
Let your Mach-O fly

Vincenzo Iozzo
snagg@sikurezza.org

Who am I?

•  Student at Politecnico di Milano.
•  Security Consultant at Secure Network

srl.
• Reverse Engineer at Zynamics GmbH.

2/18/09

2

Goal of the talk

2/18/09

3

In-memory execution of arbitrary binaries
on a Mac OS X machine.

Talk outline

• Mach-O file structure
•  XNU binary execution
•  Attack technique
• Defeat ASLR on libraries to enhance

the attack

2/18/09

4

Talk outline

• Mach-O file structure
•  XNU binary execution
•  Attack technique
• Defeat ASLR on libraries to enhance

the attack

2/18/09

5

Mach-O file

•  Header structure: information on the target
architecture and options to interpret the file.

•  Load commands: symbol table location,
registers state.

•  Segments: define region of the virtual
memory, contain sections with code or data.

2/18/09

6

Segment and Sections

segment

Virtual
address
0x1000

Virtual
memory size

0x1000

File Offset
0x0

File Size
0x1000

section

Virtual
Address
0x1d54

Virtual
memory size

0x275

File Offset
0xd54

2/18/09

7

Important segments

•  __PAGEZERO, if a piece of code accesses
NULL it lands here. no protection flags.

•  __TEXT, holds code and read-only data. RX
protection.

•  __DATA, holds data. RW protection.
•  __LINKEDIT, holds information for the

dynamic linker including symbol and string
tables. RW protection.

2/18/09

8

Mach-O representation

2/18/09

9

Talk outline

• Mach-O file structure
•  XNU binary execution
•  Attack technique
• Defeat ASLR on libraries to enhance

the attack

2/18/09

10

Binary execution

• Conducted by the kernel and the
dynamic linker.

•  The kernel, when finishes his part,
jumps to the dynamic linker entry point.

•  The dynamic linker is not randomized.

2/18/09

11

Execution steps

Kernel
•  Maps the dynamic linker

in the process address
space.

•  Parses the header
structure and loads all
segments.

•  Creates a new stack.

Dynamic linker
•  Retrieves base address

of the binary.
•  Resolves symbols.
•  Resolves library

dependencies.
•  Jumps to the binary entry

point.

2/18/09

12

Stack

• Mach-O file base address.
• Command line arguments.
•  Environment variables.
•  Execution path.
•  All padded.

2/18/09

13

Stack representation

2/18/09

14

0

exec_path ptr

0

Envp[]

0

Argc

Argv[]

exec_path

Argv[] strings

Envp[] strings

Mach-o
Address

Stack Pointer

Talk outline

• Mach-O file structure
•  XNU binary execution
• Attack technique
• Defeat ASLR on libraries to enhance

the attack

2/18/09

15

Proposed attack

• Userland-exec attack.
•  Encapsulate a shellcode, aka auto-

loader, and a crafted stack in the
injected binary.

•  Execute the auto-loader in the address
space of the attacked process.

2/18/09

16

WWW

• Who: an attacker with a remote code
execution in his pocket.

• Where: the attack is two-staged. First
run a shellcode to receive the binary,
then run the auto-loader contained in
the binary.

• Why: later in this talk.

2/18/09

17

What kind of binaries?

Any Mach-O file, from ls to Safari

2/18/09

18

A nice picture

2/18/09

19

Infected binary

• We need to find a place to store the
auto-loader and the crafted stack.

•  __PAGEZERO infection technique.
• Cavity infector technique.

2/18/09

20

__PAGEZERO INFECTION

• Change __PAGEZERO protection flags
with a custom value.

•  Store the crafted stack and the auto-
loader code at the end of the binary.

•  Point __PAGEZERO to the crafted
stack.

• Overwrite the first bytes of the file with
the auto-loader address.

2/18/09

21

Binary layout

2/18/09

22

MODIFIED HEADER

INFECTED __PAGEZERO

load commands and segments

sections and binary data

SHELLCODE

CRAFTED STACK

Auto-loader

•  Impersonates the kernel.
• Un-maps the old binary.
• Maps the new one.

2/18/09

23

Auto-loader description

•  Parses the binary.
• Reads the virtual addresses of the

injected binary segments.
• Unloads the attacked binary segments

pointed by the virtual addresses.
•  Loads the injected binary segments.

2/18/09

24

Auto-loader description(2)

• Maps the crafted stack referenced by
__PAGEZERO.

• Cleans registers.
• Cleans some libSystem variables.
•  Jumps to dynamic linker entry point.

2/18/09

25

We do like pictures, don’t we?

2/18/09

26

TEXT DATA LINKEDIT SEGMENT
-N

TEXT DATA LINKEDIT SEGMENT-N

Victim’s process address space

libSystem variables

•  _malloc_def_zone_state
•  _NXArgv_pointer
•  _malloc_num_zones
•  __keymgr_global

2/18/09

27

Why are those variables
important?

•  They are used in the initialization of
malloc.

•  Two of them are used for command line
arguments parsing.

• Not cleaning them will result in a crash.

2/18/09

28

Hunts the variables

• Mac OS X Leopard has ASLR for
libraries.

•  Those variables are not exported.
• Cannot use dlopen()/dlsym() combo.

2/18/09

29

Talk outline

• Mach-O file structure
•  XNU binary execution
•  Attack technique
• Defeat ASLR on libraries to enhance

the attack

2/18/09

30

Defeat ASLR

• Retrieve libSystem in-memory base
address.

• Read symbols from the libSystem
binary.

•  Adjust symbols to the new address.

2/18/09

31

How ASLR works in Leopard

• Only libraries are randomized.
•  The randomization is performed

whenever the system or the libraries are
updated.

•  Library segments addresses are saved
in dyld_shared_cache_arch.map.

2/18/09

32

Retrieve libSystem address

•  Parse
dyld_shared_cache_
i386.map and
search for libSystem
entry.

•  Adopt functions
exported by the
dynamic linker and
perform the whole
task in-memory.

2/18/09

33

Dyld functions

•  _dyld_image_count() used to retrieve the
number of linked libraries of a process.

•  _dyld_get_image_header() used to retrieve
the base address of each library.

•  _dyld_get_image_name() used to retrieve
the name of a given library.

2/18/09

34

Find ‘em

•  Parse dyld load commands.
• Retrieve __LINKEDIT address.
•  Iterate dyld symbol table and search for

the functions name in __LINKEDIT.

2/18/09

35

Back to libSystem

• Non-exported symbols are taken out
from the symbol table when loaded.

• Open libSystem binary, find the
variables in the symbol table.

•  Adjust variables to the base address of
the in-memory __DATA segment.

2/18/09

36

Put pieces together

•  Iterate the header structure of libSystem
in-memory and find the __DATA base
address.
– __DATA base address 0x2000
– Symbol at 0x2054
– In-memory __DATA base address 0x4000
– Symbol in-memory at 0x4054

2/18/09

37

Results

• Run a binary into an arbitrary machine.
• No traces on the hard-disk.
• No execve(), the kernel doesn’t know

about us.
•  It works with every binary.
•  It is possible to write payloads in a high

level language.

2/18/09

38

Demo description

• Run a simple piece of code which acts
like a shellcode and retrieve the binary.

•  Execute the attack with nmap and
Safari.

•  Show network dump.
•  Show memory layout before and after

the attack.

2/18/09

39

DEMO

2/18/09

40

Future developments

•  Employ encryption to avoid NIDS
detection.

• Using cavity infector technique.
•  Port the code to iPhone to evade code

signing protection (Catch you at BH
Europe).

2/18/09

41

Thanks, questions?

2/18/09

42

