VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 + |23

LINUX VIRUSES — ELF FILE FORMAT

Marius Van Oers
AVERT-NAI Labs, Gatwickstraat 25, 1043 GL Amsterdam, The Netherlands, Europe
Tel: +31 20 586 6136 * Fax: +31 20 586 6101 « Email: mvanoers@nai.com

ABSTRACT

The use oLinux as an operating system is increasing rapidly, thanks partly to
popular distributions such as ‘RedHat’ and ‘Suse’. So far, there are verlyifewx

file infectors and they do not pose a big threat yet. However, with more desktops
runningLinux, and probably mor&inux viruses, the.inux virus situation could
become a bigger problem.

So far,Linux viruses are either prependers or regular file infectors that change entry
points and modify the actual host code etc.

Nowadays, the most commionux file type in use is called ‘ELF’: short for Execut-
able and Linkable Format. ELF supports 32- as well as 64-bit objects.

This paper will take a look at thanux ELF file format layout and examine some
file virus infectors.

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

124 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

1 ELF FILE FORMAT LAYOUT

There are currently quite a few flavours/versionkiotix available. Popular distributions are for
exampleRedHatandSuse | used two versions &tedHat The main reason for this is tHahux
virus infection/replication might be dependent onlihreix version/kernel level. The test sys-
tems used for the purposes of this paper Re@Hat 5.ZApollo) — Kernel 2.0.36 — on an i586,
andRedHat 6.1(Cartman) — Kernel 2.2.12-20 — on an i686.

Nowadays, the most commamux file format type in use is called ELF. ELF is short for Ex-
ecutable and Linkable Format. Objects can be viewed from a Linking or Executable perspective.
Linking view is important if you want to build/compile files and want to ‘link-in" a specific file.
Execution view is important for ‘running’ a specific file. The different viewing perspectives are
shown in Figure 1.

Linking View Execution View

ELF Header ELF Header

Program Header Table (optional) Program Header Table
Sectionl Segment 1

Section2 Segment 2

Section Header Table Section Header Table (optional)

Figure 1: ELF objects can be viewed from a Linking or Executable perspective.

Local Test Systems Used: RedHat 5.2(Apollo) Kernel 2.0.36 on an i586
RedHat 6.1(Cartman) Kernel 2.2.12-20 on an i686

So, for the linking view, the Sections and Section Header Table are important, the Program
Header Table is optional. On the other hand, for the execution view, the Segments and Program
Header Table are important, and the Section Header Table is optional.

Usually, a file may contain both a Program Header Table and Segments, as well as a Section
Header Table and Sections. However, according to the specific viewing perspective, certain areas
are important and others are not. ELF supports 32- as well as 64-bit objects. Udually, a
installation on arnntel-based system is 32-bit. However, an installation Be@aAlphabased

system might be 64-bit; this is not very common as not many peopl2egs&lphasystems, but

in the future we might see more 64-bit systems coming froet, AMD etc.

1.1 ELF Header

In the sample analysis below, an arbitrary file is selected — in this case ‘arch’, &idkgan

Redhat v5.2xecutable file, which was found in .../bin/arch. This file is marked with (*) in our
analysis to indicate that the values found are specifically for this file. Figure 2 shows the begin-
ning of the file viewed with a hex editor.

The ELF file format is well documented and available at various locations on-line (see refer-
ences). Let’s start with a line-by line inspection of what we would -encounter. Usually, just to get
an indication, the ELF Header occupies the area from 0000-0033 (hex).

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 « 125

Fir Erit Mrhrn: Yiew

I a PN Tz

B ENEE R E EE R EEEE

o Arch

onooloon
nmnnanin
onooa0z20
onooa03n
uuuau4u
onooa0sn
onoolonon
onoolovo
onooloso
onooaonen
onool0a0
Juuuauel
nnnnanecn
onooloca
00002J0ED
0000J0FD
onoolion

.....

an

Figure 2: A cleanLinux RedHat v5.2 executable file /bin/arch (*)

‘ gogooood ¥F 45 4C 46 01 01 01 OO0 00 00 00 00 00 00 00 00 ETF............
0000-0003 EI_MAGO-EI-MAGS: ELF identification
0004 El_CLASS: 1: 32 bit object *
2: 64 bit object
0005 EI_DATA Encoding: 1: LSB * (value reading from right to left)
2: MSB (value reading from left to right)
0006 El_VERSION: ELF Header version number, currently it is the same as EV_CURRENT
0007-000F EI-PAD: Unused/Reserved
‘EIIIIEIEIEIEIIEI 02 00 02 00 01 00 00 00 &0 94 04 08 34 OO0 0O OO 1..4.. ‘
0010-0011 E-TYPE: 1: Relocatable file
2: Executable file *
3: Shared object file
4: Core file
0012-0013 E_MACHINE 3:Intel 80386 *
0014-0017 E_VERSION Object File Version
0: Invalid
1:Current version *
0018-001B E-ENTRY Virtual Address Starting Process
001C-001F E-PHOFF Program Header Table, File Offset (*: 34)
| 00000020 O 07 00 00 00 00 00 00 34 00 20 00 05 00 28 00 A....... 4. ... |
0020-0023 E_SHOFF Section Header Table, File Offset (* : in this case it starts at byte 07CO0)
0024-0027 E_FLAGS Processor Specific Flags
0028-0029 E_EHSIZE ELF Header Size (*:in this case: 34(h) bytes, and at byte 0034 the
Program Header Table starts.)
002A-002B E-PHENTSIZE Each Program Header Table’s Item Size (*:in this case each item occupies
20(h) bytes)
002C-002D E_PHNUM Number of Items in Program Header Table (*: in this case 5 items)
002E-002F E_SHENTSIZE Each Section Header Item’s Size (*:in this case each item occupies
28(h)bytes)
‘EIEIEIEIEIEISEI le 00 15 00 06 00 OO OO0 34 00 00 0O 34 890 04 08 4...41.. ‘
0030-0031 E_SHNUM Number of Items in Section Header Table (*:in this case 16(h) entries,
index 0-15(h)
0032-0033 E_SHSTRNDX String Table Index in Section Header Table

In this case, therefore, for the cldaadHat v5.3ile called arch (*):

* the Program Header Taldtarts at 0034, (e-phoff)

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

126 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

« there are five items (for Segments), with index 0-4, of 20(h) bytes, (e_phnum, e-phentsize).
Item(0) of program header starts at 0034
Item(1) follows after 20 (h) bytes at 0054
Item(2) at 0074
Item (3) at 0094 and
Item(4) at 00BA4.
 theProgram Header Tableoccupies space from 34 to D3.

A global overview of the file header (for arch *) marking the ELF Header and the Program
Header Table is displayed in Figure 3.

gooloono YR 45 4C 40 01 01 01 10 02 00 00 00 CO 0o oo oo pELL. .. S
oooJloolo 2 00 02 Co 01 a0 a0 10 o1 04 04 00 24 00 00 00 ... D4
00020020 CO 07 00 CO OO0 00 00 30 34 00 20 00 CS 00 20 00 &, 4. . ..
000230030 16 00 -G COf06 00 00 20 24 00 00 00 24 00 04 00 4., .491..
oooloo<0 O4 00 04 CO A0 OO0 OO0 20 A3 OO0 00O 00O CS OO0 OO0 OO 4p..

