
Security in MySQL

Security in MySQL
Abstract

This is the MySQL Security Guide extract from the MySQL !#!amp!#!current-series!#!;!#! Reference Manual.

Document generated on: 2012-02-21 (revision: 29152)

Copyright © 1997, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intel-
lectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us
in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following no-
tice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific sup-
plemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set
forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation
and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its affiliates, and shall
not be used without Oracle's express written authorization. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Cor-
poration and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use
of this material is subject to the terms and conditions of your Oracle Software License and Service Agreement, which has been executed and with which
you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle or as specifically provided below. This document is not part of your license agreement nor can it be incorporated
into any contractual agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual con-
tent is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM
or similar medium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any
dissemination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built and produced, please visit MySQL Contact &
Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products, see Preface and Legal Notice.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other MySQL
users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in vari-
ety of formats, including HTML and PDF formats, see the MySQL Documentation Library.

http://dev.mysql.com/contact/
http://dev.mysql.com/contact/
http://dev.mysql.com/doc/refman/5.5/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Preface
When thinking about security within MySQL you should consider a wide range of possible topics and how they might affect the secur-
ity of your MySQL server and related applications.

All of the following are issues that you should be aware of:

• Security of the installation itself. The data files, log files, and the all the application files of your installation should be protected to
ensure that they are not readable or writable by unauthorized parties. For more information, see Chapter 2, Postinstallation Setup
and Testing.

• Access control and security within the database system itself, including the users and databases granted with access to the databases,
views and stored programs in use within the database. For more information, see Chapter 3, The MySQL Access Privilege System,
Chapter 4, MySQL User Account Management.

• Network security of MySQL and your system. The security is related to the grants for individual users, but you may also wish to re-
strict MySQL so that is only available locally, or to a limited set of hosts.

• Security of your application to ensure that SQL injections and other corruption of the data does not occur. See Chapter 1, General
Security Issues.

• Ensure that you have adequate and appropriate backups of your database files, configuration and log files. Also be sure that you
have a recovery solution in place and test that you are able to successfully recover the information from your backups. See
Chapter 5, Backup and Recovery.

iv

Chapter 1. General Security Issues
This section describes some general security issues to be aware of and what you can do to make your MySQL installation more secure
against attack or misuse. For information specifically about the access control system that MySQL uses for setting up user accounts and
checking database access, see Chapter 3, The MySQL Access Privilege System.

For answers to some questions that are often asked about MySQL Server security issues, see MySQL 5.5 FAQ: Security.

1.1. General Security Guidelines
Anyone using MySQL on a computer connected to the Internet should read this section to avoid the most common security mistakes.

In discussing security, we emphasize the necessity of fully protecting the entire server host (not just the MySQL server) against all types
of applicable attacks: eavesdropping, altering, playback, and denial of service. We do not cover all aspects of availability and fault toler-
ance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other operations that users can attempt to
perform. There is also support for SSL-encrypted connections between MySQL clients and servers. Many of the concepts discussed
here are not specific to MySQL at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines whenever possible:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the mysql database! This is critical.

• Learn the MySQL access privilege system. The GRANT and REVOKE statements are used for controlling access to MySQL. Do not
grant more privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked for a password, anyone can
connect to your MySQL server as the MySQL root user with full privileges! Review the MySQL installation instructions, pay-
ing particular attention to the information about setting a root password. See Section 2.2, “Securing the Initial MySQL Ac-
counts”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the REVOKE statement to remove
those privileges that are not necessary.

• Do not store any plaintext passwords in your database. If your computer becomes compromised, the intruder can take the full list of
passwords and use them. Instead, use MD5(), SHA1(), or some other one-way hashing function and store the hash value.

• Do not choose passwords from dictionaries. Special programs exist to break passwords. Even passwords like “xfish98” are very bad.
Much better is “duag98” which contains the same word “fish” but typed one key to the left on a standard QWERTY keyboard. An-
other method is to use a password that is taken from the first characters of each word in a sentence (for example, “Mary had a little
lamb” results in a password of “Mhall”). The password is easy to remember and type, but difficult to guess for someone who does
not know the sentence.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put MySQL behind the firewall or
in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306 by default. This port should not be
accessible from untrusted hosts. Another simple way to check whether or not your MySQL port is open is to try the following
command from some remote machine, where server_host is the host name or IP address of the host on which your MySQL
server runs:

shell> telnet server_host 3306

If you get a connection and some garbage characters, the port is open, and should be closed on your firewall or router, unless
you really have a good reason to keep it open. If telnet hangs or the connection is refused, the port is blocked, which is how
you want it to be.

• Do not trust any data entered by users of your applications. They can try to trick your code by entering special or escaped character

1

http://dev.mysql.com/doc/refman/5.5/en/faqs-security.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/show-grants.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_md5
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_sha1

sequences in Web forms, URLs, or whatever application you have built. Be sure that your application remains secure if a user enters
something like “; DROP DATABASE mysql;”. This is an extreme example, but large security leaks and data loss might occur as
a result of hackers using similar techniques, if you do not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an application generates a
query such as SELECT * FROM table WHERE ID=234 when a user enters the value 234, the user can enter the value 234
OR 1=1 to cause the application to generate the query SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the
server retrieves every row in the table. This exposes every row and causes excessive server load. The simplest way to protect from
this type of attack is to use single quotation marks around the numeric constants: SELECT * FROM table WHERE
ID='234'. If the user enters extra information, it all becomes part of the string. In a numeric context, MySQL automatically con-
verts this string to a number and strips any trailing nonnumeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be protected. This is incorrect. Even if it
is permissible to display any row in the database, you should still protect against denial of service attacks (for example, those that
are based on the technique in the preceding paragraph that causes the server to waste resources). Otherwise, your server becomes
unresponsive to legitimate users.

Checklist:

• Try to enter single and double quotation marks (“'” and “"”) in all of your Web forms. If you get any kind of MySQL error, in-
vestigate the problem right away.

• Try to modify dynamic URLs by adding %22 (“"”), %23 (“#”), and %27 (“'”) to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters shown in the previous ex-
amples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your application should remove them
before passing them to MySQL or else generate an error. Passing unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for administrative purposes. Do
not give your applications any access privileges they do not need.

• Many application programming interfaces provide a means of escaping special characters in data values. Properly used, this pre-
vents application users from entering values that cause the application to generate statements that have a different effect than you in-
tend:

• MySQL C API: Use the mysql_real_escape_string() API call.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use the mysql_real_escape_string() function (available as of PHP 4.3.0, prior to that PHP version use
mysql_escape_string(), and prior to PHP 4.0.3, use addslashes()). Note that only
mysql_real_escape_string() is character set-aware; the other functions can be “bypassed” when using (invalid) multi-
byte character sets. In PHP 5, you can use the mysqli extension, which supports the improved MySQL authentication protocol
and passwords, as well as prepared statements with placeholders.

• Perl DBI: Use placeholders or the quote() method.

• Ruby DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone who has the time and ability to
intercept it and use it for their own purposes. Instead, use an encrypted protocol such as SSL or SSH. MySQL supports internal SSL
connections as of version 4.0. Another technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for
the communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL data streams are unencrypted by
issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

General Security Issues

2

http://dev.mysql.com/doc/refman/5.5/en/mysql-real-escape-string.html

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see plaintext data, this does not always mean that the information actually is encrypted. If you need high se-
curity, you should consult with a security expert.

1.2. Password Security in MySQL
Passwords occur in several contexts within MySQL. The following sections provide guidelines that enable administrators and end users
to keep these passwords secure and avoid exposing them. There is also a discussion of how MySQL uses password hashing internally.

1.2.1. Administrator Guidelines for Password Security
Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user table. Access to this table should never be granted to any nonadminis-
trative accounts.

A user who has access to modify the plugin directory (the value of the plugin_dir system variable) or the my.cnf file that specifies
the location of the plugin directory can replace plugins and modify the capabilities provided by plugins.

Passwords can appear as plain text in SQL statements such as CREATE USER, GRANT, and SET PASSWORD, or statements that in-
voke the PASSWORD() function. If these statements are logged by the MySQL server, the passwords become available to anyone with
access to the logs. This applies to the general query log, the slow query log, and the binary log (see MySQL Server Logs). To guard
against unwarranted exposure to log files, they should be located in a directory that restricts access to only the server and the database
administrator. If you log to tables in the mysql database, access to the tables should never be granted to any nonadministrative ac-
counts.

Replication slaves store the password for the replication master in the master.info file. Access to this file should be restricted to the
database administrator.

Database backups that include tables or log files containing passwords should be protected using a restricted access mode.

1.2.2. End-User Guidelines for Password Security
MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your password in a way that exposes it to
discovery by other users. The methods you can use to specify your password when you run client programs are listed here, along with
an assessment of the risks of each method. In short, the safest methods are to have the client program prompt for the password or to spe-
cify the password in a properly protected option file.

• Use a -pyour_pass or --password=your_pass option on the command line. For example:

shell> mysql -u francis -pfrank db_name

This is convenient but insecure, because your password becomes visible to system status programs such as ps that may be invoked
by other users to display command lines. MySQL clients typically overwrite the command-line password argument with zeros dur-
ing their initialization sequence. However, there is still a brief interval during which the value is visible. Also, on some systems this
overwriting strategy is ineffective and the password remains visible to ps. (SystemV Unix systems and perhaps others are subject to
this problem.)

If your operating environment is set up to display your current command in the title bar of your terminal window, the password re-
mains visible as long as the command is running, even if the command has scrolled out of view in the window content area.

• Use the -p or --password option on the command line with no password value specified. In this case, the client program solicits
the password interactively:

shell> mysql -u francis -p db_name

General Security Issues

3

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_plugin_dir
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/server-logs.html

Enter password: ********

The “*” characters indicate where you enter your password. The password is not displayed as you enter it.

It is more secure to enter your password this way than to specify it on the command line because it is not visible to other users.
However, this method of entering a password is suitable only for programs that you run interactively. If you want to invoke a client
from a script that runs noninteractively, there is no opportunity to enter the password from the keyboard. On some systems, you may
even find that the first line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix you can list your password in the [client] section of the .my.cnf
file in your home directory:

[client]
password=your_pass

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this, set the file access mode to 400
or 600. For example:

shell> chmod 600 .my.cnf

To name from the command line a specific option file containing the password, use the --defaults-file=file_name option,
where file_name is the full path name to the file. For example:

shell> mysql --defaults-file=/home/francis/mysql-opts

Using Option Files, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. See Environment Variables.

This method of specifying your MySQL password must be considered extremely insecure and should not be used. Some versions of
ps include an option to display the environment of running processes. If you set MYSQL_PWD, your password is exposed to any
other user who runs ps. Even on systems without such a version of ps, it is unwise to assume that there are no other methods by
which users can examine process environments.

On Unix, the mysql client writes a record of executed statements to a history file (see mysql History File). By default, this file is
named .mysql_history and is created in your home directory. Passwords can appear as plain text in SQL statements such as CRE-
ATE USER, GRANT, and SET PASSWORD, so if you use these statements, they are logged in the history file. To keep this file safe, use
a restrictive access mode, the same way as described earlier for the .my.cnf file.

If your command interpreter is configured to maintain a history, any file in which the commands are saved will contain MySQL pass-
words entered on the command line. For example, bash uses ~/.bash_history. Any such file should have a restrictive access
mode.

1.2.3. Password Hashing in MySQL
MySQL user accounts are listed in the user table of the mysql database. Each MySQL account is assigned a password, although what
is stored in the Password column of the user table is not the plaintext version of the password, but a hash value computed from it.
Password hash values are computed by the PASSWORD() function.

MySQL uses passwords in two phases of client/server communication:

• When a client attempts to connect to the server, there is an initial authentication step in which the client must present a password
that has a hash value matching the hash value stored in the user table for the account that the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hashes for accounts listed in the user ta-
ble. The client can do this by using the PASSWORD() function to generate a password hash, or by using the GRANT or SET
PASSWORD statements.

In other words, the server uses hash values during authentication when a client first attempts to connect. The server generates hash val-
ues if a connected client invokes the PASSWORD() function or uses a GRANT or SET PASSWORD statement to set or change a pass-
word.

General Security Issues

4

http://dev.mysql.com/doc/refman/5.5/en/option-file-options.html#option_general_defaults-file
http://dev.mysql.com/doc/refman/5.5/en/option-files.html
http://dev.mysql.com/doc/refman/common/en/environment-variables.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-history-file.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html

The password hashing mechanism was updated in MySQL 4.1 to provide better security and to reduce the risk of passwords being inter-
cepted. However, this new mechanism is understood only by MySQL 4.1 (and newer) servers and clients, which can result in some
compatibility problems. A 4.1 or newer client can connect to a pre-4.1 server, because the client understands both the old and new pass-
word hashing mechanisms. However, a pre-4.1 client that attempts to connect to a 4.1 or newer server may run into difficulties. For ex-
ample, a 3.23 mysql client that attempts to connect to a 5.1 server may fail with the following error message:

shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

Another common example of this phenomenon occurs for attempts to use the older PHP mysql extension after upgrading to MySQL
4.1 or newer. (See Common Problems with MySQL and PHP.)

The following discussion describes the differences between the old and new password mechanisms, and what you should do if you up-
grade your server but need to maintain backward compatibility with pre-4.1 clients. Additional information can be found in Client
does not support authentication protocol. This information is of particular importance to PHP programmers migrat-
ing MySQL databases from version 4.0 or lower to version 4.1 or higher.

Note

This discussion contrasts 4.1 behavior with pre-4.1 behavior, but the 4.1 behavior described here actually begins with
4.1.1. MySQL 4.1.0 is an “odd” release because it has a slightly different mechanism than that implemented in 4.1.1 and
up. Differences between 4.1.0 and more recent versions are described further in MySQL 5.0 Reference Manual.

Prior to MySQL 4.1, password hashes computed by the PASSWORD() function are 16 bytes long. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

The Password column of the user table (in which these hashes are stored) also is 16 bytes long before MySQL 4.1.

As of MySQL 4.1, the PASSWORD() function has been modified to produce a longer 41-byte hash value:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+

Accordingly, the Password column in the user table also must be 41 bytes long to store these values:

• If you perform a new installation of MySQL 5.1, the Password column is made 41 bytes long automatically.

• Upgrading from MySQL 4.1 (4.1.1 or later in the 4.1 series) to MySQL 5.1 should not give rise to any issues in this regard because
both versions use the same password hashing mechanism. If you wish to upgrade an older release of MySQL to version 5.1, you
should upgrade to version 4.1 first, then upgrade the 4.1 installation to 5.1.

A widened Password column can store password hashes in both the old and new formats. The format of any given password hash
value can be determined two ways:

• The obvious difference is the length (16 bytes versus 41 bytes).

• A second difference is that password hashes in the new format always begin with a “*” character, whereas passwords in the old
format never do.

The longer password hash format has better cryptographic properties, and client authentication based on long hashes is more secure than
that based on the older short hashes.

The differences between short and long password hashes are relevant both for how the server uses passwords during authentication and

General Security Issues

5

http://dev.mysql.com/doc/refman/common/en/apis-php-problems.html
http://dev.mysql.com/doc/refman/5.5/en/old-client.html
http://dev.mysql.com/doc/refman/5.5/en/old-client.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password

for how it generates password hashes for connected clients that perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

• Pre-4.1 clients can connect, although because they know only about the old hashing mechanism, they can authenticate only us-
ing accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later clients than for older clients. In
terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width of the Password column and by
the --old-passwords option. A 4.1 or later server generates long hashes only if certain conditions are met: The Password column
must be wide enough to hold long values and the --old-passwords option must not be given. These conditions apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not been updated and still has the
pre-4.1 width of 16 bytes, the server notices that long hashes cannot fit into it and generates only short hashes when a client per-
forms password-changing operations using PASSWORD(), GRANT, or SET PASSWORD. This is the behavior that occurs if you
have upgraded to 4.1 but have not yet run the mysql_upgrade program to widen the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case, PASSWORD(), GRANT, and SET
PASSWORD generate long hashes unless the server was started with the --old-passwords option. That option forces the server
to generate short password hashes instead.

The purpose of the --old-passwords option is to enable you to maintain backward compatibility with pre-4.1 clients under circum-
stances where the server would otherwise generate long password hashes. The option does not affect authentication (4.1 and later clients
can still use accounts that have long password hashes), but it does prevent creation of a long password hash in the user table as the res-
ult of a password-changing operation. Were that to occur, the account no longer could be used by pre-4.1 clients. Without the -
-old-passwords option, the following undesirable scenario is possible:

• An old client connects to an account that has a short password hash.

• The client changes its own password. Without --old-passwords, this results in the account having a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has a long password hash that requires
the new hashing mechanism during authentication. (Once an account has a long password hash in the user table, only 4.1 and later
clients can authenticate for it, because pre-4.1 clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is dangerous to run a 4.1 or newer server without using the -
-old-passwords option. By running the server with --old-passwords, password-changing operations do not generate long
password hashes and thus do not cause accounts to become inaccessible to older clients. (Those clients cannot inadvertently lock them-
selves out by changing their password and ending up with a long password hash.)

The downside of the --old-passwords option is that any passwords you create or change use short hashes, even for 4.1 clients.
Thus, you lose the additional security provided by long password hashes. If you want to create an account that has a long hash (for ex-
ample, for use by 4.1 clients), you must do so while running the server without --old-passwords.

General Security Issues

6

http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords

The following scenarios are possible for running a 4.1 or later server:

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or SET PASSWORD use short
hashes exclusively. Any change to an account's password results in that account having a short password hash.

• The --old-passwords option can be used but is superfluous because with a short Password column, the server generates only
short password hashes anyway.

Scenario 2: Long Password column; server not started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or SET PASSWORD use long hashes
exclusively. A change to an account's password results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password hash to become inaccessible to
pre-4.1 clients. A change to such an account's password made using GRANT, PASSWORD(), or SET PASSWORD results in the account
being given a long password hash. From that point on, no pre-4.1 client can authenticate to that account until the client upgrades to 4.1.

To deal with this problem, you can change a password in a special way. For example, normally you use SET PASSWORD as follows to
change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

Scenario 3: Long Password column; 4.1 or newer server started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes (but note that it is possible to create long hashes
only when the server is started without --old-passwords).

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or SET PASSWORD use short
hashes exclusively. Any change to an account's password results in that account having a short password hash.

In this scenario, you cannot create accounts that have long password hashes, because the --old-passwords option prevents genera-
tion of long hashes. Also, if you create an account with a long hash before using the --old-passwords option, changing the ac-
count's password while --old-passwords is in effect results in the account being given a short password, causing it to lose the se-
curity benefits of a longer hash.

The disadvantages for these scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

General Security Issues

7

http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords

In scenario 2, accounts with short hashes become inaccessible to pre-4.1 clients if you change their passwords without explicitly using
OLD_PASSWORD().

In scenario 3, --old-passwords prevents accounts with short hashes from becoming inaccessible, but password-changing opera-
tions cause accounts with long hashes to revert to short hashes, and you cannot change them back to long hashes while -
-old-passwords is in effect.

1.2.4. Implications of Password Hashing Changes in MySQL 4.1 for Application
Programs

An upgrade to MySQL version 4.1 or later can cause compatibility issues for applications that use PASSWORD() to generate passwords
for their own purposes. Applications really should not do this, because PASSWORD() should be used only to manage passwords for
MySQL accounts. But some applications use PASSWORD() for their own purposes anyway.

If you upgrade to 4.1 or later from a pre-4.1 version of MySQL and run the server under conditions where it generates long password
hashes, an application using PASSWORD() for its own passwords breaks. The recommended course of action in such cases is to modify
the application to use another function, such as SHA1() or MD5(), to produce hashed values. If that is not possible, you can use the
OLD_PASSWORD() function, which is provided for generate short hashes in the old format. However, you should note that
OLD_PASSWORD() may one day no longer be supported.

If the server is running under circumstances where it generates short hashes, OLD_PASSWORD() is available but is equivalent to
PASSWORD().

PHP programmers migrating their MySQL databases from version 4.0 or lower to version 4.1 or higher should see MySQL PHP API.

1.3. Making MySQL Secure Against Attackers
When you connect to a MySQL server, you should use a password. The password is not transmitted in clear text over the connection.
Password handling during the client connection sequence was upgraded in MySQL 4.1.1 to be very secure. If you are still using pre-
4.1.1-style passwords, the encryption algorithm is not as strong as the newer algorithm. With some effort, a clever attacker who can
sniff the traffic between the client and the server can crack the password. (See Section 1.2.3, “Password Hashing in MySQL”, for a dis-
cussion of the different password handling methods.)

All other information is transferred as text, and can be read by anyone who is able to watch the connection. If the connection between
the client and the server goes through an untrusted network, and you are concerned about this, you can use the compressed protocol to
make traffic much more difficult to decipher. You can also use MySQL's internal SSL support to make the connection even more se-
cure. See Section 4.6, “Using SSL for Secure Connections”. Alternatively, use SSH to get an encrypted TCP/IP connection between a
MySQL server and a MySQL client. You can find an Open Source SSH client at http://www.openssh.org/, and a commercial SSH client
at http://www.ssh.com/.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know the identity of the person running it.
It is common for client/server applications that the user can specify any user name to the client program. For example, anyone can
use the mysql program to connect as any other person simply by invoking it as mysql -u other_user db_name if oth-
er_user has no password. If all accounts have a password, connecting using another user's account becomes much more difficult.

For a discussion of methods for setting passwords, see Section 4.5, “Assigning Account Passwords”.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any user with the FILE privilege is able
to cause the server to create files as root (for example, ~root/.bashrc). To prevent this, mysqld refuses to run as root un-
less that is specified explicitly using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a separate Unix account named mysql
to make everything even more secure. Use this account only for administering MySQL. To start mysqld as a different Unix user,
add a user option that specifies the user name in the [mysqld] group of the my.cnf option file where you specify server op-
tions. For example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using mysqld_safe or mysql.server.

General Security Issues

8

http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_sha1
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_md5
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_old-password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/common/en/apis-php.html
http://www.openssh.org/
http://www.ssh.com/
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_user

For more details, see Section 1.6, “How to Run MySQL as a Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root user name in the user table.
User names for MySQL accounts have nothing to do with user names for Unix accounts.

• Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-symbolic-links option.) This is
especially important if you run mysqld as root, because anyone that has write access to the server's data directory then could de-
lete any file in the system! See Using Symbolic Links for Tables on Unix.

• Make sure that the only Unix user account with read or write privileges in the database directories is the account that is used for run-
ning mysqld.

• Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of mysqladmin processlist and
SHOW PROCESSLIST shows the text of any statements currently being executed, so any user who is permitted to see the server
process list might be able to see statements issued by other users such as UPDATE user SET pass-
word=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL root user can log in and check
server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by changing the value of system vari-
ables, and control replication servers.

• Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can write a file anywhere in the file sys-
tem with the privileges of the mysqld daemon. To make this a bit safer, files generated with SELECT ... INTO OUTFILE do
not overwrite existing files and are writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix user that the server runs as.
With this privilege, you can read any file into a database table. This could be abused, for example, by using LOAD DATA to load /
etc/passwd into a table, which then can be displayed with SELECT.

• Stored programs and views should be written using the security guidelines discussed in Access Control for Stored Programs and
Views.

• If you do not trust your DNS, you should use IP addresses rather than host names in the grant tables. In any case, you should be very
careful about creating grant table entries using host name values that contain wildcards.

• If you want to restrict the number of connections permitted to a single account, you can do so by setting the
max_user_connections variable in mysqld. The GRANT statement also supports resource control options for limiting the ex-
tent of server use permitted to an account. See GRANT Syntax.

• If the plugin directory is writable by the server, it may be possible for a user to write executable code to a file in the directory using
SELECT ... INTO DUMPFILE. This can be prevented by making plugin_dir read only to the server or by setting -
-secure-file-priv to a directory where SELECT writes can be made safely.

1.4. Security-Related mysqld Options
The following mysqld options affect security:

Table 1.1. Security Option/Variable Summary

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

allow-suspicious-udfs Yes Yes

automat-
ic_sp_privileges

Yes Global Yes

chroot Yes Yes

des-key-file Yes Yes

local_infile Yes Global Yes

local-infile Yes Yes

- Variable: local_infile

General Security Issues

9

http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_symbolic-links
http://dev.mysql.com/doc/refman/5.5/en/symbolic-links.html#symbolic-links-to-tables
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/stored-programs-security.html
http://dev.mysql.com/doc/refman/5.5/en/stored-programs-security.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_plugin_dir
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_secure-file-priv
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_secure-file-priv
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_allow-suspicious-udfs
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_automatic_sp_privileges
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_automatic_sp_privileges
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_chroot
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_des-key-file
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_local_infile
http://dev.mysql.com/doc/refman/5.1/en/privileges-options.html#option_mysqld_local-infile

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

old-passwords Yes Yes Both Yes

- Variable:
old_passwords

Yes Both Yes

safe-show-database Yes Yes Yes Global Yes

safe-user-create Yes Yes

secure-auth Yes Yes Global Yes

- Variable: secure_auth Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable: se-
cure_file_priv

Yes Global No

skip-grant-tables Yes Yes

skip-name-resolve Yes Yes Global No

- Variable:
skip_name_resolve

Yes Global No

skip-networking Yes Yes Global No

- Variable:
skip_networking

Yes Global No

skip-show-database Yes Yes Global No

- Variable:
skip_show_database

Yes Global No

• --allow-suspicious-udfs

This option controls whether user-defined functions that have only an xxx symbol for the main function can be loaded. By default,
the option is off and only UDFs that have at least one auxiliary symbol can be loaded; this prevents attempts at loading functions
from shared object files other than those containing legitimate UDFs. See User-Defined Function Security Precautions.

• --local-infile[={0|1}]

If you start the server with --local-infile=0, clients cannot use LOCAL in LOAD DATA statements. See Section 1.5,
“Security Issues with LOAD DATA LOCAL”.

