
PRACTICAL RETURN-ORIENTED PROGRAMMING

Dino Dai Zovi
Endgame Systems

Session ID: RR-304
Session Classification: Advanced

WHY AM I HERE?

• Show the practical applications of return-oriented
programming to exploitation of memory corruption
vulnerabilitiesvulnerabilities
– “Preventing the introduction of malicious code is not enough to

prevent the execution of malicious computations”1

• Demonstrate that while exploit mitigations make• Demonstrate that while exploit mitigations make
exploitation of many vulnerabilities impossible or more
difficult, they do not prevent all exploitation
– Modern computing needs more isolation and separation between– Modern computing needs more isolation and separation between

components (privilege reduction, sandboxing, virtualization)
– The user-separation security model of modern OS is not ideally

suited to the single-user system
Wh d ll f li ti h t d d it ll– Why do all of my applications have access to read and write all
of my data?

1. “The Geometry of Innocent Flesh on the Bone: Return‐Into‐Libc without Function Calls (on the x86)”,

2

Hovav Shacham (ACM CCS 2007)

AGENDA

Current State of Exploitationp

Return-Oriented ProgrammingReturn-Oriented Programming

B i DEPBypassing DEP

Exploiting iPhone

3

Current State of Current State of
ExploitationExploitation

4

A BRIEF HISTORY OF MEMORY CORRUPTION

• Morris Worm (November 1988)
– Exploited a stack buffer overflow in BSD in.fingerd on VAXg
– Payload issued execve(“/bin/sh”, 0, 0) system call directly

• Thomas Lopatic publishes remote stack buffer overflow
exploit against NCSA HTTPD for HP-PA (February 1995)exploit against NCSA HTTPD for HP-PA (February 1995)

• “Smashing the Stack for Fun and Profit” by Aleph One
published in Phrack 49 (August 1996)

• Researchers find and exploit stack buffer overflows in a
variety of Unix software throughout the late 90’s

• Many security experts thought (incorrectly) that stack
buffer overflows were the only exploitable problem

5

A BRIEF HISTORY OF MEMORY CORRUPTION

• “JPEG COM Marker Processing Vulnerability in Netscape
Browsers” by Solar Designer (July 2000)

Demonstrates exploitation of heap buffer overflows by overwriting– Demonstrates exploitation of heap buffer overflows by overwriting
heap free block next/previous linked list pointers

• Apache/IIS Chunked-Encoding Vulnerabilities demonstrate
exploitation of integer overflow vulnerabilitiesp g
– Integer overflow => stack of heap memory corruption

• In early 2000’s, worm authors took published exploits and
unleashed worms that caused widespread damageunleashed worms that caused widespread damage
– Exploited stack buffer overflow vulnerabilities in Microsoft operating

systems
– Results in Bill Gates’ “Trustworthy Computing” memo

• Microsoft’s Secure Development Lifecycle (SDL) combines
secure coding, auditing, and exploit mitigation

6

EXPLOIT MITIGATION

• Patching every security vulnerability and writing 100%
bug-free code is impossible

E l i i i i k l d hi d k– Exploit mitigations acknowledge this and attempt to make
exploitation of remaining vulnerabilities impossible or at least
more difficult

• Windows XP SP2 was the first widespread operatingWindows XP SP2 was the first widespread operating
system to incorporate exploit mitigations
– Protected stack metadata (Visual Studio compiler /GS flag)
– Protected heap metadata (RtlHeap Safe Unlinking)Protected heap metadata (RtlHeap Safe Unlinking)
– SafeSEH (compile-time exception handler registration)
– Software, Hardware-enforced Data Execution Prevention (DEP)

• Windows Vista implements Address Space Layout• Windows Vista implements Address Space Layout
Randomization (ASLR)
– Invented by and first implemented in PaX project for Linux

7

MITIGATIONS MAKING EXPLOITATION HARDER

DEP

ASLR

ty

Heap

SafeSEH

oi
t D

iff
ic
ul
t

Stack
P i

Heap
ProtectionEx
pl

Protection

Mitigations

8

Mitigations

EXPLOIT TECHNIQUES RENDERED INEFFECTIVE

Stack return address overwriteStack return address overwrite

SEH frame overwriteSEH frame overwrite

Heap free block
metadata overwrite
Heap free block

metadata overwrite
Application‐
specific data
Application‐
specific data

??????

9

MITIGATIONS REQUIRES OS, COMPILER, AND
APPLICATION PARTICIPATION AND ARE ADDITIVE

OS run‐time

mitigations
Heap protections,
SEH Chain Validation

A li iC il Application
opt‐in to
mitigations

Compiler‐
based

mitigations

Stack cookies,
SafeSEH DEP, ASLR

gg

10

WHAT MITIGATIONS ARE ACTIVE IN MY APP?

