
SESSION ID:

#RSAC

Jay Beale

Hacking and Hardening Kubernetes

HT-W02

CTO
InGuardians, Inc
@jaybeale and @inguardians

Adam Crompton
Senior Security Analyst
InGuardians, Inc.
@3nc0d3r and @inguardians

#RSAC

Table of Contents

2

Describe what Kubernetes is and does
Demonstrate attacks on Kubernetes clusters
Demonstrate defenses for Kubernetes clusters and workloads

Introduce further defenses for Kubernetes
Introduce a new Open Source tool: Peirates

#RSAC

What Does Kubernetes Do?

3

Container orchestration
Horizontal scaling
Self-healing

Automatic binpacking
Automated rollouts and rollback
Service Discovery and Load Balancing

Secret and configuration management

Software-defined
Datacenter via

Container Orchestration

#RSAC

Kubernetes Components

4

Pods
Volumes
Nodes

Namespaces

#RSAC

All containers in a pod share an IP address and may share the volumes defined in that pod.

5

PODS ARE THE SMALLEST UNIT OF WORK IN KUBERNETES

Kubernetes Concept: Pods

#RSAC

• Kubelet
• Container Runtime: Docker
• Kube-proxy

6

NODES ARE MACHINES THAT RUN:

Kubernetes Concept: Node

#RSAC

A service creates a DNS name, IP
address and port that redirects to any

pods matching specific labels.

7

A SERVICE IS A LOAD BALANCER

Kubernetes Concept: Service

Pod

Node

#RSAC

Kubernetes Concept: Namespace

8

A namespace is a logical grouping for Kubernetes objects:
– Pods
– Services
– Accounts
– Roles

Namespaces may separate tenants or projects.

#RSAC

Kubernetes is Declarative

9

Prefers “declarative” rather than “imperative” usage.
You tell Kubernetes that you’d like five (5) copies of this application
running.
Kubernetes takes responsibility for keeping five containers staged,
spread out to as many as five nodes, watching for container or node
failures.
You build YAML files describing what you want, pass these to the API
server, and let it take responsibility for effecting that declaration.

kubectl apply -f file.yaml

#RSAC

Kubernetes Target Components (1 of 2)

10

Kubernetes API Server
– Accepts the declarative configurations and directs other components to

take action.

Kubelet
– Runs on each node in the cluster, bridging the Kubernetes infrastructure

to the container runtime (often Docker)

Container Runtime/Docker
– Pulls container images and instructs the kernel to start up containers

#RSAC

Kubernetes Target Components (2 of 2)

11

ETCD Server
– Retains the state of the cluster

Kubernetes Dashboard
– Web interface that permits configuration and administration

Metrics Components
– Provide useful data about the target

#RSAC

Attacking Kubernetes Clusters

12

An attack on Kubernetes generally starts from the perspective of
a compromised pod.
– The threat actor may have compromised the application running in one

container in the pod.
– The threat actor may have phished/compromised a person who had

access to the pod.
– The threat actor may be a user who is looking to escalate their

privileges.

#RSAC

Threat Actor Actions

13

An attacker in a pod may:
– Use the access provided by the pod to access other services
– Attack other containers in their pod
– Make requests to the API server or a Kubelet to:
o Run commands (possibly interactively) in a different pod
o Start a new pod with privilege and node filesystem/resource access

– Gather secrets that Kubernetes provides to pods
– Connect to the Kubernetes Dashboard to perform actions
– Interact with the etcd server to change the cluster state
– Interact with the cloud service provider using the cluster owner’s account.

Attack Demonstrations

#RSAC

Attack Demo

15

We'll compromise a Kubernetes cluster, starting from a
vulnerable application, running in a pod on the cluster.

This cluster is called Bust-a-Kube. You can download it with the
link provided in the video.
To recreate the attack, put Bust-a-Kube into the “Cluster
Takeover 1” scenario.

#RSAC

Dissecting the Attack Demo

16

We achieved RCE in the frontend pod and ran a Meterpreter.
We interacted with the API server and tried to stage a pod.
We moved laterally to a Redis pod, which had a better role.