• --old-passwords

Force the server to generate short (pre-4.1) password hashes for new passwords. This is useful for compatibility when the server
must support older client programs. See Section 1.2.3, “Password Hashing in MySQL”.

• --safe-user-create

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement unless the user has the INSERT
privilege for the mysql.user table or any column in the table. If you want a user to have the ability to create new users that have
those privileges that the user has the right to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT statement to give privileges to
other users.

• --secure-auth

Disallow authentication for accounts that have old (pre-4.1) passwords.

The mysql client also has a --secure-auth option, which prevents connections to a server if the server requires a password in
old format for the client account.

• --secure-file-priv=path

General Security Issues

10

http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_safe-show-database
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_safe-user-create
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_secure-auth
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_secure-file-priv
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-name-resolve
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.1/en/server-options.html#option_mysqld_skip-show-database
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_allow-suspicious-udfs
http://dev.mysql.com/doc/refman/5.5/en/udf-security.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-passwords
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_safe-user-create
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_secure-auth
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_secure-auth
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_secure-file-priv

This option limits the effect of the LOAD_FILE() function and the LOAD DATA and SELECT ... INTO OUTFILE statements
to work only with files in the specified directory.

This option was added in MySQL 5.1.17.

• --skip-grant-tables

This option causes the server to start without using the privilege system at all, which gives anyone with access to the server unres-
tricted access to all databases. You can cause a running server to start using the grant tables again by executing mysqladmin
flush-privileges or mysqladmin reload command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES
statement after connecting to the server. This option also suppresses loading of plugins that were installed with the INSTALL
PLUGIN statement, user-defined functions (UDFs), and, beginning with MySQL 5.1.17, scheduled events. To cause plugins to be
loaded anyway, use the --plugin-load option.

--skip-grant-tables is unavailable if MySQL was configured with the --disable-grant-options option. See
MySQL Source-Configuration Options.

• --skip-merge

Disable the MERGE storage engine. This option was added in MySQL 5.1.12 and removed in 5.1.14.

• --skip-name-resolve

Host names are not resolved. All Host column values in the grant tables must be IP addresses or localhost.

• --skip-networking

Do not permit TCP/IP connections over the network. All connections to mysqld must be made using Unix socket files.

• --skip-show-database

With this option, the SHOW DATABASES statement is permitted only to users who have the SHOW DATABASES privilege, and the
statement displays all database names. Without this option, SHOW DATABASES is permitted to all users, but displays each database
name only if the user has the SHOW DATABASES privilege or some privilege for the database. Note that any global privilege is a
privilege for the database.

• --ssl*

Options that begin with --ssl specify whether to permit clients to connect using SSL and indicate where to find SSL keys and cer-
tificates. See Section 4.6.3, “SSL Command Options”.

1.5. Security Issues with LOAD DATA LOCAL
The LOAD DATA statement can load a file that is located on the server host, or it can load a file that is located on the client host when
the LOCAL keyword is specified.

There are two potential security issues with supporting the LOCAL version of LOAD DATA statements:

• The transfer of the file from the client host to the server host is initiated by the MySQL server. In theory, a patched server could be
built that would tell the client program to transfer a file of the server's choosing rather than the file named by the client in the LOAD
DATA statement. Such a server could access any file on the client host to which the client user has read access.

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD DATA LOCAL to read any files
that the Web server process has read access to (assuming that a user could run any command against the SQL server). In this envir-
onment, the client with respect to the MySQL server actually is the Web server, not the remote program being run by the user who
connects to the Web server.

To deal with these problems, we changed how LOAD DATA LOCAL is handled as of MySQL 3.23.49 and MySQL 4.0.2 (4.0.13 on
Windows):

• By default, all MySQL clients and libraries in binary distributions are compiled with the --enable-local-infile option, to

General Security Issues

11

http://dev.mysql.com/doc/refman/5.5/en/string-functions.html#function_load-file
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/install-plugin.html
http://dev.mysql.com/doc/refman/5.5/en/install-plugin.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_plugin-load
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/5.1/en/source-configuration-options.html#option_configure_disable-grant-options
http://dev.mysql.com/doc/refman/5.5/en/source-configuration-options.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-name-resolve
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-show-database
http://dev.mysql.com/doc/refman/5.5/en/show-databases.html
http://dev.mysql.com/doc/refman/5.5/en/show-databases.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html

be compatible with MySQL 3.23.48 and before.

• If you build MySQL from source but do not invoke configure with the --enable-local-infile option, LOAD DATA
LOCAL cannot be used by any client unless it is written explicitly to invoke mysql_options(...
MYSQL_OPT_LOCAL_INFILE, 0). See mysql_options().

• You can disable all LOAD DATA LOCAL statements from the server side by starting mysqld with the --local-infile=0 op-
tion.

• For the mysql command-line client, enable LOAD DATA LOCAL by specifying the --local-infile[=1] option, or disable
it with the --local-infile=0 option. For mysqlimport, local data file loading is off by default; enable it with the --local
or -L option. In any case, successful use of a local load operation requires that the server permits it.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group from option files, you can add the
local-infile=1 option to that group. However, to keep this from causing problems for programs that do not understand loc-
al-infile, specify it using the loose- prefix:

[client]
loose-local-infile=1

• If LOAD DATA LOCAL is disabled, either in the server or the client, a client that attempts to issue such a statement receives the fol-
lowing error message:

ERROR 1148: The used command is not allowed with this MySQL version

1.6. How to Run MySQL as a Normal User
On Windows, you can run the server as a Windows service using a normal user account.

On Unix, the MySQL server mysqld can be started and run by any user. However, you should avoid running the server as the Unix
root user for security reasons. To change mysqld to run as a normal unprivileged Unix user user_name, you must do the follow-
ing:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files in them (you might need to do
this as the Unix root user):

shell> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server will not be able to access databases or tables when it runs as user_name.

If directories or files within the MySQL data directory are symbolic links, chown -R might not follow symbolic links for you. If
it does not, you will also need to follow those links and change the directories and files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user and use the
--user=user_name option. mysqld starts up, then switches to run as the Unix user user_name before accepting any con-
nections.

4. To start the server as the given user automatically at system startup time, specify the user name by adding a user option to the
[mysqld] group of the /etc/my.cnf option file or the my.cnf option file in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself is not secured, you should assign passwords to the MySQL root accounts in the grant tables. Otherwise,
any user with a login account on that machine can run the mysql client with a --user=root option and perform any operation. (It is
a good idea to assign passwords to MySQL accounts in any case, but especially so when other login accounts exist on the server host.)
See Chapter 2, Postinstallation Setup and Testing.

General Security Issues

12

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-options.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/mysql.html#option_mysql_local-infile
http://dev.mysql.com/doc/refman/5.5/en/mysql.html#option_mysql_local-infile
http://dev.mysql.com/doc/refman/5.5/en/mysqlimport.html#option_mysqlimport_local
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_user
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_user
http://dev.mysql.com/doc/refman/5.5/en/mysql.html#option_mysql_user

Chapter 2. Postinstallation Setup and Testing
After installing MySQL, there are some issues that you should address. For example, on Unix, you should initialize the data directory
and create the MySQL grant tables. On all platforms, an important security concern is that the initial accounts in the grant tables have
no passwords. You should assign passwords to prevent unauthorized access to the MySQL server. Optionally, you can create time zone
tables to enable recognition of named time zones.

The following sections include postinstallation procedures that are specific to Windows systems and to Unix systems. Another section,
Section 2.1.3, “Starting and Troubleshooting the MySQL Server”, applies to all platforms; it describes what to do if you have trouble
getting the server to start. Section 2.2, “Securing the Initial MySQL Accounts”, also applies to all platforms. You should follow its in-
structions to make sure that you have properly protected your MySQL accounts by assigning passwords to them.

When you are ready to create additional user accounts, you can find information on the MySQL access control system and account man-
agement in Chapter 3, The MySQL Access Privilege System, and Chapter 4, MySQL User Account Management.

2.1. Unix Postinstallation Procedures
After installing MySQL on Unix, you must initialize the grant tables, start the server, and make sure that the server works satisfactorily.
You may also wish to arrange for the server to be started and stopped automatically when your system starts and stops. You should also
assign passwords to the accounts in the grant tables.

On Unix, the grant tables are set up by the mysql_install_db program. For some installation methods, this program is run for you
automatically if an existing database cannot be found.

• If you install MySQL on Linux using RPM distributions, the server RPM runs mysql_install_db.

• Using the native packaging system on many platforms, including Debian Linux, Ubuntu Linux, Gentoo Linux and others, the
mysql_install_db command is run for you.

• If you install MySQL on Mac OS X using a PKG distribution, the installer runs mysql_install_db.

For other platforms and installation types, including generic binary and source installs, you will need to run mysql_install_db
yourself.

The following procedure describes how to initialize the grant tables (if that has not previously been done) and start the server. It also
suggests some commands that you can use to test whether the server is accessible and working properly. For information about starting
and stopping the server automatically, see Section 2.1.2, “Starting and Stopping MySQL Automatically”.

After you complete the procedure and have the server running, you should assign passwords to the accounts created by
mysql_install_db and perhaps restrict access to test databases. For instructions, see Section 2.2, “Securing the Initial MySQL Ac-
counts”.

In the examples shown here, the server runs under the user ID of the mysql login account. This assumes that such an account exists.
Either create the account if it does not exist, or substitute the name of a different existing login account that you plan to use for running
the server. For information about creating the account, see Creating a mysql System User and Group, in Installing MySQL from Gen-
eric Binaries on Unix/Linux.

1. Change location into the top-level directory of your MySQL installation, represented here by BASEDIR:

shell> cd BASEDIR

BASEDIR is the installation directory for your MySQL instance. It is likely to be something like /usr/local/mysql or /
usr/local. The following steps assume that you have changed location to this directory.

You will find several files and subdirectories in the BASEDIR directory. The most important for installation purposes are the bin
and scripts subdirectories:

• The bin directory contains client programs and the server. You should add the full path name of this directory to your PATH
environment variable so that your shell finds the MySQL programs properly. See Environment Variables.

For some distribution types, mysqld is installed in the libexec directory.

13

http://dev.mysql.com/doc/refman/5.5/en/binary-installation.html#binary-installation-createsysuser
http://dev.mysql.com/doc/refman/5.5/en/binary-installation.html
http://dev.mysql.com/doc/refman/5.5/en/binary-installation.html
http://dev.mysql.com/doc/refman/common/en/environment-variables.html

• The scripts directory contains the mysql_install_db script used to initialize the mysql database containing the grant
tables that store the server access permissions.

For some distribution types, mysql_install_db is installed in the bin directory.

2. If necessary, ensure that the distribution contents are accessible to mysql. If you installed the distribution as mysql, no further
action is required. If you installed the distribution as root, its contents will be owned by root. Change its ownership to mysql
by executing the following commands as root in the installation directory. The first command changes the owner attribute of the
files to the mysql user. The second changes the group attribute to the mysql group.

shell> chown -R mysql .
shell> chgrp -R mysql .

3. If necessary, run the mysql_install_db program to set up the initial MySQL grant tables containing the privileges that de-
termine how users are permitted to connect to the server. You will need to do this if you used a distribution type for which the in-
stallation procedure does not run the program for you.

Typically, mysql_install_db needs to be run only the first time you install MySQL, so you can skip this step if you are up-
grading an existing installation, However, mysql_install_db does not overwrite any existing privilege tables, so it should be
safe to run in any circumstances.

The exact location of mysql_install_db depends on the layout for your given installation. To initialize the grant tables, use
one of the following commands, depending on whether mysql_install_db is located in the bin or scripts directory:

shell> scripts/mysql_install_db --user=mysql
shell> bin/mysql_install_db --user=mysql

It might be necessary to specify other options such as --basedir or --datadir if mysql_install_db does not identify
the correct locations for the installation directory or data directory. For example:

shell> scripts/mysql_install_db --user=mysql \
--basedir=/opt/mysql/mysql \
--datadir=/opt/mysql/mysql/data

The mysql_install_db script creates the server's data directory with mysql as the owner. Under the data directory, it creates
directories for the mysql database that holds the grant tables and the test database that you can use to test MySQL. The script
also creates privilege table entries for root and anonymous-user accounts. The accounts have no passwords initially. Section 2.2,
“Securing the Initial MySQL Accounts”, describes the initial privileges. Briefly, these privileges permit the MySQL root user to
do anything, and permit anybody to create or use databases with a name of test or starting with test_. See Chapter 3, The
MySQL Access Privilege System, for a complete listing and description of the grant tables.

It is important to make sure that the database directories and files are owned by the mysql login account so that the server has
read and write access to them when you run it later. To ensure this if you run mysql_install_db as root, include the -
-user option as shown. Otherwise, you should execute the script while logged in as mysql, in which case you can omit the -
-user option from the command.

If you do not want to have the test database, you can remove it after starting the server, using the instructions in Section 2.2,
“Securing the Initial MySQL Accounts”.

If you have trouble with mysql_install_db at this point, see Section 2.1.1, “Problems Running mysql_install_db”.

4. Most of the MySQL installation can be owned by root if you like. The exception is that the data directory must be owned by
mysql. To accomplish this, run the following commands as root in the installation directory. For some distribution types, the
data directory might be named var rather than data; adjust the second command accordingly.

shell> chown -R root .
shell> chown -R mysql data

5. If the plugin directory (the directory named by the plugin_dir system variable) is writable by the server, it may be possible for
a user to write executable code to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by mak-
ing plugin_dir read only to the server or by setting --secure-file-priv to a directory where SELECT writes can be
made safely.

6. If you installed MySQL using a source distribution, you may want to optionally copy one of the provided configuration files from

Postinstallation Setup and Testing

14

http://dev.mysql.com/doc/refman/5.5/en/mysql-install-db.html#option_mysql_install_db_basedir
http://dev.mysql.com/doc/refman/5.5/en/mysql-install-db.html#option_mysql_install_db_datadir
http://dev.mysql.com/doc/refman/5.5/en/mysql-install-db.html#option_mysql_install_db_user
http://dev.mysql.com/doc/refman/5.5/en/mysql-install-db.html#option_mysql_install_db_user
http://dev.mysql.com/doc/refman/5.5/en/mysql-install-db.html#option_mysql_install_db_user
http://dev.mysql.com/doc/refman/5.5/en/mysql-install-db.html#option_mysql_install_db_user
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_plugin_dir
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_plugin_dir
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_secure-file-priv
http://dev.mysql.com/doc/refman/5.5/en/select.html

the support-files directory into your /etc directory. There are different sample configuration files for different use cases,
server types, and CPU and RAM configurations. If you want to use one of these standard files, you should copy it to /
etc/my.cnf, or /etc/mysql/my.cnf and edit and check the configuration before starting your MySQL server for the first
time.

If you do not copy one of the standard configuration files, the MySQL server will be started with the default settings.

If you want MySQL to start automatically when you boot your machine, you can copy support-files/mysql.server to
the location where your system has its startup files. More information can be found in the mysql.server script itself, and in
Section 2.1.2, “Starting and Stopping MySQL Automatically”.

7. Start the MySQL server:

shell> bin/mysqld_safe --user=mysql &

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure this if you run
mysqld_safe as root, include the --user option as shown. Otherwise, you should execute the script while logged in as
mysql, in which case you can omit the --user option from the command.

For further instructions for running MySQL as an unprivileged user, see Section 1.6, “How to Run MySQL as a Normal User”.

If the command fails immediately and prints mysqld ended, look for information in the error log (which by default is the
host_name.err file in the data directory).

If you neglected to create the grant tables by running mysql_install_db before proceeding to this step, the following message
appears in the error log file when you start the server:

mysqld: Can't find file: 'host.frm'

This error also occurs if you run mysql_install_db as root without the --user option. Remove the data directory and
run mysql_install_db with the --user option as described previously.

If you have other problems starting the server, see Section 2.1.3, “Starting and Troubleshooting the MySQL Server”. For more in-
formation about mysqld_safe, see mysqld_safe.

8. Use mysqladmin to verify that the server is running. The following commands provide simple tests to check whether the server
is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

The output from mysqladmin version varies slightly depending on your platform and version of MySQL, but should be sim-
ilar to that shown here:

shell> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 5.1.63, for pc-linux-gnu on i686
...
Server version 5.1.63
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec
Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

9. Verify that you can shut down the server:

shell> bin/mysqladmin -u root shutdown

10. Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld directly. For example:

shell> bin/mysqld_safe --user=mysql &

Postinstallation Setup and Testing

15

http://dev.mysql.com/doc/refman/5.5/en/mysqld-safe.html#option_mysqld_safe_user
http://dev.mysql.com/doc/refman/5.5/en/mysqld-safe.html#option_mysqld_safe_user
http://dev.mysql.com/doc/refman/5.5/en/mysql-install-db.html#option_mysql_install_db_user
http://dev.mysql.com/doc/refman/5.5/en/mysql-install-db.html#option_mysql_install_db_user
http://dev.mysql.com/doc/refman/5.5/en/mysqld-safe.html
http://dev.mysql.com/doc/refman/5.5/en/mysqladmin.html#option_mysqladmin_help

If mysqld_safe fails, see Section 2.1.3, “Starting and Troubleshooting the MySQL Server”.

11. Run some simple tests to verify that you can retrieve information from the server. The output should be similar to what is shown
here:

shell> bin/mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
shell> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+

12. There is a benchmark suite in the sql-bench directory (under the MySQL installation directory) that you can use to compare
how MySQL performs on different platforms. The benchmark suite is written in Perl. It requires the Perl DBI module that provides
a database-independent interface to the various databases, and some other additional Perl modules:

DBI
DBD::mysql
Data::Dumper
Data::ShowTable

These modules can be obtained from CPAN (http://www.cpan.org/). See also Installing Perl on Unix.

The sql-bench/Results directory contains the results from many runs against different databases and platforms. To run all
tests, execute these commands:

shell> cd sql-bench
shell> perl run-all-tests

If you do not have the sql-bench directory, you probably installed MySQL using RPM files other than the source RPM. (The
source RPM includes the sql-bench benchmark directory.) In this case, you must first install the benchmark suite before you
can use it. There are separate benchmark RPM files named mysql-bench-VERSION.i386.rpm that contain benchmark code
and data.

If you have a source distribution, there are also tests in its tests subdirectory that you can run. For example, to run
auto_increment.tst, execute this command from the top-level directory of your source distribution:

shell> mysql -vvf test < ./tests/auto_increment.tst

The expected result of the test can be found in the ./tests/auto_increment.res file.

Postinstallation Setup and Testing

16

http://www.cpan.org/
http://dev.mysql.com/doc/refman/5.5/en/perl-installation.html

13. At this point, you should have the server running. However, none of the initial MySQL accounts have a password, and the server
permits permissive access to test databases. To tighten security, follow the instructions in Section 2.2, “Securing the Initial MySQL
Accounts”.

The MySQL 5.1 installation procedure creates time zone tables in the mysql database but does not populate them. To do so, use the in-
structions in MySQL Server Time Zone Support.

To make it more convenient to invoke programs installed in the bin directory under the installation directory, you can add that direct-
ory to your PATH environment variable setting. That enables you to run a program by typing only its name, not its entire path name. See
Setting Environment Variables.

You can set up new accounts using the bin/mysql_setpermission script if you install the DBI and DBD::mysql Perl modules.
See mysql_setpermission. For Perl module installation instructions, see Perl Installation Notes.

If you would like to use mysqlaccess and have the MySQL distribution in some nonstandard location, you must change the location
where mysqlaccess expects to find the mysql client. Edit the bin/mysqlaccess script at approximately line 18. Search for a
line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do this, a Broken pipe error
will occur when you run mysqlaccess.

2.1.1. Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables. It does not overwrite existing MySQL
privilege tables, and it does not affect any other data.

If you want to re-create your privilege tables, first stop the mysqld server if it is running. Then rename the mysql directory under the
data directory to save it, and then run mysql_install_db. Suppose that your current directory is the MySQL installation directory
and that mysql_install_db is located in the bin directory and the data directory is named data. To rename the mysql database
and re-run mysql_install_db, use these commands.

shell> mv data/mysql data/mysql.old
shell> scripts/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after displaying the following messages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the directory XXXXXX named by the
error message and should indicate why mysqld did not start. If you do not understand what happened, include the log when you
post a bug report. See How to Report Bugs or Problems.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been created already. If so, there is no need to
run mysql_install_db at all because it needs to be run only once (when you install MySQL the first time).

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation in a different location. For ex-
ample, you might have a production installation, but you want to create a second installation for testing purposes. Generally the
problem that occurs when you try to run a second server is that it tries to use a network interface that is in use by the first server. In
this case, you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

Postinstallation Setup and Testing

17

http://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html
http://dev.mysql.com/doc/refman/5.5/en/setting-environment-variables.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-setpermission.html
http://dev.mysql.com/doc/refman/5.5/en/perl-support.html
http://dev.mysql.com/doc/refman/common/en/bug-reports.html

For instructions on setting up multiple servers, see Running Multiple MySQL Instances on One Machine.

• You do not have write access to the /tmp directory

If you do not have write access to create temporary files or a Unix socket file in the default location (the /tmp directory) or the
TMP_DIR environment variable, if it has been set, an error occurs when you run mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing these commands prior to starting
mysql_install_db or mysqld, where some_tmp_dir is the full path name to some directory for which you have write per-
mission:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

shell> scripts/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the bin directory, modify the first command to bin/mysql_install_db.

See How to Protect or Change the MySQL Unix Socket File, and Environment Variables.

There are some alternatives to running the mysql_install_db script provided in the MySQL distribution:

• If you want the initial privileges to be different from the standard defaults, you can modify mysql_install_db before you run
it. However, it is preferable to use GRANT and REVOKE to change the privileges after the grant tables have been set up. In other
words, you can run mysql_install_db, and then use mysql -u root mysql to connect to the server as the MySQL root
user so that you can issue the necessary GRANT and REVOKE statements.

If you want to install MySQL on several machines with the same privileges, you can put the GRANT and REVOKE statements in a
file and execute the file as a script using mysql after running mysql_install_db. For example:

shell> scripts/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

By doing this, you can avoid having to issue the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You might want to do this if you are
just learning how to use GRANT and REVOKE and have made so many modifications after running mysql_install_db that you
want to wipe out the tables and start over.

To re-create the grant tables, remove all the .frm, .MYI, and .MYD files in the mysql database directory. Then run the
mysql_install_db script again.

• You can start mysqld manually using the --skip-grant-tables option and add the privilege information yourself using
mysql:

shell> bin/mysqld_safe --user=mysql --skip-grant-tables &
shell> bin/mysql mysql

From mysql, manually execute the SQL commands contained in mysql_install_db. Make sure that you run mysqladmin
flush-privileges or mysqladmin reload afterward to tell the server to reload the grant tables.

Note that by not using mysql_install_db, you not only have to populate the grant tables manually, you also have to create
them first.

2.1.2. Starting and Stopping MySQL Automatically
Generally, you start the mysqld server in one of these ways:

Postinstallation Setup and Testing

18

http://dev.mysql.com/doc/refman/5.5/en/multiple-servers.html
http://dev.mysql.com/doc/refman/5.5/en/problems-with-mysql-sock.html
http://dev.mysql.com/doc/refman/common/en/environment-variables.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-grant-tables

• Invoke mysqld directly. This works on any platform.

• Run the MySQL server as a Windows service. The service can be set to start the server automatically when Windows starts, or as a
manual service that you start on request. For instructions, see Starting MySQL as a Windows Service.

• Invoke mysqld_safe, which tries to determine the proper options for mysqld and then runs it with those options. This script is
used on Unix and Unix-like systems. See mysqld_safe.

• Invoke mysql.server. This script is used primarily at system startup and shutdown on systems that use System V-style run dir-
ectories (that is, /etc/init.d and run-level specific directories), where it usually is installed under the name mysql. The
mysql.server script starts the server by invoking mysqld_safe. See mysql.server.

• On Mac OS X, install a separate MySQL Startup Item package to enable the automatic startup of MySQL on system startup. The
Startup Item starts the server by invoking mysql.server. See Installing the MySQL Startup Item, for details. A MySQL Prefer-
ence Pane also provides control for starting and stopping MySQL through the System Preferences, see Installing and Using the
MySQL Preference Pane.

• Use the Solaris/OpenSolaris service management framework (SMF) system to initiate and control MySQL startup. For more inform-
ation, see Installing MySQL on OpenSolaris using IPS.

The mysqld_safe and mysql.server scripts, Windows server, Solaris/OpenSolaris SMF, and the Mac OS X Startup Item (or
MySQL Preference Pane) can be used to start the server manually, or automatically at system startup time. mysql.server and the
Startup Item also can be used to stop the server.

To start or stop the server manually using the mysql.server script, invoke it with start or stop arguments:

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and then invokes mysqld_safe. If
you want the server to run as some specific user, add an appropriate user option to the [mysqld] group of the /etc/my.cnf op-
tion file, as shown later in this section. (It is possible that you will need to edit mysql.server if you've installed a binary distribution
of MySQL in a nonstandard location. Modify it to change location into the proper directory before it runs mysqld_safe. If you do
this, your modified version of mysql.server may be overwritten if you upgrade MySQL in the future, so you should make a copy of
your edited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server manually by executing mysqladmin
shutdown.

To start and stop MySQL automatically on your server, you need to add start and stop commands to the appropriate places in your /
etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), or a native Linux package installation, the
mysql.server script may be installed in the /etc/init.d directory with the name mysql. See Installing MySQL from RPM
Packages on Linux, for more information on the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install mysql.server automatic-
ally, you can install it manually. The script can be found in the support-files directory under the MySQL installation directory or
in a MySQL source tree.

