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Abstract. Chosen-message attack on RSA is usually considered as en inh
ent property of its homomorphic structure. In this paper, stew that non-
homomorphic RSA-type cryptosystems are also suscepbtldehosen-message
attack. In particular, we prove that onbne message is needed to mount a suc-
cessful chosen-message attack against the Lucas-basethsyand Demytko’s
elliptic curve system.
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1 Introduction

The most used public-key cryptosystem is certainly the RSA [12].tDits popularity,
the RSA was subject to an extensive cryptanalysis. Many attacks are basedhonlth
tiplicative nature of RSA [5]. To overcome this vulnerability, nuimes generalizations
of the original RSA were proposed and broken.

Later, other structures were envisaged to implement analogues of RSAe€higd
to be the right way to foil the homomorphic attacks. So, a cryptesydased on Lu-
cas sequences was proposed in [10] and analyzed in [11] by Muller and Nobaeer. T
authors use Dickson polynomials to describe their scheme; howevesddigolyno-
mials can be rephrased in terms of Lucas sequences [2, 14]. The Lucas sequences play
the same role in this scheme as exponentiations in RSA.

In 1985, Koblitz and Miller independently suggested the use of @lipirves in
cryptography [7,9]. Afterwards, Koyamet al. [8] and Demytko [4] exhibited new
one-way trapdoor functions on elliptic curves in order to produce anaeg@f RSA.
Demytko’s system has the particularity to only use the first coordiaat is therefore
not subject to the chosen-message attack described in [8].

The Lucas-based cryptosystems and Demytkao’s elliptic curve cryptomystem to
be resistant against homomorphic attack. However, the existence obarchtessage



forgery that needs two messages has been described in [1]. Kaliski foundlar sim
attack on Demytko’s system [6].

In this paper, we describe a new chosen-message attack which needs only ene mes
sage. This new attack shows that the RSA-type cryptosystems are everrelated to
RSA, i.e. it shows that all the attacks based on the multiplicative nafutte original
RSA can straightforward be adapted to any RSA-type cryptosystem. Wfgérdte this
topic with the common modulus failure [13].

The remainder of this paper is organized as follows. In Section 2, wewehie
Lucas-based and Demytko's elliptic curve cryptosystems. The reader wiat isot
familiar with these systems may first read the appendix. We present our istektion
3and apply itin Section 4. In Section 5, we revisit the common modalluse. Finally,
we conclude in Section 6.

2 RSA-typecryptosystems

In this section, we present cryptosystems based on Lucas sequences [4Daht, Gn
elliptic curves [4]. We only outline the systems, for a detailed desom we refer to
the original papers.

2.1 Lucas-based RSA

The Lucas-based scheme can briefly be described as follows. Each oBepses two
large primesp andg and an exponent that is relatively prime tdp? — 1)(¢> — 1),
computes: = pq, and publishes ande as his public key. The correspondidgs ¢!
(mod lem(p — 1,p+ 1,9 — 1,q + 1)) is kept secret.

A’s public parameters: n ande.
A’s secret parameters: p, g andd.

A messagen is encrypted by computing = v.(m,1) (mod n). It is decrypted
using the secret key by m = v4(c,1) (mod n). The correctness of this system is
based on Proposition 3 (in appendixyagv. (m,1),1) = vge(m,1) = v1(m,1) =m
(mod n). Signatures are generated accordingly by exchanging the roles of the publi
and secret parameterandd.

2.2 Demytko'ssystem

Similarly to RSA, to setup Demytko’s system, each udecthooses two large primes
p andgq, and publishes their produat= pq. He publicly selects integersandb such
thatged(4a® + 2762, n) = 1. Then once and for all, he computes

N, = lem (#Ep(a, b), #5,(a,b), #E,(a,b), #F,(a, b)) . 1)

He randomly chooses the public encryption kesuch thagcd(e, N,,) = 1, and com-
putes the secret decryption kéwccording teed = 1 mod N,,.



A’s public parameters: n, a, b ande.
A’s secret parameters: p, ¢, N,, andd.

It is useful to introduce some notation. The and they—coordinates of a poiri?
will respectively be denoted bg(P) andy (P). To send a messageto Alice, Bob uses
Alice’s public keye and computes the corresponding ciphertext z(eM) (mod n)
whereM is a point having its:—coordinate equal tex. Note that, from Proposition 1,
the computation of = z(eM) (mod n) does not require the knowledgewfM).

Using her secret key, Alice can recover the plaintext by computingn = z(dC)
(mod n) whereC is a point having itss—coordinate equal te. Note also that Alice
has not to know(C).