• It is difficult for even a knowledgeable user to determine
which mitigations are present in their applications

I h li i il d i h k i ?– Is the application compiled with stack protection?
– Is the application compiled with SafeSEH?
– Do all executable modules opt-in to DEP (NXCOMPAT) and

ASLR (DYNAMICBASE)?ASLR (DYNAMICBASE)?
– Is the process running with DEP and/or Permanent DEP?

• Internet Explorer 8 on Windows 7 is 100% safe, right?
IE8 Wi d 7 th l t it f l it iti ti– IE8 on Windows 7 uses the complete suite of exploit mitigations

– … as long as you don’t install any 3rd-party plugins or ActiveX
controls

• What about Adobe Reader?• What about Adobe Reader?
– You don’t want to know…

11

Return Oriented Return-Oriented
ProgrammingProgramming

12

RETURN-TO-LIBC

• Return-to-libc (ret2libc)()
– An attack against non-

executable memory
segments (DEP, W^X, etc)

f

Arg 2

– Instead of overwriting
return address to return
into shellcode, return into a
loaded library to simulate a
f i ll

Next

Arg 1

Stack G
row

Stack G
row

function call
– Data from attacker’s

controlled buffer on stack
are used as the function’s Function

function

w
th

w
th

are used as the function s
arguments

– i.e. call system(cmd)

13

“Getting around non‐executable stack (and fix)”, Solar Designer (BUGTRAQ, August 1997)

RETURN-ORIENTED PROGRAMMING

• Instead of returning to
f ti t t

mov eax, 0xc3084189
functions, return to
instruction sequences
followed by a return
instruction

,

• Can return into middle of
existing instructions to
simulate different

B8 89 41 08 C3
instructions

• All we need are useable
byte sequences anywhere mov [ecx+8] eaxy y
in executable memory
pages

“The Geometry of Innocent Flesh on the Bone: Return‐Into‐Libc without Function Calls (on the x86)”,

mov [ecx+8], eax
ret

14

Hovav Shacham (ACM CCS 2007)

RETURN-ORIENTED PROGRAMMING

• Various instruction
sequences can be
combined to form
gadgets pop eaxpop eaxg g

• Gadgets perform higher-
level actions

W it ifi 32 bit l
add eax,ecxadd eax,ecx

retret mov [eax],ecx
ret

mov [eax],ecx
ret

– Write specific 32-bit value
to specific memory location

– Add/sub/and/or/xor value at
memory location with

retret

memory location with
immediate value

– Call function in shared
library

GadgetsGadgets

15

EXAMPLE GADGET

pop eax
ret

pop eax
ret

pop ecx
ret

pop ecx
ret

mov [ecx],eax
ret

mov [ecx],eax
ret

STORE
IMMEDIATE

VALUE

STORE
IMMEDIATE

VALUE

16

GENERATING A RETURN-ORIENTED PROGRAM

• Scan executable memory regions of common shared
libraries for useful instruction sequences followed by
return instructions

• Chain returns to identified sequences to form all of the
desired gadgets from a Turing-complete gadget catalogdesired gadgets from a Turing complete gadget catalog

• The gadgets can be used as a backend to a C compiler
– See Hovav Shacham’s paper for details on GCC compiler

backend and demonstration of return-oriented quicksort

• Preventing the introduction of malicious code is not
enough to prevent the execution of malicious g p
computations

17

Bypassing DEP

18

DATA EXECUTION PREVENTION

• DEP uses the NX/XD bit of x86 processors to enforce
the non-execution of memory pages without
PROT EXEC permissionPROT_EXEC permission
– On non-PAE processors/kernels, READ => EXEC
– PaX project cleverly simulated NX by desynchronizing instruction

and data TLBsand data TLBs
• Requires every module in the process (EXE and DLLs)

to be compiled with /NXCOMPAT flag
DEP b t d ff d i ll f th h l• DEP can be turned off dynamically for the whole process
by calling (or returning into) NtSetInformationProcess()1

• XP SP3, Vista SP1, and Windows 7 support “Permanent pp
DEP” that once enabled, cannot be disabled at run-time

1. “Bypassing Windows Hardware‐Enforced Data Execution Prevention”,
k d Sk i (i f d l O b 200)

19

skape and Skywing (Uninformed Journal, October 2005)

RETURN-ORIENTED EXPLOITS

• First, attacker must cause stack pointer to point into
attacker-controlled data

