
Smashing the Gadgets: Hindering Return-Oriented

Programming Using In-Place Code Randomization

Vasilis Pappas

Columbia University

vpappas@cs.columbia.edu

Michalis Polychronakis

Columbia University

mikepo@cs.columbia.edu

Angelos D. Keromytis

Columbia University

angelos@cs.columbia.edu

Abstract—The wide adoption of non-executable page protec-
tions in recent versions of popular operating systems has given
rise to attacks that employ return-oriented programming (ROP)
to achieve arbitrary code execution without the injection of
any code. Existing defenses against ROP exploits either require
source code or symbolic debugging information, or impose a
significant runtime overhead, which limits their applicability for
the protection of third-party applications.

In this paper we present in-place code randomization, a
practical mitigation technique against ROP attacks that can
be applied directly on third-party software. Our method uses
various narrow-scope code transformations that can be applied
statically, without changing the location of basic blocks, allowing
the safe randomization of stripped binaries even with partial
disassembly coverage. These transformations effectively eliminate
about 10%, and probabilistically break about 80% of the useful
instruction sequences found in a large set of PE files. Since no
additional code is inserted, in-place code randomization does
not incur any measurable runtime overhead, enabling it to be
easily used in tandem with existing exploit mitigations such
as address space layout randomization. Our evaluation using
publicly available ROP exploits and two ROP code generation
toolkits demonstrates that our technique prevents the exploitation
of the tested vulnerable Windows 7 applications, including Adobe
Reader, as well as the automated construction of alternative ROP
payloads that aim to circumvent in-place code randomization
using solely any remaining unaffected instruction sequences.

I. INTRODUCTION

Attack prevention technologies based on the No eXecute

(NX) memory page protection bit, which prevent the execution

of malicious code that has been injected into a process, are now

supported by most recent CPUs and operating systems [1].

The wide adoption of these protection mechanisms has given

rise to a new exploitation technique, widely known as return-

oriented programming (ROP) [2], which allows an attacker to

circumvent non-executable page protections without injecting

any code. Using return-oriented programming, the attacker

can link together small fragments of code, known as gadgets,

that already exist in the process image of the vulnerable

application. Each gadget ends with an indirect control transfer

instruction, which transfers control to the next gadget ac-

cording to a sequence of gadget addresses injected on the

stack or some other memory area. In essence, instead of

injecting binary code, the attacker injects just data, which

include the addresses of the gadgets to be executed, along

with any required data arguments.

Several research works have demonstrated the great poten-

tial of this technique for bypassing defenses such as read-

only memory [3], kernel code integrity protections [4], and

non-executable memory implementations in mobile devices [5]

and operating systems [6]–[9]. Consequently, it was only a

matter of time for ROP to be employed in real-world attacks.

Recent exploits against popular applications use ROP code

to bypass exploit mitigations even in the latest OS versions,

including Windows 7 SP1. ROP exploits are included in the

most common exploit packs [10], [11], and are actively used

in the wild for mounting drive-by download attacks.

Attackers are able to a priori pick the right code pieces

because parts of the code image of the vulnerable application

remain static across different installations. Address space

layout randomization (ASLR) [1] is meant to prevent this kind

of code reuse by randomizing the locations of the executable

segments of a running process. However, in both Linux and

Windows, parts of the address space do not change due to

executables with fixed load addresses [12], or shared libraries

incompatible with ASLR [6]. Furthermore, in some exploits,

the base address of a DLL can be either calculated dynamically

through a leaked pointer [9], [13], or brute-forced [14].

Other defenses against code-reuse attacks complementary to

ASLR include compiler extensions [15], [16], code randomiza-

tion [17]–[19], control-flow integrity [20], and runtime solu-

tions [21]–[23]. In practice, though, most of these approaches

are almost never applied for the protection of the COTS

software currently targeted by ROP attacks, either due to the

lack of source code or debugging information, or due to their

increased overhead. In particular, from the above techniques,

those that operate directly on compiled binaries, e.g., by

permuting the order of functions [18], [19] or through binary

instrumentation [20], require precise and complete extraction

of all code and data in the executable sections of the binary.

This is possible only if the corresponding symbolic debugging

information is available, which however is typically stripped

from production binaries. On the other hand, techniques that

do work on stripped binary executables using dynamic binary

instrumentation [21]–[23], incur a significant runtime overhead

that limits their adoption. At the same time, instruction set

randomization (ISR) [24], [25] cannot prevent code-reuse

attacks, and current implementations also rely on heavyweight

runtime instrumentation or code emulation frameworks.

