows an example of this).

18 Instruction Formats

AMDZ\
24594—Rev. 3.14—September 2007 AMDG64 Technology

* Instructions without ModRM: the reg field of the opcode. (Case 4 in Figure 1-3 on page 15 shows
an example of this).

In 64-bit mode, the bits needed to extend each field for accessing the additional registers are provided
by the REX prefixes, as shown in Figure 1-4 and Figure 1-5 on page 18.

For details on opcode encoding, see Appendix A, “Opcode and Operand Encodings.”

1.5 Displacement Bytes

A displacement (also called an offset) is a signed value that is added to the base of a code segment
(absolute addressing) or to an instruction pointer (relative addressing), depending on the addressing
mode. The size of a displacement is 1, 2, or 4 bytes. If an addressing mode requires a displacement, the
bytes (1, 2, or 4) for the displacement follow the opcode, ModRM, or SIB byte (whichever comes last)
in the instruction encoding.

In 64-bit mode, the same ModRM and SIB encodings are used to specify displacement sizes as those
used in legacy and compatibility modes. However, the displacement is sign-extended to 64 bits during
effective-address calculations. Also, in 64-bit mode, support is provided for some 64-bit displacement
and immediate forms of the MOV instruction. See “Immediate Operand Size” in Volume 1 for more
information on this.

1.6 Immediate Bytes

An immediate is a value—typically an operand value—encoded directly into the instruction.
Depending on the opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8
bytes. 64-bit immediates are allowed in 64-bit mode on MOV instructions that load GPRs, otherwise
they are limited to 4 bytes. See “Immediate Operand Size” in Volume 1 for more information.

If an instruction takes an immediate operand, the bytes (1, 2, 4, or 8) for the immediate follow the
opcode, ModRM, SIB, or displacement bytes (whichever come last) in the instruction encoding. Some
128-bit media instructions use the immediate byte as a condition code.

1.7 RIP-Relative Addressing

In 64-bit mode, addressing relative to the contents of the 64-bit instruction pointer (program
counter)—called RIP-relative addressing or PC-relative addressing—is implemented for certain
instructions. In such cases, the effective address is formed by adding the displacement to the 64-bit RIP
of the next instruction.

In the legacy x86 architecture, addressing relative to the instruction pointer is available only in control-
transfer instructions. In the 64-bit mode, any instruction that uses ModRM addressing can use RIP-
relative addressing. This feature is particularly useful for addressing data in position-independent code
and for code that addresses global data.

Instruction Formats 19

AMDA
AMDG64 Technology

24594—Rev. 3.14—September 2007

Without RIP-relative addressing, ModRM instructions address memory relative to zero. With RIP-
relative addressing, ModRM instructions can address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of +2 Gbytes from the RIP.

Programs usually have many references to data, especially global data, that are not register-based. To
load such a program, the loader typically selects a location for the program in memory and then adjusts
program references to global data based on the load location. RIP-relative addressing of data makes
this adjustment unnecessary.

1.7.1 Encoding

Table 1-13 shows the ModRM and SIB encodings for RIP-relative addressing. Redundant forms of 32-
bit displacement-only addressing exist in the current ModRM and SIB encodings. There is one
ModRM encoding with several SIB encodings. RIP-relative addressing is encoded using one of the
redundant forms. In 64-bit mode, the ModRM Disp32 (32-bit displacement) encoding is redefined to
be RIP + Disp32 rather than displacement-only.

Table 1-13. Encoding for RIP-Relative Addressing
ModRM and SIB

Additional 64-bit

Meaning in Legacy and

Meaning in 64-bit Mode

Encodings Compatibility Modes Implications
ModRM Byte: Zero-based (normal)
e mod = 00 Disp32 RIP + Disp32 displacement addressing
must use SIB form (see
* r/m=101 (none) next row).
SIB Byte:

* base =101 (none)
¢ index = 100 (none)
* scale=1,2,4,8

If mod = 00, Disp32 Same as Legacy None

1.7.2 REX Prefix and RIP-Relative Addressing

ModRM encoding for RIP-relative addressing does not depend on a REX prefix. In particular, the r/m
encoding of 101, used to select RIP-relative addressing, is not affected by the REX prefix. For
example, selecting R13 (REX.B =1, r/m = 101) with mod = 00 still results in RIP-relative addressing.

The four-bit r/m field of ModRM is not fully decoded. Therefore, in order to address R13 with no
displacement, software must encode it as R13 + 0 using a one-byte displacement of zero.

1.7.3 Address-Size Prefix and RIP-Relative Addressing

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. Conversely, use of the
address-size prefix (“Address-Size Override Prefix” on page 6) does not disable RIP-relative
addressing. The effect of the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits, like any other addressing mode.