To install mysql.server manually, copy it to the /etc/init.d directory with the name mysql, and then make it executable. Do
this by changing location into the appropriate directory where mysql.server is located and executing these commands:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Note

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /etc/init.d. Adjust the preceding com-
mands accordingly. Alternatively, first create /etc/init.d as a symbolic link that points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

Postinstallation Setup and Testing

19

http://dev.mysql.com/doc/refman/5.5/en/windows-start-service.html
http://dev.mysql.com/doc/refman/5.5/en/mysqld-safe.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-server.html
http://dev.mysql.com/doc/refman/5.5/en/macosx-installation-startupitem.html
http://dev.mysql.com/doc/refman/5.5/en/macosx-installation-prefpane.html
http://dev.mysql.com/doc/refman/5.5/en/macosx-installation-prefpane.html
http://dev.mysql.com/doc/refman/5.5/en/solaris-installation-opensolaris.html
http://dev.mysql.com/doc/refman/5.5/en/linux-installation-rpm.html
http://dev.mysql.com/doc/refman/5.5/en/linux-installation-rpm.html

After installing the script, the commands needed to activate it to run at system startup depend on your operating system. On Linux, you
can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql script:

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual page states that scripts in this
directory are executed only if their basename matches the *.sh shell file name pattern. Any other files or directories present within the
directory are silently ignored. In other words, on FreeBSD, you should install the mysql.server script as /
usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/init.d/boot.local to
start additional services on startup. To start up MySQL using this method, you could append a command like the one following to the
appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf file might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql
[mysql.server]
basedir=/usr/local/mysql

The mysql.server script supports the following options: basedir, datadir, and pid-file. If specified, they must be placed
in an option file, not on the command line. mysql.server supports only start and stop as command-line arguments.

The following table shows which option groups the server and each startup script read from option files.

Table 2.1. MySQL Startup scripts and supported server option groups

Script Option Groups

mysqld [mysqld], [server], [mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.0] and [mysqld-5.1] are read by servers having
versions 5.0.x, 5.1.x, and so forth. This feature can be used to specify options that can be read only by servers within a given release
series.

For backward compatibility, mysql.server also reads the [mysql_server] group and mysqld_safe also reads the
[safe_mysqld] group. However, you should update your option files to use the [mysql.server] and [mysqld_safe]
groups instead when using MySQL 5.1.

For more information on MySQL configuration files and their structure and contents, see Using Option Files.

2.1.3. Starting and Troubleshooting the MySQL Server
This section provides troubleshooting suggestions for problems starting the server on Unix. If you are using Windows, see
Troubleshooting a MySQL Installation Under Windows.

If you have problems starting the server, here are some things to try:

Postinstallation Setup and Testing

20

http://dev.mysql.com/doc/refman/5.5/en/option-files.html
http://dev.mysql.com/doc/refman/5.5/en/windows-troubleshooting.html

• Check the error log to see why the server does not start.

• Specify any special options needed by the storage engines you are using.

• Make sure that the server knows where to find the data directory.

• Make sure that the server can access the data directory. The ownership and permissions of the data directory and its contents must
be set such that the server can read and modify them.

• Verify that the network interfaces the server wants to use are available.

Some storage engines have options that control their behavior. You can create a my.cnf file and specify startup options for the engines
that you plan to use. If you are going to use storage engines that support transactional tables (InnoDB, NDB), be sure that you have
them configured the way you want before starting the server:

If you are using InnoDB tables, see Configuring InnoDB.

If you are using MySQL Cluster, see MySQL Cluster Configuration.

Storage engines will use default option values if you specify none, but it is recommended that you review the available options and spe-
cify explicit values for those for which the defaults are not appropriate for your installation.

When the mysqld server starts, it changes location to the data directory. This is where it expects to find databases and where it expects
to write log files. The server also writes the pid (process ID) file in the data directory.

The data directory location is hardwired in when the server is compiled. This is where the server looks for the data directory by default.
If the data directory is located somewhere else on your system, the server will not work properly. You can determine what the default
path settings are by invoking mysqld with the --verbose and --help options.

If the default locations do not match the MySQL installation layout on your system, you can override them by specifying options to
mysqld or mysqld_safe on the command line or in an option file.

To specify the location of the data directory explicitly, use the --datadir option. However, normally you can tell mysqld the loca-
tion of the base directory under which MySQL is installed and it looks for the data directory there. You can do this with the -
-basedir option.

To check the effect of specifying path options, invoke mysqld with those options followed by the --verbose and --help options.
For example, if you change location into the directory where mysqld is installed and then run the following command, it shows the ef-
fect of starting the server with a base directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be the last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this command:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that the privileges of the data dir-
ectory or its contents do not permit server access. In this case, you change the permissions for the involved files and directories so that
the server has the right to use them. You can also start the server as root, but this raises security issues and should be avoided.

On Unix, change location into the data directory and check the ownership of the data directory and its contents to make sure the server
has access. For example, if the data directory is /usr/local/mysql/var, use this command:

shell> ls -la /usr/local/mysql/var

Postinstallation Setup and Testing

21

http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-configuration.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-configuration.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_help
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_datadir
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_basedir
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_basedir
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_help
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_datadir
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_help
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_help

If the data directory or its files or subdirectories are not owned by the login account that you use for running the server, change their
ownership to that account. If the account is named mysql, use these commands:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

If it possible that even with correct ownership, MySQL may fail to start up if there is other security software running on your system
that manages application access to various parts of the file system. In this case, you may need to reconfigure that software to enable
mysqld to access the directories it uses during normal operation.

If the server fails to start up correctly, check the error log. Log files are located in the data directory (typically C:\Program
Files\MySQL\MySQL Server 5.1\data on Windows, /usr/local/mysql/data for a Unix binary distribution, and /
usr/local/var for a Unix source distribution). Look in the data directory for files with names of the form host_name.err and
host_name.log, where host_name is the name of your server host. Then examine the last few lines of these files. On Unix, you
can use tail to display them:

shell> tail host_name.err
shell> tail host_name.log

The error log should contain information that indicates why the server could not start.

If either of the following errors occur, it means that some other program (perhaps another mysqld server) is using the TCP/IP port or
Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server before starting mysqld again. (If
another server is running, and you really want to run multiple servers, you can find information about how to do so in Running Multiple
MySQL Instances on One Machine.)

If no other server is running, try to execute the command telnet your_host_name tcp_ip_port_number. (The default
MySQL port number is 3306.) Then press Enter a couple of times. If you do not get an error message like telnet: Unable to
connect to remote host: Connection refused, some other program is using the TCP/IP port that mysqld is trying to
use. You will need to track down what program this is and disable it, or else tell mysqld to listen to a different port with the --port
option. In this case, you will also need to specify the port number for client programs when connecting to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections to it. If so, modify the firewall
settings to permit access to the port.

If the server starts but you cannot connect to it, you should make sure that you have an entry in /etc/hosts that looks like this:

127.0.0.1 localhost

If you cannot get mysqld to start, you can try to make a trace file to find the problem by using the --debug option. See MySQL In-
ternals: Porting.

2.2. Securing the Initial MySQL Accounts
Part of the MySQL installation process is to set up the mysql database that contains the grant tables:

• Windows distributions contain preinitialized grant tables.

• On Unix, the mysql_install_db program populates the grant tables. Some installation methods run this program for you. Oth-
ers require that you execute it manually. For details, see Section 2.1, “Unix Postinstallation Procedures”.

The mysql.user grant table defines the initial MySQL user accounts and their access privileges:

• Some accounts have the user name root. These are superuser accounts that have all privileges and can do anything. The initial
root account passwords are empty, so anyone can connect to the MySQL server as root without a password and be granted all
privileges.

Postinstallation Setup and Testing

22

http://dev.mysql.com/doc/refman/5.5/en/multiple-servers.html
http://dev.mysql.com/doc/refman/5.5/en/multiple-servers.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_port
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_debug
http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://forge.mysql.com/wiki/MySQL_Internals_Porting

• On Windows, root accounts are created that permit connections from the local host only. Connections can be made by specify-
ing the host name localhost or the IP address 127.0.0.1. If the user selects the ENABLE ROOT ACCESS FROM REMOTE
MACHINES option during installation, the Windows installer creates another root account that permits connections from any
host.

• On Unix, each root account permits connections from the local host. Connections can be made by specifying the host name
localhost, the IP address 127.0.0.1, or the actual host name or IP address.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account. However, this fails if the server is
run with the --skip-name-resolve option, so the 127.0.0.1 account is useful in that case.

• Some accounts are for anonymous users. These have an empty user name. The anonymous accounts have no password, so anyone
can use them to connect to the MySQL server.

• On Windows, there is one anonymous account that permits connections from the local host. Connections can be made by spe-
cifying a host name of localhost. The account has no global privileges. (Before MySQL 5.1.16, it has all global privileges,
just like the root accounts.)

• On Unix, each anonymous account permits connections from the local host. Connections can be made by specifying a host name
of localhost for one of the accounts, or the actual host name or IP address for the other.

To display which accounts exist in the mysql.user table and check whether their passwords are empty, use the following statement:

mysql> SELECT User, Host, Password FROM mysql.user;
+------+--------------------+----------+
| User | Host | Password |
+------+--------------------+----------+
root	localhost	
root	myhost.example.com	
root	127.0.0.1	
	localhost	
	myhost.example.com	
+------+--------------------+----------+

This output indicates that there are several root and anonymous-user accounts, none of which have passwords. The output might differ
on your system, but the presence of accounts with empty passwords means that your MySQL installation is unprotected until you do
something about it:

• You should assign a password to each MySQL root account.

• If you want to prevent clients from connecting as anonymous users without a password, you should either assign a password to each
anonymous account or else remove the accounts.

In addition, the mysql.db table contains rows that permit all accounts to access the test database and other databases with names
that start with test_. This is true even for accounts that otherwise have no special privileges such as the default anonymous accounts.
This is convenient for testing but inadvisable on production servers. Administrators who want database access restricted only to ac-
counts that have permissions granted explicitly for that purpose should remove these mysql.db table rows.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for the root accounts, then for the
anonymous accounts. The instructions also cover how to remove the anonymous accounts, should you prefer not to permit anonymous
access at all, and describe how to remove permissive access to test databases. Replace newpwd in the examples with the password that
you want to use. Replace host_name with the name of the server host. You can determine this name from the output of the preceding
SELECT statement. For the output shown, host_name is myhost.example.com.

Note

For additional information about setting passwords, see Section 4.5, “Assigning Account Passwords”. If you forget your
root password after setting it, see How to Reset the Root Password.

You might want to defer setting the passwords until later, to avoid the need to specify them while you perform additional setup or test-
ing. However, be sure to set them before using your installation for production purposes.

To set up additional accounts, see Section 4.2, “Adding User Accounts”.

Postinstallation Setup and Testing

23

http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-name-resolve
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/resetting-permissions.html

Assigning root Account Passwords
The root account passwords can be set several ways. The following discussion demonstrates three methods:

• Use the SET PASSWORD statement

• Use the UPDATE statement

• Use the mysqladmin command-line client program

To assign passwords using SET PASSWORD, connect to the server as root and issue a SET PASSWORD statement for each root ac-
count listed in the mysql.user table. Be sure to encrypt the password using the PASSWORD() function.

For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('newpwd');

The last statement is unnecessary if the mysql.user table has no root account with a host value of %.

For Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');

You can also use a single statement that assigns a password to all root accounts by using UPDATE to modify the mysql.user table
directly. This method works on any platform:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')

-> WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change remains unnoticed by the server until
you restart it.

To assign passwords to the root accounts using mysqladmin, execute the following commands:

shell> mysqladmin -u root password "newpwd"
shell> mysqladmin -u root -h host_name password "newpwd"

Those commands apply both to Windows and to Unix. The double quotation marks around the password are not always necessary, but
you should use them if the password contains spaces or other characters that are special to your command interpreter.

The mysqladmin method of setting the root account passwords does not work for the 'root'@'127.0.0.1' account. Use the
SET PASSWORD method shown earlier.

After the root passwords have been set, you must supply the appropriate password whenever you connect as root to the server. For
example, to shut down the server with mysqladmin, use this command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Assigning Anonymous Account Passwords
The mysql commands in the following instructions include a -p option based on the assumption that you have set the root account
passwords using the preceding instructions and must specify that password when connecting to the server.

To assign passwords to the anonymous accounts, connect to the server as root, then use either SET PASSWORD or UPDATE. Be sure
to encrypt the password using the PASSWORD() function.

Postinstallation Setup and Testing

24

http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password

To use SET PASSWORD on Windows, do this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');

To set the anonymous-user account passwords with a single UPDATE statement, do this (on any platform):

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')

-> WHERE User = '';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change remains unnoticed by the server until
you restart it.

Removing Anonymous Accounts
If you prefer to remove any anonymous accounts rather than assigning them passwords, do so as follows on Windows:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DROP USER ''@'localhost';

On Unix, remove the anonymous accounts like this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DROP USER ''@'localhost';
mysql> DROP USER ''@'host_name';

Securing Test Databases
By default, the mysql.db table contains rows that permit access by any user to the test database and other databases with names
that start with test_. (These rows have an empty User column value, which for access-checking purposes matches any user name.)
This means that such databases can be used even by accounts that otherwise possess no privileges. If you want to remove any-user ac-
cess to test databases, do so as follows:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DELETE FROM mysql.db WHERE Db LIKE 'test%';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the privilege change remains unnoticed by the server until
you restart it.

With the preceding change, only users who have global database privileges or privileges granted explicitly for the test database can
use it. However, if you do not want the database to exist at all, drop it:

mysql> DROP DATABASE test;

Note

On Windows, you can also perform the process described in this section using the Configuration Wizard (see The Security
Options Dialog). On other platforms, the MySQL distribution includes mysql_secure_installation, a command-
line utility that automates much of the process of securing a MySQL installation.

Postinstallation Setup and Testing

25

http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard-security.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard-security.html

Chapter 3. The MySQL Access Privilege System
The primary function of the MySQL privilege system is to authenticate a user who connects from a given host and to associate that user
with privileges on a database such as SELECT, INSERT, UPDATE, and DELETE. Additional functionality includes the ability to have
anonymous users and to grant privileges for MySQL-specific functions such as LOAD DATA INFILE and administrative operations.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly match a user and then refuse
the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create or drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object such as a database, table, or
routine.

The user interface to the MySQL privilege system consists of SQL statements such as CREATE USER, GRANT, and REVOKE. See Ac-
count Management Statements.

Internally, the server stores privilege information in the grant tables of the mysql database (that is, in the database named mysql). The
MySQL server reads the contents of these tables into memory when it starts and bases access-control decisions on the in-memory copies
of the grant tables.

The MySQL privilege system ensures that all users may perform only the operations permitted to them. As a user, when you connect to
a MySQL server, your identity is determined by the host from which you connect and the user name you specify. When you issue re-
quests after connecting, the system grants privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason to assume that a given user name
belongs to the same person on all hosts. For example, the user joe who connects from office.example.com need not be the same
person as the user joe who connects from home.example.com. MySQL handles this by enabling you to distinguish users on differ-
ent hosts that happen to have the same name: You can grant one set of privileges for connections by joe from of-
fice.example.com, and a different set of privileges for connections by joe from home.example.com. To see what privileges a
given account has, use the SHOW GRANTS statement. For example:

SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can verify your identity by supplying the
correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine whether you have sufficient privileges
to perform it. For example, if you try to select rows from a table in a database or drop a table from the database, the server verifies that
you have the SELECT privilege for the table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 3.4, “Access Control, Stage 1: Connection Verification”,
and Section 3.5, “Access Control, Stage 2: Request Verification”.

If your privileges are changed (either by yourself or someone else) while you are connected, those changes do not necessarily take effect
immediately for the next statement that you issue. For details about the conditions under which the server reloads the grant tables, see
Section 3.6, “When Privilege Changes Take Effect”.

For general security-related advice, see Chapter 1, General Security Issues. For help in diagnosing privilege-related problems, see Sec-
tion 3.7, “Causes of Access-Denied Errors”.

3.1. Privileges Provided by MySQL
MySQL provides privileges that apply in different contexts and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges are global because they are not

26

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.5/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.5/en/show-grants.html

specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted for specific databases, or glob-
ally so that they apply to all databases.

• Privileges for database objects such as tables, indexes, views, and stored routines can be granted for specific objects within a data-
base, for all objects of a given type within a database (for example, all tables in a database), or globally for all objects of a given
type in all databases).

Information about account privileges is stored in the user, db, host, tables_priv, columns_priv, and procs_priv tables
in the mysql database (see Section 3.2, “Privilege System Grant Tables”). The MySQL server reads the contents of these tables into
memory when it starts and reloads them under the circumstances indicated in Section 3.6, “When Privilege Changes Take Effect”. Ac-
cess-control decisions are based on the in-memory copies of the grant tables.

Some releases of MySQL introduce changes to the structure of the grant tables to add new access privileges or features. Whenever you
update to a new version of MySQL, you should update your grant tables to make sure that they have the current structure so that you
can take advantage of any new capabilities. See mysql_upgrade.

The following table shows the privilege names used at the SQL level in the GRANT and REVOKE statements, along with the column
name associated with each privilege in the grant tables and the context in which the privilege applies.

Table 3.1. Permissible Privileges for GRANT and REVOKE

Privilege Column Context

CREATE Create_priv databases, tables, or indexes

DROP Drop_priv databases, tables, or views

GRANT OPTION Grant_priv databases, tables, or stored routines

LOCK TABLES Lock_tables_priv databases

REFERENCES References_priv databases or tables

EVENT Event_priv databases

ALTER Alter_priv tables

DELETE Delete_priv tables

INDEX Index_priv tables

INSERT Insert_priv tables or columns

SELECT Select_priv tables or columns

UPDATE Update_priv tables or columns

CREATE TEMPORARY TABLES Create_tmp_table_priv tables

TRIGGER Trigger_priv tables

CREATE VIEW Create_view_priv views

SHOW VIEW Show_view_priv views

ALTER ROUTINE Alter_routine_priv stored routines

CREATE ROUTINE Create_routine_priv stored routines

EXECUTE Execute_priv stored routines

FILE File_priv file access on server host

CREATE USER Create_user_priv server administration

PROCESS Process_priv server administration

RELOAD Reload_priv server administration

REPLICATION CLIENT Repl_client_priv server administration

REPLICATION SLAVE Repl_slave_priv server administration

SHOW DATABASES Show_db_priv server administration

SHUTDOWN Shutdown_priv server administration

The MySQL Access Privilege System

27

http://dev.mysql.com/doc/refman/5.5/en/mysql-upgrade.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html

Privilege Column Context

SUPER Super_priv server administration

ALL [PRIVILEGES] server administration

USAGE server administration

The following list provides a general description of each privilege available in MySQL. Particular SQL statements might have more
specific privilege requirements than indicated here. If so, the description for the statement in question provides the details.

• The ALL or ALL PRIVILEGES privilege specifier is shorthand. It stands for “all privileges available at a given privilege level”
(except GRANT OPTION). For example, granting ALL at the global or table level grants all global privileges or all table-level priv-
ileges.

• The ALTER privilege enables use of ALTER TABLE to change the structure of tables. ALTER TABLE also requires the CREATE
and INSERT privileges. Renaming a table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new
table.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines (procedures and functions).

• The CREATE privilege enables creation of new databases and tables.

• The CREATE ROUTINE privilege is needed to create stored routines (procedures and functions).

• The CREATE TEMPORARY TABLES privilege enables the creation of temporary tables using the CREATE TEMPORARY TABLE
statement.

However, other operations on a temporary table, such as INSERT, UPDATE, or SELECT, require additional privileges for those op-
erations for the database containing the temporary table, or for the nontemporary table of the same name.

To keep privileges for temporary and nontemporary tables separate, a common workaround for this situation is to create a database
dedicated to the use of temporary tables. Then for that database, a user can be granted the CREATE TEMPORARY TABLES priv-
ilege, along with any other privileges required for temporary table operations done by that user.

• The CREATE USER privilege enables use of CREATE USER, DROP USER, RENAME USER, and REVOKE ALL PRIVILEGES.

• The CREATE VIEW privilege enables use of CREATE VIEW.

• The DELETE privilege enables rows to be deleted from tables in a database.

• The DROP privilege enables you to drop (remove) existing databases, tables, and views. Beginning with MySQL 5.1.10, the DROP
privilege is also required to use the statement ALTER TABLE ... DROP PARTITION on a partitioned table. Beginning with
MySQL 5.1.16, the DROP privilege is required for TRUNCATE TABLE (before that, TRUNCATE TABLE requires the DELETE
privilege). If you grant the DROP privilege for the mysql database to a user, that user can drop the database in which the MySQL
access privileges are stored.

• The EVENT privilege is required to create, alter, drop, or see events for the Event Scheduler. This privilege was added in MySQL
5.1.6.

• The EXECUTE privilege is required to execute stored routines (procedures and functions).

• The FILE privilege gives you permission to read and write files on the server host using the LOAD DATA INFILE and SELECT
... INTO OUTFILE statements and the LOAD_FILE() function. A user who has the FILE privilege can read any file on the
server host that is either world-readable or readable by the MySQL server. (This implies the user can read any file in any database
directory, because the server can access any of those files.) The FILE privilege also enables the user to create new files in any dir-
ectory where the MySQL server has write access. As a security measure, the server will not overwrite existing files.

• The GRANT OPTION privilege enables you to give to other users or remove from other users those privileges that you yourself pos-
sess.

• The INDEX privilege enables you to create or drop (remove) indexes. INDEX applies to existing tables. If you have the CREATE
privilege for a table, you can include index definitions in the CREATE TABLE statement.

• The INSERT privilege enables rows to be inserted into tables in a database. INSERT is also required for the ANALYZE TABLE,
OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

The MySQL Access Privilege System

28

http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/drop-user.html
http://dev.mysql.com/doc/refman/5.5/en/rename-user.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/create-view.html
http://dev.mysql.com/doc/refman/5.5/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.5/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/string-functions.html#function_load-file
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html

• The LOCK TABLES privilege enables the use of explicit LOCK TABLES statements to lock tables for which you have the SELECT
privilege. This includes the use of write locks, which prevents other sessions from reading the locked table.

• The PROCESS privilege pertains to display of information about the threads executing within the server (that is, information about
the statements being executed by sessions). The privilege enables use of SHOW PROCESSLIST or mysqladmin process-
list to see threads belonging to other accounts; you can always see your own threads.

• The REFERENCES privilege currently is unused.

• The RELOAD privilege enables use of the FLUSH statement. It also enables mysqladmin commands that are equivalent to FLUSH
operations: flush-hosts, flush-logs, flush-privileges, flush-status, flush-tables, flush-threads,
refresh, and reload.

The reload command tells the server to reload the grant tables into memory. flush-privileges is a synonym for reload.
The refresh command closes and reopens the log files and flushes all tables. The other flush-xxx commands perform func-
tions similar to refresh, but are more specific and may be preferable in some instances. For example, if you want to flush just the
log files, flush-logs is a better choice than refresh.

• The REPLICATION CLIENT privilege enables the use of SHOW MASTER STATUS and SHOW SLAVE STATUS.

• The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers to connect to the current server
as their master. Without this privilege, the slave cannot request updates that have been made to databases on the master server.

• The SELECT privilege enables you to select rows from tables in a database. SELECT statements require the SELECT privilege only
if they actually retrieve rows from a table. Some SELECT statements do not access tables and can be executed without permission
for any database. For example, you can use SELECT as a simple calculator to evaluate expressions that make no reference to tables:

SELECT 1+1;
SELECT PI()*2;

The SELECT privilege is also needed for other statements that read column values. For example, SELECT is needed for columns
referenced on the right hand side of col_name=expr assignment in UPDATE statements or for columns named in the WHERE
clause of DELETE or UPDATE statements.

• The SHOW DATABASES privilege enables the account to see database names by issuing the SHOW DATABASE statement. Ac-
counts that do not have this privilege see only databases for which they have some privileges, and cannot use the statement at all if
the server was started with the --skip-show-database option. Note that any global privilege is a privilege for the database.

• The SHOW VIEW privilege enables use of SHOW CREATE VIEW.

• The SHUTDOWN privilege enables use of the mysqladmin shutdown command. There is no corresponding SQL statement.

• The SUPER privilege enables an account to use CHANGE MASTER TO, KILL or mysqladmin kill to kill threads belonging to
other accounts (you can always kill your own threads), PURGE BINARY LOGS, configuration changes using SET GLOBAL to
modify global system variables, the mysqladmin debug command, enabling or disabling logging, performing updates even if
the read_only system variable is enabled, starting and stopping replication on slave servers, specification of any account in the
DEFINER attribute of stored programs and views, and enables you to connect (once) even if the connection limit controlled by the
max_connections system variable is reached.

To create or alter stored functions if binary logging is enabled, you may also need the SUPER privilege, as described in Binary Log-
ging of Stored Programs.

• The TRIGGER privilege enables trigger operations. You must have this privilege for a table to create, drop, or execute triggers for
that table. This privilege was added in MySQL 5.1.6. (Prior to MySQL 5.1.6, trigger operations required the SUPER privilege.)

• The UPDATE privilege enables rows to be updated in tables in a database.

• The USAGE privilege specifier stands for “no privileges.” It is used at the global level with GRANT to modify account attributes such
as resource limits or SSL characteristics without affecting existing account privileges.

It is a good idea to grant to an account only those privileges that it needs. You should exercise particular caution in granting the FILE
and administrative privileges:

• The FILE privilege can be abused to read into a database table any files that the MySQL server can read on the server host. This in-

The MySQL Access Privilege System

29

http://dev.mysql.com/doc/refman/5.5/en/lock-tables.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/show-master-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-show-database
http://dev.mysql.com/doc/refman/5.5/en/show-create-view.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/kill.html
http://dev.mysql.com/doc/refman/5.5/en/purge-binary-logs.html
http://dev.mysql.com/doc/refman/5.5/en/set-statement.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_read_only
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_connections
http://dev.mysql.com/doc/refman/5.5/en/stored-programs-logging.html
http://dev.mysql.com/doc/refman/5.5/en/stored-programs-logging.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

cludes all world-readable files and files in the server's data directory. The table can then be accessed using SELECT to transfer its
contents to the client host.

