Automatic Simplification of Obfuscated
JavaScript Code
(Extended Abstract)*

Gen Lu, Kevin Coogan, and Saumya Debray

Department of Computer Science
The University of Arizona
Tucson, AZ 85721, USA
{genlu, kpcoogan, debray}@cs.arizona.edu

Abstract. Javascript is a scripting language that is commonly used to
create sophisticated interactive client-side web applications. It can also
be used to carry out browser-based attacks on users. Malicious JavaScript
code is usually highly obfuscated, making detection a challenge. This
paper describes a simple approach to deobfuscation of JavaScript code
based on dynamic analysis and slicing. Experiments using a prototype
implementation indicate that our approach is able to penetrate multiple
layers of complex obfuscations and extract the core logic of the compu-
tation.

1 Introduction

A few years ago, most malware was delivered via infected email attachments.
As email filters and spam detectors have improved, however, this delivery mech-
anism has increasingly been replaced by web-based delivery mechanisms, e.g.,
where a victim is lured to view an infected web page from a browser, which
then causes malicious payload to be downloaded and executed. Very often, such
“drive-by downloads” rely on JavaScript code; to avoid detection, the scripts
are usually highly obfuscated [8]. For example, the Gumblar worm, which in
mid-2009 was considered to be the fastest-growing threat on the Internet, uses
Javascript code that is dynamically generated and heavily obfuscated to avoid
detection and identification [11].

Of course, the simple fact that a web page contains dynamically generated
and/or obfuscated JavaScript code does not, in itself, make it malicious [5]; to
establish that we have to figure out what the code does. Moreover, the func-
tionality of a piece of code can generally be expressed in many different ways.
For these reasons, simple syntactic rules (e.g., “search for ‘eval(’ and ‘unescape(’

* This work was supported in part by the National Science Foundation via grant
nos. CNS-1016058 and CNS-1115829, the Air Force Office of Scientific Research via
grant no. FA9550-11-1-0191, and by a GAANN fellowship from the Department of
Education award no. P200A070545.

within 15 bytes of each other” [11]) turn out to be of limited efficacy when deal-
ing with obfuscated JavaScript. Current tools that process JavaScript typically
rely on such syntactic heuristics and so tend to be quite imprecise.

A better solution would be to use semantics-based techniques that focus on
the behavior of the code. This is also important and useful for making it pos-
sible for human analysts to easily understand the inner workings of obfuscated
JavaScript code so as to deal quickly and effectively with new web-based mal-
ware. Unfortunately, current techniques for behavioral analysis of obfuscated
JavaScript typically require a significant amount of manual intervention, e.g., to
modify the JavaScript code in specific ways or to monitor its execution within a
debugger [13, 17, 22]. Recently, some authors have begun investigating automated
approaches to dealing with obfuscated JavaScript, e.g., using machine learning
techniques [3] or symbolic execution of string operations [20]; Section 5 discusses
these in more detail. This paper takes a different approach to the problem: we use
run-time monitoring to extract execution trace(s) from the obfuscated program,
apply semantics-preserving code transformations to automatically simplify the
trace, then reconstruct source code from the simplified trace. The program so
obtained is observationally equivalent to the original program for the execution
considered, but has the obfuscation simplified away, leaving only the core logic of
the computation performed by the code. The resulting simplified code can then
be examined either by humans or by other software. The removal of the obfus-
cation results in code that is easier to analyze and understand than the original
obfuscated program. Experiments using a prototype implementation indicate
that this approach is able to penetrate multiple layers of complex obfuscations
and extract the core logic of the underlying computation. Some of the details of
this work have been omitted from this paper due to space constraints; interested
readers are referred to the full version of the paper, which is available online [12].

In addition to obfuscated JavaScript code, web-based malware may also use
other techniques, such as DOM interactions, to hamper analysis [8]. In such
situations, simplification of obfuscated JavaScript code, while necessary, may not
be sufficient to give a complete picture of what the malware is doing. This paper
focuses on dealing with obfuscations involving dynamic constructs in JavaScript
core language; additional issues, such as objects provided by DOM and the
interactions between JavaScript and DOM, are beyond the scope of this paper
and are considered to be future work.