Starting with the goal of a practical mitigation against

the recent spate of ROP attacks, in this paper we present

a novel code randomization method that can harden third-

party applications against return-oriented programming. Our

approach is based on narrow-scope modifications in the code

segments of executables using an array of code transformation

techniques, to which we collectively refer as in-place code

randomization. These transformations are applied statically, in

a conservative manner, and modify only the code that can be

safely extracted from compiled binaries, without relying on

symbolic debugging information. By preserving the length of

instructions and basic blocks, these modifications do not break

the semantics of the code, and enable the randomization of

stripped binaries even without complete disassembly coverage.

The goal of this randomization process is to eliminate or

probabilistically modify as many of the gadgets that are

available in the address space of a vulnerable process as

possible. Since ROP code relies on the correct execution of all

chained gadgets, altering the outcome of even a few of them

will likely render the ROP code ineffective.

Our evaluation using real-world ROP exploits against

widely used applications, such as Adobe Reader, shows the

effectiveness and practicality of our approach, as in all cases

the randomized versions of the applications rendered the ex-

ploits non-functional. When aiming to circumvent the applied

code randomization, Q [26] and Mona [27], two automated

ROP payload construction tools, were unable to generate

functional exploit code by relying solely on any remaining

non-randomized gadgets.

Although quite effective as a standalone mitigation, in-place

code randomization is not meant to be a complete prevention

solution, as it offers probabilistic protection and thus cannot

deliver any protection guarantees. However, it can be applied

in tandem with existing randomization techniques to increase

process diversification. This is facilitated by the practically

zero overhead of the applied transformations, and the ease with

which they can be applied on existing third-party executables.

Our work makes the following main contributions:

• We present in-place code randomization, a novel and

practical approach for hardening third-party software

against ROP attacks. We describe in detail various

narrow-scope code transformations that do not change

the semantics of existing code, and which can be safely

applied on compiled binaries without symbolic debugging

information.

• We have implemented in-place code randomization for

x86 PE executables, and have experimentally verified the

safety of the applied code transformations with extensive

runtime code coverage tests using third-party executables.

• We provide a detailed analysis of how in-place code

randomization affects available gadgets using a large set

of 5,235 PE files. On average, the applied transformations

effectively eliminate about 10%, and probabilistically

break about 80% of the gadgets in the tested files.

• We evaluate our approach using publicly available ROP

exploits and generic ROP payloads, as well as two ROP

payload construction toolkits. In all cases, the randomized

versions of the executables break the malicious ROP

code, and prevent the automated construction of alter-

native payloads using the remaining unaffected gadgets.

II. BACKGROUND

The introduction of non-executable memory page protec-

tions led to the development of the return-to-libc exploitation

technique [28]. Using this method, a memory corruption

vulnerability can be exploited by transferring control to code

that already exists in the address space of the vulnerable

process. By jumping to the beginning of a library function

such as system(), the attacker can for example spawn a

shell without the need to inject any code. Frequently though,

especially for remote exploitation, calling a single function is

not enough. In these cases, multiple return-to-libc calls can

be “chained” together by first returning to a short instruction

sequence such as pop reg; pop reg; ret; [29], [30].

When arguments need to be passed through registers, a few

short instruction sequences ending with a ret instruction can

be chained directly to set the proper registers with the desired

arguments, before calling the library function [31].

In the above code-reuse techniques, the executed code

consists of one or a few short instruction sequences followed

by a large block of code belonging to a library function. Hovav

Shacham demonstrated that using only a carefully selected set

of short instruction sequences ending with a ret instruction,

known as gadgets, it is possible to achieve arbitrary computa-

tion, obviating the need for calling library functions [2]. This

powerful technique, dubbed return-oriented programming, in

essence gives the attacker the same level of flexibility offered

by arbitrary code injection without injecting any code at all—

the injected payload comprises just a sequence of gadget

addresses intermixed with any necessary data arguments.

In a typical ROP exploit, the attacker needs to control

both the program counter and the stack pointer: the former

for executing the first gadget, and the latter for allowing

its ret instruction to transfer control to subsequent gadgets.

Depending on the vulnerability, if the ROP payload is injected

in a memory area other than the stack, then the stack pointer

must first be adjusted to the beginning of the payload through

a stack pivot [6], [32]. In a follow up work [33], Checkoway et

al. demonstrated that the gadgets used in a ROP exploit need

not necessarily end with a ret instruction, but with any other

indirect control transfer instruction.

The ROP code used in recent exploits against Windows

applications is mostly based on gadgets ending with ret

instructions, which conveniently manipulate both the program

counter and the stack pointer, although a couple of gadgets

ending with call or jmp are also used for calling library

functions. In all publicly available Windows exploits so far,

attackers do not have to rely on a fully ROP-based implemen-

tation for the whole malicious code that needs to be executed.