• The GRANT OPTION privilege enables users to give their privileges to other users. Two users that have different privileges and
with the GRANT OPTION privilege are able to combine privileges.

• The ALTER privilege may be used to subvert the privilege system by renaming tables.

• The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating the server.

• The PROCESS privilege can be used to view the plain text of currently executing statements, including statements that set or change
passwords.

• The SUPER privilege can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql database itself can be used to change passwords and other access privilege information. Passwords
are stored encrypted, so a malicious user cannot simply read them to know the plain text password. However, a user with write ac-
cess to the user table Password column can change an account's password, and then connect to the MySQL server using that ac-
count.

3.2. Privilege System Grant Tables
Normally, you manipulate the contents of the grant tables in the mysql database indirectly by using statements such as GRANT and
REVOKE to set up accounts and control the privileges available to each one. See Account Management Statements. The discussion here
describes the underlying structure of the grant tables and how the server uses their contents when interacting with clients.

These mysql database tables contain grant information:

• user: Contains user accounts, global privileges, and other non-privilege columns.

• db: Contains database-level privileges.

• host: Obsolete.

• tables_priv: Contains table-level privileges.

• columns_priv: Contains column-level privileges.

• procs_priv: Contains stored procedure and function privileges.

Other tables in the mysql database do not hold grant information and are discussed elsewhere:

• event: Contains information about Event Scheduler events: See Using the Event Scheduler.

• func: Contains information about user-defined functions: See Adding New Functions to MySQL.

• help_xxx: These tables are used for server-side help: See Server-Side Help.

• plugin: Contains information about server plugins: See Installing and Uninstalling Plugins, and The MySQL Plugin API.

• proc: Contains information about stored procedures and functions: See Using Stored Routines (Procedures and Functions).

• servers: Used by the FEDERATED storage engine: See Creating a FEDERATED Table Using CREATE SERVER.

• time_zone_xxx: These tables contain time zone information: See MySQL Server Time Zone Support.

• Tables with _log in their name are used for logging: See MySQL Server Logs.

Each grant table contains scope columns and privilege columns:

The MySQL Access Privilege System

30

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.5/en/events.html
http://dev.mysql.com/doc/refman/5.5/en/adding-functions.html
http://dev.mysql.com/doc/refman/5.5/en/server-side-help-support.html
http://dev.mysql.com/doc/refman/5.5/en/server-plugin-loading.html
http://dev.mysql.com/doc/refman/5.5/en/plugin-api.html
http://dev.mysql.com/doc/refman/5.5/en/stored-routines.html
http://dev.mysql.com/doc/refman/5.5/en/federated-create-server.html
http://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html
http://dev.mysql.com/doc/refman/5.5/en/server-logs.html

• Scope columns determine the scope of each row (entry) in the tables; that is, the context in which the row applies. For example, a
user table row with Host and User values of 'thomas.loc.gov' and 'bob' would be used for authenticating connections
made to the server from the host thomas.loc.gov by a client that specifies a user name of bob. Similarly, a db table row with
Host, User, and Db column values of 'thomas.loc.gov', 'bob' and 'reports' would be used when bob connects from
the host thomas.loc.gov to access the reports database. The tables_priv and columns_priv tables contain scope
columns indicating tables or table/column combinations to which each row applies. The procs_priv scope columns indicate the
stored routine to which each row applies.

• Privilege columns indicate which privileges are granted by a table row; that is, what operations can be performed. The server com-
bines the information in the various grant tables to form a complete description of a user's privileges. Section 3.5, “Access Control,
Stage 2: Request Verification”, describes the rules that are used to do this.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or permit incoming connections. For permitted connections, any priv-
ileges granted in the user table indicate the user's global privileges. Any privilege granted in this table applies to all databases on
the server.

Note

Because any global privilege is considered a privilege for all databases, any global privilege enables a user to see all data-
base names with SHOW DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA.

• The db table scope columns determine which users can access which databases from which hosts. The privilege columns determine
which operations are permitted. A privilege granted at the database level applies to the database and to all objects in the database,
such as tables and stored programs.

• The host table is used in conjunction with the db table when you want a given db table row to apply to several hosts. For ex-
ample, if you want a user to be able to use a database from several hosts in your network, leave the Host value empty in the user's
db table row, then populate the host table with a row for each of those hosts. This mechanism is described more detail in Sec-
tion 3.5, “Access Control, Stage 2: Request Verification”.

Note

The host table must be modified directly with statements such as INSERT, UPDATE, and DELETE. It is not affected by
statements such as GRANT and REVOKE that modify the grant tables indirectly. Most MySQL installations need not use
this table at all.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained: They apply at the table and
column levels rather than at the database level. A privilege granted at the table level applies to the table and to all its columns. A
privilege granted at the column level applies only to a specific column.

• The procs_priv table applies to stored routines. A privilege granted at the routine level applies only to a single routine.

The server uses the user, db, and host tables in the mysql database at both the first and second stages of access control (see
Chapter 3, The MySQL Access Privilege System). The columns in the user and db tables are shown here. The host table is similar to
the db table but has a specialized use as described in Section 3.5, “Access Control, Stage 2: Request Verification”.

Table 3.2. user and db Table Columns

Table Name user db

Scope columns Host Host

User Db

Password User

Privilege columns Select_priv Select_priv

Insert_priv Insert_priv

Update_priv Update_priv

Delete_priv Delete_priv

The MySQL Access Privilege System

31

http://dev.mysql.com/doc/refman/5.5/en/show-databases.html
http://dev.mysql.com/doc/refman/5.5/en/schemata-table.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html

Table Name user db

Index_priv Index_priv

Alter_priv Alter_priv

Create_priv Create_priv

Drop_priv Drop_priv

Grant_priv Grant_priv

Create_view_priv Create_view_priv

Show_view_priv Show_view_priv

Create_routine_priv Create_routine_priv

Alter_routine_priv Alter_routine_priv

Execute_priv Execute_priv

Trigger_priv Trigger_priv

Event_priv Event_priv

Create_tmp_table_priv Create_tmp_table_priv

Lock_tables_priv Lock_tables_priv

References_priv References_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Show_db_priv

Super_priv

Repl_slave_priv

Repl_client_priv

Create_user_priv

Security columns ssl_type

ssl_cipher

x509_issuer

x509_subject

Resource control columns max_questions

max_updates

max_connections

max_user_connections

The Event_priv and Trigger_priv columns were added in MySQL 5.1.6.

During the second stage of access control, the server performs request verification to make sure that each client has sufficient privileges
for each request that it issues. In addition to the user, db, and host grant tables, the server may also consult the tables_priv and
columns_priv tables for requests that involve tables. The latter tables provide finer privilege control at the table and column levels.
They have the columns shown in the following table.

Table 3.3. tables_priv and columns_priv Table Columns

Table Name tables_priv columns_priv

Scope columns Host Host

Db Db

User User

Table_name Table_name

The MySQL Access Privilege System

32

Table Name tables_priv columns_priv

Column_name

Privilege columns Table_priv Column_priv

Column_priv

Other columns Timestamp Timestamp

Grantor

The Timestamp and Grantor columns currently are unused and are discussed no further here.

For verification of requests that involve stored routines, the server may consult the procs_priv table, which has the columns shown
in the following table.

Table 3.4. procs_priv Table Columns

Table Name procs_priv

Scope columns Host

Db

User

Routine_name

Routine_type

Privilege columns Proc_priv

Other columns Timestamp

Grantor

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to indicate the type of routine the
row refers to. This column enables privileges to be granted separately for a function and a procedure with the same name.

The Timestamp and Grantor columns currently are unused and are discussed no further here.

Scope columns in the grant tables contain strings. They are declared as shown here; the default value for each is the empty string.

Table 3.5. Grant Table Scope Column Types

Column Name Type

Host CHAR(60)

User CHAR(16)

Password CHAR(41)

Db CHAR(64)

Table_name CHAR(64)

Column_name CHAR(64)

Routine_name CHAR(64)

For access-checking purposes, comparisons of User, Password, Db, and Table_name values are case sensitive. Comparisons of
Host, Column_name, and Routine_name values are not case sensitive.

In the user, db, and host tables, each privilege is listed in a separate column that is declared as ENUM('N','Y') DEFAULT
'N'. In other words, each privilege can be disabled or enabled, with the default being disabled.

In the tables_priv, columns_priv, and procs_priv tables, the privilege columns are declared as SET columns. Values in
these columns can contain any combination of the privileges controlled by the table. Only those privileges listed in the column value are
enabled.

The MySQL Access Privilege System

33

http://dev.mysql.com/doc/refman/5.5/en/enum.html
http://dev.mysql.com/doc/refman/5.5/en/set.html

Table 3.6. Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert', 'Update', 'Delete', 'Cre-
ate', 'Drop', 'Grant', 'References', 'In-
dex', 'Alter', 'Create View', 'Show view',
'Trigger'

tables_priv Column_priv 'Select', 'Insert', 'Update', 'References'

columns_priv Column_priv 'Select', 'Insert', 'Update', 'References'

procs_priv Proc_priv 'Execute', 'Alter Routine', 'Grant'

Administrative privileges (such as RELOAD or SHUTDOWN) are specified only in the user table. Administrative operations are opera-
tions on the server itself and are not database-specific, so there is no reason to list these privileges in the other grant tables. Con-
sequently, to determine whether you can perform an administrative operation, the server need consult only the user table.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as such, but your ability to read or
write files on the server host is independent of the database you are accessing.

The mysqld server reads the contents of the grant tables into memory when it starts. You can tell it to reload the tables by issuing a
FLUSH PRIVILEGES statement or executing a mysqladmin flush-privileges or mysqladmin reload command.
Changes to the grant tables take effect as indicated in Section 3.6, “When Privilege Changes Take Effect”.

When you modify an account's privileges, it is a good idea to verify that the changes set up privileges the way you want. To check the
privileges for a given account, use the SHOW GRANTS statement (see SHOW GRANTS Syntax). For example, to determine the priv-
ileges that are granted to an account with user name and host name values of bob and pc84.example.com, use this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

3.3. Specifying Account Names
MySQL account names consist of a user name and a host name. This enables creation of accounts for users with the same name who
can connect from different hosts. This section describes how to write account names, including special values and wildcard rules.

In SQL statements such as CREATE USER, GRANT, and SET PASSWORD, write account names using the following rules:

• Syntax for account names is 'user_name'@'host_name'.

• An account name consisting only of a user name is equivalent to 'user_name'@'%'. For example, 'me' is equivalent to
'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes are necessary to specify a
user_name string containing special characters (such as “-”), or a host_name string containing special characters or wildcard
characters (such as “%”); for example, 'test-user'@'%.com'.

• Quote user names and host names as identifiers or as strings, using either backticks (“`”), single quotation marks (“'”), or double
quotation marks (“"”).

• The user name and host name parts, if quoted, must be quoted separately. That is, write 'me'@'localhost', not
'me@localhost'; the latter is interpreted as 'me@localhost'@'%'.

• A reference to the CURRENT_USER() (or CURRENT_USER) function is equivalent to specifying the current user's name and host
name literally.

MySQL stores account names in grant tables in the mysql database using separate columns for the user name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user name and host name. This table
also indicates which global privileges the account has.

The MySQL Access Privilege System

34

http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/show-grants.html
http://dev.mysql.com/doc/refman/5.5/en/show-grants.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html

• Other grant tables indicate privileges an account has for databases and objects within databases. These tables have User and Host
columns to store the account name. Each row in these tables associates with the account in the user table that has the same User
and Host values.

For additional detail about grant table structure, see Section 3.2, “Privilege System Grant Tables”.

User names and host names have certain special values or wildcard conventions, as described following.

A user name is either a nonblank value that literally matches the user name for incoming connection attempts, or a blank value (empty
string) that matches any user name. An account with a blank user name is an anonymous user. To specify an anonymous user in SQL
statements, use a quoted empty user name part, such as ''@'localhost'.

The host name part of an account name can take many forms, and wildcards are permitted:

• A host value can be a host name or an IP address. The name 'localhost' indicates the local host. The IP address
'127.0.0.1' indicates the loopback interface.

• You can use the wildcard characters “%” and “_” in host values. These have the same meaning as for pattern-matching operations
performed with the LIKE operator. For example, a host value of '%' matches any host name, whereas a value of
'%.mysql.com' matches any host in the mysql.com domain. '192.168.1.%' matches any host in the 192.168.1 class C
network.

Because you can use IP wildcard values in host values (for example, '192.168.1.%' to match every host on a subnet), someone
could try to exploit this capability by naming a host 192.168.1.somewhere.com. To foil such attempts, MySQL disallows
matching on host names that start with digits and a dot. Thus, if you have a host named something like 1.2.example.com, its
name never matches the host part of account names. An IP wildcard value can match only IP addresses, not host names.

• For a host value specified as an IP address, you can specify a netmask indicating how many address bits to use for the network num-
ber. The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'192.58.197.0/255.255.255.0';

This enables david to connect from any client host having an IP address client_ip for which the following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 192.58.197.0

IP addresses that satisfy this condition and can connect to the MySQL server are those in the range from 192.58.197.0 to
192.58.197.255.

The netmask can only be used to tell the server to use 8, 16, 24, or 32 bits of the address. Examples:

• 192.0.0.0/255.0.0.0: Any host on the 192 class A network

• 192.168.0.0/255.255.0.0: Any host on the 192.168 class B network

• 192.168.1.0/255.255.255.0: Any host on the 192.168.1 class C network

• 192.168.1.1: Only the host with this specific IP address

The following netmask will not work because it masks 28 bits, and 28 is not a multiple of 8:

192.168.0.1/255.255.255.240

3.4. Access Control, Stage 1: Connection Verification
When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on your identity and whether you
can verify your identity by supplying the correct password. If not, the server denies access to you completely. Otherwise, the server ac-

The MySQL Access Privilege System

35

http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.5/en/create-user.html

cepts the connection, and then enters Stage 2 and waits for requests.

Your identity is based on two pieces of information:

• The client host from which you connect

• Your MySQL user name

Identity checking is performed using the three user table scope columns (Host, User, and Password). The server accepts the con-
nection only if the Host and User columns in some user table row match the client host name and user name and the client supplies
the password specified in that row. The rules for permissible Host and User values are given in Section 3.3, “Specifying Account
Names”.

If the User column value is nonblank, the user name in an incoming connection must match exactly. If the User value is blank, it
matches any user name. If the user table row that matches an incoming connection has a blank user name, the user is considered to be
an anonymous user with no name, not a user with the name that the client actually specified. This means that a blank user name is used
for all further access checking for the duration of the connection (that is, during Stage 2).

The Password column can be blank. This is not a wildcard and does not mean that any password matches. It means that the user must
connect without specifying a password.

Nonblank Password values in the user table represent encrypted passwords. MySQL does not store passwords in plaintext form for
anyone to see. Rather, the password supplied by a user who is attempting to connect is encrypted (using the PASSWORD() function).
The encrypted password then is used during the connection process when checking whether the password is correct. This is done
without the encrypted password ever traveling over the connection. See Section 4.1, “User Names and Passwords”.

From MySQL's point of view, the encrypted password is the real password, so you should never give anyone access to it. In particular,
do not give nonadministrative users read access to tables in the mysql database.

The following table shows how various combinations of Host and User values in the user table apply to incoming connections.

Host Value User Value Permissible Connections

'thomas.loc.gov' 'fred' fred, connecting from thomas.loc.gov

'thomas.loc.gov' '' Any user, connecting from thomas.loc.gov

'%' 'fred' fred, connecting from any host

'%' '' Any user, connecting from any host

'%.loc.gov' 'fred' fred, connecting from any host in the loc.gov domain

'x.y.%' 'fred' fred, connecting from x.y.net, x.y.com, x.y.edu, and so
on; this is probably not useful

'144.155.166.177' 'fred' fred, connecting from the host with IP address
144.155.166.177

'144.155.166.%' 'fred' fred, connecting from any host in the 144.155.166 class C
subnet

'144.155.166.0/255.255.255.0' 'fred' Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than one row in the user table. The pre-
ceding set of examples demonstrates this: Several of the entries shown match a connection from thomas.loc.gov by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this issue as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first. Literal host names and IP addresses are the most

The MySQL Access Privilege System

36

http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password

specific. (The specificity of a literal IP address is not affected by whether it has a netmask, so 192.168.1.13 and
192.168.1.0/255.255.255.0 are considered equally specific.) The pattern '%' means “any host” and is least specific. The
empty string '' also means “any host” but sorts after '%'. Rows with the same Host value are ordered with the most-specific User
values first (a blank User value means “any user” and is least specific).

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it sorts the rows using the rules just described. The result after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match found. For a connection from loc-
alhost by jeffrey, two of the rows from the table match: the one with Host and User values of 'localhost' and '', and the
one with values of '%' and 'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-

A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a connection by jeffrey from any host is
matched by the second.

Note

It is a common misconception to think that, for a given user name, all rows that explicitly name that user are used first
when the server attempts to find a match for the connection. This is not true. The preceding example illustrates this, where
a connection from thomas.loc.gov by jeffrey is first matched not by the row containing 'jeffrey' as the
User column value, but by the row with no user name. As a result, jeffrey is authenticated as an anonymous user,
even though he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are being authenticated as some other
account. To find out what account the server used to authenticate you, use the CURRENT_USER() function. (See Information Func-
tions.) It returns a value in user_name@host_name format that indicates the User and Host values from the matching user table
row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The MySQL Access Privilege System

37

http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html

The result shown here indicates that the matching user table row had a blank User column value. In other words, the server is treating
jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to see where the first match is being
made.

3.5. Access Control, Stage 2: Request Verification
After you establish a connection, the server enters Stage 2 of access control. For each request that you issue through that connection, the
server determines what operation you want to perform, then checks whether you have sufficient privileges to do so. This is where the
privilege columns in the grant tables come into play. These privileges can come from any of the user, db, host, tables_priv,
columns_priv, or procs_priv tables. (You may find it helpful to refer to Section 3.2, “Privilege System Grant Tables”, which
lists the columns present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter what the default database is. For ex-
ample, if the user table grants you the DELETE privilege, you can delete rows from any table in any database on the server host! It is
wise to grant privileges in the user table only to people who need them, such as database administrators. For other users, you should
leave all privileges in the user table set to 'N' and grant privileges at more specific levels only. You can grant privileges for particular
databases, tables, columns, or routines.

The db and host tables grant database-specific privileges. Values in the scope columns of these tables can take the following forms:

• A blank User value in the db table matches the anonymous user. A nonblank value matches literally; there are no wildcards in user
names.

• The wildcard characters “%” and “_” can be used in the Host and Db columns of either table. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. If you want to use either character literally when granting priv-
ileges, you must escape it with a backslash. For example, to include the underscore character (“_”) as part of a database name, spe-
cify it as “_” in the GRANT statement.

• A '%' Host value in the db table means “any host.” A blank Host value in the db table means “consult the host table for fur-
ther information” (a process that is described later in this section).

• A '%' or blank Host value in the host table means “any host.”

• A '%' or blank Db value in either table means “any database.”

The server reads the db and host tables into memory and sorts them at the same time that it reads the user table. The server sorts the
db table based on the Host, Db, and User scope columns, and sorts the host table based on the Host and Db scope columns. As
with the user table, sorting puts the most-specific values first and least-specific values last, and when the server looks for matching
entries, it uses the first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific, and routine-specific priv-
ileges. Values in the scope columns of these tables can take the following forms:

• The wildcard characters “%” and “_” can be used in the Host column. These have the same meaning as for pattern-matching opera-
tions performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host, Db, and User columns. This is
similar to db table sorting, but simpler because only the Host column can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require administrative privileges such as
SHUTDOWN or RELOAD, the server checks only the user table row because that is the only table that specifies administrative priv-
ileges. The server grants access if the row permits the requested operation and denies access otherwise. For example, if you want to ex-
ecute mysqladmin shutdown but your user table row does not grant the SHUTDOWN privilege to you, the server denies access
without even checking the db or host tables. (They contain no Shutdown_priv column, so there is no need to do so.)

The MySQL Access Privilege System

38

http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html#operator_like

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global privileges by looking in the user
table row. If the row permits the requested operation, access is granted. If the global privileges in the user table are insufficient, the
server determines the user's database-specific privileges by checking the db and host tables:

1. The server looks in the db table for a match on the Host, Db, and User columns. The Host and User columns are matched to
the connecting user's host name and MySQL user name. The Db column is matched to the database that the user wants to access. If
there is no row for the Host and User, access is denied.

2. If there is a matching db table row and its Host column is not blank, that row defines the user's database-specific privileges.

3. If the matching db table row's Host column is blank, it signifies that the host table enumerates which hosts should be permitted
access to the database. In this case, a further lookup is done in the host table to find a match on the Host and Db columns. If no
host table row matches, access is denied. If there is a match, the user's database-specific privileges are computed as the intersec-
tion (not the union!) of the privileges in the db and host table entries; that is, the privileges that are 'Y' in both entries. (This
way you can grant general privileges in the db table row and then selectively restrict them on a host-by-host basis using the host
table entries.)

After determining the database-specific privileges granted by the db and host table entries, the server adds them to the global priv-
ileges granted by the user table. If the result permits the requested operation, access is granted. Otherwise, the server successively
checks the user's table and column privileges in the tables_priv and columns_priv tables, adds those to the user's privileges,
and permits or denies access based on the result. For stored-routine operations, the server uses the procs_priv table rather than
tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be summarized like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global user row privileges are initially found to be insufficient for the requested operation, the serv-
er adds those privileges to the database, table, and column privileges later. The reason is that a request might require more than one type
of privilege. For example, if you execute an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT
privileges. Your privileges might be such that the user table row grants one privilege and the db table row grants the other. In this
case, you have the necessary privileges to perform the request, but the server cannot tell that from either table by itself; the privileges
granted by the entries in both tables must be combined.

The host table is not affected by the GRANT or REVOKE statements, so it is unused in most MySQL installations. If you modify it dir-
ectly, you can use it for some specialized purposes, such as to maintain a list of secure servers on the local network that are granted all
privileges.

You can also use the host table to indicate hosts that are not secure. Suppose that you have a machine public.your.domain that
is located in a public area that you do not consider secure. You can enable access to all hosts on your network except that machine by
using host table entries like this:

+--------------------+----+-
| Host | Db | ...
+--------------------+----+-
| public.your.domain | % | ... (all privileges set to 'N')
| %.your.domain | % | ... (all privileges set to 'Y')
+--------------------+----+-

3.6. When Privilege Changes Take Effect
When mysqld starts, it reads all grant table contents into memory. The in-memory tables become effective for access control at that
point.

If you modify the grant tables indirectly using account-management statements such as GRANT, REVOKE, SET PASSWORD, or RE-
NAME USER, the server notices these changes and loads the grant tables into memory again immediately.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE, your changes have no effect on priv-
ilege checking until you either restart the server or tell it to reload the tables. If you change the grant tables directly but forget to reload
them, your changes have no effect until you restart the server. This may leave you wondering why your changes seem to make no differ-

The MySQL Access Privilege System

39

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert-select.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/rename-user.html
http://dev.mysql.com/doc/refman/5.5/en/rename-user.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html

ence!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by issuing a FLUSH PRIVILEGES
statement or by executing a mysqladmin flush-privileges or mysqladmin reload command.

A grant table reload affects privileges for each existing client connection as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not be visible to them without actually changing to
a different database or flushing the privileges.

• Global privileges and passwords are unaffected for a connected client. These changes take effect only for subsequent connections.

If the server is started with the --skip-grant-tables option, it does not read the grant tables or implement any access control.
Anyone can connect and do anything, which is insecure. To cause a server thus started to read the tables and enable access checking,
flush the privileges.

3.7. Causes of Access-Denied Errors
If you encounter problems when you try to connect to the MySQL server, the following items describe some courses of action you can
take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an attempt to connect to the server fails
with a message such as one of those following, one cause might be that the server is not running:

shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe, or Unix socket file different
from the one on which the server is listening. To correct this when you invoke a client program, specify a --port option to indic-
ate the proper port number, or a --socket option to indicate the proper named pipe or Unix socket file. To find out where the
socket file is, you can use this command:

shell> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you are attempting to connect remotely) that
it has not been configured to listen only locally on its network interfaces. If the server was started with --skip-networking, it
will not accept TCP/IP connections at all. If the server was started with --bind-address=127.0.0.1, it will listen for TCP/IP
connections only locally on the loopback interface and will not accept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured on the basis of the applic-
ation being executed, or the port number used by MySQL for communication (3306 by default). Under Linux or Unix, check your
IP tables (or similar) configuration to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or
the Windows XP personal firewall may need to be configured not to block the MySQL port.

• The grant tables must be properly set up so that the server can use them for access control. For some distribution types (such as bin-
ary distributions on Windows, or RPM distributions on Linux), the installation process initializes the mysql database containing
the grant tables. For distributions that do not do this, you must initialize the grant tables manually by running the
mysql_install_db script. For details, see Section 2.1, “Unix Postinstallation Procedures”.

To determine whether you need to initialize the grant tables, look for a mysql directory under the data directory. (The data direct-
ory normally is named data or var and is located under your MySQL installation directory.) Make sure that you have a file named
user.MYD in the mysql database directory. If not, execute the mysql_install_db script. After running this script and start-
ing the server, test the initial privileges by executing this command:

shell> mysql -u root test

The MySQL Access Privilege System

40

http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/5.5/en/connecting.html#option_general_port
http://dev.mysql.com/doc/refman/5.5/en/connecting.html#option_general_socket
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_bind-address

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access permissions:

shell> mysql -u root mysql

The server should let you connect because the MySQL root user has no password initially. That is also a security risk, so setting
the password for the root accounts is something you should do while you're setting up your other MySQL accounts. For instruc-
tions on setting the initial passwords, see Section 2.2, “Securing the Initial MySQL Accounts”.

