Debugging Fun - Putting a process to sleep() | Corelan Team

Debugging Fun — Putting a process to sleep() | Corelan Team

Introduction / Problem description

Recently I played with an older CVE (CVE-2008-0532, http://www.securityfocus.com/archive/1/489463,
by EX) and I was having trouble debugging the CGI executable where the vulnerable function was located.

Here’s the problem : The CGI Executable CSUserCGl.exe is a child process of IIS, and only spawns when
called by a user. The executable script then quickly closes after serving its purpose... and before we can
attach our debugger. So how do we essentially debug this? Would configuring the debugger for JIT (Just In
Time) work ?

Let’s see
When we call the CGI script over HTTP we can see it open and close real quick.

Try #1

0., Prom ras fephewes Syundevasis, e sy eonabscom {LINCONGRID)

[X h

==re 1 ot Poocems b W Mcxcech ,
rechont e 2904 K Garene Moot Process b WA Messch Coporion
rechod e 2308 K Garawe Howt Proce b WA

El Lt 16,304 K Garame Hont Prscmms o W
@ st o * AR

= L BN S i Sl e MO

St 4206 K M5 DT Coomaste progpam.

12 TS TS
[300 K. Adugies Sarver Arywbene N % D (e v ALS P Ay atuom et - Microwelh Intermet Dapherer
i e

Oe R You Fpwtes Jock U0

Omd = O - o) 2] &) sewth ewtm € - .3
Agtons (@] 105119 160 2 Wsmcirec b ChmerC il ave

CJ C]

208K G Mot P o
252K G Mot Prscons o WA
5,500 K 15 Wl Procass
3 = (== - Error: Page has timed out.
720K LA Shet Mascnch Coperson
C304 K Windows glow: Mcaech Covoson
2002 K Paraloh Shand ot Ago . Pmaleh Hokdrge. L4 .
AT508 K Parsieh Cortd Corver e Hodrgn (M o
Y % reg

13
P e e nRer
ooy Lok

O Usagm 317% Coment Orgn 14.00% Processes. ¢4 Prsecd ihagn. . 57%

Al conpents copyght © 2004 Cigco Svstem, Jos

4206 K M5 DT Coomae progam Mcasuch Comarnton

nmr

TG K Adngten Sorve Aywhens N deynibans Schone. nc Do e ALY KR Appie atuom Sl - Mcrovelt Intermet Deplerer

0K

72K e (R Yo Fgote Jok B

amor Oted =) - o) 2} &) sewch rewtms & - 3

s . ——

K Adiens [@] 1021192 160 2 Wssorecy b ChmerC il eve

[

152K G Mt Procass o Wh . Mcaonch Compertion
Servces Mot

SN0 K Goaras Mot Prsis o WA Manint Compnation
5502 K 15 Wik Process i Comns s

Esror: Page has timed out.

Al copents copyght © 2004 Cigco Svstems, Jac

tum| 28 &) Cucutncre A3 - 10... (0] Cucwsecure ACS UKP .) Cinaronbpmmeicisn.. | 2 Process Cogorw - Sysre...| 1 ot 3 pank |

No luck! So How am I going to debug this? There has to be a way.
Putting the process to sleep()

At the time one of my Corelan team mates sinn3r had completed a few HP NNM modules which he

Debugging Fun - Putting a process to sleep() | Corelan Team

encountered similar circumstances. The idea was to put the child process to sleep until I attach a debugger,
by inserting some code that would do this:

// (pseudo code):

while (IsDebuggerPresent == false) {
sleep(l);
}

// Repair the prologue of the entry point you hijacked,
// and then jmp back to the entry point.

Okay made sense, so time to get my hands dirty. I opened the executable in immunity and picked a good
function to hook (0x00401010). I wanted to skip some of the initial kernel calls and environment and jump
right into main().

il

€] e Yow (st Plgre jeeib Cotors Window tep Xbe m—
TR Mx > YN Ul JemewhcPkbar

Mealysing CouserCls 190 hewristieal procedures. 794 calls 1o bnown, 17 calls T- weessed (et lons [
B0en] [B | &) Countoare A3 -oe... | ©) Cuintacirs ACS U .| L3 Cnermbipmmenicsn... | 2N tvocom Lt - Sywe...| Y o v Pt 1@ ety Deepyes — B Crmbipenenition... | ™

The next thing I needed to was find a place in .text that wasn’t being used by the executable and would not
corrupt any other functions, or prevent the executable from working as intended. The goal would be to use
the existing call instruction (call 0x00401010 in this case), and change the offset value of that call to make a
jump to the location where my custom routine will be placed.