Instead, ROP code is used only as a first stage for bypassing

DEP [1]. Typically, once control flow has been hijacked, the

ROP code allocates a memory area with write and execute

permissions by calling a library function like VirtualAlloc,

copies into it some plain shellcode included in the attack

vector, and finally jumps to the copied shellcode which now

has execute permission [32].

III. APPROACH

Our approach is based on the randomization of the code

sections of binary executable files that are part of third-party

applications, using an array of binary code transformation

techniques. The objective of this randomization process is to

break the code semantics of the gadgets that are present in the

executable memory segments of a running process, without

affecting the semantics of the actual program code.

The execution of a gadget has a certain set of consequences

to the CPU and memory state of the exploited process. The at-

tacker chooses how to link the different gadgets together based

on which registers, flags, or memory locations each gadget

modifies, and in what way. Consequently, the execution of a

subsequent gadget depends on the outcome of all previously

executed gadgets. Even if the execution of a single gadget has

a different outcome than the one anticipated by the attacker,

then this will affect the execution of all subsequent gadgets,

and it is likely that the logic of the malicious return-oriented

code will be severely impacted.

A. Why In-Place?

The concept of software diversification [34] is the basis

for a wide range of protections against the exploitation of

memory corruption vulnerabilities. Besides address space lay-

out randomization [1], many techniques focus on the internal

randomization of the code segments of executable, and can

be combined with ASLR to increase process diversity [17].

Metamorphic transformations [35] can shift gadgets from their

original offsets and alter many of their instructions, rendering

them unusable. Another simpler and probably more effective

approach is to rearrange existing blocks of code either at the

function level [18], [19], [36], [37], or with finer granularity,

at the basic block level [38], [39]. If all blocks of code are

reordered so that no one resides at its original location, then

all the offsets of the gadgets that the attacker would assume

to be present in the code sections of the process will now

correspond to completely different code.

These transformations require a precise view of all the code

and data objects contained in the executable sections of a PE

file, including their cross-references, as existing code needs to

be shifted or moved. Due to computed jumps and intermixed

data [40], complete disassembly coverage is possible only

if the binary contains relocation and symbolic debugging

information (e.g., PDB files) [19], [41], [42]. Unfortunately,

debugging information is typically stripped from release builds

for compactness and intellectual property protection.

For Windows software, in particular, PE files (both DLL

and EXE) usually do retain relocation information even if

no debugging information has been retained [43]. The loader

needs this information in case a DLL must be loaded at an

address other than its preferred base address, e.g., because

another library has already been mapped to that location.

or for ASLR. In contrast to Linux shared libraries and PIC

executables, which contain position-independent code, Win-

dows binaries contain absolute addresses, e.g., as immediate

instruction operands or initialized data pointers, that are valid

only if the executable has been loaded at its preferred base

address. The .reloc section of PE files contains a list of

offsets relatively to each PE section that correspond to all

absolute addresses at which a delta value needs to be added

in case the actual load address is different [44].

Relocation information alone, however, does not suffice for

extracting a complete view of the code within the executable

sections of a PE file [38], [41]. Without the symbolic debug-

ging information contained in PDB files, although the location

of objects that are reached only via indirect jumps can be

extracted from relocation information, their actual type—code

or data—still remains unknown. In some cases, the actual

type of these objects could be inferred using heuristics based

on constant propagation, but such methods are usually prone

to misidentifications of data as code and vice versa. Even a

slight shift or size increase of a single object within a PE

section will incur cascading shifts to its following objects.

Typically, an unidentified object that actually contains code

will include PC-relative branches to other code objects. In the

absence of the debugging information contained in PDB files,

moving such an unidentified code block (or any of its relatively

referenced objects) without fixing the displacements of all its

relative branch instructions that reference other objects, will

result to incorrect code.

Given the above constraints, we choose to use only binary

code transformations that do not alter the size and location

of code and data objects within the executable, allowing

the randomization of third-party PE files without symbolic

debugging information. Although this restriction does not

allow us to apply extensive code transformations like basic

block reordering or metamorphism, we can still achieve partial

code randomization using narrow-scope modifications that

can be safely applied even without complete disassembly

coverage. This can be achieved through slight, in-place code

modifications to the correctly identified parts of the code, that

do not change the overall structure of basic blocks or functions,

but which are enough to alter the outcome of short instruction

sequences that can be used as gadgets.

B. Code Extraction and Modification

Although completely accurate disassembly of stripped x86

binaries is not possible, state-of-the-art disassemblers achieve

decent coverage for code generated by the most commonly

used compilers, using a combination of different disassem-

bly algorithms [40], the identification of specific code con-

structs [45], and simple data flow analysis [46]. For our

prototype implementation, we use IDA Pro [47] to extract the

code and identify the functions of PE executables. IDA Pro is

effective in the identification of function boundaries, even for

functions with non-contiguous code and extensive use of basic

block sharing [48], and also takes advantage of the relocation

information present in Windows DLLs.

