
The Path to Ring-0 (Windows Edition)

The Path To Ring-0 ïWindows Edition (Confidential)

Debasis Mohanty (nopsled)

Agenda

ÁKernel Architecture (High Level)

ÁKernel Bug Classes

ÁKernel Exploitation and Technique
ÁArbitrary Memory Overwrite - Demo

ÁPrivilege Escalation Using Token Impersonation - Demo

ÁKernel Data Structures (Relevant to Token Impersonation)

ÁKernel Exploitation Mitigation
ÁState of Kernel Mitigation

ÁSMEP bypass (Overview)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Operating System Privilege Rings

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Source: https://en.wikipedia.org/wiki/Protection_ring

Least
Privileged

Most
Privileged

Hypervisor (Ring -1)

https://en.wikipedia.org/wiki/Protection_ring

Windows Kernel Architecture

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Source: https://en.wikipedia.org/wiki/Architecture_of_Windows_NT

Source:
https://www.microsoftpressstore.com/articles/article.aspx?p=2201301&seqNum=2

Simplified Windows Architecture (User mode <-> Kernel Interaction)

άƴǘƻǎƪǊƴƭΦŜȄŜέ ƛǎ ŎŀƭƭŜŘ ǘƘŜ ƪŜǊƴŜƭ ƛƳŀƎŜΗ

https://en.wikipedia.org/wiki/Architecture_of_Windows_NT
https://www.microsoftpressstore.com/articles/article.aspx?p=2201301&seqNum=2

9/04/2018

Ring 3 v/s Ring 0

9/04/2018

User mode (Ring 3)

ÁNo access to hardware (User mode
programs has to call system to interact with the
hardware)

ÁRestricted environment,
separated process memory

ÁMemory (Virtual Address Space):

Á32bit: 0x00000000 to 0x7FFFFFFF

Á64bit: 0x000'00000000 to 0x7FF'FFFFFFFF

ÁHard to crash the system

The Path To Ring-0 ïWindows Edition (Confidential)

Kernel mode (Ring 0)

ÁFull access to hardware

ÁUnrestricted access to
everything (Kernel code, kernel
structures, memory, processes, hardware)

ÁMemory (Virtual Address Space):

Á32bit: 0x80000000 to 0xFFFFFFFF

Á64bit: 0xFFFF0800'00000000 to
0xFFFFFFFF'FFFFFFFF

ÁEasy to crash the system

For more details on virtual address space, refer to the below URL:
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces

User Mode v/s Kernel Mode Crash

User Mode Crash

Operating System doesnôt die!

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Kernel Mode Crash (BSoD ïaka BugCheck)

Operating System dies!

Kernel Objects and Data Structure

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Key kernel objects and data structure relevant to this talk.

Key Kernel Data Structures

ÁKernel Dispatch Tables
ÁHalDispatchTable

ÁSSDT

ÁIRP and IOCTL

ÁEPROCESS

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Dispatch Tables (Contains Function Pointers)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

ÁHolds the address of HAL (Hardware
Abstraction Layer) routines

System Service Descriptor TableHal Dispatch Table

ÁStores syscall (kernel functions) addresses
Á It is used when userland process needs to call a

kernel function
ÁThis table is used to find the correct function call

based on the syscall number placed in eax/ rax
register.

DeviceIoControl ïThe API to interact with the driver (1/2)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Reference: https://msdn.microsoft.com/en-us/library/windows/desktop/aa363216(v=vs.85).aspx

Handle to the device

IOCTL ςI/O Control codes. This value
identifies the specific operation to be
performed on the device.

A pointer to the input buffer that
contains the data required to
perform the operation.

The size of the input buffer, in bytes.

A pointer to the output buffer that is
to receive the data returned by the
operation.

A pointer to a variable that receives
the size of the data stored in the
output buffer, in bytes.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363216(v=vs.85).aspx

IOCTL (I/O Control Code)

ÁIOCTL is a 32 bit value that contains several fields.

ÁEach bit field defined within it, provides the I/O manager with
buffering and various other information.

ÁIt is generally used for requests that don't fit into a standard API

ÁTypically sent from the user mode to kernel.

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Image Source and for further reference on IOCTL refer:
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/defining-i-o-control-codes

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/defining-i-o-control-codes

IRP (I/O Request Packet)

ÁIt is a structure created by the I/O
manager

ÁIt carries all the information that the
driver needs to perform a given
action on an I/O request.