I found a nice spot at 0x00415362 so I would edit the call at 0x00414CD6 to point to that location.

€l Yoo (st Pugre jeeib O >

e
JhTE wx i MU

Aealys lng CousarCls 198 hewristical procedures. 794 calls 1o dnown, 17 cally

weessed (et lons Foused

B0en] [B | &) Countoare A3 ... | ©) Cuiutucins ACSUOP .|) C irembipmmens 2 Pvocons Cisow - Srwe...| 1 s Pt [@ Seeresity Deoopyer — B Cmblpmmenitisn.. | ™

Now I need to find the location of kernel32.Sleep & kernel32.IsDebuggerPresent. Since this is just a patch
I am doing locally on my system there is no need to look for a generic calls to these function, I can just look
up the locations in Immunity under executable then names. On my Windows 2003 SP2 system the locations
are 0x77e424de & 0x77e5da00. More than likely they will be different on your machine!

Debugging Fun - Putting a process to sleep() | Corelan Team

R e al8]x]
Nt Yoo [sbug Plgre Jeelb Cotors Wndow b Jobe -]
IRTH @«x> MY HUdl lemewhcPkbar
T

Wealys ing CoasarcGi 198 hawristleal procedures, 79 calls ts baown, 17 calls te wuessed functions Fonred
2| I8 &) Cucntmure ACS - 00, | ©) Crcutincirs ACS UCP Ao |) CAlnmminbpmmesicisn... | 3 Process Cotonns - Sywrt...| 1 sca i - pant ".; L — | o

Time to insert my function hook. Note that for this particular exploit there was not a need to jump back to
the next instruction after our original (now updated) call but I did it anyways.

First, I patched the call offset (to make it jump to the custom routine, which I’'m going to place at
0x00415362)

00414CD6 E8 87060000 CALL CSUserCG.00415362 ; jmp to custom routine

and I placed the custom routine at 0x00415362

00415362 6A 01 PUSH 1

00415364 E8 75D1A277 CALL kernel32.Sleep

00415369 E8 9286A477 CALL kernel32.IsDebuggerPresent
0041536E 83F8 01 CMP EAX,1

00415371 ~75 EF JINZ SHORT CSuserCG.00415362
00415373 CC INT3

00415374 83C4 04 ADD ESP,4

00415377 E8 94BCFEFF CALL CSuser(CG.00401010 ;go back
0041537C ~E9 5AF9FFFF JMP CSuserCG.00414CDB

BT WX s Yol | emtwhcPEbar

(67501 T47) Prearan entry polat Fousad
Pue| D8 ©) v - Moo awre... |) Clretpibimmesicion... | Y ootk 500 - pure | 8 rerns - srnmt Y e —| yom

With immunity we can now right click and save the changes to a new name. I decided to name the file
NEWCSUserCGl.exe and place it in our CGI script directory (C:\Inetpub\wwwroot\securecgi-bin).

Debugging Fun - Putting a process to sleep() | Corelan Team

(7301 547) Proaran entry polas Fonrad
tum| I8 £ v - Moo wre... |) Cletpbbmmesction... | Y o) 50t - pure | 6 rarind - sampat T T U nia
| - ity Octorger ComerCitewe alolx]

AT axr HMYHUYS] I emewhcPkbzros?

Fie g | T, EE T |

Seempon [Ceciris v [one = Carcel
(W7:01347) Prearan entry polat Foused
tem| D8 ©)0ver - Mowh btwre... |) Clrtpbimmesotion... | Y ot i - pure | 6 crarind sutnpnt (T o — ST

I then renamed the original executable to OLDCSUserCGlI.exe and then changed NEWCSUserCGlI.exe to
CSUserCGl.exe (which is the original name of the file)

This time I launched with the proof of concept in our URL and viola the script is still running!

TTF. Darenc Hoet Procest b Wk

2 1216824 - /vecurecy bin/ - Mcresh &

D8 «) J 2
ATV Dusch St Sevet T T T ——
R
o e TENERET [192.168.2.6 - /securecgi-bin/
K G Mo P .
S372 Qe Pecem

1000
450F
HERE

Pue| D8 D L el | 8 e - sennpnt VTR

Now time to see our buffer overflow and to verify our public proof of concept code is working. If we take a
look at (http://www.securityfocus.com/archive/1/489463 by FX) we can see that when we supply a long

Debugging Fun - Putting a process to sleep() | Corelan Team

string after “Logout+” we will reach our buffer overflow giving us control of EIP

T T ey —— alalx

€t Yow (st Bugre Jweib Cotore Wndow tep b

TR MxP UMY HUo] lemewhcPkbar

el D8 © 000 1002 Wowcs |) Crerpbbmnrition... | 1 gk 2o - Pt | 8 e serwnt [Q ety Cotusyyer ™

The vulnerable function is a subroutine in the function we hooked (0x00401010). First we can see a fixed
buffer of 0x60 being setup for our Logout argument.