2 Background

2.1 JavaScript

Despite the similarity in their names and their object-orientation, JavaScript
is a very different language than Java. A JavaScript object consists of a series
of name/value pairs, where the names are referred to as properties. Another
significant difference is that while Java is statically typed and has strong type
checking, JavaScript is dynamically typed. This means that a variable can take
on values of different types at different points in a JavaScript program. JavaScript

also makes it very convenient to extend the executing program. For example, one
can “execute” a string s using the construct eval(s). Since the string s can itself
be constructed at runtime, this makes it possible for JavaScript code to be highly
dynamic in nature.

There are some superficial similarities between the two languages at the
implementation level as well: e.g., both typically use expression-stack-based
byte-code interpreters, and in both cases modern implementations of these in-
terpreters come with JIT compilers. However, the language-level differences
sketched above are reflected in low-level characteristics of the implementations
as well. For example, Java’s static typing means that the operand types of each
operation in the program are known at compile time, allowing the compiler to
generate type-specific instructions, e.g., iadd for integer addition, dadd for addi-
tion of double-precision values. In JavaScript, on the other hand, operand types
are not statically available, which means that the byte code instructions are
generic. Unlike Java, the code generated for JavaScript does not have an asso-
ciated class file, which means that information about constants and strings is
not readily available. Finally, JavaScript’s eval construct requires runtime code
generation: in the SpiderMonkey implementation of JavaScript [15], for example,
this causes code for the string being evaled to be generated into a newly-allocated
memory region and then executed, after which the memory region is reclaimed.

The dynamic nature of Javascript code makes possible a variety of obfus-
cation techniques. Particularly challenging is the combination of the ability to
execute a string using the eval construct, as described above, and the fact that
the string being executed may be obfuscated in a wide variety of ways. Howard
discusses several such techniques in more detail [8]. Further, dynamic code gener-
ation via eval can be multi-layered, e.g., a string that is eval-ed may itself contain
calls to eval, and such embedded calls to eval can be stacked several layers deep.
Such obfuscation techniques can make it difficult to determine the intent of a
JavaScript program from a static examination of the program text.

2.2 Semantics-Based Deobfuscation

Deobfuscation refers to the process of simplifying a program to remove obfusca-
tion code and produce a functionally equivalent program that is simpler (or, at
least, no more complex) than the original program relative to some appropriate
complexity metric. To motivate our approach to deobfuscation, consider the se-
mantic intuition behind any deobfuscation process. In general, when we simplify
an obfuscated program we cannot hope to recover the code for the original pro-
gram, either because the source code is simply not be available, or due to code
transformations applied during compilation. All we can require, then, is that
the process of deobfuscation must be semantics-preserving: i.e., that the code
resulting from deobfuscation be semantically equivalent to the original program.

For the analysis of potentially-malicious code, a reasonable notion of seman-
tic equivalence seems to be that of observational equivalence, where two pro-
grams are considered equivalent if they behave—i.e., interact with their execu-
tion environment—in the same way. Since a program’s runtime interactions with

the external environment are carried out through system calls, this means that
two programs are observationally equivalent if they execute identical sequences
of system calls (together with the argument vectors to these calls).

This notion of program equivalence suggests a simple approach to deobfus-
cation: identify all instructions that directly or indirectly affect the values of
the arguments to system calls. Any remaining instructions, which are by defini-
tion semantically irrelevant, may be discarded (examples of such semantically-
irrelevant code include dead and unreachable code used by malware to change
their byte-signatures in order to avoid detection). The crucial question then
becomes that of identifying instructions that affect the values of system call
arguments: for the JavaScript code considered in this paper, we use dynamic
slicing, applied at the byte-code level, for this.

3 JavaScript Deobfuscation

3.1 Overview

Dynamic CFG
JavaScript ; ‘ | Simplified
Source Code " ;
Instrumented Control Flow Deobfuscation : Decompilation : Code JS Code
JS Interpreter Analysis Slicing Transformation|
Execution Trace Simplified Trace AST

Our approach to deobfuscating JavaScript code, shown above, consists of the
following steps:

1. Use an instrumented interpreter to obtain an execution trace for the JavaScript
code under consideration.

2. Construct a control flow graph from this trace to determine the structure of
the code that is executed.

3. Use our dynamic slicing algorithm to identify instructions that are relevant
to the observable behavior of the program. Ideally, we would like to compute
slices for the arguments of the system calls made by the program. However,
the actual system calls are typically made from external library routines that
appear as native methods. As a proxy for system calls, therefore, our imple-
mentation computes slices for the arguments passed to any native function.

4. Decompile excution trace to an abstract syntax tree (AST), and label all the
nodes constructed from resulting set of relevant instructions.