ÁIt is only valid within the kernel and
the targeted driver or driver stack.

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Image Source and for further reference on IRP refer:
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/i-o-stack-locations

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/i-o-stack-locations

DeviceIoControl ïThe API to interact with the driver (2/2)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

ÁSends a control code (IOCTL) directly to the I/O manager.

ÁThe important parameters are the device driver HANDLE, the I/O
control code (IOCTL) and also the addresses of input and output
buffers.

ÁWhen this API is called, the I/O Manager makes an IRP (I/O
Request Packet) request and delivers it to the device driver.

I/O Manager
IOCTL IRP

DeviceIoControl Driver

Kernel Bug Classes and Exploitation Techniques

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Focus will be on Arbitrary write exploitation and Elevation of Privilege

9/04/2018

Common Kernel Bug Classes

9/04/2018

ÁUAF

ÁBuffer Overflow

ÁDouble Fetch

ÁRace Condition

ÁType Confusions

ÁArbitrary Write (Write-What-Where)

ÁPool Overflow

The Path To Ring-0 ïWindows Edition (Confidential)

Write-What-Where (Arbitrary Memory Overwrite)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

When you control both data (What) and address (Where)

Write-What-Where (Arbitrary Memory Overwrite)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

ÁWrite-What-Where occurs when you control both buffer and
address

ÁExploitation of the bug could allow overwrite of kernel addresses in
order to hijack control flow.
ÁIn this presentation, we will see how the dispatch table (HalDispatchTable)

entry could be modified in order to hijack control flow.

ÁExploitation Primitives
ÁAllocate memory in userland and copy the shellcode

ÁOverwriting Dispatch Tables to gain control

An Example of Vanilla Write-What-Where Bug (1/2)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Source: https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/ArbitraryOverwrite.c

An Example of Vanilla Write-What-Where Bug (2/2)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Source: https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/ArbitraryOverwrite.c

Lets look at a trickier and better example of
Write-What-Where bug, found by reverse
engineering a closed source driver.

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Exploitation Goal

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

GOAL: Hijack control flow and execute the shellcode.

Exploitation of this bug will allow me to specify What I want to
write and Where I want to write.

Anatomy of a Kernel Exploit (Write-What-Where)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Shellcode
Copy Shellcode

DeviceIoControl

User Mode

Kernel Mode

I/O Manager

Device Drivers

HalDispatchTable
(After Overwrite)

Bug
Exploitation

NtQueryIntervalProfile

KeQueryIntervalProfile memmove

2

3
4

Allocate Virtual Memory

NtAllocateVirtualMemory

Unmapped / Zero Page

Shellcode

1

Overwrite
Function Pointer

HaliQuerySystemInformation

The 2nd entry of the HalDispatchTable originally
points to HaliQuerySystemInformation before
the control flow is hijacked.

Illustration: Specially handcrafted for Roachcon

Hal Dispatch Table (Before and After Overwrite)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Hal Dispatch Table (Before Overwrite) Hal Dispatch Table (After Overwrite)

Note: Overwriting a Kernel dispatch table pointer (first
described by Ruben Santamartain a 2007 paper titled
"Exploiting common flaws in drivers")!

How To Find Such Bugs In Closed Source Drivers

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Bug Analysis ïExplained During Demo (1/3)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Bug Analysis ïExplained During Demo (2/3)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Bug Analysis ïExplained During Demo (3/3)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

-- Demo --
Write What Where Exploitation

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Token Stealing :: Token Duplication :: Token Impersonation

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

It all means the same from an exploitation context

Access Token Introduction

From MSDN :

An access token is an object that describes the security context of a process or thread. The information
in a token includes the identity and privileges of the user account associated with the process or thread.

For Further details:

Áhttps://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx

Áhttps://technet.microsoft.com/en-us/library/cc783557(v=ws.10).aspx

There are two types of access tokens:

ÁPrimary Token - This is the access token associated with a process, derived from the users privileges,
and is usually a copy of the parent process primary token.

ÁImpersonation Token - This is a secondary token which can be used by a process or thread to allow it
to "act" as another user.

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Every running process has an access token, which has set
of information that describes the privileges of it.

In the coming slides, I will discuss how to take advantage
of it to elevate to system privilege.

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

Typical Token Stealing Shellcode (Windows 7 x86)

9/04/2018 The Path To Ring-0 ïWindows Edition (Confidential)

The following slides explains how fs:0x124 is derived and the related data structures