00030050 04 00 00 CO 02 00 00 10 D4 00 00 00 04 00 of oo & .01, .

00010060 D4 00 04 CO 17 00 00 10 171 00 00 00 C4 00 00 o0 &p.

00010070 0- 00 00 CO 01 00 00 10 071 00 00 00 CO 00 04 o0 0.,
r

gooloonoo o0 o0 04 CO OO 0L OO0 20 02 05 00 00 CS 00 oo oo @@ 0. ...
gooloo?o o0 10 00 CO ©01 60 o0 20 02 05 00 00 Co 95 o2 00 ... B... Q0.
00020040 00 95 04 CO C4 00 00 20 CJ 00 OO0 00 CO OO0 OO OO gp..&%.. L. ...
gooloobDo o0 10 00 CO 02 o0 o0 20 <4 05 00 00 C4 95 04 00 A...al..
gooJooco o4 95 04 CO 00 00 00 20 02 00 00 00 CS 00 00 00 &np..0.. 0B... ...
000J00D0 04 00 00 COJ2F 6C G732 27 GC 04 2D CC 09 GE 75 ~lib~lé—linu
goolooco Yo 2L 7?2 CIF 2 22 00 20 11 00 00 00 14 00 00 00 = . =o.2. e
goojooro o0 o0 00 CO 11 60 o0 20 02 00 00 00 CIF 0o 0o oo

oo0oJiolood 10 60 00 CO 60 60 o0 20 00X 00 00 00 Co 0o a0 a0

Figure 3: File header overview. 0000-0033: ELF header, 0034-00D3: Program Header Table

1.2 Program Header Table

Now, let's examine the file from the Executable perspective, looking for Segments. We have
seen before that in this case (*) the Program Header Table starts at 0034 with five items (index
0-4) of 20(h) bytes. Item(0) of program header starts at 0034, item(1) follows after 20(h) bytes at
0054, item(2) at 0074, item (3) at 0094 and item(4) at 00B4.

The Program Header Table determines the Segments — this information is needed for executable/
shared object files. A Segment may contain multiple Sections. The Program Header Table with
the five (Segment) entries is shown in Figure 4.

gooloono P45 4C 406 01 01 01 a0 00 00 00 a0 a0 10 490 €0 pELE. L.
goolooZo 02 00 12 00 01 00 00 a0 o0 04 04 00 24 10 400 €0 7.4
onolJ0020 CO 07 20 00 00 00 00 00 24 00 20 00 05 20 20 €O A&4. ...i
0002300630 16 00 15 00f0¢ OO0 00 o0 J4 00 00 o0 J4 JO0 04 O4...41
oooloo40 34 00 14 00 A0 00 00 O0 A0 0O 00 00 0% 210 00 €O 4p..,
0On0l10050 04 00 20 00|02 00 00 OO0 D4 00 00 OO0 D& 20 04 €O ... 0. . . &)
00010060 D4 00 24 00 12 00 00 00 12 00 00 00 02 20 00 €0 Op..
oogloo?o OL OO0 1O 00|01 00 00 00 00 OO0 00 00 00 J0 04 CO1
ogoolodoo oo 00 24 00 05 0% 00 00 0% 0% 00 00 0% 20 00 CO op..H.. B
anolooa0 oo 10 20 00(01 00 00 00 00 0% 00 oo o0 25 04 Coooo .o h..o 0]
000J00a0 00 95 34 00 C4 00 00 00 CO 0O 0O OO0 OG J0 00 €O gp..2.. L. ...
ogooloono oo 10 10 00j02 00 00 a0 C4 0% 00 00 Z& 20 04 £ . L. AL LAl
ogoolooco C4 9% 14 00 00 00 00 a0 00 00 00 00 06 10 00 €0 Ar..n...0..... .
QooJloobo 04 00 10 002l oo oY ol Al ol o4 2D o2 29 ol YD . .- libld-linu
: i ol ZE 22 00 00 11 00 00 00 1¢ 20 00 €0 = =o.2........ .
ooolooFo 00 00 30 00 11 00 00 a0 03 00 00 a0 ar 20 00 Co
00030100 10 00 30 00 00 00 00 a0 0 00 00 a0 a0 30 00 €0

Figure 4. Program Header Table (location 34-D3) with the five Segment entries (the start of each entry is
graphically marked with the sign |)

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 « 127

So, the Program Header Table has five (Segment) entries. Let’s start by looking at the first
(Segment) entry, at location 0034-0053. To make it clearer, the specific area has been extracted
from Figure 4, and is shown in Figure 5.

gooooo3d 1e 00 15 00 06 00 OO0 00 34 00 OO0 OO0 34 80 04 08 4...41.
gooooo4o 34 B0 D04 08 A0 OO OO0 OO0 AOD OO OO OO OS5 OO OO OO 47. e
noooooso 04 00 00 00 03 00 00 00 D4 00 00 00 D4 80O 04 08 0...01.
Figure 5: The first (Segment) entry in the Program Header Table is at location 34-53
0034-0037 P_TYPE Segment type, in this case value 06.
0038-003B P_OFFSET Segment offset, value from beginning of file, in this case of value
34. This Segment starts at 34, which is the start of the Program
Header Table.
003C-003F P_VADDR Segment Virtual Address, this case 08048034
0040-0043 P_PADDR Segment Physical Address, this case 08048034
0044-0047 P_FILESZ Size in bytes in file, in this case A0 bytes. So, with this Segment
starting at 34, the next Segment will start at offset 34+A0=D4,
which is the start 0034-0037:P_TYPE Segment type, in this
case value 06.
0048-004B P_MEMSZ Size in bytes in Memory Image, this case AO bytes.
004C-004F P_FLAGS Segment Flags.
0050-0053 P_ALIGN Segment Alignment, in File and Memory Image.

After performing a similar check for all five (Segment) entries, the results presented in Figure 6

were obtained:

Segment

0
"
i
3
0

Type

NFPPFPWO®

File Location

0034-00D3
00D4-00E7
0000-0585
0588-064B
05C4-064B

vaddr

08048034
080480D4
08048000
08049588
080495C4

filesz

A0
13
0585
C4
88

memsz

A0

13
0585
C8
88

flags

5
4

5
6
6

align

04
01
1000
1000
04

Note that the File Location area is given by: Offset (first value) + FilesSZ.

Comments on the Segment types:

Figure 6: Overview of the five segments as given by the Program Header Table

» Segment ‘0’ has the type value 6: PT_PHDR, the Program Header itself. The file location
range 34-D3 is, indeed, the correct area.
» Segment ‘1’ has the type value 3: PT_INTERP, the location of a null-terminated path
name to invoke as an interpreter. In this case: /lib/ld-lix.so.2.
» Segment ‘2’ has the type value 1: PT_LOAD, the loadable Segment.
» Segment ‘3’ has the type value 1: PT_LOAD, the loadable Segment.
» Segment ‘4’ has the type value 2: PT_DYNAMIC, dynamic linking information.

1.3 Section Header Table

Having examined the Program Header Table and the Segments, it is now time to look at the

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

128 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

Section Header Table and Sections.