• If you have updated an existing MySQL installation to a newer version, did you run the mysql_upgrade script? If not, do so. The
structure of the grant tables changes occasionally when new capabilities are added, so after an upgrade you should always make sure
that your tables have the current structure. For instructions, see mysql_upgrade.

• If a client program receives the following error message when it tries to connect, it means that the server expects passwords in a
newer format than the client is capable of generating:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 1.2.3, “Password Hashing in MySQL”, and Client does not support
authentication protocol.

• Remember that client programs use connection parameters specified in option files or environment variables. If a client program
seems to be sending incorrect default connection parameters when you have not specified them on the command line, check any ap-
plicable option files and your environment. For example, if you get Access denied when you run a client without any options,
make sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults option. For example:

shell> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Using Option Files. Environment variables are listed in Environment Variables.

• If you get the following error, it means that you are using an incorrect root password:

shell> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have an incorrect password listed in
some option file. Try the --no-defaults option as described in the previous item.

For information on changing passwords, see Section 4.5, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see How to Reset the Root Password.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the password using the PASS-
WORD() function. If you do not use PASSWORD() for these statements, the password will not work. For example, the following
statement assigns a password, but fails to encrypt it, so the user is not able to connect afterward:

SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the CREATE USER or GRANT statements or the
mysqladmin password command. Each of those automatically uses PASSWORD() to encrypt the password. See Section 4.5,
“Assigning Account Passwords”, and CREATE USER Syntax.

• localhost is a synonym for your local host name, and is also the default host to which clients try to connect if you specify no

The MySQL Access Privilege System

41

http://dev.mysql.com/doc/refman/5.5/en/mysql-upgrade.html
http://dev.mysql.com/doc/refman/5.5/en/old-client.html
http://dev.mysql.com/doc/refman/5.5/en/old-client.html
http://dev.mysql.com/doc/refman/5.5/en/option-file-options.html#option_general_no-defaults
http://dev.mysql.com/doc/refman/5.5/en/option-files.html
http://dev.mysql.com/doc/refman/common/en/environment-variables.html
http://dev.mysql.com/doc/refman/5.5/en/option-file-options.html#option_general_no-defaults
http://dev.mysql.com/doc/refman/5.5/en/resetting-permissions.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/create-user.html

host explicitly.

To avoid this problem on such systems, you can use a --host=127.0.0.1 option to name the server host explicitly. This will
make a TCP/IP connection to the local mysqld server. You can also use TCP/IP by specifying a --host option that uses the actu-
al host name of the local host. In this case, the host name must be specified in a user table row on the server host, even though you
are running the client program on the same host as the server.

• The Access denied error message tells you who you are trying to log in as, the client host from which you are trying to connect,
and whether you were using a password. Normally, you should have one row in the user table that exactly matches the host name
and user name that were given in the error message. For example, if you get an error message that contains using password:
NO, it means that you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u user_name, you may have a
problem with the user table. Check this by executing mysql -u root mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name and your MySQL user name.

• If the following error occurs when you try to connect from a host other than the one on which the MySQL server is running, it
means that there is no row in the user table with a Host value that matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that you are using when trying to
connect.

If you do not know the IP address or host name of the machine from which you are connecting, you should put a row with '%' as
the Host column value in the user table. After trying to connect from the client machine, use a SELECT USER() query to see
how you really did connect. Then change the '%' in the user table row to the actual host name that shows up in the log. Other-
wise, your system is left insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version that is compiled with a different
version of the glibc library than the one you are using. In this case, you should either upgrade your operating system or glibc, or
download a source distribution of MySQL version and compile it yourself. A source RPM is normally trivial to compile and install,
so this is not a big problem.

• If you specify a host name when trying to connect, but get an error message where the host name is not shown or is an IP address, it
means that the MySQL server got an error when trying to resolve the IP address of the client host to a name:

shell> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

If you try to connect as root and get the following error, it means that you do not have a row in the user table with a User
column value of 'root' and that mysqld cannot resolve the host name for your client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the internal DNS host name cache.
See How MySQL Uses DNS.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP addresses rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on Windows.

• Start mysqld with the --skip-name-resolve option.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to localhost. Unix connections to loc-

The MySQL Access Privilege System

42

http://dev.mysql.com/doc/refman/5.5/en/connecting.html#option_general_host
http://dev.mysql.com/doc/refman/5.5/en/connecting.html#option_general_host
http://dev.mysql.com/doc/refman/5.5/en/dns.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-name-resolve
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-host-cache

alhost use a Unix socket file rather than TCP/IP.

• On Windows, if you are running the server and the client on the same machine and the server supports named pipe connections,
connect to the host name . (period). Connections to . use a named pipe rather than TCP/IP.

• If mysql -u root test works but mysql -h your_hostname -u root test results in Access denied (where
your_hostname is the actual host name of the local host), you may not have the correct name for your host in the user table. A
common problem here is that the Host value in the user table row specifies an unqualified host name, but your system's name res-
olution routines return a fully qualified domain name (or vice versa). For example, if you have an entry with host 'pluto' in the
user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the entry does not work. Try adding an
entry to the user table that contains the IP address of your host as the Host column value. (Alternatively, you could add an entry
to the user table with a Host value that contains a wildcard; for example, 'pluto.%'. However, use of Host values ending
with “%” is insecure and is not recommended!)

• If mysql -u user_name test works but mysql -u user_name other_db does not, you have not granted access to
the given user for the database named other_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -u user_name does not
work when executed on a remote client host, you have not enabled access to the server for the given user name from the remote
host.

• If you cannot figure out why you get Access denied, remove from the user table all entries that have Host values containing
wildcards (entries that contain '%' or '_' characters). A very common error is to insert a new entry with Host='%' and
User='some_user', thinking that this enables you to specify localhost to connect from the same machine. The reason that
this does not work is that the default privileges include an entry with Host='localhost' and User=''. Because that entry has
a Host value 'localhost' that is more specific than '%', it is used in preference to the new entry when connecting from loc-
alhost! The correct procedure is to insert a second entry with Host='localhost' and User='some_user', or to delete
the entry with Host='localhost' and User=''. After deleting the entry, remember to issue a FLUSH PRIVILEGES state-
ment to reload the grant tables. See also Section 3.4, “Access Control, Stage 1: Connection Verification”.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you issue a SELECT ... INTO
OUTFILE or LOAD DATA INFILE statement, your entry in the user table does not have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE statements) and your changes seem to
be ignored, remember that you must execute a FLUSH PRIVILEGES statement or a mysqladmin flush-privileges com-
mand to cause the server to reload the privilege tables. Otherwise, your changes have no effect until the next time the server is re-
started. Remember that after you change the root password with an UPDATE statement, you will not need to specify the new pass-
word until after you flush the privileges, because the server will not know you've changed the password yet!

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL administrator has changed them. Re-
loading the grant tables affects new client connections, but it also affects existing connections as indicated in Section 3.6, “When
Privilege Changes Take Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the server with mysql -u
user_name db_name or mysql -u user_name -pyour_pass db_name. If you are able to connect using the mysql
client, the problem lies with your program, not with the access privileges. (There is no space between -p and the password; you can
also use the --password=your_pass syntax to specify the password. If you use the -p or --password option with no pass-
word value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then you can change the MySQL grant
tables and use the mysqlaccess script to check whether your modifications have the desired effect. When you are satisfied with
your changes, execute mysqladmin flush-privileges to tell the mysqld server to reload the privileges. This enables you
to begin using the new grant table contents without stopping and restarting the server.

• If you get the following error, you may have a problem with the db or host table:

Access to database denied

If the entry selected from the db table has an empty value in the Host column, make sure that there are one or more corresponding
entries in the host table specifying which hosts the db table entry applies to. This problem occurs infrequently because the host
table is rarely used.

• If everything else fails, start the mysqld server with a debugging option (for example, --debug=d,general,query). This
prints host and user information about attempted connections, as well as information about each command issued. See MySQL In-

The MySQL Access Privilege System

43

http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/connecting.html#option_general_password
http://dev.mysql.com/doc/refman/5.5/en/connecting.html#option_general_password
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_debug

ternals: Porting.

• If you have any other problems with the MySQL grant tables and feel you must post the problem to the mailing list, always provide
a dump of the MySQL grant tables. You can dump the tables with the mysqldump mysql command. To file a bug report, see the
instructions at How to Report Bugs or Problems. In some cases, you may need to restart mysqld with --skip-grant-tables
to run mysqldump.

The MySQL Access Privilege System

44

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://dev.mysql.com/doc/refman/common/en/bug-reports.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-grant-tables

Chapter 4. MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the following topics:

• The meaning of account names and passwords as used in MySQL and how that compares to names and passwords used by your op-
erating system

• How to set up new accounts and remove existing accounts

• How to change passwords

• Guidelines for using passwords securely

• How to use secure connections with SSL

See also Account Management Statements, which describes the syntax and use for all user-management SQL statements.

4.1. User Names and Passwords
MySQL stores accounts in the user table of the mysql database. An account is defined in terms of a user name and the client host or
hosts from which the user can connect to the server. The account may also have a password. For information about account representa-
tion in the user table, see Section 3.2, “Privilege System Grant Tables”.

There are several distinctions between the way user names and passwords are used by MySQL and the way they are used by your oper-
ating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names (login names) as used by Windows
or Unix. On Unix, most MySQL clients by default try to log in using the current Unix user name as the MySQL user name, but that
is for convenience only. The default can be overridden easily, because client programs permit any user name to be specified with a -
u or --user option. Because this means that anyone can attempt to connect to the server using any user name, you cannot make a
database secure in any way unless all MySQL accounts have passwords. Anyone who specifies a user name for an account that has
no password is able to connect successfully to the server.

• MySQL user names can be up to 16 characters long. Operating system user names, because they are completely unrelated to
MySQL user names, may be of a different maximum length. For example, Unix user names typically are limited to eight characters.

Warning

The limit on MySQL user name length is hard-coded in the MySQL servers and clients, and trying to circumvent it by
modifying the definitions of the tables in the mysql database does not work.

You should never alter any of the tables in the mysql database in any manner whatsoever except by means of the proced-
ure that is described in mysql_upgrade. Attempting to redefine MySQL's system tables in any other fashion results in
undefined (and unsupported!) behavior.

• The server uses MySQL passwords stored in the user table to authenticate client connections using MySQL built-in authentication.
These passwords have nothing to do with passwords for logging in to your operating system. There is no necessary connection
between the “external” password you use to log in to a Windows or Unix machine and the password you use to access the MySQL
server on that machine.

• MySQL encrypts passwords stored in the user table using its own algorithm. This encryption is the same as that implemented by
the PASSWORD() SQL function but differs from that used during the Unix login process. Unix password encryption is the same as
that implemented by the ENCRYPT() SQL function. See the descriptions of the PASSWORD() and ENCRYPT() functions in En-
cryption and Compression Functions.

From version 4.1 on, MySQL employs a stronger authentication method that has better password protection during the connection
process than in earlier versions. It is secure even if TCP/IP packets are sniffed or the mysql database is captured. (In earlier ver-
sions, even though passwords are stored in encrypted form in the user table, knowledge of the encrypted password value could be
used to connect to the MySQL server.) Section 1.2.3, “Password Hashing in MySQL”, discusses password encryption further.

• It is possible to connect to the server regardless of character set settings if the user name and password contain only ASCII charac-

45

http://dev.mysql.com/doc/refman/5.5/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-upgrade.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_encrypt
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_encrypt
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html

ters. To connect when the user name or password contain non-ASCII characters, the client should call the mysql_options() C
API function with the MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments. This causes authen-
tication to take place using the specified character set. Otherwise, authentication will fail unless the server default character set is the
same as the encoding in the authentication defaults.

Standard MySQL client programs support a --default-character-set option that causes mysql_options() to be called
as just described. For programs that use a connector that is not based on the C API, the connector may provide an equivalent to
mysql_options() that can be used instead. Check the connector documentation.

The preceding notes do not apply for ucs2, which is not permitted as a client character set.

When you install MySQL, the grant tables are populated with an initial set of accounts. The names and access privileges for these ac-
counts are described in Section 2.2, “Securing the Initial MySQL Accounts”, which also discusses how to assign passwords to them.
Thereafter, you normally set up, modify, and remove MySQL accounts using statements such as CREATE USER, GRANT, and RE-
VOKE. See Account Management Statements.

When you connect to a MySQL server with a command-line client, specify the user name and password as necessary for the account
that you want to use:

shell> mysql --user=monty --password=password db_name

If you prefer short options, the command looks like this:

shell> mysql -u monty -ppassword db_name

There must be no space between the -p option and the following password value.

If you omit the password value following the --password or -p option on the command line, the client prompts for one.

Specifying a password on the command line should be considered insecure. See Section 1.2.2, “End-User Guidelines for Password Se-
curity”. You can use an option file to avoid giving the password on the command line.

For additional information about specifying user names, passwords, and other connection parameters, see Connecting to the MySQL
Server.

4.2. Adding User Accounts
You can create MySQL accounts in two ways:

• By using statements intended for creating accounts, such as CREATE USER or GRANT. These statements cause the server to make
appropriate modifications to the grant tables.

• By manipulating the MySQL grant tables directly with statements such as INSERT, UPDATE, or DELETE.

The preferred method is to use account-creation statements because they are more concise and less error-prone than manipulating the
grant tables directly. CREATE USER and GRANT are described in Account Management Statements.

Another option for creating accounts is to use one of several available third-party programs that offer capabilities for MySQL account
administration. phpMyAdmin is one such program.

The following examples show how to use the mysql client program to set up new accounts. These examples assume that privileges
have been set up according to the defaults described in Section 2.2, “Securing the Initial MySQL Accounts”. This means that to make
changes, you must connect to the MySQL server as the MySQL root user, and the root account must have the INSERT privilege for
the mysql database and the RELOAD administrative privilege.

As noted in the examples where appropriate, some of the statements will fail if the server's SQL mode has been set to enable certain re-
strictions. In particular, strict mode (STRICT_TRANS_TABLES, STRICT_ALL_TABLES) and NO_AUTO_CREATE_USER will pre-
vent the server from accepting some of the statements. Workarounds are indicated for these cases. For more information about SQL
modes and their effect on grant table manipulation, see Server SQL Modes, and GRANT Syntax.

First, use the mysql program to connect to the server as the MySQL root user:

MySQL User Account Management

46

http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.5/en/connecting.html#option_general_password
http://dev.mysql.com/doc/refman/5.5/en/connecting.html
http://dev.mysql.com/doc/refman/5.5/en/connecting.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html#sqlmode_strict_trans_tables
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html#sqlmode_strict_all_tables
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html#sqlmode_no_auto_create_user
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

shell> mysql --user=root mysql

If you have assigned a password to the root account, you will also need to supply a --password or -p option, both for this mysql
command and for those later in this section.

After connecting to the server as root, you can add new accounts. The following statements use GRANT to set up four new accounts:

mysql> CREATE USER 'monty'@'localhost' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost'

-> WITH GRANT OPTION;
mysql> CREATE USER 'monty'@'%' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'%'

-> WITH GRANT OPTION;
mysql> CREATE USER 'admin'@'localhost';
mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> CREATE USER 'dummy'@'localhost';

The accounts created by these statements have the following properties:

• Two of the accounts have a user name of monty and a password of some_pass. Both accounts are superuser accounts with full
privileges to do anything. The 'monty'@'localhost' account can be used only when connecting from the local host. The
'monty'@'%' account uses the '%' wildcard for the host part, so it can be used to connect from any host.

It is necessary to have both accounts for monty to be able to connect from anywhere as monty. Without the localhost account,
the anonymous-user account for localhost that is created by mysql_install_db would take precedence when monty con-
nects from the local host. As a result, monty would be treated as an anonymous user. The reason for this is that the anonymous-user
account has a more specific Host column value than the 'monty'@'%' account and thus comes earlier in the user table sort or-
der. (user table sorting is discussed in Section 3.4, “Access Control, Stage 1: Connection Verification”.)

• The 'admin'@'localhost' account has no password. This account can be used only by admin to connect from the local host.
It is granted the RELOAD and PROCESS administrative privileges. These privileges enable the admin user to execute the mysql-
admin reload, mysqladmin refresh, and mysqladmin flush-xxx commands, as well as mysqladmin pro-
cesslist . No privileges are granted for accessing any databases. You could add such privileges later by issuing other GRANT
statements.

• The 'dummy'@'localhost' account has no password. This account can be used only to connect from the local host. No priv-
ileges are granted. It is assumed that you will grant specific privileges to the account later.

The statements that create accounts with no password will fail if the NO_AUTO_CREATE_USER SQL mode is enabled. To deal with
this, use an IDENTIFIED BY clause that specifies a nonempty password.

To check the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT RELOAD, PROCESS ON *.* TO 'admin'@'localhost' |
+---+

As an alternative to CREATE USER and GRANT, you can create the same accounts directly by issuing INSERT statements and then
telling the server to reload the grant tables using FLUSH PRIVILEGES:

shell> mysql --user=root mysql
mysql> INSERT INTO user

-> VALUES('localhost','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO user
-> VALUES('%','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
-> '','','','',0,0,0,0);

mysql> INSERT INTO user SET Host='localhost',User='admin',
-> Reload_priv='Y', Process_priv='Y';

mysql> INSERT INTO user (Host,User,Password)
-> VALUES('localhost','dummy','');

mysql> FLUSH PRIVILEGES;

When you create accounts with INSERT, it is necessary to use FLUSH PRIVILEGES to tell the server to reload the grant tables. Oth-

MySQL User Account Management

47

http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html#sqlmode_no_auto_create_user
http://dev.mysql.com/doc/refman/5.5/en/show-grants.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html

erwise, the changes go unnoticed until you restart the server. With CREATE USER, FLUSH PRIVILEGES is unnecessary.

The reason for using the PASSWORD() function with INSERT is to encrypt the password. The CREATE USER statement encrypts the
password for you, so PASSWORD() is unnecessary.

The 'Y' values enable privileges for the accounts. Depending on your MySQL version, you may have to use a different number of 'Y'
values in the first two INSERT statements. The INSERT statement for the admin account employs the more readable extended IN-
SERT syntax using SET.

In the INSERT statement for the dummy account, only the Host, User, and Password columns in the user table row are assigned
values. None of the privilege columns are set explicitly, so MySQL assigns them all the default value of 'N'. This is equivalent to what
CREATE USER does.

If strict SQL mode is enabled, all columns that have no default value must have a value specified. In this case, INSERT statements must
explicitly specify values for the ssl_cipher, x509_issuer, and x509_subject columns.

To set up a superuser account, it is necessary only to insert a user table row with all privilege columns set to 'Y'. The user table
privileges are global, so no entries in any of the other grant tables are needed.

The next examples create three accounts and give them access to specific databases. Each of them has a user name of custom and
password of obscure.

To create the accounts with CREATE USER and GRANT, use the following statements:

shell> mysql --user=root mysql
mysql> CREATE USER 'custom'@'localhost' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON bankaccount.*
-> TO 'custom'@'localhost';

mysql> CREATE USER 'custom'@'host47.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON expenses.*
-> TO 'custom'@'host47.example.com';

mysql> CREATE USER 'custom'@'server.domain' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON customer.*
-> TO 'custom'@'server.domain';

The three accounts can be used as follows:

• The first account can access the bankaccount database, but only from the local host.

• The second account can access the expenses database, but only from the host host47.example.com.

• The third account can access the customer database, but only from the host server.domain.

To set up the custom accounts without GRANT, use INSERT statements as follows to modify the grant tables directly:

shell> mysql --user=root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('localhost','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('host47.example.com','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('server.domain','custom',PASSWORD('obscure'));
mysql> INSERT INTO db

-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('localhost','bankaccount','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('host47.example.com','expenses','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('server.domain','customer','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> FLUSH PRIVILEGES;

The first three INSERT statements add user table entries that permit the user custom to connect from the various hosts with the giv-

MySQL User Account Management

48

http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html

en password, but grant no global privileges (all privileges are set to the default value of 'N'). The next three INSERT statements add
db table entries that grant privileges to custom for the bankaccount, expenses, and customer databases, but only when ac-
cessed from the proper hosts. As usual when you modify the grant tables directly, you must tell the server to reload them with FLUSH
PRIVILEGES so that the privilege changes take effect.

To create a user who has access from all machines in a given domain (for example, mydomain.com), you can use the “%” wildcard
character in the host part of the account name:

mysql> CREATE USER 'myname'@'%.mydomain.com' IDENTIFIED BY 'mypass';

To do the same thing by modifying the grant tables directly, do this:

mysql> INSERT INTO user (Host,User,Password,...)
-> VALUES('%.mydomain.com','myname',PASSWORD('mypass'),...);

mysql> FLUSH PRIVILEGES;

4.3. Removing User Accounts
To remove an account, use the DROP USER statement, which is described in DROP USER Syntax.

4.4. Setting Account Resource Limits
One means of limiting use of MySQL server resources is to set the global max_user_connections system variable to a nonzero
value. This limits the number of simultaneous connections that can be made by any given account, but places no limits on what a client
can do once connected. In addition, setting max_user_connections does not enable management of individual accounts. Both
types of control are of interest to many MySQL administrators, particularly those working for Internet Service Providers.

In MySQL 5.1, you can limit use of the following server resources for individual accounts:

• The number of queries that an account can issue per hour

• The number of updates that an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit (unless its results are served from the query cache). Only statements
that modify databases or tables count against the update limit.

An “account” in this context corresponds to a row in the mysql.user table. That is, a connection is assessed against the User and
Host values in the user table row that applies to the connection. For example, an account 'usera'@'%.example.com' corres-
ponds to a row in the user table that has User and Host values of usera and %.example.com, to permit usera to connect from
any host in the example.com domain. In this case, the server applies resource limits in this row collectively to all connections by
usera from any host in the example.com domain because all such connections use the same account.

Before MySQL 5.0.3, an “account” was assessed against the actual host from which a user connects. This older method accounting may
be selected by starting the server with the --old-style-user-limits option. In this case, if usera connects simultaneously
from host1.example.com and host2.example.com, the server applies the account resource limits separately to each connec-
tion. If usera connects again from host1.example.com, the server applies the limits for that connection together with the existing
connection from that host.

To set resource limits for an account, use the GRANT statement (see GRANT Syntax). Provide a WITH clause that names each resource
to be limited. The default value for each limit is zero (no limit). For example, to create a new account that can access the customer
database, but only in a limited fashion, issue these statements:

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank';
mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'

-> WITH MAX_QUERIES_PER_HOUR 20
-> MAX_UPDATES_PER_HOUR 10
-> MAX_CONNECTIONS_PER_HOUR 5
-> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any order. The value for each per-hour

MySQL User Account Management

49

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/drop-user.html
http://dev.mysql.com/doc/refman/5.5/en/drop-user.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_old-style-user-limits
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

limit should be an integer representing a count per hour. For MAX_USER_CONNECTIONS, the limit is an integer representing the max-
imum number of simultaneous connections by the account. If this limit is set to zero, the global max_user_connections system
variable value determines the number of simultaneous connections. If max_user_connections is also zero, there is no limit for the
account.

To modify existing limits for an account, use a GRANT USAGE statement at the global level (ON *.*). The following statement
changes the query limit for francis to 100:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_QUERIES_PER_HOUR 100;

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour francis can connect, use this
statement:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_CONNECTIONS_PER_HOUR 0;

As mentioned previously, the simultaneous-connection limit for an account is determined from the MAX_USER_CONNECTIONS limit
and the max_user_connections system variable. Suppose that the global max_user_connections value is 10 and three ac-
counts have resource limits specified with GRANT:

GRANT ... TO 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
GRANT ... TO 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
GRANT ... TO 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;

user1 has a connection limit of 10 (the global max_user_connections value) because it has a zero MAX_USER_CONNECTIONS
limit). user2 and user3 have connection limits of 5 and 20, respectively, because they have nonzero MAX_USER_CONNECTIONS
limits.

The server stores resource limits for an account in the user table row corresponding to the account. The max_questions,
max_updates, and max_connections columns store the per-hour limits, and the max_user_connections column stores the
MAX_USER_CONNECTIONS limit. (See Section 3.2, “Privilege System Grant Tables”.) If your user table does not have these
columns, it must be upgraded; see mysql_upgrade.

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of the resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches its limit on number of connections
within the last hour, further connections for the account are rejected until that hour is up. Similarly, if the account reaches its limit on
the number of queries or updates, further queries or updates are rejected until the hour is up. In all such cases, an appropriate error mes-
sage is issued.

Resource counting is done per account, not per client. For example, if your account has a query limit of 50, you cannot increase your
limit to 100 by making two simultaneous client connections to the server. Queries issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a given account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement. The counts also can be reset by
reloading the grant tables (for example, with a FLUSH PRIVILEGES statement or a mysqladmin reload command).

• The counts for an individual account can be set to zero by re-granting it any of its limits. To do this, use GRANT USAGE as de-
scribed earlier and specify a limit value equal to the value that the account currently has.

Counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts; counts are not carried over through a restart.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the maximum number of connec-
tions permitted to it: A disconnect followed quickly by a connect can result in an error (ER_TOO_MANY_USER_CONNECTIONS or
ER_USER_LIMIT_REACHED) if the server has not fully processed the disconnect by the time the connect occurs. When the server fin-
ishes disconnect processing, another connection will once more be permitted.