Remark 1.To speed up the computations, Alice can chgage= 2 mod 3 anda = 0.
In that caseN,, = lem(p + 1,¢ + 1). The same conclusion holds by choosing =
3 mod 4 andb = 0 (see [8]).

Remark 2.For efficiency reasons, it is also possible to define a message-dependent
system (see [4]).

3 Sketch of the new attack

Letn = pg be a RSA modulus. Letandd be respectively the public key and the secret
key of Alice, according teed = 1 (mod @(n)). The public keye is used to encrypt
messages and verify sighatures; the secretdkisyused to decrypt ciphertexts and to
sign messages.

Suppose a cryptanalyst (say Carol) wants to make Alice to sign messagfhout
her consent. Carol can proceeds as follows. She chooses a random ruanioeasks
Alice to sign (or to decryptyn’ = mk® (mod n). Carol gets ther' = m¢ (ke)d =
m?k, and therefore the signaturef messagen asc = c'’k~! (mod n).

Consequently, chosen-message attacks against RSA seem quite naturally to be
consequence of its multiplicative structure. By reformulating thiacktiwith the ex-
tended Euclidean algorithm, it appears that non-homomorphic crypérsgsare also
susceptible to a chosen-message attack. Applying to RSA, the attack go#ewas. f

Input: A message m and the public key n, e of Alice.

Step 1: Carol chooses an integer k relatively prime to e. Then she uses
the extended Euclidean algorithm to find r, s € Z such that kr +es =
1.

Step 2: Carol computes m' = m* (mod n).

Step 3: Next, she asks Alice to sign m' and gets therefore

d=m' (mod n).

Step 4: Consequently, Carol can compute the signature ¢ of m by

c=c"m® (mod n). 2



Output: The signature ¢ of message m.

Proof. Fromkr + es = 1, it follows d = d(kr + es) = dkr + s (mod $(n)). Hence,

c=m?=m*'m* = (m*)" m* = "m* (mod n). 0
Remark 3.This attack can also be considered as a generalization of the Davida’s at-
tack [3].

4 Applications

The previous attack applies also to non-homomorphic cryptosystentisis section,
we show how it works against Lucas-based systems and Demytko’s system.

4.1 Attacking Lucas-based systems

The cryptanalyst Carol can try to get a signaturen a message: in the following
way.

Input: A message m and the public key n, e of Alice.
Step 1: Carol chooses an integer & relatively prime to e. Then she uses
extended Euclidean algorithm to find r, s € Z such that kr + es = 1.
Step 2: Next she computes m' = vy, (m, 1) (mod n).
Step 3: Now she asks Alice to sign m'. If Alice does so then Carol knows
¢’ such that
¢ =wvg(m',1) (mod n).

Step 4: Finally Carol computes the signature ¢ of m as follows

veka(m, 1) = v.(¢'; 1) (mod n), 3
ug(m, Du,(c', 1)
ue(c!, 1)
Vrka(m, 1vs(m, 1)
2
Atppg(m, Dug(m, 1)
* 2

Urkg(m, 1) = (mod n), 4)

c=wvq4(m,1) =

(mod n) (5)

where A = m? — 4.
Output: The signature ¢ of message m.

Proof. Equation (3) follows from (13)since
v (¢, 1) = vy (vga(m, 1), 1) = vpra(m, 1) (mod n).

1 (9) to (22) refer to equations in the appendix.



Equation (4) is a consequence of (14) and

ppa(m, Due (e, 1) = u, (de(m, 1), l)ukd(m, 1Due (de(m, 1), 1)
= Up (de(m, 1)7 l)ukde (m7 1)
= u, (vka(m, 1), 1)ug(m,1) (mod n).

Moreover,kr + es = 1 impliesvg(m, 1) = vrrgrges(m, 1) = vrpars(m,1). Hence
Equation (5) is an application of (15). O

Remark 4.This attack is the analogue to the chosen-message attack on RSA presented
in Section 3, by using algebraic numbers (replacdy o = (m + v/A)/2 and use
Equation (9)). The only additional step to be proved is that(m, 1) is computable

from m anduy4(m, 1). This can be shown by using (14) and noting that

up(m, 1) = ugae(m, 1) = uga(m, Due (via(m, 1),1) (mod n).