The Sections Header Table and Sections contain important information when linking. The ELF
Header shows that for the case of arch (*):

« the Section Header Table starts at 07CO, (e-shoff).

« in total 16 (h) (section) items (index 0-15(h)) of 28 (h) bytes, (e_shnum, e_shentsize).

« Item(0) of section header table starts at 07CO, item(1) follows after 28 (h) bytes at 07ES,
item(2) at 0810, ... item(14) at OAEQO, item (15) from 0B08, until EOF (End Of File) 28 (h)
bytes further at 0B2F.

oQCcooo?co o& 00 00 00 02 00 00 00 01 OC 00 00 30 31 2E 30C1.0
acoooyio 31 00 00 00 02 2E 73 73 6D F4 61 62 00 23X Y73 F4 1... .=zwymzab. .=t
acoooy:=0 72 Y4 61 62 02 2E 73 63 F3 V4 FZ T4 61 62 00 Z2E rteb .sk=irteb. .
acoaooyz0o B3 BE V4 BS V2 V0 00 2E &S Bl T3 BS 00 23 B4 F¥ interp. . hash. .dy
acoooy40 wBE 73 Y9 BD 02 ZE B4 73 BE FI F4 V2 00 23X V2 35 nsym . dynstr. . e
acoooy=E0 /o ZE BY BEF V1 00 ZE 72 65 BC ZE B2 V3 V3 00 2E 1l.cot. . rel bss. .
Luuouyel ¥ oeb el 2B VD BC V4L U AR BY bE BY VL UL YK SU r=l.plt..1nit..p
goaguy w6l ¥4 00 2B VY BY ¥E Y4 UL ZE bb BY BE BJ UL LB Lt texEt. . tiri. .
gcooozen 72 eF 64 61 74 62 00 2E 64 61 74 61 00 2= 63 74 rocata. .data..ct
gcono?so0 6F 7 73 00 232 64 74 6F 72 7Z 00 ZE 67 67 74 10 ors. dtors..co:s.
gcono7id 2E e4 79 6E EB1 6D 69 63 00 2E &2 73 73 01 2E 33 . dynamic. . b=s. .o
gcono?B0 6F &D 6D 65 6 74 00 2E 6E EF 74 €5 00 01 00 10 omment. note. ...
oCcooo7co | o0 0o 00 00 02 00 00 00 00 OC 00 QO 00 02 00 20

gcooo?oo 0o 0o 0o 00 02 00 00 00 a0 oc 00 00 00 01 00 20

gcooov7EQ 00 00 00 00 02 00 00 001 1B OC 00 00 01 03 00 20
gcooov7F0 02 00 00 00 D4 50 04 08 D4 OC 00 00 13 02 00 J0 BN] T TR
Aronnacn nn nn nn nn N1 an an nn ntonc nn nn nn ntT nn n

ACNANAIN L 23 nnonnonnons NnNnoAn N2 Or nn nnowe A1 nd 18 &] |
nronng-n =& nn nn nn 9= nn nn nn n3a nrnn nn non nt nnooan & I

OCO0OB=0 04 00 00 OO 04 OO0 OO OO | 29 OC 00 0O OB O3 00 10 Sl
oCooo240 02 00 00 00 24 22 04 02 24 01 00 00 40 01 00 210 n. .1]
gCcooo2E0 04 00 00O 00 O 00 00 00 04 0C 00 00 10 02 00 20 ..
OCOQO2€0 | 21 00 0O 00 032 OO0 00 00 02 OC 00 00 C4 282 04 22 1 21
QCaoogs0 C& 02 00 00 B2 00 OO0 00 00 OC 00 00 00 02 00 20 A

Ocooo2E0 01 00 00 0O O3 OO0 00 00 | 39 OC 00 00 0% 01 00 30 a
ocoaoogso 02 00 00 00 ?C 82 04 08 FC 0: 00 00 02 02 00 20 .|
QCoooo&d 02 00 00 00 12 00 00 00 04 aoc 00 00 00 03 a0 30

Figure 7: Section Header Table with Section entries, location 07C0-0B2F

The Section Header Table with (section) entries is shown in Figure 7:
Sections

The Section Header Table has 16(h) Section entries: entry #0 starts at 07CO, #1 at 07E8, #2 at
080F. Let’s start by looking at section entry #1. To make it clearer, the specific area has been
extracted from Figure 7 and is shown in Figure 8:

0oooo?ED 00 00 00 00 00 00 00 oo 1B 00 00 00 01 00 00 00,
QO00O7FD 02 00 00 00 D4 20 04 02 D4 00 00 00 12 00 00 000p..0... .. .|
0oogosoo 00 00 00 00 00 00 00 00 01 00 4o 00 a0 00 o0 08 ...

Figure 8: Section entry #1 in the Section Header Table, at location 07E8-080F

The first four bytes hold the name of the Section item, and so for entry #1:

07E8-07EB : SH_NAME

07EC-07EF : SH_TYPE 1: SHT_PROGBITS

07F0-07F3 : SH_FLAGS 2: SHF_ALLOC (4: SHF_EXECINSTR)
07F4-07F7 : SH_ADDR Starts address Memory Image : 0x080480D4

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 « 129

07F8-07FB SH_OFFSET Offset from beginning of file : D4 bytes. So, in this case, Section 1
starts at file location 00DA4.
07FC-07FF SH_SIZE This Section size is 13 (h) bytes, so section #1starts at address
00D4 until 00D4+13=00E7. So, section #2 will probably start at
O0ES8. To make sure, if we look at Section Header Table #2, we see
that the starting byte offset is O0OE8, so it is correct.
0800-0803 SH_LINK
0804-0807 SH_INFO
0808-080B SH_ADDRALIGN Alignment constraints, 0-1: no constraints.
080C-080F SH_ENTSIZE Size of each sub-entry if multiple sub-entries exist, (*) 0: none.
Section Index File Location Image address Type Flags
0 — — — —
1 00D4-00E7 080480D4 1 2 interp
2 00E8-0183 080480E8 5 2 .hash
3 0184-02C3 08048184 B 2 .dynsym
4 02C4-037B 080482C4 3 2 .dynstr
5 037C-0383 0804837C 9 2 .rel.got
6 0384-038B 08048384 9 2 .rel.bss
7 038C-03BF 0804838C 9 2 relplt
8 03C0-03EB 080483C0 1 6 .init
9 03EC-045F 080483EC 1 6 .plt
A 0460-055F 08048460 1 6 .text (E_ENTRY)
B 0560-057B 08048560 1 6 .fini
C 057C-0587 0804857C 1 2 .rodata
D 0588-058B 08049588 1 3 .data
E 058C-0593 0804958C 1 3 .ctors
F 0594-059B 08049594 1 3 .dtors
10 059C-05C3 0804959C 1 3 .got
11 05C4-064B 080495C4 6 3 .dynamic
12 064C-06AF 0804964C 8 3 .bbs
13 (.commnt), 14 (.note), 15..

Figure 9: Overview of the 16(h) Sections as given by the Section Header Table

After performing a similar check for all 16(h) Section entries, the results shown in Figure 9 were
obtained.

According to the ELF Header, the E_ENTRY (0018-001B) virtual address starting process starts
at the value (*) 08048460. So this means that the section with index ‘A’ is the entry point —
located at the file offset location 0460 from the beginning of the file.