We staged a custom pod with a hostPath mount onto a node,
compromising it.
We staged pods to every node using a Daemon Set,
compromising every one.

#RSAC

Demo: Multitenant Attack

17

In this video demo, we'll attack a Kubernetes cluster that has a
soft multitenancy setup, with a Marketing department and a
Development department.
You can recreate this demo by putting Bust-a-Kube into the
“Multi-tenancy Escape 1” scenario.

#RSAC

Dissecting the Multitenant Attack (1 of 2)

18

Gained a Meterpreter in Marketing's Wordpress container. (Flag 1)

Moved into Marketing's MySQL container (Flag 2)

Used the MySQL container's unfettered network access to reach a
Kubelet on the master node.

Used the Kubelet's lack of authentication to invade Development's
dev-web container. (Flag 3)

Reasoning that the dev-sync container in this same pod might be
used to synchronize content, gained the pod's secrets (SSH key and
account).

#RSAC

Dissecting the Multitenant Attack (2 of 2)

19

Authenticated to the high-value Developer machine. (Flag 4)
Returned to the cluster, used the dev-web pod's placement on
the master to gain control of the AWS account. (Bonus)

Defenses

Breaking the Attack Paths!

#RSAC

Overarching Defense: Upgrade!

21

You must upgrade your Kubernetes cluster.
Kubernetes development is moving very quickly, with many of
the features we're about to discuss only moving out of alpha or
beta in the last few major releases.
Default settings in Kubernetes (and its third-party installers)
continue to strengthen substantially.

Support periods (patching) here resembles the world of smart
phones far more than the world of desktop operating systems.

#RSAC

Defense for Flag 3: Kubelet Authorization

22

Enable the NodeRestriction admission plugin to prevent a
kubelet on a node from modifying other nodes.
The API server must include --authorization-
mode=Node.

Reference:
https://kubernetes.io/docs/admin/authorization/node/

#RSAC

Defense #2 for Flag 3: Network Policies

23

Let’s create as default deny egress network policy to prevent a
container from communicating with the Kubelet or any part of
our control plane.

#RSAC

Network Policies

24

Network policies let you set firewall
rules, using label selection.

You create one or more policies.

Each policy names pods that it refers
to via a podSelector.

Rules are for ingress and/or egress.

Once you create a network policy for
a pod, you have a default deny for
traffic for that pod in that direction.

kind: NetworkPolicy
apiVersion:
networking.k8s.io/v1
metadata:
name: yourpolicy
namespace: yourns

spec:
podSelector:
ingress:
egress:

#RSAC

Network Policy Example

25

This policy allows traffic IN to pods
with labels:

app : myapp
role : api

It permits traffic only from pods with
label app set to myapp.

These labels have no inherent
meaning.

kind: NetworkPolicy
apiVersion:
networking.k8s.io/v1
metadata:
name: api-allow

spec:
podSelector:
matchLabels:
app: myapp
role: api

ingress:
- from:

- podSelector:
matchLabels:
app: myapp

#RSAC

Defense for Multitenant Flag 2: RBAC

26

You can place restrictions on the API server via RBAC.
Requests looks like:
– Username (Subject)
o Ex: [jay in group system:authenticated]

– Verb
o Ex: [in inguardians-ns, get pods]

You provide the ability to do these things by creating:
– Role/ClusterRole
– RoleBinding

#RSAC

RBAC: Example

27

Role-pod-getter.yaml

kind: Role

apiVersion: …

metadata:

name: ing-pod-getter

namespace: inguardians-ns

rules:

- verbs: [“get”]

apiGroups: [“”]

resources: [“pods”]

binding-jay-to-role.yaml
kind: RoleBinding

apiVersion: …

metadata:

name: jay-pod-getter

namespace: inguardians-ns

roleRef:

kind: Role

apiGroup: …

name: ing-pod-getter

Subjects:

- kind: User

apiGroup: …

name: jay

#RSAC

Creating RBAC Roles Automatically

28

Jordan Liggitt wrote a tool called Audit2RBAC, similar to
Audit2Allow for SELinux.

https://github.com/liggitt/audit2rbac/
Let's see a demo video.