If @ = m/2+4+/A/2then the signature,,(m, 1) on the messags. (m, 1) can be used
to compute

ok = pg(m, 1)/2 + upa(m, 1)VA/2.
Oncea*? is known,a? = vy(m,1)/2 + ug(m, 1)v/A/2 can be computed from
at = qlkrtes)d = (akd)r o’ (mod n).
Hence (3) and (4) correspond to the computation:’6fand (5) corresponds to the
multiplication ofc’” by m? in (2).
4.2 Attacking Demytko’s system

Before showing that a similar attack applies to Demytko’s system, we og@dve the
following proposition.

Proposition 1. Letp be a prime greater than 3, and Ié4,(a, b) be an elliptic curve
overZ,. If P € E,(a,b) or if P € E,(a,b), then the computations af(kP) and
y(kP)
y(P)

depend only or:(P).

Proof. Letting X; := z(jP) andY; := ’L(glf)) , the tangent-and-chord composition rule

on elliptic curves gives the following formulas

3w(.7'P)2+a 2 27‘( P f
) . B —2z(jP) if P € E,(a,b)
Xej = 2(jP +3P) = (3;(11';])21 )2 B
( 2Di y(jp)a) D, —-2z(jP) ifP € E,(a,b)

2
_ 1 (3Xj+a

2
T XP+aXi+b 25 ) - 2X;,



(25252 ) (saP)-a(2iP) ~v(sP)

Yy, = YUP+P) _ 7P if P e Ey(a,b)
j 9(P) (32?7(;2);3)"‘) (2(jP)—2(2jP)) ~¥(jP)
- if P e E,(a,b)
3X +a
= XTTaxiT ( ) (X; — X2;) = Y;,
Xojpr =x(jP+(j + 1)P)
] — 2 . . M
| (MBI LP) - 2(G+DP) P € Byfad)
- . . 2 . .
(W) D, — 2 (jP) — 2((j + 1)P) it P € Ey(a,b)
= (X} +aX, +b) ()’(’;:?:1) — X — X4,
yiP+(j+1)P
Yojp = —( y(P) )
YGP) =B (GADP) Y (i P) e ( (24 (i ]
_ (m(jP)—m((j-Fl)P))( (;(12) ((2]+])P)) Y(jP) if P e E,(a,b)orE ((l D)
Y-
= 2= (X~ Xo0) — Y

So X, andY}, can be computed fronrX; = z(P) andY; = 1 by using the binary
method. O

Then, the message forgery goes as follows.

Input: A message m and the public key n, e of Alice.

Note that m is the z—coordinate of a point M, i.e. m = z(M).

Step 1: The cryptanalyst Carol chooses a random k relatively prime to
e. Then she uses extended Euclidean algorithm to find r, s € Z such
that kr + es = 1.

Step 2: From z(M), Carol computes m’' = z(M') = (kM) (mod n).
Next, she asks Alice to sign m'. So, Carol obtains the signature

' =xz(C') = z(dM') (mod n).

Step 3: Finally, Carol finds the signature ¢ = 2(C) = 2(dM) (mod n) of
message m as follows.
3a) If z(rC') # z(sM) (mod n) then, using Proposition 1, Carol
can compute
1 M 1 ! 1 !
Y(kM) y(rC') and y(eC')

)y 2y (©)

and

y(kM) y(rC') (y(ec'))’] _ Y(sM)
y(M) y(C') y(C’)

z(rC') — z(sM)

c= (m® +am +b)

—z(rC") — z(sM) (mod n). (7)



3b) Otherwise, the signature is given by

_ [3z(rC')? +a]2 /
= ARGOY asey 1y 2O tmedm) (8

Output: The signature ¢ of message m.
Proof. Sincekr + es = 1,d = krd + esd = krd + s (mod N,). So,
#(C) = z(dM) = z([krd + s)M) = 2(rC' + sM) (mod n).

a) Ifz(rC') £ x(sM) (mod n), then

z(rC' 4+ sM)

- (2ee)-son N

= (2 TC,) ( ) 2(rC') — a(sM)

= S0 S | 0t) o) (ot
= TC/ 71‘(91\/_[) r\r (s mod n

since
y(rC') y(rC') y(C") y(kM)

y(M)  y(C") y(EM) y(M)
andy(kM) = Y(edkM) = y(eC') (mod n).
b) Otherwise, sincged(d, N,,) = 1 it follows thatrC’ # —sM (mod n) and there-
fore

3z(rC')?* +a

z(rC' + sM) = ( 29O > —z(rC') — z(sM) (mod n).

5 Common modulus attack

Simmons pointed out in [13] that the use of a common RSA moduldsiigerous.
Indeed, if a message is sent to two users that have coprime public éonrggys, then
the message can be recovered.

