Defeating DEP,
the Immunity Debugger way

Pablo Solé
Immunity

11/12/08 IMMUNITY ...

Old School Stack Overflow

Stack Memory Stack Memory
Buffer Buffer
Saved Frame Garbage
Return Address JMP ESP
Func Args SHELLCODE

11/12/08 IMMUNITY ...

Data Execution Prevention

Stack Memory

Buffer

JMP ESP

eLLoope stack and heap
>< are not execuable anynore!
// l \\

11/12/08 IMMUNITY ...

Return to LIBC 101

Stack Memory

Addr-POP EAX POP EAX
VALUE for EAX » RETN
Addr-POP ECX POP ECX
VALUE for ECX » RETN

Function Addr

Let's say we want to call a function

that takes the arguments from
registers EAX and ECX

11/12/08 IMMUNITY ...

Survey of the Landscape

Data Execution Prevention
VS

Immunity Debugger

What | Have What | Want What | Need

11/12/08 IMMUNITY 0‘. 5

Some Previous Efforts

« EEREAP by eEye

- made a cpu/memory emulator using process
snapshots

e Return-Oriented Programming by Hovav
Shacham

- presented a Turing-complete language using pre-
selected opcode sequences (gadgets)

e manual efforts

— you can always search your own ret-to-libc pieces
manually

11/12/08 IMMUNITY ...

An Aside

| need a pop/pop/ret FTW!

EIP = [ESP + 8]
XCHG EAX,ESP
POP R32
ADD ESP, 8 LEA EAX, [EAX+8]
POP R332 30 MOV EDX, [EAX]
RETN REIN XCHG EAX,ESP
RETN

DEPLib.seteip([ESP','+',8])

11/12/08

IMMUNITY 8@

\J

— Hacker's needs

(Lazy Level)

— Mind (Theoretical Level)

— Reality (Binary level)

— Magic! (DEPLib level)

Real World Problems

e Win32, not Linux

e Cannot be limited to libc (or any particular
library)

» Optimize for filter bypassing and size

e Simplistic language

It should find the necessary sequences
automatically

11/12/08 IMMUNITY ...

"")
g
,
| :
B \
D
EPLIib
D
VA
4. W h:?
ﬁ?

i)‘MM\\\\\\
,‘
\
.‘1 A
;\ﬁ?@ﬂ

\)\\

(1

|

.-tl: !X

e

a\\;\.\\

(ﬁ“})'%—\\‘

D 1

\i\ RN

tg(l'\v\

\

SearchDEP

* Search RETN opcodes (0xC2 or 0xC3) in the
entire DLL memory

* Disassemble backward until it finds an
unsupported/invalid opcode

e Generate all possible disassemblies (move a byte
and magic can occur)

 Finally, it returns lists of opcodes for each
RETN-ended sequence

11/12/08 IMMUNITY ... 10

SearchDEP Example

Binary Data

7C91990D 66 83 26 00 66 83 66 ffa.ff£
7C919915 02 00 04 00 5E 5D .ff."]
7C91991D C2 04 00 A.

Possible Disassemblies

7C91991A 0O5E 5D ADD BYTE PTR DS:[ESI+5D],BL
7C91991D C2 0400 RETN 4

7C919919 04 00 ADD AL, 0

7C91991B 5E POP ESI

7C91991C 5D POP EBP

7C91991D C2 0400 RETN 4

7C91990E 668326 00 AND WORD PTR DS:[ESI],O0
7C919912 668366 02 00 AND WORD PTR DS:[ESI+2],0
7C919917 04 00 AND DWORD PTR DS:[ESI+4],0
7C91991B 5E POP ESI

7C91991C 5D POP EBP

7C91991D C2 0400 RETN 4

11/12/08 IMMUNITY ...

Sequence Analyzer

 Emulate each instruction

* Generate a resulting CPU/Memory context

e Support interactions between CPU and Memory
e Solve modulo 27 8/16/32 arithmetic

—axora=0/aand 0 =0
— a xor !a = all-ones
- (a>>16) and !(a>>16) =0
e Support abstract memory addressing

- MOV EAX, DWORD PTR DS:[EDX]
(supposing we don't know EDX value)

11/12/08 IMMUNITY ... 12

CPU/Memory Context

¢COEHBEC | Analyz ing: MOU OWORD FTR D5:[EAX], H
¢COEABYZ Analyz inge MOU EEX,DOWORD PTR DOS5:[EAX]
fCO9EABY4 Hnalyz inge PUSH EBX