€]t Yow (g Blgre weib Ootore Wrdow e Xibe
AT MaxP UMY U] lemewhcPkbar

twe| 8 © 0019 1402 Wowcs |) Crerpbmmesition... |) pxs oG - pare | 8 rerns - serwnt [Q ety Cetusyper ™
altlx
€t Yoo (sbg Plore Jib Cotors Wrdoe tho Xin a1

JhTE «x o i YU lemtwhcPkbzr.s?

ey) &) v - Mool bawre... |) Clrerpbimmmenicion... | Y o1 0 Pk | 8 s srnat P Y —urere— e

msvecrt.strtok is called and is looking for the first string that ends in “.”

Debugging Fun - Putting a process to sleep() | Corelan Team

Clthe Yo (v Pugre jib Ooto - o b
IRTE «x» n M YHU lemtwhcPkbazr

Pum| 28 &) ver - Moo bawre... |) Clrerpbimmmenicion... | 1Y ot 9 - Pare | 8 crerns - senmpat [Q Sverrsty Ocbusger .) ravam

The string is then copied on the stack and we eventually reach our buffer overflow.

[£ tovvarty Ocbogors Comevtilome (OU- mantvead)
€t You (stug Pugre Jeelb Coto - 0 Jobe
s TR xS AU lemetwhcPkbar

O:47:30)0 Mecons violatlon vhen exncnt ing (414141410 -~ wee SN PPy |:.-n wnapt lon o pregran Foused

| 28 ©) v - Mowoh btwre... |) Clbtmbimmmesotion... | € mnmants wd seemn.| Y ot 3o - pure § g - Menapad T ——) T

Woot! This was an easy stack buffer overflow and the final code can be seen here: (https://github.com
/rapid7/metasploit-framework/blob/unstable/unstable-modules/exploits/untested/cisco_acs_ucp.rb)

What about automating this?

I thought that this might be a good opportunity to create a script that would automate this process or come
up with an alternative. I presented the idea to my teammates before leaving from work and drove home
eager to give this a shot over the weekend. Low and behold I must have had a memory lapse and forgot that
corelanc0d3r has over 5000 lines of python-fu with immunity (mona.py anyone?) and finished this before I
even got home from work! All the credit goes to him for this one.

Here is his automated script that will essentially sleep the application until you attach the debugger and it
does it all without calling any kernel32 API calls.

binary patcher

will inject routine to make the binary hang
so you can attach to it with a debugger

#

corelancOd3r

(c) 2012 - www.corelan.be

import sys,pefile,os,binascii
def patch file(binaryfile):

routine = "\x33\xc0O" # Xxor eax,eax

Debugging Fun - Putting a process to sleep() | Corelan Team

routine += "\x83\xF8\x00" # cmp eax,0
routine += "\x74\xFB" # JE back to cmp

print "[+] Opening file %s" % binaryfile
pe = pefile.PE(binaryfile)

entrypoint = pe.OPTIONAL HEADER.AddressOfEntryPoint
base = pe.OPTIONAL HEADER.ImageBase
print " - Original Entrypoint : Ox%x" % (base + entrypoint)

searchend = 0
startrva = 0
for section in pe.sections:

if section.Name.replace('\x00','"') == '.text':
code segment
print " - Finding a good spot in code segment at 0x%x" % (base + section.Virtual,

print " Size : Ox%x" % section.SizeOfRawData
searchend = section.SizeOfRawData
startrva = section.VirtualAddress
#print (section.Name, hex(section.VirtualAddress), hex(section.Misc VirtualSize)
if searchend > 0:
cnt =0
consecutive = 0
stopnow = False
offsethere = 0
while cnt < searchend and not stopnow:
thisbyte = pe.get dword at rva(startrva+cnt)
if thisbyte ==
if offsethere ==
offsethere = startrva+cnt
consecutive += 1
else:
offsethere = 0
consecutive = 0
if consecutive >= len(routine)+5:
stopnow=True
cnt = cnt + 1
print " - Found %d consecutive null bytes at offset Ox%x" % (consecutive,offsethere)
print " Distance from original entrypoint : %x bytes" % (offsethere - entrypoint)
jmpback = "%x" % (4294967295 - (offsethere - entrypoint + 4 + len(routine)))
print " Jmpback : Ox%s" % jmpback
routine += "\xe8"
routine += binascii.a2b hex(jmpback[6:8])
routine binascii.a2b hex(jmpback[4:6])
routine += binascii.a2b hex(jmpback[2:4])
routine += binascii.a2b hex(jmpback[0:2])