5. Eliminate goto statements from the AST, then traverse it to generate deob-
fuscated source code by printing only labeled syntax tree nodes.

3.2 Instrumentation and Tracing

We instrument the JavaScript interpreter to collect a trace of the program’s
execution. Each byte-code instruction is instrumented to print out the instruc-
tion’s address, operation mnemonic, and length (in bytes) together with any
additional information about the instruction that may be relevant, including ex-
pression stack usage, encoded constants, variable names/IDs, branch offets and
object related data. Due to the space constraints, detailed description of the
format and processing of the execution trace is not presented.

3.3 Control Flow Graph Construction

In principle, the (static) control flow graph for a JavaScript program can be
obtained fairly easily. The byte-code for each function in a JavaScript program
can be obtained as a property of that function object, and it is straightforward to
decompile this byte-code to an abstract syntax tree. In practice, the control flow
graph so obtained may not be very useful if the intent is to simplify obfuscations
away. The reason for this is that dynamic constructs such as eval, commonly
used to obfuscate JavaScript code, are essentially opaque in the static control flow
graph: their runtime behavior—which is what we are really interested in—cannot
be easily determined from an inspection of the static control flow graph. For this
reason, we opt instead for a dynamic control flow graph, which is obtained from
an execution trace of the program. However, while the dynamic control flow
graph gives us more information about the runtime behavior of constructs such
as eval, it does so at the cost of reduced code coverage.

The algorithm for constructing a dynamic control flow graph from an execu-
tion trace is a straightforward adaptation of the algorithm for static control flow
graph construction, found in standard compiler texts [2,16], modified to deal
with dynamic execution traces.

3.4 Deobfuscation Slicing

As mentioned in Section 2.2, we use dynamic slicing to identify instructions that
directly or indirectly affect arguments passed to native functions, which has been
investigated by Wang and Roychoudhury in the context of slicing Java byte-code
traces [21].We adapt the algorithm of Wang and Roychoudhury in two ways,
both having to do with the dynamic features of JavaScript used extensively for
obfuscation. The first is that while Wang and Roychoudhury use a static control
flow graph, we use the dynamic control flow graph discussed in Section 3.3. The
reason for this is that in our case a static control flow graph does not adequately
capture the execution behavior of exactly those dynamic constructs, such as eval,
that we need to handle when dealing with obfuscated JavaScript. The second is in
the treatment of the eval construct during slicing. Consider a statement eval(s):
in the context of deobfuscation, we have to determine the behavior of the code
obtained from the string s; the actual construction of the string s, however—for

© 0N O A WN -

10
11
12
13
14
15
16
17
18

19
20
21

22
23
24
25
26

27
28
29
30
31
32
33

34
35
36
37
38
39

Input: A dynamic trace T; a slicing criterion C'; a dynamic control flow graph
G;

Output: A slice S;

S = 0;

currFrame := lastFrame := NULL;

LiveSet := 0;

stack := a new empty stack;

I := instruction instance at the last position in T}

while true do

inSlice := false;

Uses := memory addresses and property set used by I;

Defs := memory addresses and property set defined by [

inSlice :=1 € C'; /* add all instructions in C' into S */
if I is a return instruction then
| push a new frame on stack;
else if I is an interpreted function call then
| lastFrame := pop(stack);
else
| lastFrame = NULL;
end
currFrame := top frame on stack;
// inter-function dependence: ignore dependency due to eval
if I is an interpreted function call A I is not eval then
| inSlice := inSlice V lastFrame is not empty;
else if I is a control transfer instruction then
// intra-function control dependency
for each instruction J in currFrame s.t. J is control-dependent on I do
inSlice := true;
remove J from currFrame;
end
end

inSlice := inSlice V (LiveSet N Defs # 0) ; // data dependency
LiveSet := LiveSet — Defs;
if inSlice then // add I into the slice
add I into S;
add [into currFrame;
LiveSet := LiveSet U Uses;
end

if I is not the first instruction instance in T then
| I := previous instruction instance in T;

else
| break;

end

end
Algorithm 1: d-slicing

example, by decryption of some other string or concatenation of a collection of
string fragments—is simply part of the obfuscation process and is not directly
relevant for the purpose of understanding the functionality of the program. When
slicing, therefore, we do not follow dependencies through eval statements. We
have to note that because an evaled string s depends on some code v doesn’t
automatically exclude v from the resulting slice; if the real workload depends
on v, then v would be added to slice regardless of the connection with eval. In
other words, only code which is solely used for obfuscation would be eliminated.
Therefore, an obfuscator cannot simply insert evals into the pragram’s dataflow
to hide relevant code. We refer to this algorithm as deobfuscation-slicing, the
pseudocode is shown in Algorithm 1.