So, so far for this sample (*), we havéinking View

1.4 The GNU Debugger — ghd

0000-0033 ELF Header
0034-00D3 Program Header Table
00D4-07BF Sections

07CO0-0B2F Section Header Table

The various Sections can also be obtained by debugging the filegadinthe GNU debugger.
(It can, for example, debug programs C/C++ etc.)

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

130 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

| put the file arch in the directory/danger.

[root@localhost /danger]# gdb arch <enter>
(gdb) maintenance info sections <enter>
q

[root@localhost /danger]#

This gives the various Sections. Or alternatively, you can use:

[root@localhost /danger]# gdb arch <enter>
(gdb) info files <enter>
q

[root@localhost /danger]#

This gives the various Sections and mentions the file type (ELF32-i386) and the (Image) entry
point : 0x08048460.

1.5 Looking at other files

Now let's take a look at other 32-bit files, usiRgdHat 5.2n anintel system. The Image entry
[E_ENTRY] can be looked up in the ELF Header. One way to determine the file entry point is by
searching for the specific Section entry which has exactly the same Image as that given by
[E_ENTRY].

* Note that EI_CLASS, at offset 0004, has value 1: 32 bit object.
» Note also that EI_DATA, encoding, at offset 0005, has value 1: LSB (value reading ‘from right
to left’).

So, look up the Image (E_ENTRY=SH_ADDR) under the Section Header Table — the
SH_OFFSET is given by the next four bytes. For example, for ARCH, E_ENTRY =
0x08048460, and so one needs to search the Section Header Table for 60 84 04 08.

When found, the next 4 bytes are: 60 04 00 00, so SH_OFFSET is: 0x0460. Consider the follow-
ing three files:

10/07/98 02:27a 19,116 UMOUNT 080492CC 12CC
10/16/98 12:11a 3,168 USLEEP 08048470 0470

09/10/98 08:49a 45,388 ZCAT 08048E40 0E40
For these files, the physical file entry point location = [E_ENTRY] — 0x08048000.

32-bit files
Let’s try a similar check on 32-bit files, orSain Solaris 2.6.
File: Adb

00000000 7F 45 4C 46 01 01 0L 00 00 00 00 00 00 00 00 00 MELF............
00000010 02 00 03 00 01 00 00 00 60 84 04 08 34 00 00 00 i Y T
* Note that EI_CLASS, at offset 0004, has value 1: 32 bit object.

* Note also that EI_DATA, encoding, at offset 0005, has value 2: MSB (value reading ‘from left
to right’).

So, look up the Image (E_ENTRY = SH_ADDR) under the Section Header Table — the
SH_OFFSET is given by the next four bytes. For example, for Adb, the E_ENTRY

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 « |31

= 0x00013BAC.

poooo3s0 S5F 00 00 00 01 o0 0O OO0 06 OO OO OO 60 84 04 08 _. N I
0000090 60 04 00 00 00 01 00 00 00 00 @0 00 g0 go 60 00 °

When found, the next four bytes are 00 00 3B AC, and so SH_OFFSET is: 0x3BAC

02/15/00 03:21p 124,680 adb 00013BAC 3BAC
02/15/00 03:21p 345,728 admintool 00018BF0 8BFO

02/15/00 03:21p 15,784 aliasadm 000111E4 11E4
So, for these three files, the physical file entry point location = [E_ENTRY] — 0x00010000.

64-bit files
Again, let’s a similar check on 64-bit fileRed Hat 5.2n aDec Alpha
File: arch

googoooo F?F 45 4C 46 01 02 01 00 00 00 00 00 0O 00 00 00 WELF............
ooogooio 00 02 00 02 00 00 00 01 00 01 3B AC OO0 0o o0 34 4

* Note that EI_CLASS, at offset 0004, has value 2: 64 bit object.
* Note also that EI_DATA, encoding, at offset 0005, has value 1: LSB (value reading ‘from right
to left).

NO00O1E4BO 00 00 00 51 00 00 00 01 00 00 00 06 0O 01 3B AC .. .Q..........;~
0O001E4CO 00 00 3B AC 00 01 20 94 00 00 00 00 0o oo o0 om0 o - H.o.......

So, look up the Image (E_ENTRY=SH_ADDR) under the Section Header Table — the
E_ENTRY = 0x20000650, so search the Section Header Table:

Now, instead of the next four bytes (32-bit), the offset is given after the next eight bytes (64-bit).
In this case: 0x0650.

02/18/00 09:26a 4,392 arch 20000650 0650

02/18/00 09:26a 109,128 ash 200013CO 13C0
02/18/00 09:26a 244,896 ash.static 20000100 0100
02/18/00 09:26a 7,920 basename 20000980 0980

oooooooo YF 45 4C 46 02 01 01 00 00 OO0 00 00 OO0 00 0O OO0 QELF.....
noogooio 02 00 26 90 01 00 00 0o 50 06 OO0 20 01 00 00 OO0 . . &Q....P.. ...

So, for these four files, the physical file entry point location = [E_ENTRY] — 0x20000000.
In the previous three cases we have seen:
physical file entry point location = [E_ENTRY] — 0x08048000

physical file entry point location = [E_ENTRY] — 0x00010000

oooooDFEO 06 00 00 00 00 00 00 00 50 06 @0 20 01 00 00 00 |
ooooQoE0DD S0 06 OO0 00 00 00 00 00 A8 01 00 00 00 00 00 00 P....... L

physical file entry point location = [E_ENTRY] — 0x20000000

For these samples it seems likelimage Base Sometimes it is the same as the lowest Seg-
ment’s VADDR, although this is not the case for all samples.

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers

132 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

According to documentation:
‘The base address of a file is calculated during execution from 3 values:

* memory load address
* maximum page size
* lowest virtual address of a program’s loadable segment

The virtual addresses in the program headers might not represent the actual virtual addresses of the
program’s memory image.

To compute the base address, one determines the memory address associated with the lowest
p_vaddr value for a PT_LOAD segment. One then obtains the base address by truncating the
memory address to the nearest multiple of the maximum page size. Depending on the kind of file

being loaded into memory, the memory address might or might not match the p_vaddr values.’

2 ELF FILE VIRUSES

Unix/Linuxis a very good security model. For example, without root (administration) rights it is
very difficult to change ELF binary files. So, for a virus to be successful, it needs high rights.
Another aspect to consider is that there are quite a lot of different ‘flavours’ of Unix around, and
so a Unix virus will most likely not infect on all systems. Nevertheless, with the increase of
popularity ofLinux it is possible that we will see moteux viruses in the future.

Generally, a file virus can either be a relatively simple prepender or of a more advanced nature —
for example by changing internal section items. Recently, at the beginning of 2000, a number of
Linux viruses were encountered — they were from virus collections, however, and not ‘real’
infections from in the wild.

2.1 Lin/Bliss

The firstLinux binary virus, Lin/Bliss, was encountered in 1997 — it demonstrated itiat

could be vulnerable to binary viruses. Lin/Bliss is a relatively simple prepender, and so far there
are a few variants (prepending either 17,892 or 18,604 bytes). The infected files have two ELF
headers, the first from the virus, the second from the original (uninfected) file. For infected files:

The second ELF header starts at offset 45E4 (hex) = 17,892 (dec), or
the second ELF header starts at offset 48AC (hex) = 18,604 (dec).