Thi f f i k b ff fl– This comes for free in a stack buffer overflow
– Exploiting other vulnerabilities (i.e. heap overflows) requires

using a stack pivot sequence to point ESP into attacker data
• mov esp, eaxmov esp, eax
ret

• xchg eax, esp
ret

• add esp, <some amount>
retret

• Attacker-controlled data contains a return-oriented
exploit payload

Th l d b 100% t i t d i– These payloads may be 100% return-oriented programming or
simply act as a temporary payload stage that enables
subsequent execution of a traditional machine-code payload

20

RETURN-ORIENTED PAYLOAD STAGE

• HEAP_CREATE_ENABLE_EXECUTE method1

hHeap = HeapCreate(HEAP_CREATE_ENABLE_EXECUTE, 0, 0);
f P l d H All (hH 0 d P l dL th)pfnPayload = HeapAlloc(hHeap, 0, dwPayloadLength);

CopyMemory(pfnPayload, ESP+offset, dwPayloadLength);
(*pfnPayload)();

• VirtualAlloc() method• VirtualAlloc() method
VirtualAlloc(lpAddress, dwPayloadSize, MEM_COMMIT,

PAGE_EXECUTE_READWRITE);
CopyMemory(lpAddress, ESP+offset, dwPayloadSize);
(*lpAddress)();

• VirtualProtect(ESP) method
VirtualProtect(ESP+offset & ~(4096 – 1),

d P l dSi PAGE EXECUTE READWRITE)dwPayloadSize, PAGE_EXECUTE_READWRITE);
(*ESP+offset)();

21

1. “DEPLIB”, Pablo Sole (H2HC November 2008)

DO THE MATH

Stack PivotStack Pivot

Return‐
Oriented
Payload
Stage

Return‐
Oriented
Payload
Stage

Traditional
Payload

Traditional
Payload

Permanent
DEP Bypass
Exploit

Permanent
DEP Bypass
Exploit

22

DEP WITHOUT FULL ASLR IS VERY WEAK SAUCE

• No ASLR:
– Exploitation requires building a reusable return-Exploitation requires building a reusable return

oriented payload stage from any common DLL
• One or more modules do not opt-in to ASLR:

– Exploitation requires building entire return-oriented
payload stage from useful instructions found in non-
ASLR module(s)

• All executable modules opt-in to ASLR:
– Exploitation requires exploiting a memory disclosure

vulnerability to reveal the load address of one DLLvulnerability to reveal the load address of one DLL
and dynamically building the return-oriented payload
stage

23

THE “AURORA” IE VULNERABILITY

• EVENTPARAMs copied by createEventObject(oldEvent)
don’t increment CTreeNode ref count

CElement

EVENTPARAM

CTreeNodem_pSrcElement

24

THE “AURORA” IE VULNERABILITY

• EVENTPARAM member variable and CElement member
variable both point to CTreeNode object

CElement

EVENTPARAM

CTreeNodem_pSrcElement

25

THE “AURORA” IE VULNERABILITY

• When HTML element is removed from DOM, CElement
is freed and CTreeNode refcount decremented

CElement

EVENTPARAM

CTreeNodem_pSrcElement

26

THE “AURORA” IE VULNERABILITY

• If CTreeNode refcount == 0, the object will be freed and
EVENTPARAM points free memory

EVENTPARAM

CTreeNodem_pSrcElement

27

EXPLOITING THE AURORA VULNERABILITY

• Attacker can use controlled heap allocations to replace
freed heap block with crafted heap block

EVENTPARAM

Crafted CTreeNode

0c0c0c04m_pSrcElement

28

EXPLOITING THE AURORA VULNERABILITY

• The crafted heap block points to a crafted CElement
object in the heap spray, which points back to itself as a
crafted vtable

CElement vtable
xchg eax,esp

pop; ret
Crafted CTreeNode

CElement vtable

CElement

0c0c0c04
pop; ret

0c0c0c08

ret

0c0c0c08

29

EXPLOITING THE AURORA VULNERABILITY

• Attacker triggers virtual function call through crafted
CElement vtable, which performs a stack pivot through a
return to an ‘xchg eax, esp; ret’ sequence and runs
return-oriented payload

CElement vtable
ret

CElement vtable
ret
retxchg eax,esp

pop; ret ret
ret
Return oriented

pop; ret

0c0c0c08

ret Return‐oriented
payload stage

ret

30

Aurora Exploit Demo

31

Exploiting iPhone

32

REVIEW OF IPHONE OS SECURITY MECHANISMS

• W^X non-executable memory policy
– Memory page can’t be writable and executable at the same timey g