3.5 Decompilation and Code Transformation

The slicing step described in Section 3.4 identifies instructions in the dynamic
trace that directly or indirectly affect arguments to native function calls, which
includes functions that invoke system calls. This slice is used to transform the
control flow graph of the program to an abstract syntax tree (AST) representa-
tion. We do this in two stages. In the first stage, we construct an AST that may
sometimes contain explicit goto nodes that capture lower-level control flow. Such
goto nodes are created in two situations: (i) at the end of basic blocks that do
not end with a brach instruction, and (#¢) when an explicit branch instruction
is encountered. In addition to storing information of target block in goto nodes,
we also keep track of a list of preceding goto nodes in each target node. Loops
in the control flow graph are identified using dominator analysis [2] and repre-
sented in the AST as an indefinite loop structure of the form while (1) {...},
with branches out of the loop body represented using explicit gotos that reflect
the control flow behavior of the low-level code. In the second stage, this AST is
transformed using semantics-preserving goto-eliminating code transformations
that generate valid JavaScript soure code, as described below.

Joelsson proposed a goto removal algorithm for decompilation of Java byte-
code with irreducible CFGs, the algorithm traverses the AST over and over and
applies a set of transformations whenever possible [9]. We adapt this algorithm to
handle JavaScript and the instruction set used by the SpiderMonkey JavaScript
engine [15]. The basic idea is to transform the program so that each goto is
either replaced by some other construct, or the goto and its target are brought
closer together in a semantics-preserving transformation. Space constraints pre-
clude a detailed description of our transformation rules; interested readers are
referred to the full version of the paper [12]. The fact that SpiderMonkey always
generates byte-code with reducible CFGs (due to the lack of an aggressive code
optimization phase) and the difference between JavaScript byte-code and Java
byte-code, makes it possible for our algorithm to have a smaller set of tranfor-
mation rules. But it would be straightforward to add more rules, if necessary, to
handle highly optimized JavaScript byte-code with possibly irreducible CFGs.

After this transformation step, the syntax tree is traversed again, for each
goto node n, we examine its target node ¢, if ¢ is the node immediately following

n, then n is removed from syntax tree. The resulting syntax tree is then traversed
one last time and, for each node labeled by the decompiler described above, the
corresponding source code is printed out.

function f(n){ function fib(i){
var tl=n;var t2=n;var k; var k;var x = 1;var f1 = "fib(";
var s4 = "eval(Ck=t1+t2;’);"; var f2 = ")";var sl = "i-";
var s3 = "t1=f(t1-1);eval(s4d);"; var s2 = "x";
var s2 = "t2=f(t2);eval(str3);"; if (i<2)
var sl = "if (n<2){k=1;}\ eval ("k="+eval("s"+
else{t2=t2-2;eval(s2);}"; (x*2) .toString()));
eval(sl); else
return k; eval ("k="+f1+sl+x.toString()+
} £2+"+"+f1+s1+(x*2) . toString ()
var x = 3; +£2);
var y = £(x); return k;
print(y); }
var y = £ib(3);
print(y);
(a) Program P; (b) Program P,

Fig. 1. The test programs P; and P

4 Experimental Results

We evaluated our ideas using a prototype implementation based on Mozilla’s
open source JavaScript engine SpiderMonkey [15]. Here we present results for
two versions of Fibonacci number computation program. We chose them for two
reasons: first, because it contains a variety of language constructs, including con-
ditionals, recursive function calls, and arithmetic; and second, because it is small
(which is important given the space constraints of this paper) and familiar (which
makes it easy to assess the quality of deobfuscation). The first of these, Py, is
shown in Figure 1(a); this program was hand-obfuscated to incorporate multiple
nested levels of dynamic code generation using eval for each level of recursion.
The second program, P», as shown in Figure 1(b), is also hand-obfuscated, in
which we added dependency between real workload and the value used by eval
(local variable x in function fib). Three versions of each of these programs are
used—the program as-is as well as two obfuscated versions—one using an obfus-
cator we wrote ourselves that uses many of the obfuscation techniques described
by Howard [8]; and an online obfuscator [1]. Figures 2 and 3 show the obfuscated
programs corresponding to input programs P; and P, respectively.