So, with prependers like Lin/Bliss, detection and repair is easy.

Technical Details
For a Lin/Bliss sample called BLI17892.LNX:

El _Class: 1 — 32-hit.

El Data: 1 - LSB, value reading from right to left.

E_Entry: 08049120.

Section Header Table Offset: 429C (28 bytes Table Section items, 15 sections in all, which

within viral range of 45E4 total virus code).
Program Header Table, Offset: 34 (20 hex entries in Table, five entries)

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 + |33

Part of a Lin/Bliss-infected file is shown in Figure 10:

Qoo03sEY 5B C3 8D 33 C3 90 S0 30 00 CO a0 00 o0
guulidgk) Bd AR DE F2oPE L2 LU U0 Db -4 BD 64 d1
agooozaol 30 3e 35 32 38 39 3 33 31 3 35 32 32
nnnni!att /1 AR 35 A4 ARG ARG F2 34 NN =1 ARA 39 39
oooo392l 34 36 32 63 34 31 eI 3T 6T ZE 83 pE 32
oooo2931 &2 37 3L 33 31 62 =5 37 36 L0 &4 65 64
ooon3241 7L a5 6d 21 74 6F =0 YE 6B €4 00 ZF 74
o0oo03931 2E 62 6C 63 73 73 CO DA 69 £E 66 65 03
uuulssgel L0 64 WY 20 B4 BLOEY YE VS U 25 ER 3H
goooze?l 25 2E 38 73 0A 00 el 00 25 E4 20 25 2E
nnoniagt 25 73 2F 25 23 n& 025 73 FF OR? RC RY
ooooze91 74 6D 70 21 25 64 CO 25 72 E0 81 BT T2
00003941 79 20 69 65 66 65 E3 V4 65 £4 20 283 25

oo oo [Eesdmnn...
47 4l EldyvA . bdecldyl
35 6L JEGZ28933133:29%e
F™ 32 aAfhdeehd 1F594aA7
34 61 4E3=il-Te=Ceefid
£3 61 oPEQ1BETE dodica
Lend Lo akod, = Lipe
65 64 .blis=s. infected
aa 2l by blizs = . d=:

820 % B=. a kd ¥ 8=

732N E=sl=s = o Ali=ms—
EZ &1 Ekxp.3d. %z alrsad
28 78 v infcoted (R 8=

b % e e el O U U o o 1
[e N = Y B Y O Y SO
-]
=
r-a
|

Figure 10: Lin/Bliss-infected file

2.2 Lin/Glaurung.676/666(alias Mandragore)

A so-calledappendingvirus, Lin/Glaurung is encrypted. When running infected samples on a
anlintel machine witrRedHat 5.2an error occurs reporting a ‘Segmentation fault’ (i.e. core
dumped). This error was encountered with all samples on the specified machine and, as ex-
pected, no replication/further infection was seen.

So, the good thing is that a Unix virus will probably spread only on certain flavours and/or
versions or kernel versions of Unix operating systems. This is a bad thing for the AV industry
since it requires more test machines running the various limisd configurations in order to
investigate samples fully.

When running infected samples onlatel machine withRedHat 6.1no error occurred. The
direct infection mechanism simply infected a lot of ELF binary files in the /bin directory after
running one infected file just once.

RedHat 6.%ile called DOEXEC, ‘clean’ file size is 3,028 bytes (dec), (OBD3 hex)
RedHat 6.%ile called DOEXEC, ‘infected’ file size is: 3,694 bytes (dec), (OE6E hex) — an
increase of 666 bytes (dec), (29A hex).

The infected file header is shown in Figure 11a, the infection mechanism in Figure 11b.

The entry EI_PAD, from offset 0007-000F, is normally unused/reserved (normally 00). In all
Lin/Glaurung-infected files, the byte at offset 07 is used, with the value 21 (hex). This seems to
be a quick marker to determine if the viral code is already present or not. For the file DOEXEC:

E-entry value File entry value
Clean 0x08048320 0x0320
Infected 0x08049BD4 0x0BD4

The infected file entry value for DOEXEC (0xOBD4) is exactly the start of the appending viral
code (remember the EOF of the clean file was 0BD3 hex). The Program Header Table has six
entries, numbered 0 to 5. Table entry #3 differs in its clean and infected states:

» Clean P_Filesz, size in bytes in file: O0x00EDO, infected: Ox0A1E
» Clean P_Memsz, size in bytes in memory Image: 0x00F8, infected:0x0A1E

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers

134 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

goooJicoo 7T 45 4C 45 01 01 01[21] 03 00 00 00 CO €O 0d oo pEZF.. . 0.
QoooJcio 02 00 0% 02 01 00 oo oo [Of 9B UI OU]z4 CO 00 0050p1..4...
ooooJczo EC OF 00 02 00 oo oo oo 34 00 00 Ce CO 28 00 1.......4. . (.
uuuuJoasy 19 uu 1d Ul use Ul udoug 44l UU) WO T W | S = R S 3 I
onoolic4n 34 80 04 03 CO OO OO OO C) 00 00 00 CS5 CO 00 00 4p. A &
0o0oJCcs0 04 o0 o0 0) 03 00 o0 o0 F4 00 OO0 OO0 F4 Lo 04 085...480..
ooooJCced B4 20 O4 02 12 00 00 00 13 00 00 00 €4 €0 00 00 &p.
ooooJCc?o0 0O 00 0o 02 01 oo oo oo 01 00 00 00 €0 €0 o4 02 .o ..
ooooJcoo oo oo 04 02 SO 04 00 00 S50 04 DD DD Co, cooooo @I 000 L
ooooJcs0 00 10 00 02 01 00 00 00 51 04 =0 =4 0403F...FI..
QO0002JCAD S0 94 04 03 1E 0OA OO0 OO0 | 14 Ua DD DD Ce coo0ooQd Fo.......... ...
(UL Yt I L 1 D 1 P I Wy | N W W HJ Ul U W L T 1 - R I N I
ooooJcco 90 94 04 03 A0 OO0 OO0 OO0 AQ 00 EIEI oo ce CO 0O 00 mp..
QoooJcbo 04 00 00 0J 04 00 00 00 03 01 00 00 Cs E1 04 05 L.
nnonaren n& &1 nd N3 20 non nonnonoo27 0n non non 4 rnonn onn |

Qoo0JCEO 04 00 00 02 2F eC B9 B2 25 62 B4 2D EC E9 6E 75 lib<ld—_inm
oooolioo Ve 2E Y2 e Z2E 22 00 00 04 00 00 00 10 €0 00 00 =.so.2

Figure 11a: Lin/Glaurung-infected file

0000 0000 —Entry
ELF ELF
Regular Code Regular Code
0BD3 hytes total 0BD3 bytes total
0ED3 0BD3
-
0BDd4
Virus Code,
0294 bytes
0EGE

Figure 11b: The Lin/Glaurung infection scheme

2.3 Lin/Silv.A

This infects without problems on &mel machine runningRedHat 5.2The clean file ‘arch’ has

a file size of 2,864 (dec) bytes, whereas the infected file is 8,831 bytes long, representing an
increase of 5,967 bytes. This virus does not append/prepend but inserts its code into slack space.
As a result, the file size increase with this 32-bit file infector is hardly constant. Figure 12a

shows the Lin/Silv-infected ‘arch’ (*) file. Looking at the ELF header, we can see that

E_SHOFF (offset from the beginning of the file to the Section Header Table) has been changed.