Typically, however, without the symbolic information of

PDB files, a fraction of the functions in a PE executable

are not identified, and parts of code remain undiscovered.

Our code transformations are applied conservatively, only

on parts of the code for which we can be confident that

have been accurately disassembled. For instance, IDA Pro

speculatively disassembles code blocks that are reached only

through computed jumps, taking advantage of the relocation

information contained in PE files. However, we do not enable

such heuristic code extraction methods in order to avoid

any disastrous modifications due to potentially misidentified

code. In practice, for the code generated by most compilers,

relocation information also ensures that the correctly identified

basic blocks have no entry point other than their first instruc-

tion. Similarly, some transformations that rely on the proper

identification of functions are applied only on the code of

correctly recognized functions. Our implementation is separate

from the actual code extraction framework used, which means

that IDA Pro can be replaced or assisted by alternative

code extraction approaches [41], [49], [50], providing better

disassembly coverage.

After code extraction, disassembled instructions are first

converted to our own internal representation, which holds ad-

ditional information such as any implicitly used registers, and

the registers and flags read or written by the instruction. For

correctness, we also track the use of general purpose registers

even in floating point, MMX, and SSE instructions. Although

these type of instructions have their own set of registers, they

do use general purpose registers for memory references (e.g.,

as the fmul instruction in Fig. 1). We then proceed and apply

the in-place code transformations discussed in the following

section. These are applied only on the parts of the executable

segments that contain (intended or unintended [2]) instruction

sequences that can be used as gadgets. As a result of some

of the transformations, instructions may be moved from their

original locations within the same basic block. In these cases,

for instructions that contain an absolute address in some

of their operands, the corresponding entries in the .reloc

sections of the randomized PE file are updated with the new

offsets where these absolute addresses are now located.

Our prototype implementation processes each PE file indi-

vidually, and generates multiple randomized copies that can

then replace the original. Given the complexity of the analysis

required for generating a set of randomized instances of an

input file (in the order of a few minutes on average for the

PEs used in our tests), this allows the off-line generation of a

pool of randomized PE files for a given application. Note that

for most of the tested Windows applications, only some of the

DLLs need to be randomized, as the rest are usually ASLR-

enabled (although they can also be randomized for increased

protection). In a production deployment, a system service or a

modified loader can then pick a different randomized version

of the required PEs each time the application is launched,

following the same way of operation as tools like EMET [51].

IV. IN-PLACE CODE TRANSFORMATIONS

In this section we present in detail the different code trans-

formations used for in-place code randomization. Although

some of the transformations such as instruction reordering and

register reassignment are also used by compilers and poly-

morphic code engines for code optimization [52] and obfus-

cation [35], applying them at the binary level—without having

access to the higher-level structural and semantic information

available in these settings—poses significant challenges.

A. Atomic Instruction Substitution

One of the basic concepts of code obfuscation and metamor-

phism [35] is that the exact same computation can be achieved

using a countless number of different instruction combina-

tions. When applied for code randomization, substituting the

instructions of a gadget with a functionally-equivalent—but

different—sequence of instructions would not affect any ROP

code that uses that gadget, since its outcome would be the

same. However, by modifying the instructions of the original

program code, this transformation in essence modifies certain

bytes in the code image of the program, and consequently,

can drastically alter the structure of non-intended instruction

sequences that overlap with the substituted instructions.

Many of the gadgets used in ROP code consist of unaligned

instructions that have not been emitted by the compiler, but

which happen to be present in the code image of the process

due to the density and variable-length nature of the x86

instruction set. In the example of Fig. 1(a), the actual code

generated by the compiler consists of the instructions mov;

cmp; lea; starting at byte B0.1 However, when disassem-

bling from the next byte, a useful non-intended gadget ending

with ret is found.

Compiled code is highly optimized, and thus the replace-

ment of even a single instruction in the original program code

usually requires either a longer instruction, or a combination

of more than one instruction, for achieving the same purpose.

Given that our aim is to randomize the code of stripped

binaries, even a slight increase in the size of a basic block is

not possible, which makes the most commonly used instruction

substitution techniques unsuitable for our purpose.

In certain cases though, it is possible to replace an instruc-

tion with a single, functionally-equivalent instruction of the

same length, thanks to the flexibility offered by the extensive

x86 instruction set. Besides obvious candidates based on

replacing addition with negative subtraction and inversely,

there are also some instructions that come in different forms,

with different opcodes, depending on the supported operand

types. For example, add r/m32,r32 stores the result of the

addition in a register or memory operand (r/m32), while add

r32,r/m32 stores the result in a register (r32). Although these

two forms have different opcodes, the two instructions are

equivalent when both operands happen to be registers. Many

arithmetic and logical instructions have such dual equivalent

forms, while in some cases there can be up to five equivalent

instructions (e.g., test r/m8,r8, or r/m8,r8, or r8,

r/m8, and r/m8,r8, and r8,r/m8, affect the flags of the

EFLAGS register in the same way when both operands are

1 The code of all examples throughout the paper comes from icucnv36.dll,
included in Adobe Reader v9.3.4. This DLL was used for the ROP code of
a DEP-bypass exploit for CVE-2010-2883 [53] (see Table II).