4.5. Assigning Account Passwords

MySQL User Account Management

50

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_user_connections
http://dev.mysql.com/doc/refman/5.5/en/mysql-upgrade.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/error_er_too_many_user_connections.html#error_er_too_many_user_connections
http://dev.mysql.com/doc/refman/5.5/en/error_er_user_limit_reached.html#error_er_user_limit_reached

Required credentials for clients that connect to the MySQL server can include a password. This section describes how to assign pass-
words for MySQL accounts.

To assign a password when you create a new account with CREATE USER, include an IDENTIFIED BY clause:

mysql> CREATE USER 'jeffrey'@'localhost'
-> IDENTIFIED BY 'mypass';

To assign or change a password for an existing account, one way is to issue a SET PASSWORD statement:

mysql> SET PASSWORD FOR
-> 'jeffrey'@'localhost' = PASSWORD('mypass');

MySQL stores passwords in the user table in the mysql database. Only users such as root that have update access to the mysql
database can change the password for other users. If you are not connected as an anonymous user, you can change your own password
by omitting the FOR clause:

mysql> SET PASSWORD = PASSWORD('mypass');

You can also use a GRANT USAGE statement at the global level (ON *.*) to assign a password to an account without affecting the ac-
count's current privileges:

mysql> GRANT USAGE ON *.* TO 'jeffrey'@'localhost'
-> IDENTIFIED BY 'mypass';

To assign a password from the command line, use the mysqladmin command:

shell> mysqladmin -u user_name -h host_name password "newpwd"

The account for which this command sets the password is the one with a user table row that matches user_name in the User
column and the client host from which you connect in the Host column.

It is preferable to assign passwords using one of the preceding methods, but it is also possible to modify the user table directly. In this
case, you must also use FLUSH PRIVILEGES to cause the server to reread the grant tables. Otherwise, the change remains unnoticed
by the server until you restart it.

• To establish a password for a new account, provide a value for the Password column:

mysql> INSERT INTO mysql.user (Host,User,Password)
-> VALUES('localhost','jeffrey',PASSWORD('mypass'));

mysql> FLUSH PRIVILEGES;

• To change the password for an existing account, use UPDATE to set the Password column value:

mysql> UPDATE mysql.user SET Password = PASSWORD('bagel')
-> WHERE Host = 'localhost' AND User = 'francis';

mysql> FLUSH PRIVILEGES;

During authentication when a client connects to the server, MySQL treats the password in the user table as an encrypted hash value
(the value that PASSWORD() would return for the password). When assigning a password to an account, it is important to store an en-
crypted value, not the plaintext password. Use the following guidelines:

• When you assign a password using CREATE USER, GRANT with an IDENTIFIED BY clause, or the mysqladmin password
command, they encrypt the password for you. Specify the literal plaintext password:

mysql> CREATE USER 'jeffrey'@'localhost'
-> IDENTIFIED BY 'mypass';

• For CREATE USER or GRANT, you can avoid sending the plaintext password if you know the hash value that PASSWORD() would
return for the password. Specify the hash value preceded by the keyword PASSWORD:

mysql> CREATE USER 'jeffrey'@'localhost'

MySQL User Account Management

51

http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password

-> IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';

• When you assign an account a nonempty password using SET PASSWORD, INSERT, or UPDATE, you must use the PASSWORD()
function to encrypt the password, otherwise the password is stored as plaintext. Suppose that you assign a password like this:

mysql> SET PASSWORD FOR
-> 'jeffrey'@'localhost' = 'mypass';

The result is that the literal value 'mypass' is stored as the password in the user table, not the encrypted value. When jeffrey
attempts to connect to the server using this password, the value is encrypted and compared to the value stored in the user table.
However, the stored value is the literal string 'mypass', so the comparison fails and the server rejects the connection with an Ac-
cess denied error.

In MySQL 5.1, enabling the read_only system variable prevents the use of the SET PASSWORD statement by any user not having
the SUPER privilege.

Note

PASSWORD() encryption differs from Unix password encryption. See Section 4.1, “User Names and Passwords”.

4.6. Using SSL for Secure Connections
MySQL supports secure (encrypted) connections between MySQL clients and the server using the Secure Sockets Layer (SSL) pro-
tocol. This section discusses how to use SSL connections. For information on how to require users to use SSL connections, see the dis-
cussion of the REQUIRE clause of the GRANT statement in GRANT Syntax.

The standard configuration of MySQL is intended to be as fast as possible, so encrypted connections are not used by default. For applic-
ations that require the security provided by encrypted connections, the extra computation to encrypt the data is worthwhile.

MySQL enables encryption on a per-connection basis. You can choose a normal unencrypted connection or a secure encrypted SSL
connection according the requirements of individual applications.

Secure connections are based on the OpenSSL API and are available through the MySQL C API. Replication uses the C API, so secure
connections can be used between master and slave servers.

Another way to connect securely is from within an SSH connection to the MySQL server host. For an example, see Section 4.7,
“Connecting to MySQL Remotely from Windows with SSH”.

4.6.1. Basic SSL Concepts
To understand how MySQL uses SSL, it is necessary to explain some basic SSL and X509 concepts. People who are familiar with these
can skip this part of the discussion.

By default, MySQL uses unencrypted connections between the client and the server. This means that someone with access to the net-
work could watch all your traffic and look at the data being sent or received. They could even change the data while it is in transit
between client and server. To improve security a little, you can compress client/server traffic by using the --compress option when
invoking client programs. However, this does not foil a determined attacker.

When you need to move information over a network in a secure fashion, an unencrypted connection is unacceptable. Encryption is the
way to make any kind of data unreadable. In fact, today's practice requires many additional security elements from encryption al-
gorithms. They should resist many kind of known attacks such as changing the order of encrypted messages or replaying data twice.

SSL is a protocol that uses different encryption algorithms to ensure that data received over a public network can be trusted. It has
mechanisms to detect any data change, loss, or replay. SSL also incorporates algorithms that provide identity verification using the
X509 standard.

X509 makes it possible to identify someone on the Internet. It is most commonly used in e-commerce applications. In basic terms, there
should be some company called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs them. Certi-
ficates rely on asymmetric encryption algorithms that have two encryption keys (a public key and a secret key). A certificate owner can
show the certificate to another party as proof of identity. A certificate consists of its owner's public key. Any data encrypted with this
public key can be decrypted only using the corresponding secret key, which is held by the owner of the certificate.

MySQL User Account Management

52

http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_read_only
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

If you need more information about SSL, X509, or encryption, use your favorite Internet search engine to search for the keywords in
which you are interested.

4.6.2. Using SSL Connections
To use SSL connections between the MySQL server and client programs, your system must support either OpenSSL or yaSSL and your
version of MySQL must be built with SSL support.

To make it easier to use secure connections, MySQL is bundled with yaSSL. (MySQL and yaSSL employ the same licensing model,
whereas OpenSSL uses an Apache-style license.) yaSSL support initially was available only for a few platforms, but now it is available
on all MySQL platforms supported by Oracle Corporation.

To get secure connections to work with MySQL and SSL, you must do the following:

1. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support, and you are going to use
OpenSSL rather than the bundled yaSSL library, install OpenSSL if it has not already been installed. We have tested MySQL with
OpenSSL 0.9.6. To obtain OpenSSL, visit http://www.openssl.org.

Building MySQL using OpenSSL requires a shared OpenSSL library, otherwise linker errors occur. Alternatively, build MySQL
using yaSSL.

2. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support, configure a MySQL source
distribution to use SSL. When you configure MySQL, invoke the configure script like this:

shell> ./configure --with-ssl

That configures the distribution to use the bundled yaSSL library. To use OpenSSL instead, specify the --with-ssl option with
the path to the directory where the OpenSSL header files and libraries are located:

shell> ./configure --with-ssl=path

Note

On some platforms the full determination of the You may also need to explicitly add the SSL library and header director-
ies. You can do this by setting the LDFLAGS, CFLAGS, CPPFLAGS and CXXFLAGS with the full directories. For ex-
ample:

shell> LDFLAGS="-L/usr/local/ssl/lib" CFLAGS="-I/usr/local/ssl/include" \
CPPFLAGS="-I/usr/local/ssl/include" CXXFLAGS="-I/usr/local/ssl/include" \
configure --with-ssl=/usr/local/ssl

Before MySQL 5.1.11, you must use the appropriate option to select the SSL library that you want to use.

For yaSSL:

shell> ./configure --with-yassl

For OpenSSL:

shell> ./configure --with-openssl

Note that yaSSL support on Unix platforms requires that either /dev/urandom or /dev/random be available to retrieve true
random numbers. For additional information (especially regarding yaSSL on Solaris versions prior to 2.8 and HP-UX), see Bug
#13164.

3. Make sure that the user in the mysql database includes the SSL-related columns (beginning with ssl_ and x509_). If your
user table does not have these columns, it must be upgraded; see mysql_upgrade.

4. To check whether a server binary is compiled with SSL support, invoke it with the --ssl option. An error will occur if the server
does not support SSL:

shell> mysqld --ssl --help
060525 14:18:52 [ERROR] mysqld: unknown option '--ssl'

MySQL User Account Management

53

http://www.openssl.org
http://dev.mysql.com/doc/refman/5.5/en/mysql-upgrade.html

To check whether a running mysqld server supports SSL, examine the value of the have_ssl system variable (if you have no
have_ssl variable, check for have_openssl):

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+

If the value is YES, the server supports SSL connections. If the value is DISABLED, the server supports SSL connections but was
not started with the appropriate --ssl-xxx options (described later in this section).

To enable SSL connections, the proper SSL-related options must be used (see Section 4.6.3, “SSL Command Options”).

To start the MySQL server so that it permits clients to connect using SSL, use the options that identify the key and certificate files the
server needs when establishing a secure connection:

shell> mysqld --ssl-ca=ca-cert.pem \
--ssl-cert=server-cert.pem \
--ssl-key=server-key.pem

• --ssl-ca identifies the Certificate Authority (CA) certificate.

• --ssl-cert identifies the server public key. This can be sent to the client and authenticated against the CA certificate that it has.

• --ssl-key identifies the server private key.

To establish a secure connection to a MySQL server with SSL support, the options that a client must specify depend on the SSL require-
ments of the user account that the client uses. (See the discussion of the REQUIRE clause in GRANT Syntax.)

If the account has no special SSL requirements or was created using a GRANT statement that includes the REQUIRE SSL option, a cli-
ent can connect securely by using just the --ssl-ca option:

shell> mysql --ssl-ca=ca-cert.pem

To require that a client certificate also be specified, create the account using the REQUIRE X509 option. Then the client must also spe-
cify the proper client key and certificate files or the server will reject the connection:

shell> mysql --ssl-ca=ca-cert.pem \
--ssl-cert=client-cert.pem \
--ssl-key=client-key.pem

In other words, the options are similar to those used for the server. Note that the Certificate Authority certificate has to be the same.

A client can determine whether the current connection with the server uses SSL by checking the value of the Ssl_cipher status vari-
able. The value of Ssl_cipher is nonempty if SSL is used, and empty otherwise. For example:

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

For the mysql client, you can use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Not in use
...

Or:

mysql> \s

MySQL User Account Management

54

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_have_ssl
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_have_ssl
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_have_openssl
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Ssl_cipher
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Ssl_cipher

...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...

To establish a secure connection from within an application program, use the mysql_ssl_set() C API function to set the appropri-
ate certificate options before calling mysql_real_connect(). See mysql_ssl_set(). After the connection is established, you
can use mysql_get_ssl_cipher() to determine whether SSL is in use. A non-NULL return value indicates a secure connection
and names the SSL cipher used for encryption. A NULL return value indicates that SSL is not being used. See
mysql_get_ssl_cipher().

4.6.3. SSL Command Options
The following list describes options that are used for specifying the use of SSL, certificate files, and key files. They can be given on the
command line or in an option file. These options are not available unless MySQL has been built with SSL support. See Section 4.6.2,
“Using SSL Connections”. (There are also --master-ssl* options that can be used for setting up a secure connection from a slave
replication server to a master server; see Replication and Binary Logging Options and Variables.)

Table 4.1. SSL Option/Variable Summary

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

have_openssl Yes Global No

have_ssl Yes Global No

skip-ssl Yes Yes

ssl Yes Yes

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes Global No

- Variable: ssl_capath Yes Global No

ssl-cert Yes Yes Global No

- Variable: ssl_cert Yes Global No

ssl-cipher Yes Yes Global No

- Variable: ssl_cipher Yes Global No

ssl-key Yes Yes Global No

- Variable: ssl_key Yes Global No

ssl-verify-server-cert Yes Yes

• --ssl

For the server, this option specifies that the server permits SSL connections. For a client program, it permits the client to connect to
the server using SSL. This option is not sufficient in itself to cause an SSL connection to be used. You must also specify the -
-ssl-ca option, and possibly the --ssl-cert and --ssl-key options.

This option is more often used in its opposite form to override any other SSL options and indicate that SSL should not be used. To
do this, specify the option as --skip-ssl or --ssl=0.

Note that use of --ssl does not require an SSL connection. For example, if the server or client is compiled without SSL support, a
normal unencrypted connection is used.

The secure way to require use of an SSL connection is to create an account on the server that includes a REQUIRE SSL clause in
the GRANT statement. Then use that account to connect to the server, where both the server and the client have SSL support enabled.

The REQUIRE clause permits other SSL-related restrictions as well. The description of REQUIRE in GRANT Syntax, provides addi-
tional detail about which SSL command options may or must be specified by clients that connect using accounts that are created us-
ing the various REQUIRE options.

• --ssl-ca=file_name

MySQL User Account Management

55

http://dev.mysql.com/doc/refman/5.5/en/mysql-ssl-set.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-real-connect.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-ssl-set.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-get-ssl-cipher.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-get-ssl-cipher.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_have_openssl
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_have_ssl
http://dev.mysql.com/doc/refman/5.1/en/ssl-options.html#option_general_ssl
http://dev.mysql.com/doc/refman/5.1/en/ssl-options.html#option_general_ssl
http://dev.mysql.com/doc/refman/5.1/en/ssl-options.html#option_general_ssl-ca
http://dev.mysql.com/doc/refman/5.1/en/ssl-options.html#option_general_ssl-capath
http://dev.mysql.com/doc/refman/5.1/en/ssl-options.html#option_general_ssl-cert
http://dev.mysql.com/doc/refman/5.1/en/ssl-options.html#option_general_ssl-cipher
http://dev.mysql.com/doc/refman/5.1/en/ssl-options.html#option_general_ssl-key
http://dev.mysql.com/doc/refman/5.1/en/ssl-options.html#option_general_ssl-verify-server-cert
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

The path to a file that contains a list of trusted SSL CAs.

• --ssl-capath=directory_name

The path to a directory that contains trusted SSL CA certificates in PEM format.

• --ssl-cert=file_name

The name of the SSL certificate file to use for establishing a secure connection.

• --ssl-cipher=cipher_list

A list of permissible ciphers to use for SSL encryption. For greatest portability, cipher_list should be a list of one or more
cipher names, separated by colons. Examples:

--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES256-SHA:AES128-SHA

This format is understood both by OpenSSL and yaSSL. OpenSSL supports a more flexible syntax for specifying ciphers, as de-
scribed in the OpenSSL documentation at http://www.openssl.org/docs/apps/ciphers.html. However, this extended syntax will fail if
used with a MySQL installation compiled against yaSSL.

If no cipher in the list is supported, SSL connections will not work.

• --ssl-key=file_name

The name of the SSL key file to use for establishing a secure connection.

If the key file is protected by a passphrase, and the MySQL distribution was built using OpenSSL, the program will prompt the user
for the passphrase. The password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect, the program
continues as if it could not read the key. An error occurs if the key file is protected by a passphrase for distributions built using
yaSSL.

• --ssl-verify-server-cert

This option is available for client programs only, not the server. It causes the server's Common Name value in the certificate that the
server sends to the client to be verified against the host name that the client uses for connecting to the server, and the connection is
rejected if there is a mismatch. This feature can be used to prevent man-in-the-middle attacks. Verification is disabled by default.
This option was added in MySQL 5.1.11.

As of MySQL 5.1.18, if you use SSL when establishing a client connection, you can tell the client not to authenticate the server certific-
ate by specifying neither --ssl-ca nor --ssl-capath. The server still verifies the client according to any applicable requirements
established using GRANT statements for the client, and it still uses any --ssl-ca/--ssl-capath values that were passed to server
at startup time.

4.6.4. Setting Up SSL Certificates for MySQL
This section demonstrates how to set up SSL certificate and key files for use by MySQL servers and clients. The first example shows a
simplified procedure such as you might use from the command line. The second shows a script that contains more detail. The first two
examples are intended for use on Unix and both use the openssl command that is part of OpenSSL. The third example describes how
to set up SSL files on Windows.

Following the third example, instructions are given for using the files to test SSL connections. You can also use the files as described in
Section 4.6.2, “Using SSL Connections”.

Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and key files. You will need to respond
to several prompts by the openssl commands. To generate test files, you can press Enter to all prompts. To generate files for produc-
tion use, you should provide nonempty responses.

Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

MySQL User Account Management

56

http://www.openssl.org/docs/apps/ciphers.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

Create CA certificate
shell> openssl genrsa 2048 > ca-key.pem
shell> openssl req -new -x509 -nodes -days 1000 \

-key ca-key.pem -out ca-cert.pem
Create server certificate, remove passphrase, and sign it
shell> openssl req -newkey rsa:2048 -days 1000 \

-nodes -keyout server-key.pem -out server-req.pem
shell> openssl rsa -in server-key.pem -out server-key.pem
shell> openssl x509 -req -in server-req.pem -days 1000 \

-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem
Create client certificate, remove passphrase, and sign it
shell> openssl req -newkey rsa:2048 -days 1000 \

-nodes -keyout client-key.pem -out client-req.pem
shell> openssl rsa -in client-key.pem -out client-key.pem
shell> openssl x509 -req -in client-req.pem -days 1000 \

-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

mysql> openssl verify -CAfile ca-cert.pem server-cert.pem client-cert.pem

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificates for MySQL:

DIR=`pwd`/openssl
PRIV=$DIR/private
mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf
Create necessary files: $database, $serial and $new_certs_dir
directory (optional)
touch $DIR/index.txt
echo "01" > $DIR/serial
#
Generation of Certificate Authority(CA)
#
openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca-cert.pem \

-days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/monty/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:
#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \

$DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to '/home/monty/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

MySQL User Account Management

57

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
#
Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem
#
Sign server cert
#
openssl ca -policy policy_anything -out $DIR/server-cert.pem \

-config $DIR/openssl.cnf -infiles $DIR/server-req.pem
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \

$DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/monty/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
#
Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem
#
Sign client cert
#
openssl ca -policy policy_anything -out $DIR/client-cert.pem \

-config $DIR/openssl.cnf -infiles $DIR/client-req.pem
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'

MySQL User Account Management

58

Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
#
Create a my.cnf file that you can use to test the certificates
#
cnf=""
cnf="$cnf [client]"
cnf="$cnf ssl-ca=$DIR/ca-cert.pem"
cnf="$cnf ssl-cert=$DIR/client-cert.pem"
cnf="$cnf ssl-key=$DIR/client-key.pem"
cnf="$cnf [mysqld]"
cnf="$cnf ssl-ca=$DIR/ca-cert.pem"
cnf="$cnf ssl-cert=$DIR/server-cert.pem"
cnf="$cnf ssl-key=$DIR/server-key.pem"
echo $cnf | replace " " '
' > $DIR/my.cnf

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows. An overview of available packages can be seen here: ht-
tp://www.slproweb.com/products/Win32OpenSSL.html Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depend-
ing on your architecture (32-bit or 64-bit). The default installation location will be C:\OpenSSL-Win32 or C:\OpenSSL-Win64,
depending on which package you downloaded. The following instructions assume a default location of C:\OpenSSL-Win32. Modify
this as necessary if you are using the 64-bit package.

if a message occurs during setup indicating '...critical component is missing: Microsoft Visual C++ 2008
Redistributables', cancel the setup and download one of the following packages as well, again depending on your architecture
(32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at: ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf

• Visual C++ 2008 Redistributables (x64), available at: ht-
tp://www.microsoft.com/downloads/details.aspx?familyid=BD2A6171-E2D6-4230-B809-9A8D7548C1B6

After installing the additional package, restart the OpenSSL setup.

During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the default option 'Copy OpenSSL
DLL files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path variable of your server:

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the SYSTEM PROPERTIES menu that appears, and click the ENVIRONMENT VARIABLES button.

3. Under SYSTEM VARIABLES, select Path, then click the EDIT button. The EDIT SYSTEM VARIABLE dialogue should appear.

4. Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).

5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command console
(Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.
C:\Windows\system32>cd \
C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.
C:\>

MySQL User Account Management

59

http://www.slproweb.com/products/Win32OpenSSL.html
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/downloads/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf
http://www.microsoft.com/downloads/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf
http://www.microsoft.com/downloads/details.aspx?familyid=BD2A6171-E2D6-4230-B809-9A8D7548C1B6
http://www.microsoft.com/downloads/details.aspx?familyid=BD2A6171-E2D6-4230-B809-9A8D7548C1B6

Depending on your version of Windows, the preceding instructions might be slightly different.

After OpenSSL has been installed, use instructions similar to those from from Example 1 (shown earlier in this section), with the fol-
lowing changes:

• Change the following Unix commands:

Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

On Windows, use these commands instead:

Create clean environment
shell> md c:\newcerts
shell> cd c:\newcerts

• When a '\' character is shown at the end of a command line, this '\' character must be removed and the command lines entered
all on a single line.

Testing SSL Connections

To test SSL connections, start the server as follows, where $DIR is the path name to the directory where the sample my.cnf option
file (or my.ini on Windows) is located:

shell> mysqld --defaults-file=$DIR/my.cnf &

Then invoke a client program using the same option file:

shell> mysql --defaults-file=$DIR/my.cnf

If you have a MySQL source distribution, you can also test your setup by modifying the preceding my.cnf file to refer to the demon-
stration certificate and key files in the mysql-test/std_data directory of the distribution.

4.7. Connecting to MySQL Remotely from Windows with SSH
This section describes how to get a secure connection to a remote MySQL server with SSH. The information was provided by David
Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. As a user, the best nonfree one I have found is from SecureCRT from ht-
tp://www.vandyke.com/. Another option is f-secure from http://www.f-secure.com/. You can also find some free ones on
Google at http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set userid=your_userid to log
in to your server. This userid value might not be the same as the user name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host: yourmysqlserver-
name_or_ip, remote_port: 3306) or a local forward (Set port: 3306, host: localhost, remote port:
3306).

4. Save everything, otherwise you will have to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally do, except type in local-
host for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

MySQL User Account Management

60

http://www.vandyke.com/
http://www.vandyke.com/
http://www.f-secure.com/
http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/

4.8. Auditing MySQL Account Activity
Applications can use the following guidelines to perform auditing that ties database activity to MySQL accounts.

MySQL accounts correspond to rows in the mysql.user table. When a client connects successfully, the server authenticates the client
to a particular row in this table. The User and Host column values in this row uniquely identify the account and correspond to the
'user_name'@'host_name' format in which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the CURRENT_USER() function can be
invoked to determine which account this is for the client user. Its value is constructed from the User and Host columns of the user
table row for the account.

However, there are circumstances under which the CURRENT_USER() value corresponds not to the client user but to a different ac-
count. This occurs in contexts when privilege checking is not based the client's account:

• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic

• Views defined with the SQL SECURITY DEFINER characteristic (as of MySQL 5.1.12)

• Triggers and events

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER() refers to that account, not to the
account for the client who invoked the stored routine or view or who caused the trigger to activate. To determine the invoking user, you
can call the USER() function, which returns a value indicating the actual user name provided by the client and the host from which the
client connected. However, this value does not necessarily correspond directly to an account in the user table, because the USER()
value never contains wildcards, whereas account values (as returned by CURRENT_USER()) may contain user name and host name
wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables clients to connect as an anonymous
user from the local host with any user name. If this case, if a client connects as user1 from the local host, USER() and CUR-
RENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+

The host name part of an account can contain wildcards, too. If the host name contains a '%' or '_' pattern character or uses netmask
notation, the account can be used for clients connecting from multiple hosts and the CURRENT_USER() value will not indicate which
one. For example, the account 'user2'@'%.example.com' can be used by user2 to connect from any host in the ex-
ample.com domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within triggers) but must also be able to
associate the USER() value with an account in the user table, it is necessary to avoid accounts that contain wildcards in the User or
Host column. Specifically, do not permit User to be empty (which creates an anonymous-user account), and do not permit pattern
characters or netmask notation in Host values. All accounts must have a nonempty User value and literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com' accounts should be changed not
to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a separate account for each host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the SUBSTRING() function:

MySQL User Account Management

61

http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/string-functions.html#function_substring

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+
mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+--+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+--+
| localhost |
+--+

MySQL User Account Management

62

Chapter 5. Backup and Recovery
It is important to back up your databases so that you can recover your data and be up and running again in case problems occur, such as
system crashes, hardware failures, or users deleting data by mistake. Backups are also essential as a safeguard before upgrading a
MySQL installation, and they can be used to transfer a MySQL installation to another system or to set up replication slave servers.

MySQL offers a variety of backup strategies from which you can choose the methods that best suit the requirements for your installa-
tion. This chapter discusses several backup and recovery topics with which you should be familiar:

• Types of backups: Logical versus physical, full versus incremental, and so forth.

• Methods for creating backups.

• Recovery methods, including point-in-time recovery.

• Backup scheduling, compression, and encryption.

• Table maintenance, to enable recovery of corrupt tables.

Additional Resources
Resources related to backup or to maintaining data availability include the following:

• Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product for backups. For an overview of the
MySQL Enterprise Backup product, see MySQL Enterprise Backup.

• A forum dedicated to backup issues is available at http://forums.mysql.com/list.php?93.

• Details for mysqldump, mysqlhotcopy, and other MySQL backup programs can be found in MySQL Programs.

• The syntax of the SQL statements described here is given in SQL Statement Syntax.