E_SHOFF (clean): 0x07CO

E_SHOFF (infected): Ox1EE7, so the Section header is further down in the file. An
observation such as this could be the first sign that viral code has
been inserted between regular code.

* The value for E_SHNUM (the number of items in the Section Header Table)
changed as well, from 16(h) to 17(h). The virus seems to add one Section (Datal).
» Consequently, E_ SHSTRNDX (the String table index in the Section Header
Table) was changed from 15 to 16.

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 + 135

Bearing in mind the Segment information for the clean ‘arch’ (*) file (see Figure 6), the informa-
tion for Segment 3 of the infected file is now:

agcooooon FF 45 4 f5 01 01 O1 OO0 OO0 OO0 02 00 OC 00 o0 o0 pELF..
aocoooolno 02 0OC 03 00 01 oo oo oo &0 24 04 0% 34 00 00 OO00. 4.
agcoooozo [ET 1E 00 0ajoo oo oo oo 24 00 23 00 0OFE 00 28 00 Z..... .. 4.0 (.
OCO0oO30 [17 OCfle 00|06 OO OO OO0 34 00 02 OO0 34 20 04 0B4.. 41..
acoooosn 34 8C 04 08 A0 00 OO0 OO0 &0 OO0 02 00 QOE 00 00 OO 4p..
OCO0OODED 04 OC 00 0O 02 OO0 OO0 00 L4 OO 0D OO D4 20 04 080 . Op..
OCO0O0DED D4 BC 04 02 12 00 00 00 13 00 02 00 O4 00 00 00 Sp.........
gcogooyo oOZ OC 00 00 01 OO0 00 00 OO0 OO0 02 00 0C &80 04 02D..
acooooso o0 &C 04 08 85 05 00 00 85 05 02 00 QOE 0O OO OO .@p..@... DL, ...
agcoooo9n 00 1C o0 00 01 00 00 00 88 05 03 00 8¢ 845 04 082 0., OI..
oCcooooio 88 9t 04 08[EE 17 00 0O0][E9 17 01 O0|0e 00 00 0O @0..&...&..
QCooooeo 00 1C 00 00 02 00 00 oo -4 95 04 02 ... AL AL
acooooco <4 95 04 08 B8 00 00 00 88 00 02 00 0O 00 00 OO0 Ap..n...0..
acoooonLo 04 OC 00 00 ZF &2 &9 62 2F &2 &1 2D 6C &9 6E Y5 ~libsld-lirm
QCoo0oED 22 2E 73 &F ZE 22 00 00 11 00 02 00 14 00 00 00 =m.=c.2.....
QCooooEQ 00 OC 00 Q0 11 00 00 0o 02 00 02 oo OF o0 00 oo

acooolaoo 10 OC 00 o0 OO 00 oo o0 OE 00 02 00 ac 00 00 00

Figure 12a: Lin/Silv-infected file

Segment Type File Location vaddr filesz memsz flags align

‘3 1 0588-1D6D 08049588 17E5 17E9 6 1000

As can be seen, in the Infected file the value for P_FILESZ for segment ‘3’ has changed from C4
to 17E5, which accounts for a file size increase of 1,721(h) bytes (5921(d)). This is very close to

the total file size increase of 5,967(d) bytes (for this specific sample only). So, the file location is

0588 to 0588+17E5 = 1D6D.

Also, the value for P_MEMSZ in the infected file has increased from C8 to 17E9. This also
represents an increase of 1721(h) / 5921(d) bytes. The Section layout Image address is given by
gdb arch files information, as shown in Figure 12b below:

Clean ‘arch’ Lin/Silv.A-infected ‘arch’

File type ELF32-i386 File type ELF32-i386

Entry point: 0x08048460 Entry point: 0x08048460

0x080480D4 — 0x080480E7 .interp same

80E8 8184 .hash same
8184 82C4 .dynsym same
82C4 837C .dynstr same
837C 8384 .rel.got same
8384 838C .rel.bss same
838C 83BC rel.plt same
83C0 83EC Jinit same
83EC 845C plt same
8460 8560 .texte_entry) same
8560 857C fini same
857C 8585 .rodata same
9588 958C .data same
958C 9594 .ctors same
9594 959C .dtors same
959C 95C4 .got same
95C4 964C .dynamic same
964C 9650 .bbs Ra 964C AD6ED .datal

Figure 12b: Lin/Silv-infected file changes Section

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers

136 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

Clean ‘arch’ file:

00000460 31 ED 85 D2 74 07 52 E3 DO FF FF FF 58 ES BA FF 1110t ReDyyyiely

00000470 FF FF SE BD 44 B4 04 23 4C 96 04 08 89 E2 83 E4 &% 1D .11, . 1415

00000450 FS 50 50 52 56 E8 36 FF FF FF 68 60 85 04 08 ES oPPRVabiH#h 1. .&
Infected ‘arch’ file:

00000460 E& 00 00 00 00 SE 81 C6 21 OO0 OO OO0 8B BE 00 00 &. . “1&!. . B& .

0po0o470 00 00 FF E7 55 89 EG ES 00 00 OO0 00 58 05 0& 00 . %cUpds. . X, ..

00000430 00 00 89 EC 5D C3 50 96 04 08 65 60 85 04 08 ES QilaP1. k'@ &

Figure 12c: Lin/Silv modifies the actual code at the unchanged entry point

L]] 1]
(81 [oy Furem i 1k Frivy Prmi
warhar gl
hui sl rude
rhang mrrue
in rralimdem
g 1
(11] ps]
[LE SR ST | 1A rpm e ~
Bt e il
LS R T Y Te——
I GEU
L E
:" e GOT GEU
PR iET
e
[]
disawi
Srtum Hesdm b
Talds £ T
rate
GEF ")
ER?
b Hrade
Tk

SE

Figure 12d: Lin/Silv.A-infected ‘arch’ file

We can see that this virus places its viral code at the end of the host file. The virus does not seem
to change the entry point (e_entry). So, how does the virus code become activated? Well, al-
though the virus does nseéento change the entry point (e_entry) initially, it actually modifies

the code at the entry point such that it takes control.

2.4 Lin/Obsidian.E

The viruses in the Lin/Obsidian family do not replicate correctly on all systems. The variants A
through D did not replicate whatsoever unedHat 5.2The .E variant, however, replicated

fine. Lin/Obsidian.E is a so-called prepender, inserting its viral code before the target file. So, in
this case we end up with a file with two ELF headers: firstly, the viral one and secondly, the one
from the regular work file. As an example, let us look at a sample file called DOEXEC:

2,652 bytes (de®edHat 5.2ELF32-i386
10,652 bytes (dec)

Clean file DOEXEC:
Infected file DOEXEC:

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 « 137

E-Entry Image infected file doexec.inf: 08048970, this is pointing to a file location which is well
within the viral body — nothing strange here (for this sample series: 0x08048970-0x08048000 =
0x0970). The infected files are really strange in the following respects:

« If we try to use gbd on the file, using ‘gdb doexec.inf’, an error message results
(“/danger/doexec.inf” : not in executable format: File truncated).