Figure 1. Example of atomic instruction substitution. The equivalent, but different form of the cmp instruction does not change the original program code
(a), but renders the non-intended gadget unusable (b).

the same register). In our prototype implementation we use

the sets of equivalent instructions used in Hydan [54], a tool

for hiding information in x86 executables, with the addition

of one more set that includes the equivalent versions of the

xchg instruction.

As shown in Fig. 1(b), both operands of the cmp instruction

are registers, and thus it can be replaced by its equivalent

form, which has different opcode and ModR/M bytes [55].

Although the actual program code does not change, the ret

instruction that was “included” in the original cmp instruction

has now disappeared, rendering the gadget unusable. In this

case, the transformation completely eliminates the gadget, and

thus will be applied in all instances of the randomized binary.

In contrast, when a substitution does not affect the gadget’s

final indirect jump, then it is applied probabilistically.

B. Instruction Reordering

In certain cases, it is possible to reorder the instructions

of small self-contained code fragments without affecting the

correct operation of the program. This transformation can

significantly impact the structure of non-intended gadgets, but

can also break the attacker’s assumptions about gadgets that

are part of the actual machine code.

1) Intra Basic Block Reordering: The actual instruction

scheduling chosen during the code generation phase of a

compiler depends on many factors, including the cost of

instructions in cycles, and the applied code optimization

techniques [52]. Consequently, the code of a basic block is

often just one among several possible instruction orderings

that are all equivalent in terms of correctness. Based on this

observation, we can partially modify the code within a basic

block by reordering some of its instructions according to an

alternative instruction scheduling.

The basis for deriving an alternative instruction schedul-

ing is to determine the ordering relationships among the

instructions, which must always be satisfied to maintain code

correctness. The dependence graph of a basic block represents

the instruction interdependencies that constrain the possible in-

struction schedules [56]. Since a basic block contains straight-

line code, its dependence graph is a directed acyclic graph with

machine instructions as vertices, and dependencies between

instructions as edges. We apply dependence analysis on the

code of disassembled basic blocks to build their dependence

graph using an adaptation of a standard dependence DAG con-

struction algorithm [56, Fig. 9.6] for machine code. Applying

dependence analysis directly on machine code requires a care-

ful treatment of the dependencies between x86 instructions.

Compared to the analysis of code expressed in an intermediate

representation form, this includes the identification of data

dependencies not only between register and memory operands,

but also between CPU flags and implicitly used registers and

memory locations.

For each instruction i, we derive the sets use[i] and def [i]

with the registers used and defined by the instruction. Besides

register operands and registers used as part of effective address

computations, this includes any implicitly used registers. For

example, the use and def sets for pop eax are {esp} and

{eax, esp}, while for rep stosb2 are {ecx, eax, edi} and

{ecx, edi}, respectively. We initially assume that all instruc-

tions in the basic block depend on each other, and then check

each pair for read-after-write (RAW), write-after-read (WAR),

and write-after-write (WAW) dependencies. For example, i1

and i2 have a RAW dependency if any of the following

conditions is true: i) def [i1] ∩ use[i2] 6= ∅, ii) the destination

operand of i1 and the source operand of i2 are both a memory

location, iii) i1 writes at least one flag read by i2.

Note that condition ii) is quite conservative, given that i2

will actually depend on i1 only if i2 reads the same memory

location written by i1. However, unless both memory operands

use absolute addresses, it is hard to determine statically if the

two effective addresses point to the same memory location. In

our future work, we plan to use simple data flow analysis

to relax this condition. Besides instructions with memory

operands, this condition should also be checked for instruc-

tions with implicitly accessed memory locations, e.g., push

and pop. The conditions for WAR and WAW dependencies are

analogous. If no conflict is found between two instructions,

then there is no constraint in their execution order.

Figure 2(a) shows the code of a basic block that contains

a non-intended gadget, and Fig. 3 its corresponding depen-

dence DAG. Instructions not connected via a direct edge are

independent, and have no constraint in their relative execution

order. Given the dependence DAG of a basic block, the pos-

sible orderings of its instructions correspond to the different

2 stosb (Store Byte to String) copies the least significant byte from
the eax register to the memory location pointed by the edi register and
increments edi’s value by one. The rep prefix repeats this instruction until
ecx’s value reaches zero, while decreasing it after each repetition.