• For additional information about InnoDB backup procedures, see Backing Up and Recovering an InnoDB Database.

• Replication enables you to maintain identical data on multiple servers. This has several benefits, such as enabling client query load
to be distributed over servers, availability of data even if a given server is taken offline or fails, and the ability to make backups with
no impact on the master by using a slave server. See Replication.

• MySQL Cluster provides a high-availability, high-redundancy version of MySQL adapted for the distributed computing environ-
ment. See MySQL Cluster NDB 7.2. For information specifically about MySQL Cluster backup, see Online Backup of MySQL
Cluster.

• Distributed Replicated Block Device (DRBD) is another high-availability solution. It works by replicating a block device from a
primary server to a secondary server at the block level. See High Availability and Scalability

5.1. Backup and Recovery Types
This section describes the characteristics of different types of backups.

Physical (Raw) Versus Logical Backups
Physical backups consist of raw copies of the directories and files that store database contents. This type of backup is suitable for large,
important databases that need to be recovered quickly when problems occur.

Logical backups save information represented as logical database structure (CREATE DATABASE, CREATE TABLE statements) and
content (INSERT statements or delimited-text files). This type of backup is suitable for smaller amounts of data where you might edit
the data values or table structure, or recreate the data on a different machine architecture.

Logical backup methods have these characteristics:

63

http://dev.mysql.com/doc/refman/5.5/en/mysql-enterprise-backup.html
http://forums.mysql.com/list.php?93
http://dev.mysql.com/doc/refman/5.5/en/programs.html
http://dev.mysql.com/doc/refman/5.5/en/sql-syntax.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-backup.html
http://dev.mysql.com/doc/refman/5.5/en/replication.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-backup.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-backup.html
http://dev.mysql.com/doc/refman/common/en/ha-overview.html
http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html

• The backup is done by querying the MySQL server to obtain database structure and content information.

• Backup is slower than physical methods because the server must access database information and convert it to logical format. If the
output is written on the client side, the server must also send it to the backup program.

• Output is larger than for physical backup, particularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all tables in a particular database), or
table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not part of databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running. The server is not taken offline.

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE statement. These work for any
storage engine, even MEMORY.

• To restore logical backups, SQL-format dump files can be processed using the mysql client. To load delimited-text files, use the
LOAD DATA INFILE statement or the mysqlimport client.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or part of the MySQL data dir-
ectory. Data from MEMORY tables cannot be backed up this way because their contents are not stored on disk.

• Physical backup methods are faster than logical because they involve only file copying without conversion.

• Output is more compact than for logical backup.

• Backup and restore granularity ranges from the level of the entire data directory down to the level of individual files. This may or
may not provide for table-level granularity, depending on storage engine. (Each MyISAM table corresponds uniquely to a set of files,
but an InnoDB table shares file storage with other InnoDB tables.)

• In addition to databases, the backup can include any related files such as log or configuration files.

• Backups are portable only to other machines that have identical or similar hardware characteristics.

• Backups can be performed while the MySQL server is not running. If the server is running, it is necessary to perform appropriate
locking so that the server does not change database contents during the backup.

• Physical backup tools include file system-level commands (such as cp, scp, tar, rsync), mysqlhotcopy for MyISAM tables,
ibbackup for InnoDB tables, or START BACKUP for NDB tables.

• For restore, files copied at the file system level or with mysqlhotcopy can be copied back to their original locations with file sys-
tem commands; ibbackup restores InnoDB tables, and ndb_restore restores NDB tables.

Online Versus Offline Backups

Online backups take place while the MySQL server is running so that the database information can be obtained from the server. Offline
backups take place while the server is stopped. This distinction can also be described as “hot” versus “cold” backups; a “warm” backup
is one where the server remains running but locked against modifying data while you access database files externally.

Online backup methods have these characteristics:

• The backup is less intrusive to other clients, which can connect to the MySQL server during the backup and may be able to access
data depending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that would compromise backup integ-
rity. The MySQL Enterprise Backup product does such locking automatically.

Backup and Recovery

64

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html

Offline backup methods have these characteristics:

• Clients can be affected adversely because the server is unavailable during backup. For that reason, such backups are often taken
from a replication slave server that can be taken offline without harming availability.

• The backup procedure is simpler because there is no possibility of interference from client activity.

A similar distinction between online and offline applies for recovery operations, and similar characteristics apply. However, it is more
likely that clients will be affected for online recovery than for online backup because recovery requires stronger locking. During
backup, clients might be able to read data while it is being backed up. Recovery modifies data and does not just read it, so clients must
be prevented from accessing data while it is being restored.

Local Versus Remote Backups
A local backup is performed on the same host where the MySQL server runs, whereas a remote backup is done from a different host.
For some types of backups, the backup can be initiated from a remote host even if the output is written locally on the server. host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT statements), local or remote dumps
can be done and generate output on the client. For delimited-text output (with the --tab option), data files are created on the server
host.

• mysqlhotcopy performs only local backups: It connects to the server to lock it against data modifications and then copies local
table files.

• SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file is created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server can be taken offline, although
the destination for copied files might be remote.

Snapshot Backups
Some file system implementations enable “snapshots” to be taken. These provide logical copies of the file system at a given point in
time, without requiring a physical copy of the entire file system. (For example, the implementation may use copy-on-write techniques so
that only parts of the file system modified after the snapshot time need be copied.) MySQL itself does not provide the capability for tak-
ing file system snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.

Full Versus Incremental Backups
A full backup includes all data managed by a MySQL server at a given point in time. An incremental backup consists of the changes
made to the data during a given time span (from one point in time to another). MySQL has different ways to perform full backups, such
as those described earlier in this section. Incremental backups are made possible by enabling the server's binary log, which the server
uses to record data changes.

Full Versus Point-in-Time (Incremental) Recovery
A full recovery restores all data from a full backup. This restores the server instance to the state that it had when the backup was made.
If that state is not sufficiently current, a full recovery can be followed by recovery of incremental backups made since the full backup, to
bring the server to a more up-to-date state.

Incremental recovery is recovery of changes made during a given time span. This is also called point-in-time recovery because it makes
a server's state current up to a given time. Point-in-time recovery is based on the binary log and typically follows a full recovery from
the backup files that restores the server to its state when the backup was made. Then the data changes written in the binary log files are
applied as incremental recovery to redo data modifications and bring the server up to the desired point in time.

Table Maintenance
Data integrity can be compromised if tables become corrupt. For InnoDB tables, this is not a typical issue. For programs to check My-
ISAM tables and repair them if problems are found, see Section 5.6, “MyISAM Table Maintenance and Crash Recovery”.

Backup and Recovery

65

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_tab
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html

Backup Scheduling, Compression, and Encryption
Backup scheduling is valuable for automating backup procedures. Compression of backup output reduces space requirements, and en-
cryption of the output provides better security against unauthorized access of backed-up data. MySQL itself does not provide these cap-
abilities. The MySQL Enterprise Backup product can compress InnoDB backups, and compression or encryption of backup output can
be achieved using file system utilities. Other third-party solutions may be available.

5.2. Database Backup Methods
This section summarizes some general methods for making backups.

Making a Hot Backup with MySQL Enterprise Backup
Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product to do physical backups of entire instances or
selected databases, tables, or both. This product includes features for incremental and compressed backups. Backing up the physical
database files makes restore much faster than logical techniques such as the mysqldump command. InnoDB tables are copied using a
hot backup mechanism. (Ideally, the InnoDB tables should represent a substantial majority of the data.) Tables from other storage en-
gines are copied using a warm backup mechanism. For an overview of the MySQL Enterprise Backup product, see MySQL Enterprise
Backup.

Making Backups by Copying Table Files
For storage engines that represent each table using its own files, tables can be backed up by copying those files. For example, MyISAM
tables are stored as files, so it is easy to do a backup by copying files (*.frm, *.MYD, and *.MYI files). To get a consistent backup,
stop the server or lock and flush the relevant tables:

LOCK TABLES tbl_list READ;
FLUSH TABLES tbl_list;

You need only a read lock; this enables other clients to continue to query the tables while you are making a copy of the files in the data-
base directory. The FLUSH TABLES statement is needed to ensure that the all active index pages are written to disk before you start
the backup. See LOCK TABLES and UNLOCK TABLES Syntax, and FLUSH Syntax.

You can also create a binary backup simply by copying all table files, as long as the server isn't updating anything. The mysqlhot-
copy script uses this method. (But note that table file copying methods do not work if your database contains InnoDB tables. mysql-
hotcopy does not work for InnoDB tables because InnoDB does not necessarily store table contents in database directories. Also,
even if the server is not actively updating data, InnoDB may still have modified data cached in memory and not flushed to disk.

Making Delimited-Text File Backups
To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name' FROM tbl_name. The
file is created on the MySQL server host, not the client host. For this statement, the output file cannot already exist because permitting
files to be overwritten constitutes a security risk. See SELECT Syntax. This method works for any kind of data file, but saves only table
data, not the table structure.

Another way to create text data files (along with files containing CREATE TABLE statements for the backed up tables) is to use
mysqldump with the --tab option. See Section 5.4.3, “Dumping Data in Delimited-Text Format with mysqldump”.

To reload a delimited-text data file, use LOAD DATA INFILE or mysqlimport.

Making Backups with mysqldump or mysqlhotcopy
The mysqldump program and the mysqlhotcopy script can make backups. mysqldump is more general because it can back up all
kinds of tables. mysqlhotcopy works only with some storage engines. (See Section 5.4, “Using mysqldump for Backups”, and
mysqlhotcopy.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables using the --single-transaction op-
tion to mysqldump. See Section 5.3.1, “Establishing a Backup Policy”.

Making Incremental Backups by Enabling the Binary Log
MySQL supports incremental backups: You must start the server with the --log-bin option to enable binary logging; see The Binary

Backup and Recovery

66

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_mysql_enterprise_backup
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_physical
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_incremental_backup
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_compressed_backup
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_hot_backup
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_warm_backup
http://dev.mysql.com/doc/refman/5.5/en/mysql-enterprise-backup.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-enterprise-backup.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/lock-tables.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_tab
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/mysqlhotcopy.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_single-transaction
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#option_mysqld_log-bin

Log. The binary log files provide you with the information you need to replicate changes to the database that are made subsequent to the
point at which you performed a backup. At the moment you want to make an incremental backup (containing all changes that happened
since the last full or incremental backup), you should rotate the binary log by using FLUSH LOGS. This done, you need to copy to the
backup location all binary logs which range from the one of the moment of the last full or incremental backup to the last but one. These
binary logs are the incremental backup; at restore time, you apply them as explained in Section 5.5, “Point-in-Time (Incremental) Re-
covery Using the Binary Log”. The next time you do a full backup, you should also rotate the binary log using FLUSH LOGS, mysql-
dump --flush-logs, or mysqlhotcopy --flushlog. See mysqldump, and mysqlhotcopy.

Making Backups Using Replication Slaves
If you have performance problems with your master server while making backups, one strategy that can help is to set up replication and
perform backups on the slave rather than on the master. See Using Replication for Backups.

If you are backing up a slave replication server, you should back up its master.info and relay-log.info files when you back
up the slave's databases, regardless of the backup method you choose. These information files are always needed to resume replication
after you restore the slave's data. If your slave is replicating LOAD DATA INFILE statements, you should also back up any
SQL_LOAD-* files that exist in the directory that the slave uses for this purpose. The slave needs these files to resume replication of
any interrupted LOAD DATA INFILE operations. The location of this directory is the value of the --slave-load-tmpdir option.
If the server was not started with that option, the directory location is the value of the tmpdir system variable.

Recovering Corrupt Tables
If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR TABLE or myisamchk -r first.
That should work in 99.9% of all cases. If myisamchk fails, see Section 5.6, “MyISAM Table Maintenance and Crash Recovery”.

Making Backups Using a File System Snapshot
If you are using a Veritas file system, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.

5.3. Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that enables you to recover data after several types of crashes:

• Operating system crash

• Power failure

• File system crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysqldump and mysql client programs.
You should include such options as necessary to enable client programs to connect to the MySQL server.

Assume that data is stored in the InnoDB storage engine, which has support for transactions and automatic crash recovery. Assume
also that the MySQL server is under load at the time of the crash. If it were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is available after a restart. The InnoDB
data files might not contain consistent data due to the crash, but InnoDB reads its logs and finds in them the list of pending committed

Backup and Recovery

67

http://dev.mysql.com/doc/refman/5.5/en/binary-log.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.5/en/mysqlhotcopy.html
http://dev.mysql.com/doc/refman/5.5/en/replication-solutions-backups.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#option_mysqld_slave-load-tmpdir
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_tmpdir
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/lock-tables.html
http://dev.mysql.com/doc/refman/5.5/en/connecting.html#option_general_user
http://dev.mysql.com/doc/refman/5.5/en/connecting.html#option_general_password

and noncommitted transactions that have not been flushed to the data files. InnoDB automatically rolls back those transactions that
were not committed, and flushes to its data files those that were committed. Information about this recovery process is conveyed to the
user through the MySQL error log. The following is an example log excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data is not available after a restart. This
means that MySQL fails to start successfully because some blocks of disk data are no longer readable. In this case, it is necessary to re-
format the disk, install a new one, or otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from
backups, which means that backups must already have been made. To make sure that is the case, design and implement a backup policy.

5.3.1. Establishing a Backup Policy
To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in time) can be done in MySQL with
several tools. For example, MySQL Enterprise Backup can perform a physical backup of an entire instance, with optimizations to min-
imize overhead and avoid disruption when backing up InnoDB data files; mysqldump provides online logical backup. This discussion
uses mysqldump.

Assume that we make a full backup of all our InnoDB tables in all databases using the following command on Sunday at 1 p.m., when
load is low:

shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be used to reload the dumped
tables at a later time.

This backup operation acquires a global read lock on all tables at the beginning of the dump (using FLUSH TABLES WITH READ
LOCK). As soon as this lock has been acquired, the binary log coordinates are read and the lock is released. If long updating statements
are running when the FLUSH statement is issued, the backup operation may stall until those statements finish. After that, the dump be-
comes lock-free and does not disturb reads and writes on the tables.

It was assumed earlier that the tables to back up are InnoDB tables, so --single-transaction uses a consistent read and guaran-
tees that data seen by mysqldump does not change. (Changes made by other clients to InnoDB tables are not seen by the mysql-
dump process.) If the backup operation includes nontransactional tables, consistency requires that they do not change during the
backup. For example, for the MyISAM tables in the mysql database, there must be no administrative changes to MySQL accounts dur-
ing the backup.

Full backups are necessary, but it is not always convenient to create them. They produce large backup files and take time to generate.
They are not optimal in the sense that each successive full backup includes all data, even that part that has not changed since the previ-
ous full backup. It is more efficient to make an initial full backup, and then to make incremental backups. The incremental backups are
smaller and take less time to produce. The tradeoff is that, at recovery time, you cannot restore your data just by reloading the full
backup. You must also process the incremental backups to recover the incremental changes.

To make incremental backups, we need to save the incremental changes. In MySQL, these changes are represented in the binary log, so
the MySQL server should always be started with the --log-bin option to enable that log. With binary logging enabled, the server
writes each data change into a file while it updates data. Looking at the data directory of a MySQL server that was started with the -
-log-bin option and that has been running for some days, we find these MySQL binary log files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003

Backup and Recovery

68

http://dev.mysql.com/doc/refman/5.5/en/mysql-enterprise-backup.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_physical_backup
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_logical_backup
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_single-transaction
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#option_mysqld_log-bin

-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the sequence. While the server is run-
ning, you can also tell it to close the current binary log file and begin a new one manually by issuing a FLUSH LOGS SQL statement or
with a mysqladmin flush-logs command. mysqldump also has an option to flush the logs. The .index file in the data direct-
ory contains the list of all MySQL binary logs in the directory.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If you make sure to flush the logs
when you make your full backup, the binary log files created afterward contain all the data changes made since the backup. Let's modify
the previous mysqldump command a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the
dump file contains the name of the new current binary log:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases > backup_sunday_1_PM.sql

After executing this command, the data directory contains a new binary log file, gbichot2-bin.000007, because the -
-flush-logs option causes the server to flush its logs. The --master-data option causes mysqldump to write binary log in-
formation to its output, so the resulting .sql dump file includes these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The dump file contains all changes made before any changes written to the gbichot2-bin.000007 binary log file or newer.

• All data changes logged after the backup are not present in the dump file, but are present in the gbichot2-bin.000007 binary
log file or newer.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new binary log file. For example, executing a
mysqladmin flush-logs command creates gbichot2-bin.000008. All changes between the Sunday 1 p.m. full backup and
Monday 1 p.m. will be in the gbichot2-bin.000007 file. This incremental backup is important, so it is a good idea to copy it to a
safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday at 1 p.m., execute another mysqlad-
min flush-logs command. All changes between Monday 1 p.m. and Tuesday 1 p.m. will be in the gbichot2-bin.000008 file
(which also should be copied somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One way to do this is by deleting the bin-
ary logs that are no longer needed, such as when we make a full backup:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note

Deleting the MySQL binary logs with mysqldump --delete-master-logs can be dangerous if your server is a
replication master server, because slave servers might not yet fully have processed the contents of the binary log. The de-
scription for the PURGE BINARY LOGS statement explains what should be verified before deleting the MySQL binary
logs. See PURGE BINARY LOGS Syntax.

5.3.2. Using Backups for Recovery
Now, suppose that we have a catastrophic crash on Wednesday at 8 a.m. that requires recovery from backups. To recover, first we re-
store the last full backup we have (the one from Sunday 1 p.m.). The full backup file is just a set of SQL statements, so restoring it is
very easy:

shell> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since then, we must use the incremental
backups; that is, the gbichot2-bin.000007 and gbichot2-bin.000008 binary log files. Fetch the files if necessary from

Backup and Recovery

69

http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_flush-logs
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_flush-logs
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_master-data
http://dev.mysql.com/doc/refman/5.5/en/purge-binary-logs.html
http://dev.mysql.com/doc/refman/5.5/en/purge-binary-logs.html

where they were backed up, and then process their contents like this:

shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes from that date to the date of the
crash. To not lose them, we would have needed to have the MySQL server store its MySQL binary logs into a safe location (RAID
disks, SAN, ...) different from the place where it stores its data files, so that these logs were not on the destroyed disk. (That is, we can
start the server with a --log-bin option that specifies a location on a different physical device from the one on which the data direct-
ory resides. That way, the logs are safe even if the device containing the directory is lost.) If we had done this, we would have the gbi-
chot2-bin.000009 file (and any subsequent files) at hand, and we could apply them using mysqlbinlog and mysql to restore
the most recent data changes with no loss up to the moment of the crash:

shell> mysqlbinlog gbichot2-bin.000009 ... | mysql

For more information about using mysqlbinlog to process binary log files, see Section 5.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”.

5.3.3. Backup Strategy Summary
In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data. But to make sure that you can
sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where the log file name is located
on some safe media different from the drive on which the data directory is located. If you have such safe media, this technique can
also be good for disk load balancing (which results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 5.3.1, “Establishing a Backup Policy”, that
makes an online, nonblocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-logs.

5.4. Using mysqldump for Backups
This section describes how to use mysqldump to produce dump files, and how to reload dump files. A dump file can be used in several
ways:

• As a backup to enable data recovery in case of data loss.

• As a source of data for setting up replication slaves.

• As a source of data for experimentation:

• To make a copy of a database that you can use without changing the original data.

• To test potential upgrade incompatibilities.

mysqldump produces two types of output, depending on whether the --tab option is given:

• Without --tab, mysqldump writes SQL statements to the standard output. This output consists of CREATE statements to create
dumped objects (databases, tables, stored routines, and so forth), and INSERT statements to load data into tables. The output can be
saved in a file and reloaded later using mysql to recreate the dumped objects. Options are available to modify the format of the
SQL statements, and to control which objects are dumped.

• With --tab, mysqldump produces two output files for each dumped table. The server writes one file as tab-delimited text, one
line per table row. This file is named tbl_name.txt in the output directory. The server also sends a CREATE TABLE statement
for the table to mysqldump, which writes it as a file named tbl_name.sql in the output directory.

5.4.1. Dumping Data in SQL Format with mysqldump

Backup and Recovery

70

http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_tab
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_tab
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_tab
http://dev.mysql.com/doc/refman/5.5/en/create-table.html

This section describes how to use mysqldump to create SQL-format dump files. For information about reloading such dump files, see
Section 5.4.2, “Reloading SQL-Format Backups”.

By default, mysqldump writes information as SQL statements to the standard output. You can save the output in a file:

shell> mysqldump [arguments] > file_name

To dump all databases, invoke mysqldump with the --all-databases option:

shell> mysqldump --all-databases > dump.sql

To dump only specific databases, name them on the command line and use the --databases option:

shell> mysqldump --databases db1 db2 db3 > dump.sql

The --databases option causes all names on the command line to be treated as database names. Without this option, mysqldump
treats the first name as a database name and those following as table names.

With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE statements prior to the dump out-
put for each database. This ensures that when the dump file is reloaded, it creates each database if it does not exist and makes it the de-
fault database so database contents are loaded into the same database from which they came. If you want to cause the dump file to force
a drop of each database before recreating it, use the --add-drop-database option as well. In this case, mysqldump writes a
DROP DATABASE statement preceding each CREATE DATABASE statement.

To dump a single database, name it on the command line:

shell> mysqldump --databases test > dump.sql

In the single-database case, it is permissible to omit the --databases option:

shell> mysqldump test > dump.sql

The difference between the two preceding commands is that without --databases, the dump output contains no CREATE DATA-
BASE or USE statements. This has several implications:

• When you reload the dump file, you must specify a default database name so that the server knows which database to reload.

• For reloading, you can specify a database name different from the original name, which enables you to reload the data into a differ-
ent database.

• If the database to be reloaded does not exist, you must create it first.

• Because the output will contain no CREATE DATABASE statement, the --add-drop-database option has no effect. If you
use it, it produces no DROP DATABASE statement.

To dump only specific tables from a database, name them on the command line following the database name:

shell> mysqldump test t1 t3 t7 > dump.sql

5.4.2. Reloading SQL-Format Backups
To reload a dump file written by mysqldump that consists of SQL statements, use it as input to the mysql client. If the dump file was
created by mysqldump with the --all-databases or --databases option, it contains CREATE DATABASE and USE state-
ments and it is not necessary to specify a default database into which to load the data:

shell> mysql < dump.sql

Alternatively, from within mysql, use a source command:

mysql> source dump.sql

Backup and Recovery

71

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_all-databases
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_all-databases
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_add-drop-database
http://dev.mysql.com/doc/refman/5.5/en/drop-database.html
http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_add-drop-database
http://dev.mysql.com/doc/refman/5.5/en/drop-database.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_all-databases
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/use.html

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the database first (if necessary):

shell> mysqladmin create db1

Then specify the database name when you load the dump file:

shell> mysql db1 < dump.sql

Alternatively, from within mysql, create the database, select it as the default database, and load the dump file:

mysql> CREATE DATABASE IF NOT EXISTS db1;
mysql> USE db1;
mysql> source dump.sql

5.4.3. Dumping Data in Delimited-Text Format with mysqldump

This section describes how to use mysqldump to create delimited-text dump files. For information about reloading such dump files,
see Section 5.4.4, “Reloading Delimited-Text Format Backups”.

If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory and dumps tables individu-
ally in that directory using two files for each table. The table name is the basename for these files. For a table named t1, the files are
named t1.sql and t1.txt. The .sql file contains a CREATE TABLE statement for the table. The .txt file contains the table
data, one line per table row.

The following command dumps the contents of the db1 database to files in the /tmp database:

shell> mysqldump --tab=/tmp db1

The .txt files containing table data are written by the server, so they are owned by the system account used for running the server. The
server uses SELECT ... INTO OUTFILE to write the files, so you must have the FILE privilege to perform this operation, and an
error occurs if a given .txt file already exists.

The server sends the CREATE definitions for dumped tables to mysqldump, which writes them to .sql files. These files therefore are
owned by the user who executes mysqldump.

It is best that --tab be used only for dumping a local server. If you use it with a remote server, the --tab directory must exist on
both the local and remote hosts, and the .txt files will be written by the server in the remote directory (on the server host), whereas the
.sql files will be written by mysqldump in the local directory (on the client host).

For mysqldump --tab, the server by default writes table data to .txt files one line per row with tabs between column values, no
quotation marks around column values, and newline as the line terminator. (These are the same defaults as for SELECT ... INTO
OUTFILE.)

To enable data files to be written using a different format, mysqldump supports these options:

• --fields-terminated-by=str

The string for separating column values (default: tab).

• --fields-enclosed-by=char

The character within which to enclose column values (default: no character).

• --fields-optionally-enclosed-by=char

The character within which to enclose non-numeric column values (default: no character).

• --fields-escaped-by=char

The character for escaping special characters (default: no escaping).

• --lines-terminated-by=str

Backup and Recovery

72

http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_tab
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_tab
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_tab
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_fields
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_fields
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_fields
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_fields
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_lines-terminated-by

The line-termination string (default: newline).

Depending on the value you specify for any of these options, it might be necessary on the command line to quote or escape the value ap-
propriately for your command interpreter. Alternatively, specify the value using hex notation. Suppose that you want mysqldump to
quote column values within double quotation marks. To do so, specify double quote as the value for the --fields-enclosed-by
option. But this character is often special to command interpreters and must be treated specially. For example, on Unix, you can quote
the double quote like this:

--fields-enclosed-by='"'

On any platform, you can specify the value in hex:

--fields-enclosed-by=0x22

It is common to use several of the data-formatting options together. For example, to dump tables in comma-separated values format
with lines terminated by carriage-return/newline pairs (\r\n), use this command (enter it on a single line):

shell> mysqldump --tab=/tmp --fields-terminated-by=,
--fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1

Should you use any of the data-formatting options to dump table data, you will need to specify the same format when you reload data
files later, to ensure proper interpretation of the file contents.