« If we use the command ‘info files’ nothing happens, no information is provided.
« If we try to use the command ‘maintenance info section’ then nothing happens,
again no information is provided.

If we look at the infected file called DOEXEC.INF manually, we see that the second .ELF
header starts at offset 1F40(h), so the virus inserted 8,000 bytes. This is OK if we look at the file
increase from 2,652 to 10,652. So, all the viral code seems to be inserted, with nothing in be-
tween or appended.

If we look at the Section Header Table Offset, for all samples it always has the value 25F0. This
is strange for two reasons. Firstly, the value is always constant for all infected files, which would
indicate that the Section Header Table is at a random, incorrect location. Secondly, the virus
inserts 1F40(h) bytes in total, so the Section Header Table Offset as given in the viral code (in
the first ELF header) is pointing to a random location in the ‘second part’ of the file (the code
from the regular work file). But infected files still run. Why? The question is therefore:

Can the Section header table be ignored for executing files?

| took a clearRedHat 6.1file called ‘arch’, for which the Section Header Table offset was
0x0890. | replaced the complete Section Header Table with zeroes until the file ended at
0x0C77. | also took a cled®edHat 6.1file called ‘date’, for which the Section Header Table
offset was Ox64EC. Again, | replaced the complete Section Header Table with zeroes until the
file ended at Ox68FC. | tried to execute both of these files and they both ran fine!

From the ELF documentation we recall that we can look at binary files from different view-
points. For a Linking viewpoint, a Section Header Table is required. At a minimum, the ELF
header (the Program Header Table is optional), Sectionl, Section2, etc, and the Section Header
Table are required. From an Execution viewpoint, a Section Header Table is optional, and the
minimum requirements are the ELF header, Program Header Table, Segmentl, Segment2, etc.

If we look at the infected file called DOEXEC.INF manually, we see that the following informa-
tion can be retrieved from the Program Header Table concerning the various Segment items for
the viral code:

0000 ", L]
ELF .,
_‘ Frapendssg wies
Rogular Code 5 Code, IF40 hytes
DASE hyves tetal N,
Y
I L h
%, Sacties Head
R Talilix aflset
e stamt, 2500
1F&0
¥
Regular Code,
0ABS bytes
1WE

Figure 13: Linux/Obsidian.E infection scheme

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

138 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

Segment Type Offset Vaddr Filesz Memsz Flags Alignment File location
‘0’ 06 34 08048034 A0 A0 5 4 34-D4

1 03 D4 080480D4 13 13 4 1 D4-E7

VA 01 00 08048000 17A5 17A5 5 1000 00-17A5

‘3 01 17A8 0804A7A8 0130 0268 6 1000 17A8-18D8
‘4 02 1850 0804 A850 88 88 6 4 1850-18D8

The infection scheme employed by Lin/Obsidian.E is shown in Figure 13.

2.5 Lin/Vit.4096

Lin/Vit.4096 samples did infect on my test system running 3Mtet i586 Redhat 5.2

Clean file (DOEXEC): 2,652 bytes, 0A5C(h)
Infected file (DOEXEC): 6,748 bytes, 1A5C(h)

On the sample file, the virus adds 4,096 bytes, 1000(h)

The clean E_Entry has the value: 0x080484700
The viral E-Entry has the value: 0x08048B3C

The virus changes the section called ‘.Fini’ (the maintenance information sections):

Clean file DOEXEC Infected file DOEXEC
080484D0-080484EC .Fini 080484D0-08048DB6 .Fini

Clean file DOEXEC Segments:

Segment Type FileLocation Vaddr FileSz MemSz Flags Align [FileUsage]
‘0 06 34 08048034 A0 A0 5 04 0034-00D4
‘1 03 D4 080480D4 13 13 4 01 00D4-00ET
‘2’ 01 00 08048000 0O4EC 04EC 5 1000 0000-04EC
‘3 01 O04EC 080494EC BC Cco 6 1000 O04EC-05A8
‘4 02 0520 08049520 88 88 6 04 0520-05A8

Infected file DOEXEC Segments:

Segment Type FileLocation Vaddr FileSz MemSz Flags Align [FileUsage]
‘0 06 34 08048034 A0 A0 5 04 0034-00D4
‘1 03 D4 080480D4 13 13 4 01 00D4-00ET
‘2’ 01 00 08048000 0ODB6 0DB6 5 1000 0000-0DB6
‘3 01 14EC 080494EC BC Cco 6 1000 14EC-15A8
‘4 02 1520 08049520 88 88 6 04 1520-05A%

Figure 14a: Lin/Vit.4096-infected file Segment differences

Clean file DOEXEC: Section Header Table starts at offset 0x0714 from beginning of file.
Infected file DOEXEC: Section Header Table starts at offset 0x1714 from beginning of file.

The various segment changes after the file was infected by Lin/Vit.4096 can be seen in Figure

14a. Figure 14b shows a section of the viral code inserted into the middle of the file, and the end
of the viral code can be seen in Figure 14c.

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.

Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 « 139

Clean DOEXEC file:

000004E0 EZ GF FF FF FF 8B SD FC 89 EC 5D C3 00 00 00 00 & wwyl]ulili. ...
Qoooo4rFd FF FF FF FF OO0 00 00 00 FF FF FF FF 00 00 00 OO0 @ w9¥wyy. .. . ¥¥VY¥. ...
oooooson 20 95 04 08 00 00 00 00 00 00 00 00 2 83 04 08 | I Ay

Infected DOEXEC file:

000004E0 ES GF FF FF FF 8B 5D FC 89 EC 5D 3 55 89 E5 53 & wwvl1ililAUIaS
0000O04F0 9B SD 08 BE 0D 00 00 00 D 80 8B 5D FC 89 EC GD 11.,....Innluni]
0O0poOS00 ©3 S5 89 ES 53 8B SD 08 B8 2D 00 00 00 CD 30 8B AUpasi]..-...In

Figure 14b: Lin/Vit inserts code to the ‘middle’ of the file, Section 3 in this case, at 04EC

00000DR0 FF FF 7F D1 E9 Ok FF FF FF 8B 95 EO CE FF FF 52 wvIHe vwvl1alvvR
QOOOOD70 EB 52 F3 FF FF BE FF FF FF FF 83 C4 04 85 Fb 7C aReyyuyvyyvlA. 10|
00000D20 06 G EB 40 F2 FF FF 31 0O 8D AS A% CE FF FF LA Ve@eyvlilE IvvZ
0OOO0DS0 59 5B 58 S5E 5F 89 EC 50 ED 00 84 04 08 FF ES EB V[E"_JIil%.1..vae
npoogoDi0 50 FE FF FF ZE 00 E8 52 F9 FF FF 2E 76 69 33 32 Pbhyv. . &Riayy.wiidZ
nooooDED 34 2E 74 6D Y0 00 00 OO0 00 00 00 00 00 00 00 00 4.tmp...........