Because our chosen-message attack requires only one message, the Lucas-based
systems and Demytko’s elliptic curve system are vulnerable to the conmoalulus
attack. We shall illustrate this topic on Demyko’s system.

Let (e1,dr) and(eq, ds) be two pairs of encryption/decryption keys andiet=
z(M) be the message being encrypted. Assuneingnde, are relatively prime, the
cryptanalyst Carol can recoverfrom the ciphertexts; = 2(Cy) = z(e;M) (mod n)
andey = £(Csa) = z(eoM) (mod n) as follows.

Carol uses the extended Euclidean algorithm to find integargls such thate; +
ses = 1. Then, she computesM) = z((re; + se2)M) = z(rCy + sC2) (mod n)
as follows. Ifz(rCy) # z(sC2) (mod n), then



_ 2
[y(rcl) Y(e2C1) ¥(sC2) (y(e1C2)) ]"
m = (¢} + ac; +b)

y(C1) y(C1) ¥(C2) y(C2)
z(rCq1) — z(sCa) J
—2(rCq) — 2(sCz) (mod n)
otherwise
32(rC1)? +a’
m= [32(rCa)” + o] —2z(rCq) (mod n).
4[z(rC1)? + az(rCy) + b]
Proof. Straightforward sincg(e2C1) = ¥(e1C2) (mod n). O

6 Conclusion

We have presented a new type of chosen-message attack. Our formulatiparhas
mitted to mount a successful chosen-message attack with only one messagg agai
Lucas-based systems and Demytko's system. This also proved that thé mge-o
homomorphic systems is not necessarily the best way to foil choserageeattacks.
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A Basicfacts

A.1 Lucassequences

Let P, Q be integersA = P? —4() be a non-square, = P+T*/Z andg =@ = P*T*/Z
be the roots of*> — Pz + Q = 0 in the quadratic field)(v/ A). The Lucas sequences
v (P, Q) anduy (P, Q) for k € 7Z are then defined as the integers satisfying

ok (PQ)  u(PQVA
=2 v,

(9)

Froma? = Pa—Q followso* = Pa*~1! —Qa*~2. Hence the Lucas sequences satisfy
the following recurrence relation

UO(P:Q) = 27 U1 (P,Q) = Pa Uk(P7Q) = P,ka] (P7Q) - Q,Uk72(P7Q):
’U/O(P,Q) = 07 ’U,](P7Q) = 17 uk(P:Q) - Puk*](P:Q) - Quk72(P7Q)'

This recurrence relation is sometimes used as an alternative definition of kacas
quences. Since conjugation and exponentiation are exchangeable it follows

B — oF — Uk(];Q) B Uk(P,QQ)\/Z_

From this equation and from (9) it follows that

uk(P,Q) = o + ¥, (10)
ak _ ﬁk

and ug(P,Q) = ————. (12)
a—f

The next proposition states some well-known properties of Lucaesegs.



Proposition 2.

4Q% = v (P,Q)? — Aug(P,Q)? (12)

Vem (P, Q) = vy (Um(P, Q), Qm) (13)
ukm(P7Q) = Um(P7Q)Uk (Um(PzQ)7Qm) (14)
7)k+m(P,Q) — Uk (P Q);}m(P Q) + Auk(P7 Q;um(P7Q) (15)
wem(P.Q) = uk(P,Q);)m(P,Q) N Vg (P,Q);l,m(P,Q) (16)

Proof. Equation (12) can be proved as follows.
4Q" = 4(a@)* = 20F2aF
= (uk(P, Q) + ur(P, Q)VA) 0k (P, Q) — ui (P, Q)VA)
= (P, Q)% — Aui(P,Q)>.

Equation (12) now implies that

ak‘,_ Uk(PvQ) +“‘k(P7Q)\/Z_Uk(P7Q) + uk(P:Q)QA

2 2 2 2
_ Uk‘,(PvQ) Uk(P7Q)2 - 4Qk
h 5 2

and hencel* = P'/2 + /P'* —4Q'/2 with P’ = v;(P,Q) andQ' = Q*. Thus we
have

vm (P, Q") N “’m(Pl,Ql)\/m

(af)" = =75 2
_om(P,Q) | um(P',Q)ur(P,Q)VA
= 5 + 5 )

Comparing the coefficients of this equation with
A = 0 (P, Q) /2 + ugm (P, Q)VA /2

proves (13) and (14). Writing*+t™ = o*a™ as sums of Lucas sequences and com-
paring the coefficients shows (15) and (16). |