20 Instruction Formats

AMDZ\

24594—Rev. 3.14—September 2007 AMDG64 Technology
2 Instruction Overview
2.1 Instruction Subsets

For easier reference, the instruction descriptions are divided into five instruction subsets. The
following sections describe the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by all instructions in the AMD64 architecture:

» Chapter 3, “General-Purpose Instruction Reference”—The general-purpose instructions are used
in basic software execution. Most of these load, store, or operate on data in the general-purpose
registers (GPRs), in memory, or in both. Other instructions are used to alter sequential program
flow by branching to other locations within the program or to entirely different programs.

» Chapter 4, “System Instruction Reference”—The system instructions establish the processor
operating mode, access processor resources, handle program and system errors, and manage
memory.

» *“128-Bit Media Instruction Reference” in Volume 4—The 128-bit media instructions load, store,
or operate on data located in the 128-bit XMM registers. These instructions define both vector and
scalar operations on floating-point and integer data types. They include the SSE and SSE2
instructions that operate on the XMM registers. Some of these instructions convert source
operands in XMM registers to destination operands in GPR, MMX, or x87 registers or otherwise
affect XMM state.

* “64-Bit Media Instruction Reference” in Volume 5—The 64-bit media instructions load, store, or
operate on data located in the 64-bit MMX registers. These instructions define both vector and
scalar operations on integer and floating-point data types. They include the legacy MM X™
instructions, the 3DNow!™ instructions, and the AMD extensions to the MMX and 3DNow!
instruction sets. Some of these instructions convert source operands in MMX registers to
destination operands in GPR, XMM, or x87 registers or otherwise affect MMX state.

e “x87 Floating-Point Instruction Reference” in Volume 5—The x87 instructions are used in legacy
floating-point applications. Most of these instructions load, store, or operate on data located in the
x87 ST(0)-ST(7) stack registers (the FPRO-FPR7 physical registers). The remaining instructions
within this category are used to manage the x87 floating-point environment.

The description of each instruction covers its behavior in all operating modes, including legacy mode
(real, virtual-8086, and protected modes) and long mode (compatibility and 64-bit modes). Details of
certain kinds of complex behavior—such as control-flow changes in CALL, INT, or FXSAVE
instructions—have cross-references in the instruction-detail pages to detailed descriptions in volumes
1 and 2.

Two instructions—CMPSD and MOV SD—use the same mnemonic for different instructions.
Assemblers can distinguish them on the basis of the number and type of operands with which they are
used.

Instruction Overview 21

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

2.2 Reference-Page Format

Figure 2-1 on page 23 shows the format of an instruction-detail page. The instruction mnemonic is
shown in bold at the top-left, along with its name. In this example, POPFD is the mnemonic and POP
to EFLAGS Doubleword is the name. Next, there is a general description of the instruction’s operation.
Many descriptions have cross-references to more detail in other parts of the manual.

Beneath the general description, the mnemonic is shown again, together with the related opcode(s) and
adescription summary. Related instructions are listed below this, followed by a table showing the flags
that the instruction can affect. Finally, each instruction has a summary of the possible exceptions that
can occur when executing the instruction. The columns labeled “Real” and “Virtual-8086” apply only
to execution in legacy mode. The column labeled “Protected” applies both to legacy mode and long
mode, because long mode is a superset of legacy protected mode.

The 128-bit and 64-bit media instructions also have diagrams illustrating the operation. A few
instructions have examples or pseudocode describing the action.

22 Instruction Overview

AMDZ\

24594—Rev. 3.14—September 2007 AMDG64 Technology
Mnemonic and any operands Opcode Description of operation
AMDQD
24594 Rev.3.07 September 2003 AMDG64 Technology
AAM ASCII Adjust After Multiply

Converts the value in the AL register from binary to two unpacked BCD digits in the
AH (most significant) and AL (least significant) registers using the following formula:

AH (AL/10d)
AL (AL mod 10d).

In most modern assemblers, the AAM instruction adjusts to base-10 values. However,
by coding the instruction djrectly in binary, it can adjust to any base specified by the
immediate byte value (ib) spffixed onto the D4h opcode. For example, code D408h for
octal, D40Ah for decimal, and D40Ch for duodecimal (base 12).

Using this instruction in 64{bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description
AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)
(None) D4ib Create a pair of unpacked values to the immediate byte base.
(Invalid in 64-bit mode.)
Related Instructions “M” means the flag is either set or
cleared, depending on the result.
AAA, AAD, AAS
rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u M| M|U|M|U

21 | 20| 19 | 18| 17 | 16 | 14 13-12 n 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X 8-bit immediate value was 0.
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

Possible exceptions “Protected” column Alphabetic mnemonic locator
and causes, by mode of covers both legacy
operation and long mode

Figure 2-1. Format of Instruction-Detail Pages

Instruction Overview 23

AMDA
AMDG64 Technology 24594—Rev. 3.14—September 2007

2.3 Summary of Registers and Data Types

This section summarizes the registers available to software using the five instruction subsets descr