Figure 2. Example of how intra basic block instruction reordering can affect a non-intended gadget.

Figure 3. Dependence graph for the code of Fig. 2.

topological sorting arrangements of the graph [57]. Fig. 2(b)

shows one of the possible alternative orderings of the original

code. The locations of all but one of the instructions and the

values of all but one of the bytes have changed, eliminating the

non-intended gadget contained in the original code. Although

a new gadget has appeared a few bytes further into the block,

(ending again with a ret instruction at byte C3), an attacker

cannot depend on it since alternative orderings will shift it

to other locations, and some of its internal instructions will

always change (e.g., in this example, the useful pop ecx is

gone). In fact, the ret instruction can be eliminated altogether

using atomic instruction substitution.

An underlying assumption we make here is that basic

block boundaries will not change at runtime. If a computed

control transfer instruction targets a basic block instruction

other than its first, then reordering may break the semantics

of the code. Although this may seem restrictive, we note that

throughout our evaluation we did not encounter any such case.

For compiler-generated code, IDA Pro is able to compute

all jump targets even for computed jumps based on the PE

relocation information. In the most conservative case, users

may choose to disable instruction reordering and still benefit

from the randomization of the other techniques—Section V

includes results for each technique individually.

2) Reordering of Register Preservation Code: The calling

convention followed by the majority of compilers for Windows

on x86 architectures, similarly to Linux, specifies that the ebx,

esi, edi, and ebp registers are callee-saved [58]. The remain-

ing general purpose registers, known as scratch or volatile

registers, are free for use by the callee without restrictions.

Typically, a function that needs to use more than the available

scratch registers, preserves any non-volatile registers before

Figure 4. Example of register preservation code reordering.

modifying them by storing their values on the stack. This is

usually done at the function prologue through a series of push

instructions, as in the example of Fig. 4(a), which shows the

very first and last instructions of a function. At the function

epilogue, a corresponding series of pop instructions restores

the saved values from the stack, right before returning to the

caller. Sequences that contain pop instructions followed by

ret are among the most widely used gadgets found in ROP

exploits, since they allow the attacker to load registers with

values that are supplied as part of the injected payload [59].

The order of the pop instructions is crucial for initializing

each register with the appropriate value.

As seen in the function prologue, the compiler stores the

values of the callee-saved registers in arbitrary order, and

sometimes the relevant push instructions are interleaved with

instructions that use previously-preserved registers. At the

function epilogue, the saved values are pop’ed from the stack

in reverse order, so that they end up to the proper register.

Consequently, as long as the saved values are restored in

the right order, their actual order on the stack is irrelevant.

Based on this observation, we can randomize the order of the

push and pop instructions of register preservation code by

maintaining the first-in-last-out order of the stored values, as

shown in Fig. 4(b). In this example, there are six possible

orderings of the three pop instructions, which means that

any assumption that the attacker may make about which

registers will hold the two supplied values, will be correct

with a probability of one in six (or one in three, if only one

register needs to be initialized). In case only two registers

are preserved, there are two possible orderings, allowing the

gadget to operate correctly half of the time.

This transformation is applied conservatively, only to func-

tions with accurately disassembled prologue and epilogue

code. To make sure that we properly match the push and

pop instructions that preserve a given register, we monitor the

stack pointer delta throughout the whole function, as shown in

the second column of Fig. 4(a). If the deltas at the prologue

and epilogue do not match, e.g., due to call sites with unknown

calling conventions throughout the function, or indirect manip-

ulation of the stack pointer, then no randomization is applied.

As shown in Fig. 4(b), any non-preservation instructions in the

function prologue are reordered along with the push instruc-

tions by maintaining any interdependencies, as discussed in the

previous section. For functions with multiple exit points, the

preservation code at all epilogues should match the function’s

prologue. Note that there can be multiple push and pop pairs

for the same register, in case the register is preserved only

throughout some of the execution paths of a function.

C. Register Reassignment

Although the program points at which a certain variable

should be stored in a register or spilled into memory are chosen

by the compiler using sophisticated allocation algorithms, the

actual name of the general purpose register that will hold a

particular variable is mostly an arbitrary choice. Based on

this observation, we can reassign the names of the register

operands in the existing code according to a different—but

equivalent—register assignment, without affecting the seman-

tics of the original code. When considering each gadget as

an autonomous code sequence, this transformation can alter

the outcome of many gadgets, which will now read or modify

different registers than those assumed by the attacker.