The output of our deobfuscator for these programs is shown in Figure 4.
Figure 4(a) shows the deobfuscated code for all three versions of program P; (the
original code, shown in Figure 1(a), as well as the two obfuscated versions shown
in Figure 2). Figure 4(b) shows the deobfuscated code for all three versions of the
program P, (the original, shown in Figure 1(b), as well as the obfuscated versions

var cl=[168,183,176,165,182,171,177,176,98,168,171,164,106,176,107,189,184,163,180,98,182,
115,127,176,125,184,163,180,98,182,116,127,176,125,184,163,180,98,173,125,184,163,180,
98,181,182,180,118,98,127,98,100,167,184,163,174,106,105,173,127,182,115,109,182,116,125,
105,107,125,100,125,184,163,180,98,181,182,180,117,98,127,98,100,182,115,127,168,171,164,
106,182,115,111,115,107,125,167,184,163,174,106,181,182,180,118,107,125,100,125,184,163,
180,98,181,182,180,116,98,127,98,100,182,116,127,168,171,164,106,182,116,107,125,167,184,
163,174,106,181,182,180,117,107,125,100,125,184,163,180,98,181,182,180,115,98,127,98,100,
171,168,106,176,126,116,107,189,173,127,115,125,191,167,174,181,167,189,182,116,127,182,
116,111,116,125,167,184,163,174,106,181,182,180,116,107,125,191,100,125,75,167,184,163,174,
106,181,182,180,115,107,125,75,180,167,182,183,180,176,98,173,125,191,184,163,180,98,186,
98,127,98,117,125,184,163,180,98,187,98,127,98,168,171,164,106,186,107,125,178,180,171,
176,182,106,187,107,125] ;

var ii=0;

var str=’;’;

for(ii=0;ii<cl.length;ii++){
str+= String.fromCharCode(c1[ii]-66);

}

eval(str);
(a) Obfuscated code using our obfuscator.

eval (function(p,a,c,k,e,d){e=function(c){return
c};if (1’ .replace(/"/,String)){while(c--){d[cl=k[c]||c}k=[function(e){return
dlel}];e=function(){return’\\w+’};c=1};while(c--){if (k[c]){p=p.replace(new
RegExp(’\\b’+e(c)+’\\b’, ’g’) ,k[c])}}return p}(’17 8(9){0 6=9;0 4=9;0 7;0
11="5(\?7=6+4;\");";0 10="6=8(6-1);5(11);";0 13="4=8(4);5(10);";0
15="18(9<2){7=1;}20{4=4-2;5(13) ;}";5(16) ;19 7}0 14=3;0
12=8(14);16(12);?,10,21,’var| || |t2|evalltl|k|f|n|str3|strdlylstr2|x|strl
|print|function|if|return|else’.split(’|’),0,{}))

(b) Obfuscated code using online obfuscator.

Fig. 2. Obfuscated versions of the program P;

shown in Figure 3). For both P; and Ps, the deobfuscator outputs are the same
for each of the three versions. It can be seen that the recovered code is very close
to the original, and expresses the same functionality. The results obtained show
that the technique we have described is effective in simplifying away obfuscation
code and extracing the underlying logic of obfuscated JavaScript code. This
holds even when the code is heavily obfuscated with multiple different kinds
of obfuscations, including runtime decryption of strings and multiple levels of
dynamic code generation and execution, in particular, from simplified code of
P, (Figure 4(b)), we could see that our approach handles those code intented to
be “hidden” by eval correctly.

5 Related Work

Most current approaches to dealing with obfuscated JavaScript typically require
a significant amount of manual intervention, e.g., to modify the JavaScript code
in specific ways or to monitor its execution within a debugger [13,17,22]. There
are also approaches, such as Caffeine Monkey [6], intended to assist with analyz-
ing obfuscated JavaScript code, by instrumenting JavaScript engine and logging
the actual string passed to eval. Similar tools include several browser extensions,
such as the JavaScript Deobfuscator extension for Firefox [18]. The disadvantage
of such approaches is that they show all the code that is executed and do not