Figure 14c: The end of the Lin/Vit viral code, followed by filling up/alignment zeroes

So we see that for the DOEXEC sample file, the Lin/Vit.4096 virus inserts its viral code at the
start of segment ‘3’. The original segment ‘3’ is moved down by 1,000(h)/4,096(d) bytes. A
similar situation exists for the gnu/gcc/symtab and Section Header Table (Figure 14d). The
original segment ‘3’ started at offset 04EC from the beginning of the file, yet in the infected file:

it starts at offset 14EC. However, the virus does not take up the full 1,000(h) bytes. In the case of
our test file DOEXEC, the actual viral bytes end (with vi324.tmp) at offset 0DB6, which is the

end of Segment ‘2’ in the infected file, leaving the area from 0DB6 to 14EC for zeroes/empty
space.

2.6 Lin/Diesel

Under a32-bit Intel i586with Redhat 5.2samples were readily infected witin/ Diesel.969:

Clean file base name: 4,892 bytes (dec)
Infected file base name: 5,909 bytes (dec)

The clean E_Entry has the value 0x08048680, the entry at the file is at offset 0680 from the
beginning. The virus does not change the value for E-Entry, but instead changes the actual bytes
at the entry point, as shown in Figure 15a.

Clean base name:

gooode?d 04 08 68 60 00 00 00 E9 Z0 FF FF FF 00 00 00 00 . . h™...& ¥y, ...
00000630 31 ED 85 D2 74 07 52 ES A0 FF FF FF 58 E& 84 FF 1i10t Rée $yylieny
00000690 FF FF SE 8D 44 B4 04 A3 40 SE 04 08 89 E2 83 E4 ¢y D" . £@1. . 1415

Infected base name:

nooooe?0 04 08 68 60 00 00 00 EY 20 FF FF FF 00 00 00 00 . . h™...& ¥¥¥....
nooooes0 e 00 55 8B EC 81 EC 80 00 00 00 &0 EB 47 03 00 g.01i0in.. "&G..
00000690 00 89 SD 04 8B F3 8B FC 81 EF 00 08 00 00 B9 C9 p].popiiri. . . . 'E

Figure 15a: Lin/Diesel changes bytes at the entry point, not the entry point itself

The virus puts/overwrites its viral at location 0680 (file entry) to 0A49, which is 3C9(h) bytes
(969dec). The end of the viral code can be seen in Figure 15b:

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers

140 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

0000
-Elf Header, Segment “0”
-Program Header table, Segment “1”

Segment “27 | 0000=-—=04E
totally (MEC hytes hex

O4EC

04EC: 00000000 FFFFFFFE..00.FF..

Segment “37, 04EC=—=05A8
totally BC hytes hex

0520

0000
-Elf Header, Segment “0”
-Program Header table, Segment “1”

Segment “2” | 0000=--=0DB6&
totally 0DB6 hytes hex

04EC

0520: 01000000100000000C ...

Segment “4”, 0520=—=05A8
totally 38 bytes hex

05A8
05ASB: 004743433A202847

GNU/GCC.,
SYSTAB/TEXT/COMMEINT..

0714

04EC:
S589E5538B5D08B30D000000CDE0
Viral Code Begin
Viral Code
Viral Code
Viral Code
Viral Code End : vi324.tmp

(32 2E 74 6D 70 00 00 00}
0DE6

0714

Section Header Table

DASC

0DE6: 00000000000000000000000000

00000000000000000000000000
All filled with zero’s, fill up/alignment
00000000000000000000000000000000
00000000000000000000000000000000

HEC
14EC: 00000000 FFFFFFFE...00..FF.

Segment “3", 14EC<—=15A8
totally BC bhytes hex

1520

1520
Segment “4”, 1520=—=15A8
totally 38 hytes hex

15A8

15A8
GNUWGCC..
SYSTABTEXT/COMMEINT..

1714

1714
Section Header Table

1ASC End of File

Figure 14d: Lin/Vit infection scheme

The original bytes in the host file that got replaced/overwritten are appended at the end of the file
(after the original file end, therefore following the Section Header Table). A summary of the
infection scheme adopted by Lin/Diesel is shown in Figure 15c overleaf.

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 « 141

Clean base name:

oooooAon 1D 3C 9E 04 05 C7 05 3C 9E 04 08 00 00 00 00 83 .<0..C.<0...... 1
nooooAlo 7D 08 02 7?5 SE eA 00 68 BC 8C 04 02 68 F9 8C 04 1. . u[j. hMi. hal.
nooooAzo 08 50 6A 02 ES A3 FB FF FF 83 C4 14 83 F§ FF 74 Pj.etuvvld. lavt
nooooAz0 3F 83 F3 68 74 0A 83 F8 76 74 OC EB 32 BD 76 00 7?l1eht. levt E31v.
nooooA40 64 00 FF De 83 C4 04 57 8B 55 14 52 8B 55 10 52 1. .%01A. WIU. RIT.R
nooooAS0 62 FB BC 04 08 EF 62 FBE FF FF g4 00 E2 FE FE FF hal . . &bdyy] . &ddy

Infected base name:

nooooAon 04 20 20 5B 20 44 69 65 73 65 BC 20 34 20 4F 69 . [Die=sel : 01
nooooAalno 6C 2C 20 48 65 61 76 79 20 50 65 74 72 6F 6C 65 1., Heawy Petrole
noooooAzo 75 6D Z0 46 72 61 63 74 69 6F BE 20 55 73 65 64 um Fraction Used
nooooA3n 20 49 6E 20 44 69 65 73 65 6C 20 45 6E 67 69 GE In Die=sel Engin
nooooid40 65 73 20 5D 20 20 0A OA 00 55 14 52 8B 55 10 52 e=] .. . U.RIU.R
nooooAs0 63 FE 8C 04 053 EF 62 FBE FF FF 64 00 ES FE FE FF hal . . ebivy] . ediv

Figure 15b: Lin/Diesel — end of viral code

0000 0000

0630 0680

0680 Entry Point 0680 Entry Point

Regular Code Viral Code
3C9bytes hex
969 bytes dec

0449 0A49

0A49 0A49

End of

Original File End of Original

131¢C File 131C
131¢C
few D0 (Zeros) +
Regular Code
1714

Figure 15c: The Lin/Diesel infection scheme

3 SUMMARY AND CONCLUSIONS

Linux virus techniques:

* Prepending viral code

» Appending viral code

» Adding a section

* Increasing an existing section

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513dNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

142 « VAN OERS, LINUX VIRUSES — ELF FILE FORMAT

Things to consider:

* Replication might be OSRedHatin this case) version/kernel-dependent

» Searching E_Entry in the Section Header Table then determining its file offset does
not always work. Remember, the Section Header Table is not needed for Execution
viewing.

Conclusions:
* Documented ELF file format might increase virus risk
» Native ELFLinuxviruses are technically possible

* Linux viruses could become an issue of increased importance, as the popularity of
theLinux OSes increases.

5 REFERENCES

 Full documentation on the ELF layout is available at various locations on-line. For example,
http://suncite.unc.edu/pubhux¥GCC/ELF.doc.tar.gz

* A lot of good information on gdb is available in the following book:
‘Using GDB: A guide to the GNU Source-Level Debugger’, Richard M. Stallman and Roland H.
Pesch. The book is also available on-line.

VIRUS BULLETIN CONFERENGC&2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 55513No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