MEMOTY

Cfunk', "ESP'], 32, » ['con®, 3L1, 32, BI1:LL'=", ["con®, BLI, &, BI]

Cfunk', "ERx'], 32, E] [fcon®, 11, 32, B11:0C°=", [fcon®, @L1, B, B1]
Cfunk', "ERx"], 32, : » ['con®, BLI, 5, BI]

Cfunk', "ESP'], 32, » ["con®, 1L1, 32, BI1:[L'=F

"ESF'], EE. . ["con®, 2L1, 32, B11:[['=F

"ESP'I, 32, . ["con®, 41, 22, E]]=[Eif'

[C'=

» ["con®, BLI, 5, BI]
» ["con®, BLI, &, BI]
[foon®, BL1, &, @]]

[Fzon®, @L1, E. b]]

"EAX" T, 32, [fcon®, 3L1, 32, B11: ‘
» ["con®, BLI, &, BI]

"EAX" I, 32, [feon®, 2L1, 32, B11:

Crunk®, "ESP"1, [*-*, ["con', 41, 32, B1]
Crunk®, "EOI"1,
£ 1,
FEDH"]
: AL, EE E]]
ES]: . . 'EEI 1, 32, A1]
ECHILL =" . “e TELAT I, 32, Wl
EIP: "EIP*1, 32, @11
RETH nFFaet 5]
enlapsed time Ln secs:H

‘_!Sem:nceanal ZET

11/12/08 IMMUNITY @@ 13

Pieces Analyzer

 Summarize the consequences of executing a
sequence over our running context

* Make hashes of each CPU/Memory change
* Calculate a complexity value of each piece

 We don't need to deal with instructions
anymore, just CPU/Memory state

11/12/08 IMMUNITY ...

Consequences

 Is a change is the CPU/Memory context
* Each piece generate a set of consequences

* We can search in our DB for these consequences
using the hashes

EBX:[['=', ['con', OL], 32L, OL]]1:C59756CO
| | | |
Reg Value CRC32

11/12/08 IMMUNITY ... 15

Piece Complexity Index

 How complex is this piece?
- how many consequences does it have?
- how many memory operations does it have?
— how much has the stack pointer moved?

MOV EDI,EDIT
RETN

MOV EDI,EAX
POP EAX

POP EBX
RETN 4

POP ECX
RETN OC

MOV EAX,

[EBX] XOR EDI, [EBX+ECX*4]
MOV [EDI], EAX
XOR EAX,EAX

POP ECX
RETN 30

COMPLEXITY

B =

11/12/08

IMMUNITY 8@ 16

ID Database

» Store all module's pieces along with necessary
information to replay the sequence

* Using the consequence hash we can find
suitable pieces quick and easy

 And we always get the simpler piece that does
the job thanks to the complexity index

11/12/08 IMMUNITY ...

17

The DB l
SELECT * FRCM pieces WHERE piece_id IN

(SELECT piece_id FROM consequences WHERE consequence_hash 9 32074775
ORCER BY piece_camplexity
LIMIT 5

Fun S0L | Laskt Error: Iru:ut an errar

iece complexit

11/12/08

module id

iece dum
BELOE (Size:

size | module offset

—_— e— e— e

IMMUNITY 8

Eiece ErnEerties |

[LoadStack, LoadReg,
LoadStack, LoadReq']
Load5tack, LoadReq’
Loadstack, LoadReq’

LoadsStack, LoadReq']

18

Data Data everywhere

* NTDLL generates ~10,000 pieces

* Many pieces have the same consequences
(but we need them to bypass filters)

* Processing an average sized library takes 4 hrs

e SQL allows us to make arbitrary complex

queries

— Find pieces with the same address over a set of
modules (universal addresses)

— Use only application specific addresses (independent
from the OS)

11/12/08 IMMUNITY ... 19

DEPLib Parser

* Track register use to avoid undesirable
overwriting of already settled values (du chains)

It supports variables

It does register reusing over non-overlapped
variables

» Calculate all possible combinations of variable
to register mapping

11/12/08 IMMUNITY ... 20

About the Language

* Almost assembler:
- mov, sub, add
- xor, and, or
— shl, shr, rol, ror
— call (using fixed or dynamic stack arguments)

* And some useful additions:

— jump to your shellcode

— find your stack stream

e parser.findbuffer(['EAX','+',8])
means: EIP=[EAX+8], ESP=EAX+12

— find the stack stream end

11/12/08 IMMUNITY ...