var cl=[168,183,176,165,182,171,177,176,98,168,171,164,106,171,107,189,184,163,180,98,173,
125,184,163,180,98,186,98,127,98,115,125,184,163,180,98,168,115,98,127,98,100,168,171,164,
106,100,125,184,163,180,98,168,116,98,127,98,100,107,100,125,184,163,180,98,181,115,98,127,
98,100,171,111,100,125,184,163,180,98,181,116,98,127,98,100,186,100,125,171,168,106,171,
126,116,107,167,184,163,174,106,100,173,127,100,109,167,184,163,174,106,100,181,100,109,
106,186,108,116,107,112,182,177,149,182,180,171,176,169,106,107,107,107,125,167,174,181,
167,189,167,184,163,174,106,100,173,127,100,109,168,115,109,181,115,109,186,112,182,177,
149,182,180,171,176,169,106,107,109,168,116,109,100,109,100,109,168,115,109,181,115,109,
106,186,108,116,107,112,182,177,149,182,180,171,176,169,106,107,109,168,116,107,125,191,180,
167,182,183,180,176,98,173,125,191,184,163,180,98,187,98,127,98,168,171,164,106,117,107,125,
178,180,171,176,182,106,187,107,125] ;

var ii=0;

var str=’;’;

for(ii=0;ii<cl.length;ii++){
str+= String.fromCharCode(c1[ii]-66);

eval(str);

(a) Obfuscated code using our obfuscator.

eval (function(p,a,c,k,e,d){e=function(c){return
c.toString(36)};if (!’’.replace(/"/,String)){while(c--)
{d[c.toString(a)]=klc]||c.toString(a)}k=[function(e){return
dlel}];e=function(){return’\\w+’};c=1};while(c—-){if (k[c])
{p=p.replace(new RegExp(’\\b’+e(c)+’\\b’,’g’) ,k[c])}}return p}
(’f a(i){0 k;0 4=1;0 6="a(";0 8=")";0 9="i-";0 d="4";c(i<2)7("k="+7
("e"+(4%2).50))) ;g 7T("k="+6+9+4.5()+8+"+"+6+9+(4x2) .5()+8) ;h k}0
b=a(3);j(b);’,21,21,’var| || |x|toString|fllevallf2|s1|fiblyl
if|s2|s|function|elselreturnl||print|’.split(’1°),0,{}))

(b) Obfuscated code using online obfuscator.

Fig. 3. Obfuscated versions of the program P,

function f (arg0) { function fib (arg0d) {
local_var0O = arg0; (local_vari=1);
local_varl = arg0; if ((arg0<2))
if ((arg0<2)) (local_varO=local_varl);
local_var2 = 1; else
else { (local_var0=
local_varl = (local_varl-2); (fib((arg0-1))+fib((argd-2))));
local_varl = f(local_varl); return local_varO;
local_var0 = f((local_var0-1)); }
local_var2 = (y=£ib(3));
(local_varO+local_varl); print(y);
}
return local_var2;
}
(x = 3);
(y = £(x));
print(y);
(a) Deobfuscated P (a) Deobfuscated I

Fig. 4. Deobfuscator outputs for programs P, and P»

separate out the code that pertains to the actual logic of the program from the
code whose only purpose is to deal with obfuscation.

Recently a few authors have begun looking at automatic analysis of obfus-
cated and/or malicious JavaScript code. Cova at al. [3] and Curtsinger et al. [5]
describe the use of machine learning techniques based on a variety of dynamic
execution features to classify Javascript code as malicious or benign. Such tech-
niques typically do not focus on automatic deobfuscation, relying instead on the
heuristics based on behavioral characteristics. A problem with such approaches
is that, given that obfuscation can also be found in benign code and really is
simply an indicative of a desire to protect the code against casual inspection,
classfiers that rely on obfuscation-oriented features may not be reliable indicators
of malicious intent. Our technique of automatic deobfuscation can potentially in-
crease the accuracy of such machine learning techniques by exposing the actual
logic of the code. Saxena et al. discuss dynamic symbolic execution of JavaScript
code using constraint-solving over strings [20]. Hallaraker and Vigna describe an
approach to detecting malicious JavaScript code by monitoring the execution of
the program and comparing the execution to a set of high-level policies [7]. All
of these works are very different from the approach discussed in this paper.

There is a rich body of literature dealing with dynamically generated (“un-
packed”) code in the context of conventional native-code malware executables
[14,19,4,10]. Much of this work focuses on detecting the fact of unpacking and
identifying the unpacked code; because of the nature of the code involved, the
techniques used are necessarily low-level, typically relying on detecting the ex-
ecution of a previously-modified memory locations (or pages). By contrast, the
work described here is not concerned with the identification and extraction of
dynamically-generated code per se, but focuses instead on identifying instruc-
tions that are relevant to the externally-observable behavior of the program.