Proposition 3. Letp be an odd primeg) = 1 andged(A, p) = 1. Then the sequence
vk (P, 1) mod p is periodic and the length of the period divides- (%)

Proof. « and therefore alsa” are algebraic integers i(v/A). Thus we haver” =
(P/2+VA[2)P = P[2+ (VAP [2 = P2+ AP=V2/AJ2 = P/2 + (2) VA/2
(mod p). Thus if (£) = 1 thena?~! =1 (mod p) and if (5) = 1 thena?*! =1
(mod p). It follows that the sequenae® (and therefore alse, (P, 1)) is periodic with
a period that dividep — (%) O



A.2 Elliptic curves

Elliptic curvesover Z, Letp be a prime greater than 3, and éeandb be two integers
such thatta® + 276> # 0 (mod p). An elliptic curve E,(a, b) over the prime field,,
is the set of pointéz, y) € Z, x Z, satisfying the Weierstral3 equation

y2 =z tar+b (mod p) 17)

together with the point at infinity),. The points of the elliptic curvé&, (a, b) form an
Abelian group under the tangent-and-chord law defined as follows.

(i) O, istheidentity element,i.&/P € E,(a,b), P + O, = P.

(i) Theinverse ofP = (z1,y1) is —P = (x1, —y1).

(i) Let P = (z1,y1) andQ = (z2,y2) € Ey(a,b) withP # —Q. ThenP + Q =
(z3,y3) where

rg = )\2 — 1 — T2, (18)
ys = Ax1 — x3) — Y1, (19)
322 .
w if T = Io,
and) = q 2511/‘
2L otherwise.
r1 — T2

Note that ifP = (z1,0) € Ep(a,b), then2P = O,,.

Theorem1 (Hasse). Let #E,(a,b) = p + 1 — a, denote the number of points in
Ey,(a,b). Thenja,| < 2,/p. O

Complementary group of E,(a,b) Let E,(a,b) be an elliptic curve oveL,,. Let D,

be a quadratic non-residue modwloThetwist of E,(a, b), denoted by¥,(a, b), is the
elliptic curve given by the (extended) Weierstrafd equation

Dyy? = 2® +ax +b (20)

together with the point at infinityD,. The sum of two points (that are not inverse of
each otherjz1,y1) + (z2,y2) = (3, y3) can be computed by

r3 = )\2Dp — 1 — T3,

Y3 = )\(Tl - T?) — Y1,

3z +a .
if Tr1 = T2,
and\ = Qnyl
Ny otherwise.
X1 — T2

Proposition 4. If #E,(a,b) = p+ 1 — a,, then#E,(a,b) =p+ 1+ a,.

Proof. Since#E,(a,b) = 1+, , (1 + (7z3+2“+")), ap =~ ez, (7'”3““;““’).

Hence#Ey(a,b) =1+ 3, o5 (1 - (W)) =1+p+a,. 0



Elliptic curvesover Z,, Letn = pq with p andq two primes greater than 3, and fet
andb be two integers such thgtd(4a® +27b% n) = 1. An elliptic curveE,, (a, b) over
the ringZ,, is the set of point$z, y) € Z,, x Z,, satisfying the Weierstral3 equation

y> =2* + ax +b (mod n) (21)

together with the point at infinitg,,.
Consider the grouf,, (a, b) given by the direct product

E,(a,b) = E,(a,b) x E,(a,b). (22)

By the Chinese remainder theorem there exists a unique Poiat(zy,y1) € Ep(a,b)
for every pair of pointP, = (z1p,y1p) € Ep(a,b) \ {O,} andP, = (z14,y14) €
E,(a,b) \ {O4} such thatzy mod p = z1p, 21 mod g = x14, y1 modp = yip
andy; mod ¢ = yi,. This equivalence will be denoted & = [P,,P,]. Since
0, = [0,,0,], the groupE,, (a, b) consists of all the points o, (a, b) together with
a number of points of the foriP,,, O,] or [O,, P,].

Lemma 1. The tangent-and-chord addition afi, (a, b), whenever it is defined, coin-
cides with the group operation af,, (a, b).

Proof. Let P andQ € E,(a,b). AssumeP + Q is well-defined by the tangent-and-
chord rule. Therefor® + Q = [(P + Q),, (P + Q),] = [P, + Q,, P, + Q,]. O

If n is the product of two large primes, it is extremely unlikely that thediadn”
is not defined orE, (a, b). Consequently, computations i, (a, b) can be performed
without knowing the two prime factors of.