#RSAC

Defense Against Cluster Compromise: AppArmor

29

In the attack, we took over the nodes by adding a pod to each
one that mounted the host’s filesystem as a volume.
Let’s use AppArmor to prevent the attack pods from writing to
files in the host’s filesystem.

We enforce AppArmor profiles on pods via Pod Security Policies.

#RSAC

Pod Security Policies

30

Pod Security Policies allow you to restrict the privilege with
which a pod runs.
– Volume white-listing / Usage of the node’s filesystem
– Read-only root filesystem
– Run as a specific (non-root) user
– Prevent privileged containers (all capabilities, all devices, …)
– Root capability maximum set
– SELinux or AppArmor profiles – choose from a set
– Seccomp maximum set

#RSAC

Pod Security Policy: Root Capability Supersets

31

All of the "magic powers" that the root user has are named and
numbered, codified in a POSIX standard called "capabilities."
Here are a few of the most common ones that containers still
maintain:
– NET_BIND_SERVICE - Bind to TCP/UDP privileged ports (<1024).

– DAC_OVERRIDE - Bypass file read, write & execute permission checks

– CHOWN - Make arbitrary changes to file UIDs and GIDs

– SETUID - Make arbitrary manipulations of process UIDs

– KILL - Bypass permission checks for sending signals

#RSAC

Seccomp

32

Similarly to the root capabilities, you can enforce a system call
whitelist on pods that are deployed in your cluster.
This locks the set of system calls to the ones the containerized
program used when uncompromised.
This has two purposes:
– Restrict what a compromised program can do
– Reduce the kernel’s attack surface

Kubernetes can require that any pod running must a seccomp
filter from a set that the cluster administrators vet.

#RSAC

Center for Internet Security Benchmark

33

You can find many hardening steps for a Kubernetes cluster in
the Center for Internet Security’s benchmark document for
Kubernetes.

https://www.cisecurity.org/benchmark/kubernetes/

Kube-Bench can check a cluster against this benchmark.
https://github.com/aquasecurity/kube-bench

https://www.cisecurity.org/benchmark/kubernetes/
https://github.com/aquasecurity/kube-bench

#RSAC

Tool Demo and Release

34

InGuardians has several Kubernetes security tools.
We’re releasing one today called Peirates (greek for "Pirates").
We’ll demonstrate this attack tool now. Among other things, it
can compromise a Kubernetes cluster.

The project team includes: Faith Alderson, Jay Beale, Adam
Crompton and Dave Mayer.
Find it on InGuardians’ Github page.

#RSAC

What Do I Do With This?

35

Take these attacks and defenses to your work.

If you’re permitted, try the attacks. If they work, there’s
something for you to do.

Take the defenses to:
– Cluster Design and Maintenance
– Application Design and Rollout

	Hacking and Hardening Kubernetes
	Table of Contents
	What Does Kubernetes Do?
	Kubernetes Components
	Kubernetes Concept: Pods
	Kubernetes Concept: Node
	Kubernetes Concept: Service
	Kubernetes Concept: Namespace
	Kubernetes is Declarative
	Kubernetes Target Components (1 of 2)
	Kubernetes Target Components (2 of 2)
	Attacking Kubernetes Clusters
	Threat Actor Actions
	Attack Demonstrations
	Attack Demo
	Dissecting the Attack Demo
	Demo: Multitenant Attack
	Dissecting the Multitenant Attack (1 of 2)
	Dissecting the Multitenant Attack (2 of 2)
	Defenses
	Overarching Defense: Upgrade!
	Defense for Flag 3: Kubelet Authorization
	Defense #2 for Flag 3: Network Policies
	Network Policies
	Network Policy Example
	Defense for Multitenant Flag 2: RBAC
	RBAC: Example
	Creating RBAC Roles Automatically
	Defense Against Cluster Compromise: AppArmor
	Pod Security Policies
	Pod Security Policy: Root Capability Supersets
	Seccomp
	Center for Internet Security Benchmark
	Tool Demo and Release
	What Do I Do With This?