6 Conclusions

The prevalence of web-based malware delivery methods, and the common use
of JavaScript code in infected web pages to download malicious code, makes
it important to be able to analyze the behavior of JavaScript programs and,
possibly, classify them as benign or malicious. For malicious JavaScript code,
it is useful to have automated tools that can help identify the functionality of
the code. However, such JavaScript code is usually highly obfuscated, and use
dynamic language constructs that make program analysis difficult. This paper
describes an approach for dynamic analysis of JavaScript code to simplify away
the obfuscation and expose the underlying logic of the code. Experiments using
a prototype implementation indicate that our technique is effective even against
highly obfuscated programs.

References

1. Online Javascript obfuscator. http://www.daftlogic.com/projects-online-
javascript-obfuscator.htm.

11.

12.

13.
14.
15.
16.
17.

18.

19.

20.

21.

22.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles, Techniques, and
Tools. Addison-Wesley, Reading, Mass., 1985.

D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: A fast filter for the large-
scale detection of malicious web pages. In Proceedings of the 20th international
conference on World wide web, pages 197-206. ACM, 2011.

K. Coogan, S. Debray, T. Kaochar, and G. Townsend. Automatic static unpack-
ing of malware binaries. In Proc. 16th. IEEE Working Conference on Reverse
Engineering, pages 167-176, October 2009.

C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle: Fast and precise in-
browser JavaScript malware detection. In USENIX Security Symposium, 2011.

B. Feinstein, D. Peck, and 1. SecureWorks. Caffeine monkey: Automated collection,
detection and analysis of malicious JavaScript. Black Hat USA, 2007, 2007.

O. Hallaraker and G. Vigna. Detecting malicious JavaScript code in mozilla. In
Proc. 10th IEEE International Conference on Engineering of Complex Computer
Systems, pages 85-94, june 2005.

F. Howard. Malware with your mocha: Obfuscation and antiemulation tricks in-
malicious JavaScript, 2010.

E. Joelsson. Decompilation for visualization of code optimizations. 2003.

. M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden code extractor for

packed executables. In Proc. Fifth ACM Workshop on Recurring Malcode (WORM
2007), November 2007.

A. Kirk. Gumblar and more on Javascript obfuscation. Sourcefire Vulner-
ability Research Team. http://vrt-blog.snort.org/2009/05/gumblar-and-more-on-
javascript.html. May 22, 2009.

Gen Lu, Kevin Coogan, and Saumya Debray. Automatic simpli-
fication of obfuscated JavaScript code. Technical report, Dept.
of Computer Science, The University of Arizona, October 2011.
http://www.cs.arizona.edu/ debray/Publications/js-deobf-full.pdf.

P. Markowski. ISC’s four methods of decoding Javascript + 1, March 2010.
http://blog.vodun.org/2010/03/iscs-four-methods-of-decoding.html.

L. Martignoni, M. Christodorescu, and S. Jha. OmniUnpack: Fast, Generic, and
Safe Unpacking of Malware. In Proc. 21st Annual Computer Security Applications
Conference, December 2007.

Mozilla. Spidermonkey JavaScript engine. https://developer.mozilla.org/en/SpiderMonkey.

Steven S. Muchnick. Advanced compiler design and implementation. 1997.

J. Nazario. Reverse engineering malicious Javascript. = CanSecWest 2007,
http://cansecwest.com/csw07 /csw07-nazario.pdf.

W. Palant. JavaScript deobfuscator 1.5.7. https://addons.mozilla.org/en-
US/firefox/addon/javascript-deobfuscator//.

P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. Polyunpack: Automating
the hidden-code extraction of unpack-executing malware. In ACSAC ’06: Proceed-
ings of the 22nd Annual Computer Security Applications Conference on Annual
Computer Security Applications Conference, pages 289-300, 2006.

P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic
execution framework for JavaScript. In Proc. IEEE Symposium on Security and
Privacy, pages 513-528, 2010.

T. Wang and A. Roychoudhury. Dynamic slicing on java bytecode traces. ACM
Transactions on Programming Languages and Systems (TOPLAS), 30(2):10, 2008.
D. Wesemann. Advanced obfuscated JavaScript analysis, April 2008.
http://isc.sans.org/diary.html?storyid=4246.