• Code-signing enforcement (unless you JailBreak)
– If a memory page’s backing store is not an executable binary

signed by Apple it cannot be marked PROT EXECsigned by Apple, it cannot be marked PROT_EXEC
– If an executable memory page has been made writable, it cannot

later be made executable again
– Can’t execute a binary that has not been signed by Appley g y pp

• Sandbox
– Restricts process behavior at run-time by blocking disallowed

system callssystem calls
– Policy against background processes => fork() returns EPERM

• No ASLR

33

LACK OF ASLR IS WEAK

• Lack of ASLR means that all libraries and
frameworks can be used as source material for
return-oriented programsreturn oriented programs
– dyld
– libSystem

• Writable data segments at known locations can be• Writable .data segments at known locations can be
used for scratch data storage

• Return-oriented payloads for iPhone have already
been presented1been presented1

– Sends contents of file to remote server
– Still restricted by sandbox policy

R t i t d l d f Wi d M bil• Return-oriented payloads for Windows Mobile on
ARM have also recently been developed2

1 “Fun and Games with Mac OS X and iPhone Payloads” Miller and Iozzo (BlackHat EU 2009)

34

1. “Fun and Games with Mac OS X and iPhone Payloads”, Miller and Iozzo (BlackHat EU 2009)
2. “Return Oriented Programming for the ARM Architecture”, Tim Kornau (Diploma, Dec. 2009)

RETURN-ORIENTED ARM

• ARM (32-bit) vs. Thumb mode (16-bit)
– Bytes decode to different instructions depending on CPU state
– BX and BLX instructions can switch modes based on least

significant bit of address (0 => ARM, 1 => Thumb)
– Can also switch modes via LDR/LDM/POP instructions that set PC

registerregister

• Scan all executable segments and disassemble as both ARM
and Thumb to look for instruction sequences followed by
returns (LDM/POP)returns (LDM/POP)

• Keep track of CPU state when generating return-oriented
program and switch states as necessary in gadgets

• Return-oriented programming also sidesteps exploitation
difficulties presented by separate instruction and data caches

35

ARMV5 GADGETS

• Simulate a function call and store return value
– pop {r0, r1, r2, r3, pc}
…

{ 4 7 }pop {r4, r7, pc}
…
str r0, [r4]
pop {r4, r7, pc}

• Store immediate value to memoryStore immediate value to memory
– pop {r4, r5, r7, pc}
…
str r4, [r5]
pop {r4, r5, r7, pc}

• Load value from memory into r0
– ldr r0, [r0]
pop {r7, pc}

• And so on• And so on…
– For more details, see “Return Oriented Programming for the ARM

Architecture”, Tim Kornau 2009

36

Wrapping Up

37

OTHER APPLICATIONS OF RETURN-ORIENTED
PROGRAMMING

• Embedded processors often have separate instruction
and data write-back caches, which make injecting code
problematic
– Return-oriented programming techniques can be used to flush

the caches before executing the payload (Dai Zovi, 2003)

• x86-64 ABI requires non-executable (NX) data memory
– “Borrowed code chunks” exploitation technique (Krahmer 2005)

S h d d i k d i ROM d• Some secure hardware designs keep code in ROM and
refuse to execute code from RAM
– Checkoway et al (Usenix 2008) demonstrated the use of ROP on

th Z80 b d S i AVC Ad t ti hithe Z80-based Sequoia AVC Advantage secure voting machine

38

CONCLUSIONS

• Return-oriented techniques are increasingly required to exploit
vulnerabilities on systems with non-executable data memory
protectionsprotections

• A return-oriented payload stage can be developed to bypass
Permanent DEP

• Bypassing DEP under ASLR requires at least one non-ASLR
module

• Bypassing DEP under full ASLR requires an executable memory
address disclosure vulnerability in addition to memory corruption
corruption

• iPhone’s code signing enforcement requires attackers to develop
fully return-oriented payloads
– Attacker’s actions are still limited by the application sandbox

• Preventing malicious actions is more important than preventing g p p g
malicious code

39

TAKEAWAYS

• IT Security
– Malware may eventually use these techniques to exploit DEP-y y

enabled processes
– Malware analysts must learn how to analyze return-oriented

exploit payloads

• Software Vendors
– Do not assume DEP/ASLR make vulnerabilities non-exploitable
– Better to assume that all vulnerabilities yield full code executiony
– Restrict the actions that may be performed by application

components that parse and handle potentially untrusted data
• Privilege reduction (i.e. run under Low Integrity on Vista/7)
• Sandboxing (see Chromium’s sandboxed web renderers1)
• Virtualization?

1 http://dev chromium org/developers/design documents/sandbox

40

1. http://dev.chromium.org/developers/design‐documents/sandbox

Questions?

41