Due to the much higher cost of memory accesses compared

to register accesses, compilers strive to map as many variables

as possible to the available registers. Consequently, at any

point in a large program, multiple registers are usually in use,

or live at the same time. Given the control flow graph (CFG)

of a compiled program, a register r is live at a program point p

iff there is a path from p to a use of r that does not go through

a definition of r. The live range of r is defined as the set of

program points where r is live, and can be represented as a

subgraph of the CFG [60]. Since the same register can hold

different variables at different points in the program, a register

can have multiple disjoint live regions in the same CFG.

For each correctly identified function, we compute the live

ranges of all registers used in its body by performing liveness

analysis [52] directly on the machine code. Given the CFG of

the function and the sets use[i] and def [i] for each instruction

i, we derive the sets in[i] and out[i] with the registers that

are live-in and live-out at each instruction. For this purpose,

we use a modified version of a standard live-variable analysis

algorithm [52, Fig. 9.16] that computes the in and out sets

at the instruction level, instead of the basic block level. The

algorithm computes the two sets by iteratively reaching a fixed

point for the following data-flow equations: in[i] = use[i] ∪

(out[i]−def [i]) and out[i] =
⋃
{in[s] : s ∈ succ[i]}, were succ[i]

is the set of all possible successors of instruction i.

Figure 5. The live ranges of eax and edi in part of a function. The two
registers can be swapped in all instructions throughout their parallel, self-
contained regions a0 and d1 (lines 3–12).

Figure 5 shows part of the CFG of a function and the

corresponding live ranges for eax and edi. Initially, we

assume that all registers are live, since some of them may hold

values that have been set by the caller. In this example, edi

is live when entering the function, and the push instruction at

line 2 stores (uses) its current value on the stack. The following

mov instruction initializes (defines) edi, ending its previous

live range (d0). Note that although a live range is a sub-graph

of the CFG, we illustrate and refer to the different live ranges

as linear regions for the sake of convenience.

The next definition of edi is at line 15, which means that

the last use of its previous value at line 11 also ends its

previous live region d1. Region d1 is a self-contained region,

within which we can be confident that edi holds the same

variable. The eax register also has a self-contained live region

(a0) that runs in parallel with d1. Conceptually, the two

live ranges can be extended to share the same boundaries.

Therefore, the two registers can be swapped across all the

instructions located within the boundaries of the two regions,

without altering the semantics of the code.

The call eax instruction at line 12 can be conveniently

used by an attacker for calling a library function or another

gadget. By reassigning eax and edi across their parallel

live regions, any ROP code that would depend on eax for

transferring control to the next piece of code, will now jump

to an incorrect memory location, and probably crash. For code

fragments with just two parallel live regions, an attacker can

guess the right register half of the times. In many cases though,

there are three or more general purpose registers with parallel

live regions, or other available registers that are live before

or after another register’s live region, allowing for a higher

number of possible register assignments.

The registers used in the original code can be reassigned

by modifying the ModR/M and sometimes the SIB byte of

the relevant instructions. As in previous code transforma-

tions, besides altering the operands of instructions in the

existing code, these modifications can also affect overlapping

instructions that may be part of non-intended gadgets. Note

that implicitly used registers in certain instructions cannot be

replaced. For example, the one-byte “move data from string

to string” instruction (movs) always uses esi and edi as its

source and destination operands, and there is no other one-byte

instruction for achieving the same operation using a different

set of registers [55]. Consequently, if such an instruction is

part of the live region of one of its implicitly used registers,

then this register cannot be reassigned throughout that region.

For the same reason, we exclude esp from liveness analysis.

Finally, although calling conventions are followed for most

of the functions, this is not always the case, as compilers

are free to use any custom calling convention for private or

static functions. Most of these cases are conservatively cov-

ered through a bottom-up call analysis that discovers custom

register arguments and return value registers.

First, all the external function definitions found in the import

table of the DLL are marked as level-0 functions. IDA Pro can

effectively distinguish between different calling conventions

that these external functions may follow, and reports their

declaration in the C language. Thus, in most cases, the register

arguments and the return value register (if any) for each of

the level-0 functions are known. For any call instruction to

a level-0 function, its register arguments are added to call’s

set of implicitly read registers, and its return value registers

are added to call’s set of implicitly written registers.

In the next phase, level-1 functions are identified as the

set of functions that call only level-0 functions or no other

function. Any registers read by a level-1 function, without

prior writing them, are marked as its register arguments.

Similarly, any registers written and not read before a return

instruction are marked as return value registers. Again, the

sets of implicitly read and written register of all the call

instructions to level-1 functions are updated accordingly. Sim-

ilarly, level-2 functions are the ones that call level-1 or level-0

functions, or no other function, and so on. The same process is

repeated until no more function levels can be computed. The

intuition behind this approach is that private functions, which

may use non-standard calling conventions, are called by other

functions in the same DLL and, in most cases, not through

computed call instructions.