5.4.4. Reloading Delimited-Text Format Backups
For backups produced with mysqldump --tab, each table is represented in the output directory by an .sql file containing the
CREATE TABLE statement for the table, and a .txt file containing the table data. To reload a table, first change location into the out-
put directory. Then process the .sql file with mysql to create an empty table and process the .txt file to load the data into the table:

shell> mysql db1 < t1.sql
shell> mysqlimport db1 t1.txt

An alternative to using mysqlimport to load the data file is to use the LOAD DATA INFILE statement from within the mysql cli-
ent:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1;

If you used any data-formatting options with mysqldump when you initially dumped the table, you must use the same options with
mysqlimport or LOAD DATA INFILE to ensure proper interpretation of the data file contents:

shell> mysqlimport --fields-terminated-by=,
--fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt

Or:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1

-> FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"'
-> LINES TERMINATED BY '\r\n';

5.4.5. mysqldump Tips
This section surveys techniques that enable you to use mysqldump to solve specific problems:

• How to make a copy a database

• How to copy a database from one server to another

• How to dump stored programs (stored procedures and functions, triggers, and events)

Backup and Recovery

73

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_fields
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html

• How to dump definitions and data separately

5.4.5.1. Making a Copy of a Database
shell> mysqldump db1 > dump.sql
shell> mysqladmin create db2
shell> mysql db2 < dump.sql

Do not use --databases on the mysqldump command line because that causes USE db1 to be included in the dump file, which
overrides the effect of naming db2 on the mysql command line.

5.4.5.2. Copy a Database from one Server to Another

On Server 1:

shell> mysqldump --databases db1 > dump.sql

Copy the dump file from Server 1 to Server 2.

On Server 2:

shell> mysql < dump.sql

Use of --databases with the mysqldump command line causes the dump file to include CREATE DATABASE and USE state-
ments that create the database if it does exist and make it the default database for the reloaded data.

Alternatively, you can omit --databases from the mysqldump command. Then you will need to create the database on Server 2 (if
necessary) and specify it as the default database when you reload the dump file.

On Server 1:

shell> mysqldump db1 > dump.sql

On Server 2:

shell> mysqladmin create db1
shell> mysql db1 < dump.sql

You can specify a different database name in this case, so omitting --databases from the mysqldump command enables you to
dump data from one database and load it into another.

5.4.5.3. Dumping Stored Programs

Several options control how mysqldump handles stored programs (stored procedures and functions, triggers, and events):

• --events: Dump Event Scheduler events

• --routines: Dump stored procedures and functions

• --triggers: Dump triggers for tables

The --triggers option is enabled by default so that when tables are dumped, they are accompanied by any triggers they have. The
other options are disabled by default and must be specified explicitly to dump the corresponding objects. To disable any of these options
explicitly, use its skip form: --skip-events, --skip-routines, or --skip-triggers.

5.4.5.4. Dumping Table Definitions and Content Separately

The --no-data option tells mysqldump not to dump table data, resulting in the dump file containing only statements to create the
tables. Conversely, the --no-create-info option tells mysqldump to suppress CREATE statements from the output, so that the
dump file contains only table data.

Backup and Recovery

74

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_databases
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_events
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_routines
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_triggers
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_triggers
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_events
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_routines
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_triggers
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_no-data
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_no-create-info

For example, to dump table definitions and data separately for the test database, use these commands:

shell> mysqldump --no-data test > dump-defs.sql
shell> mysqldump --no-create-info test > dump-data.sql

For a definition-only dump, add the --routines and --events options to also include stored routine and event definitions:

shell> mysqldump --no-data --routines --events test > dump-defs.sql

5.4.5.5. Using mysqldump to Test for Upgrade Incompatibilities

When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your current production version. Then
you can dump the database and database object definitions from the production server and load them into the new server to verify that
they are handled properly. (This is also useful for testing downgrades.)

On the production server:

shell> mysqldump --all-databases --no-data --routines --events > dump-defs.sql

On the upgraded server:

shell> mysql < dump-defs.sql

Because the dump file does not contain table data, it can be processed quickly. This enables you to spot potential incompatibilities
without waiting for lengthy data-loading operations. Look for warnings or errors while the dump file is being processed.

After you have verified that the definitions are handled properly, dump the data and try to load it into the upgraded server.

On the production server:

shell> mysqldump --all-databases --no-create-info > dump-data.sql

On the upgraded server:

shell> mysql < dump-data.sql

Now check the table contents and run some test queries.

5.5. Point-in-Time (Incremental) Recovery Using the Binary Log
Point-in-time recovery refers to recovery of data changes made since a given point in time. Typically, this type of recovery is performed
after restoring a full backup that brings the server to its state as of the time the backup was made. (The full backup can be made in sev-
eral ways, such as those listed in Section 5.2, “Database Backup Methods”.) Point-in-time recovery then brings the server up to date in-
crementally from the time of the full backup to a more recent time.

Point-in-time recovery is based on these principles:

• The source of information for point-in-time recovery is the set of incremental backups represented by the binary log files generated
subsequent to the full backup operation. Therefore, the server must be started with the --log-bin option to enable binary logging
(see The Binary Log).

To restore data from the binary log, you must know the name and location of the current binary log files. By default, the server cre-
ates binary log files in the data directory, but a path name can be specified with the --log-bin option to place the files in a differ-
ent location. The Binary Log.

To see a listing of all binary log files, use this statement:

mysql> SHOW BINARY LOGS;

To determine the name of the current binary log file, issue the following statement:

mysql> SHOW MASTER STATUS;

Backup and Recovery

75

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_routines
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_events
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.5/en/binary-log.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#option_mysqld_log-bin
http://dev.mysql.com/doc/refman/5.5/en/binary-log.html

• The mysqlbinlog utility converts the events in the binary log files from binary format to text so that they can be executed or
viewed. mysqlbinlog has options for selecting sections of the binary log based on event times or position of events within the
log. See mysqlbinlog.

• Executing events from the binary log causes the data modifications they represent to be redone. This enables recovery of data
changes for a given span of time. To execute events from the binary log, process mysqlbinlog output using the mysql client:

shell> mysqlbinlog binlog_files | mysql -u root -p

• Viewing log contents can be useful when you need to determine event times or positions to select partial log contents prior to ex-
ecuting events. To view events from the log, send mysqlbinlog output into a paging program:

shell> mysqlbinlog binlog_files | more

Alternatively, save the output in a file and view the file in a text editor:

shell> mysqlbinlog binlog_files > tmpfile
shell> ... edit tmpfile ...

• Saving the output in a file is useful as a preliminary to executing the log contents with certain events removed, such as an accidental
DROP DATABASE. You can delete from the file any statements not to be executed before executing its contents. After editing the
file, execute the contents as follows:

shell> mysql -u root -p < tmpfile

If you have more than one binary log to execute on the MySQL server, the safe method is to process them all using a single connection
to the server. Here is an example that demonstrates what may be unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using different connections to the server causes problems if the first log file contains a CREATE TEM-
PORARY TABLE statement and the second log contains a statement that uses the temporary table. When the first mysql process ter-
minates, the server drops the temporary table. When the second mysql process attempts to use the table, the server reports “unknown
table.”

To avoid problems like this, use a single connection to execute the contents of all binary logs that you want to process. Here is one way
to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"

5.5.1. Point-in-Time Recovery Using Event Times
To indicate the start and end times for recovery, specify the --start-datetime and --stop-datetime options for mysql-
binlog, in DATETIME format. As an example, suppose that exactly at 10:00 a.m. on April 20, 2005 an SQL statement was executed
that deleted a large table. To restore the table and data, you could restore the previous night's backup, and then execute the following
command:

shell> mysqlbinlog --stop-datetime="2005-04-20 9:59:59" \
/var/log/mysql/bin.123456 | mysql -u root -p

This command recovers all of the data up until the date and time given by the --stop-datetime option. If you did not detect the er-
roneous SQL statement that was entered until hours later, you will probably also want to recover the activity that occurred afterward.
Based on this, you could run mysqlbinlog again with a start date and time, like so:

Backup and Recovery

76

http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html
http://dev.mysql.com/doc/refman/5.5/en/drop-database.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_start-datetime
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_stop-datetime
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_stop-datetime

shell> mysqlbinlog --start-datetime="2005-04-20 10:01:00" \
/var/log/mysql/bin.123456 | mysql -u root -p

In this command, the SQL statements logged from 10:01 a.m. on will be re-executed. The combination of restoring of the previous
night's dump file and the two mysqlbinlog commands restores everything up until one second before 10:00 a.m. and everything
from 10:01 a.m. on.

To use this method of point-in-time recovery, you should examine the log to be sure of the exact times to specify for the commands. To
display the log file contents without executing them, use this command:

shell> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

Then open the /tmp/mysql_restore.sql file with a text editor to examine it.

Excluding specific changes by specifying times for mysqlbinlog does not work well if multiple statements executed at the same
time as the one to be excluded.

5.5.2. Point-in-Time Recovery Using Event Positions
Instead of specifying dates and times, the --start-position and --stop-position options for mysqlbinlog can be used
for specifying log positions. They work the same as the start and stop date options, except that you specify log position numbers rather
than dates. Using positions may enable you to be more precise about which part of the log to recover, especially if many transactions
occurred around the same time as a damaging SQL statement. To determine the position numbers, run mysqlbinlog for a range of
times near the time when the unwanted transaction was executed, but redirect the results to a text file for examination. This can be done
like so:

shell> mysqlbinlog --start-datetime="2005-04-20 9:55:00" \
--stop-datetime="2005-04-20 10:05:00" \
/var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

This command creates a small text file in the /tmp directory that contains the SQL statements around the time that the deleterious SQL
statement was executed. Open this file with a text editor and look for the statement that you do not want to repeat. Determine the posi-
tions in the binary log for stopping and resuming the recovery and make note of them. Positions are labeled as log_pos followed by a
number. After restoring the previous backup file, use the position numbers to process the binary log file. For example, you would use
commands something like these:

shell> mysqlbinlog --stop-position=368312 /var/log/mysql/bin.123456 \
| mysql -u root -p

shell> mysqlbinlog --start-position=368315 /var/log/mysql/bin.123456 \
| mysql -u root -p

The first command recovers all the transactions up until the stop position given. The second command recovers all transactions from the
starting position given until the end of the binary log. Because the output of mysqlbinlog includes SET TIMESTAMP statements
before each SQL statement recorded, the recovered data and related MySQL logs will reflect the original times at which the transactions
were executed.

5.6. MyISAM Table Maintenance and Crash Recovery
This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have .MYD and .MYI files for storing
data and indexes). For general myisamchk background, see myisamchk. Other table-repair information can be found at Rebuilding
or Repairing Tables or Indexes.

You can use myisamchk to check, repair, or optimize database tables. The following sections describe how to perform these opera-
tions and how to set up a table maintenance schedule. For information about using myisamchk to get information about your tables,
see Obtaining Table Information with myisamchk.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup before doing a repair or any main-
tenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause FULLTEXT indexes to be rebuilt with full-text parameters that are incompatible
with the values used by the MySQL server. To avoid this problem, follow the guidelines in myisamchk General Options.

MyISAM table maintenance can also be done using the SQL statements that perform operations similar to what myisamchk can do:

Backup and Recovery

77

http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_start-position
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_stop-position
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html
http://dev.mysql.com/doc/refman/5.5/en/rebuilding-tables.html
http://dev.mysql.com/doc/refman/5.5/en/rebuilding-tables.html
http://dev.mysql.com/doc/refman/5.5/en/myisamchk-table-info.html
http://dev.mysql.com/doc/refman/5.5/en/myisamchk-general-options.html

• To check MyISAM tables, use CHECK TABLE.

• To repair MyISAM tables, use REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

For additional information about these statements, see Table Maintenance Statements.

These statements can be used directly or by means of the mysqlcheck client program. One advantage of these statements over my-
isamchk is that the server does all the work. With myisamchk, you must make sure that the server does not use the tables at the
same time so that there is no unwanted interaction between myisamchk and the server.

5.6.1. Using myisamchk for Crash Recovery
This section describes how to check for and deal with data corruption in MySQL databases. If your tables become corrupted frequently,
you should try to find the reason why. See What to Do If MySQL Keeps Crashing.

For an explanation of how MyISAM tables can become corrupted, see MyISAM Table Problems.

If you run mysqld with external locking disabled (which is the default), you cannot reliably use myisamchk to check a table when
mysqld is using the same table. If you can be certain that no one will access the tables through mysqld while you run myisamchk,
you only have to execute mysqladmin flush-tables before you start checking the tables. If you cannot guarantee this, you must
stop mysqld while you check the tables. If you run myisamchk to check tables that mysqld is updating at the same time, you may
get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any time. In this case, if the server tries to
update a table that myisamchk is using, the server will wait for myisamchk to finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server is not using the table (this also ap-
plies if external locking is disabled). If you do not stop mysqld, you should at least do a mysqladmin flush-tables before you
run myisamchk. Your tables may become corrupted if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a database corresponds to the
three files in the database directory shown in the following table.

File Purpose

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by removing the old .MYD file and re-
naming the new file to the original file name. If you use --quick, myisamchk does not create a temporary .MYD file, but instead as-
sumes that the .MYD file is correct and generates only a new index file without touching the .MYD file. This is safe, because myis-
amchk automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify the --quick option
twice to myisamchk. In this case, myisamchk does not abort on some errors (such as duplicate-key errors) but instead tries to re-
solve them by modifying the .MYD file. Normally the use of two --quick options is useful only if you have too little free disk space
to perform a normal repair. In this case, you should at least make a backup of the table before running myisamchk.

5.6.2. How to Check MyISAM Tables for Errors
To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which is very unusual). If you want
to check a table, you should normally run myisamchk without options or with the -s (silent) option.

Backup and Recovery

78

http://dev.mysql.com/doc/refman/5.5/en/check-table.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.5/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.5/en/table-maintenance-sql.html
http://dev.mysql.com/doc/refman/5.5/en/crashing.html
http://dev.mysql.com/doc/refman/5.5/en/myisam-table-problems.html
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html#option_myisamchk_quick
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html#option_myisamchk_quick
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html#option_myisamchk_quick

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all rows. It calculates a checksum
for all key values in the rows and verifies that the checksum matches the checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-read of every key for each row
to verify that they indeed point to the correct row. This may take a long time for a large table that has many indexes. Normally, my-
isamchk stops after the first error it finds. If you want to obtain more information, you can add the -v (verbose) option. This
causes myisamchk to keep going, up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

This is like the previous command, but the -i option tells myisamchk to print additional statistical information.

In most cases, a simple myisamchk command with no arguments other than the table name is sufficient to check a table.

5.6.3. How to Repair MyISAM Tables
The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI and .MYD).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables. See CHECK TABLE Syn-
tax, and REPAIR TABLE Syntax.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The following example shows how to use
perror to find the meanings for the most common error numbers that indicate a problem with a table:

shell> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not errors that can be fixed by a simple
repair. In this case, you must use ALTER TABLE to increase the MAX_ROWS and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems that occur.

The repair process involves up to four stages, described here. Before you begin, you should change location to the database directory
and check the permissions of the table files. On Unix, make sure that they are readable by the user that mysqld runs as (and to you, be-
cause you need to access the files you are checking). If it turns out you need to modify files, they must also be writable by you.

Backup and Recovery

79

http://dev.mysql.com/doc/refman/5.5/en/check-table.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/check-table.html
http://dev.mysql.com/doc/refman/5.5/en/check-table.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/show-create-table.html

This section is for the cases where a table check fails (such as those described in Section 5.6.2, “How to Check MyISAM Tables for Er-
rors”), or you want to use the extended features that myisamchk provides.

The myisamchk options used for table maintenance with are described in myisamchk. myisamchk also has variables that you can
set to control memory allocation that may improve performance. See myisamchk Memory Usage.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note that when you do mysqladmin
shutdown on a remote server, the mysqld server is still available for a while after mysqladmin returns, until all statement-pro-
cessing has stopped and all index changes have been flushed to disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option to suppress unnecessary in-
formation.

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to mark the table as “checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables, proceed to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk crashes, go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to repair the index file without
touching the data file. If the data file contains everything that it should and the delete links point at the correct locations within the data
file, this should work, and the table is fixed. Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and deleted rows from the data file
and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode uses an old recovery method
that handles a few cases that regular recovery mode does not (but is slower).

Note

If you want a repair operation to go much faster, you should set the values of the sort_buffer_size and
key_buffer_size variables each to about 25% of your available memory when running myisamchk.

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains incorrect information, or if the index
file is missing. In this case, it is necessary to create a new index file. Do so as follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto the new file. You want to re-
tain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above procedure, since it involves file system opera-
tions, and these are not logged by MySQL.

Backup and Recovery

80

http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html
http://dev.mysql.com/doc/refman/5.5/en/myisamchk-memory.html
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html#option_myisamchk_update-state
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sort_buffer_size
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_key_buffer_size

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs the whole procedure automatically.
There is also no possibility of unwanted interaction between a utility and the server, because the server does all the work when you use
REPAIR TABLE. See REPAIR TABLE Syntax.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never happen, because the description file is
not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index file and go back to Stage 2. In the
latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table in another database. Remove
the new data file, and then move the .frm description and .MYI index files from the other database to your crashed database.
This gives you new description and index files, but leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct
the index file.

5.6.4. MyISAM Table Optimization
To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows, run myisamchk in recovery
mode:

shell> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE TABLE does a table repair
and a key analysis, and also sorts the index tree so that key lookups are faster. There is also no possibility of unwanted interaction
between a utility and the server, because the server does all the work when you use OPTIMIZE TABLE. See OPTIMIZE TABLE Syn-
tax.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze or -a: Perform key distribution analysis. This improves join performance by enabling the join optimizer to better
choose the order in which to join the tables and which indexes it should use.

• --sort-index or -S: Sort the index blocks. This optimizes seeks and makes table scans that use indexes faster.

• --sort-records=index_num or -R index_num: Sort data rows according to a given index. This makes your data much
more localized and may speed up range-based SELECT and ORDER BY operations that use this index.

For a full description of all available options, see myisamchk.

5.6.5. Setting Up a MyISAM Table Maintenance Schedule
It is a good idea to perform table checks on a regular basis rather than waiting for problems to occur. One way to check and repair My-
ISAM tables is with the CHECK TABLE and REPAIR TABLE statements. See Table Maintenance Statements.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use myisamchk -s. The -s option (short for
--silent) causes myisamchk to run in silent mode, printing messages only when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine has done a restart in the middle
of an update, you usually need to check each table that could have been affected before it is used further. (These are “expected crashed
tables.”) To cause the server to check MyISAM tables automatically, start it with the --myisam-recover option. See Server Com-
mand Options.

You should also check your tables regularly during normal system operation. For example, you can run a cron job to check important
tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

Backup and Recovery

81

http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html#option_myisamchk_analyze
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html#option_myisamchk_sort-index
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html#option_myisamchk_sort-records
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html
http://dev.mysql.com/doc/refman/5.5/en/check-table.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/table-maintenance-sql.html
http://dev.mysql.com/doc/refman/5.5/en/myisamchk.html#option_myisamchk_silent
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_myisam-recover
http://dev.mysql.com/doc/refman/5.5/en/server-options.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html

This prints out information about crashed tables so that you can examine and repair them as necessary.

To start with, execute myisamchk -s each night on all tables that have been updated during the last 24 hours. As you see that prob-
lems occur infrequently, you can back off the checking frequency to once a week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables with dynamic-sized rows
(tables with VARCHAR, BLOB, or TEXT columns) or have tables with many deleted rows you may want to defragment/reclaim space
from the tables from time to time. You can do this by using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop
the mysqld server for a while, change location into the data directory and use this command while the server is stopped:

shell> myisamchk -r -s --sort-index --sort_buffer_size=16M */*.MYI

Backup and Recovery

82

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-table.html

Chapter 6. Frequently Asked Questions about Security
Questions

• 6.1: Where can I find documentation that addresses security issues for MySQL?

• 6.2: Does MySQL 5.1 have native support for SSL?

• 6.3: Is SSL support be built into MySQL binaries, or must I recompile the binary myself to enable it?

• 6.4: Does MySQL 5.1 have built-in authentication against LDAP directories?

• 6.5: Does MySQL 5.1 include support for Roles Based Access Control (RBAC)?

Questions and Answers

6.1: Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 1, General Security Issues.

Other portions of the MySQL Documentation which you may find useful with regard to specific security concerns include the follow-
ing:

• Section 1.1, “General Security Guidelines”.

• Section 1.3, “Making MySQL Secure Against Attackers”.

• How to Reset the Root Password.

• Section 1.6, “How to Run MySQL as a Normal User”.

• User-Defined Function Security Precautions.

• Section 1.4, “Security-Related mysqld Options”.

• Section 1.5, “Security Issues with LOAD DATA LOCAL”.

• Chapter 2, Postinstallation Setup and Testing.

• Section 4.6.1, “Basic SSL Concepts”.

6.2: Does MySQL 5.1 have native support for SSL?

Most 5.1 binaries have support for SSL connections between the client and server. We can't currently build with the new YaSSL library
everywhere, as it's still quite new and does not compile on all platforms yet. See Section 4.6, “Using SSL for Secure Connections”.

You can also tunnel a connection using SSH, if (for example) the client application doesn't support SSL connections. For an example,
see Section 4.7, “Connecting to MySQL Remotely from Windows with SSH”.

6.3: Is SSL support be built into MySQL binaries, or must I recompile the binary myself to enable it?

Most 5.1 binaries have SSL enabled for client/server connections that are secured, authenticated, or both. However, the YaSSL library
currently does not compile on all platforms. See Section 4.6, “Using SSL for Secure Connections”, for a complete listing of supported
and unsupported platforms.

6.4: Does MySQL 5.1 have built-in authentication against LDAP directories?

No. Support for external authentication methods is on the MySQL roadmap as a “rolling feature”, which means that we plan to imple-
ment it in the future, but we have not yet determined when this will be done.

6.5: Does MySQL 5.1 include support for Roles Based Access Control (RBAC)?

83

http://dev.mysql.com/doc/refman/5.5/en/resetting-permissions.html
http://dev.mysql.com/doc/refman/5.5/en/udf-security.html

No. Support for roles is on the MySQL roadmap as a “rolling feature”, which means that we plan to implement it in the future, but we
have not yet determined when this will be done.

Frequently Asked Questions about Security

84

	Security in MySQL
	Preface
	Chapter 1. General Security Issues
	1.1. General Security Guidelines
	1.2. Password Security in MySQL
	1.2.1. Administrator Guidelines for Password Security
	1.2.2. End-User Guidelines for Password Security
	1.2.3. Password Hashing in MySQL
	1.2.4. Implications of Password Hashing Changes in MySQL 4.1 for Application Programs

	1.3. Making MySQL Secure Against Attackers
	1.4. Security-Related mysqld Options
	1.5. Security Issues with LOAD DATA LOCAL
	1.6. How to Run MySQL as a Normal User

	Chapter 2. Postinstallation Setup and Testing
	2.1. Unix Postinstallation Procedures
	2.1.1. Problems Running mysql_install_db
	2.1.2. Starting and Stopping MySQL Automatically
	2.1.3. Starting and Troubleshooting the MySQL Server

	2.2. Securing the Initial MySQL Accounts

	Chapter 3. The MySQL Access Privilege System
	3.1. Privileges Provided by MySQL
	3.2. Privilege System Grant Tables
	3.3. Specifying Account Names
	3.4. Access Control, Stage 1: Connection Verification
	3.5. Access Control, Stage 2: Request Verification
	3.6. When Privilege Changes Take Effect
	3.7. Causes of Access-Denied Errors

	Chapter 4. MySQL User Account Management
	4.1. User Names and Passwords
	4.2. Adding User Accounts
	4.3. Removing User Accounts
	4.4. Setting Account Resource Limits
	4.5. Assigning Account Passwords
	4.6. Using SSL for Secure Connections
	4.6.1. Basic SSL Concepts
	4.6.2. Using SSL Connections
	4.6.3. SSL Command Options
	4.6.4. Setting Up SSL Certificates for MySQL

	4.7. Connecting to MySQL Remotely from Windows with SSH
	4.8. Auditing MySQL Account Activity

	Chapter 5. Backup and Recovery
	5.1. Backup and Recovery Types
	5.2. Database Backup Methods
	5.3. Example Backup and Recovery Strategy
	5.3.1. Establishing a Backup Policy
	5.3.2. Using Backups for Recovery
	5.3.3. Backup Strategy Summary

	5.4. Using mysqldump for Backups
	5.4.1. Dumping Data in SQL Format with mysqldump
	5.4.2. Reloading SQL-Format Backups
	5.4.3. Dumping Data in Delimited-Text Format with mysqldump
	5.4.4. Reloading Delimited-Text Format Backups
	5.4.5. mysqldump Tips
	5.4.5.1. Making a Copy of a Database
	5.4.5.2. Copy a Database from one Server to Another
	5.4.5.3. Dumping Stored Programs
	5.4.5.4. Dumping Table Definitions and Content Separately
	5.4.5.5. Using mysqldump to Test for Upgrade Incompatibilities

	5.5. Point-in-Time (Incremental) Recovery Using the Binary Log
	5.5.1. Point-in-Time Recovery Using Event Times
	5.5.2. Point-in-Time Recovery Using Event Positions

	5.6. MyISAM Table Maintenance and Crash Recovery
	5.6.1. Using myisamchk for Crash Recovery
	5.6.2. How to Check MyISAM Tables for Errors
	5.6.3. How to Repair MyISAM Tables
	5.6.4. MyISAM Table Optimization
	5.6.5. Setting Up a MyISAM Table Maintenance Schedule

	Chapter 6. Frequently Asked Questions about Security