21

11/12/08

DEPLib Parser Example

def test(zelf):
- igw = immlib.Debugger()
parser = DEPLibParser{imm)

parser.mov{"EDx", Jx00040000) #fllptions (HEAP CREATE ENABLE EXECUTE
parser.nov{"ECA", Ux0000L000)y #dwlnitialiize

parser,nov{"ELL") fdulaximmiize

parser.call args("FERNEL:Z.HeapCreate”,)

IMMUNITY 8

22

Transformation...

reqeERs, defines:[2l, 3L1]

reqeEly, defines:[AL]

regiECH, defines:[1L]

regiEAX, usesi[3L]

regiEOW, usesi[3L]

regiECH, usesi[3L]

reqiEAK, freesi[3L]

reqeEls, frees:[3L]

reqeECH, freesi[3L]

reqiERs, needed:[]

reqiE0X, needed:[iL, 2L1

reqiECH, needed: [ZL]

codposs B, cmd: CTHOU*, [('req®, "EDS"), ("const', 262144111
regsi[], varsi[], defregs:[TEDR"], defuvars:[]

cmdpos: 1, cmdeLTMOUV', C0Q'reg®, "ECK'), ("const', d4@96L11]
regss ["EOR'], wars:[], defregs:["ECK'], defuars:[]

cmdpos: 2, cmde ["HMOL', [0"reg®, "EMR'), ("const®, BL)11]
regs: ["EDR", "ECA'], wars:[], defregs:["ERs"], defuars:[]

codpos: 3, cmd: ["CALL_ARGS", [['const', 26@88d48262L1, 3L, ['EAR", "ECK', "EDW'I, Falsell
regsi (], varsi[], defreqs:i[TEAR"], defuvars:[]

11/12/08 IMMUNITY 8

DEPLib Generator

e Searches in the database for pieces that
generate our desired consequences (we don't
use hand-selected addresses, all is done
dynamically)

* Checks that each piece satisfies a set of
preconditions:

— undesired memory writing/reading

— undesired register overwriting
— piece effective address bypass chars filtering

» Creates a stack sequence that we need and fills
the blanks with good chars

11/12/08 IMMUNITY ... 24

DEPLib Parameters

» To start generating our stack stream, we need
the following information from the user:
— a DEPLib Parser instance

— a list of allowed modules to get the pieces from
* OS specific?
 Application specific?
* Universal addresses?
— a list of memory addresses where we can read or
write (optional)
— a list of bad chars (to bypass chars filtering)

11/12/08 IMMUNITY ...

Some tricks...

* We need to support loading of arbitrary values
to registers (even if they have bad chars)

<i§eplib.mov(’EAX’, Ox00040000i:> » DEPLib Language Level

def mov(reg, value):
if value has badchars:
PopPopSubTrick(reg, value)
else:
PopTrick(reg, value)

—p» DEPLib Logic Level

def PopPopSubTrick(reg, value):
(vall,val2) = findSubValues(value)
mov(reg, vall)
reg2 = findFreeReg()
mov(reg2,val2)
sub(reg, reg2)

11/12/08 IMMUNITY ... 26

Some tricks...

MOV EAX,O0XFFFFFFFF
MOV EDX, 0XFFFBFFFF
SUB EAX,EDX

» Assembler Level

Return Programming Level

Stack Memory

77F21564

FFFFFFFF
77F33A40

FFFBFFFF
77F31293

11/12/08

77F21564 58 POP EAX
77F21565 C3 RETN

77F33A40 5A POP EDX
77F33A41 C3 RETN

77F31293 2BC2 SUB EAX,EDX
77F31295 C3 RETN

IMMUNITY 8

27

Metrics

e e ve obtained a stack stream that
successfully and reliably do:
- HeapCreate with the Executable Page option
- Allocate a chunk in this new heap
— Memcpy our shellcode
— Jump to the allocated chunk

In just 280 bytes, bypassing NULL chars filters
I[f you don't have badchars it's half that size

 The smallest stream we have created (always
bypassing NULL char filtering) is 236 bytes
long

11/12/08 IMMUNITY ... 28

11/12/08

DEMO

IMMUNITY 8

29

Future Work

* Support the entire x86 instruction set
 Interpret flags and do conditional analysis

e Support conditional execution and looping on
DEPLIib to create a Turing-Complete

implementation

— Not just for the FUN, but to execute shellcode
selectively

11/12/08 IMMUNITY ... 30

The Conclusion

Automatically defeating DEP is not just an idea
is a FACT

11/12/08 IMMUNITY ...

31

11/12/08

Thank you for your time

Contact me at:
pablo.sole@immunityinc.com

IMMUNITY 8@

32