+
1}

print " - Injecting hang + redirect (%d bytes) at 0x%x" % (len(routine), (base+offsethere
pe.set bytes at rva(offsethere,routine)
print " - Setting new EntryPoint to Ox%x" % (base+offsethere)

pe.OPTIONAL HEADER.AddressOfEntryPoint = offsethere
entrypoint = pe.OPTIONAL HEADER.AddressOfEntryPoint
print " - Entrypoint now set to : 0x%x" % (base + entrypoint)

print "[+] Saving file"
pe.write(filename=binaryfile.replace(".exe","")+" patched.exe")
print "[+] Patched."

else:
print "[-] No code segment found ?"

if len(sys.argv) ==
target = sys.argv([1]
if os.path.exists(target):
patch file(target)
else:
print " ** Unable to find file '%s' **" % target
else:
print "\nUsage : patchbinary.py filename\r\n"

What corelanc0d3r did was take advantage of pefile, a python module that allows us to read and work with
PE (Portable Executable) files. (This module is installed by default on BackTrack and Immunity
Debugger, just for your information)

His script will load the executable file and get the original entrypoint of the module.

Debugging Fun - Putting a process to sleep() | Corelan Team

Next, the script will look for a location in the file that has 12 consecutive null bytes (you could replace this
with for example NOPS if needed).

At that location, an custom routine will be placed. This routine will clear out EAX, compare it with 0, and
then jump back to the compare statement if the condition is true. Essentially this will be a loop until we
attach our debugger. After the conditional jump (which ensures the loop), a call to the original location of
the entrypoint is placed. Finally, the entrypoint RVA in the PE file is updated to point at the custom routine.

In other words, when you would run this executable, it would just hang (infinite loop). When attaching a
debugger the process will pause. You then only need to find the location where the custom asm routine was
inserted (the address is, in fact, right after the updated entrypoint), and either replace the cmp instruction
with nops, or just change the cmp eax,0 into cmp eax,1. If you would continue to run the process, the
executable would simply start doing what it’s supposed to do. Alternatively, you can just let the application
run and then pause (break)... it would halt on the cmp or the jump instruction inside the custom routine.

Lets go ahead now and run this from cmd.exe and see everything work automatically.

After the script finds and writes to a safe place for the loop, it will save a new file with the filename and
“_patched.exe”.

If we go ahead and run we can see that it works and does the same thing as my manual patch.

twm| I8 ©) v Mowoh bawre... |) Clretpimmmenition... | § Unttied - Netrpadt | 2 Pvacons Cgtoow - Sysre... [Comenand Proevet U s

Now if we rename our patched file and run our proof of concept again we can then attach the debugger and
press “pause” to stop the loop. We then break out of the loop and the call back to the original entrypoint will
be executed.

4 meraarety Drbmogrges - CaverCTaLewe - (TP - s theead, s CSamver() w81 x]

€]t You (stug Pugre Jeelb Cotors Wndow e Jobe 10)

3T s M A | em b e p kb) s

| s

Show Harduare Breskps ints viadeu CALTON) Fousad
tum| I8 ©2009 90 1002 W | L) Clrerpbimmnenicion... | 8 Unetind - Netrpad T o | prr— | M i - pare | Yy er—— U s

Woot! Looks like everything is working properly. So that’s pretty much it, this is just a short article on a

Debugging Fun - Putting a process to sleep() | Corelan Team

problem I encountered and how it was solved. Note that this technique most likely won’t worked with
packed/encoded binaries...

Windbg ?

You can, of course, do the same thing with other debuggers as well. The basic procedure will be exactly the
same, you only need to know how to edit the instruction in memory to break out of the loop.

Let’s say you want to change the CMP instruction into CMP EAX,1. This requires us to change one byte in
memory (the byte at 0x00415337 in this case).

With the debugger attached (and the process interrupted), simply run the following command:

eb 0x00415337 0x01
eb = edit byte. Other windbg ‘edit’ commands are ew (edit word) and ed (edit dword).

Afer making the change, press F5 (or type ‘g’) to let the process break out of the loop and return to the
original entrypoint.

Update (march 1st 2012)

As various people on twitter suggested, you can obviously also use \xeb\xfe as patch routine (which will
just jump to itself). Tx @fdfalcon and @pa kt for the good feedback !

© 2012, Corelan Team (Lincoln). All rights reserved.