V. EXPERIMENTAL EVALUATION

A. Randomization Analysis

1) Coverage: A crucial aspect for the effectiveness of in-

place code randomization is the randomization coverage in

terms of what percentage of the gadgets found in an executable

can be safely randomized. A gadget may remain intact for

one of the following reasons: i) it is part of data embedded

in a code segment, ii) it is part of code that could not

be disassembled, or iii) it is not affected by any of our

Modifiable gadgets (%)

0 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
P

E
 f

ile
s

0

0.2

0.4

0.6

0.8

1

Out of all gadgets

Out of the gadgets found only

 in the extracted code

Figure 6. Percentage of modifiable gadgets for a set of 5,235 PE files.
Indicatively, for the upper 85% of the files, more than 70% of all gadgets in
the executable segments of each PE file can be modified (shaded area).

Modifiable gadgets (%)

0 20 40 60 80 100

Instruction

Substitution

Intra Basic Block

Reordering

Reg. Preservation

Code Reordering

Register

Reassignment

All

Transformations

Out of all gadgets

Out of the gadgets found only

 in the extracted code

Figure 7. Percentage of modifiable gadgets according to the different code
transformations.

transformations. In this section, we explore the randomization

coverage of our prototype implementation using a large data

set of 5,235 PE files (both DLL and EXE), detailed in Table I.

We consider as a gadget [2] any intended or unintended

instruction sequence that ends with an indirect control trans-

fer instruction, and which does not contain i) a privileged

or invalid instruction (can occur in non-intended instruction

sequences), and ii) a control transfer instruction other than its

final one, with the exception of indirect call (can be used

in the middle of a gadget for calling a library function). We

assume a maximum gadget length of five instructions, which

is typical for existing ROP code implementations [2], [33].

For larger gadgets, it is possible that the modified part of the

gadget may be irrelevant for the purpose of the attacker. For

example, if only the first instruction of the gadget inc eax;

pop ebx; ret; is randomized, this will not affect any ROP

code that either does not rely on the value of eax at that

point, or uses the shorter gadget pop ebx; ret; directly.

For this reason, we consider all different subsequences with

length between two to five instructions as separate gadgets.

Figure 6 shows the percentage of modifiable gadgets out

of all gadgets found in the executable sections of each PE

file (solid line), as a cumulative fraction of all PE files in the

data set. In about 85% of the PE files, more that 70% of the

gadgets can be randomized by our code transformations. Many

Table I
MODIFIABLE (ELIMINATED VS. BROKEN) GADGETS FOR A COLLECTION OF VARIOUS PE FILES.

Software PE Files Code (MB) Total Modifiable (%) Eliminated (%) Broken (%)

Adobe Reader 9 43 6.7 1,250,959 943,506 (75.4) 108,614 (8.7) 834,892 (66.7)

Firefox 4 28 3.5 458,760 381,011 (83.0) 56,800 (12.4) 324,211 (70.6)

iTunes 10 75 3.7 396,478 293,392 (74.0) 31,779 (8.0) 261,613 (66.0)

Windows XP SP3 1,698 134.4 8,305,177 6,452,895 (77.7) 770,589 (9.3) 5,682,306 (68.4)

Windows 7 SP1 3,391 324.8 16,951,300 12,970,844 (76.5) 1,637,082 (9.7) 11,333,762 (66.8)

Total 5,235 473.1 27,362,674 21,041,648 (76.9) 2,604,864 (9.5) 18,436,784 (67.4)

%
 o

f
a

ll
b

ro
k
e

n
 g

a
d

g
e

ts
 o

f
g

iv
e

n
 l
e

n
g

th

0

20

40

60

80

100

Gadget length (instructions)

5 4 3 2

(darkest color) leftmost instr. (lightest color) rightmost instr.

Figure 8. Impact of code randomization on the broken gadgets’ instructions
according to their location in the gadget. The order of the bars corresponds
to the order of the instructions in the gadget. Indicatively, the first (leftmost)
instruction of two-instruction gadgets is altered in more than 80% of all broken
two-instruction gadgets.

of the unmodified gadgets are located in parts of code that have

not been extracted by IDA Pro, and which consequently will

never be affected by our transformations. When considering

only the gadgets that are contained within the disassembled

code regions on which code randomization can be applied,

the percentage of affected gadgets slightly increases (dashed

line). Given that we do not take into account code blocks that

have been identified by IDA Pro using speculative methods,

this shows that the use of a more sophisticated code extraction

mechanism will increase the number of gadgets that can be

modified. Figure 7 shows the total percentage of gadgets

modified by each code transformation technique for the same

data set. Note that a gadget can be modified by more than one

technique. Overall, the total percentage of modifiable gadgets

across all PE files is about 76.9%, as shown in Table I.

2) Impact: We identify two qualitatively different ways in

which a code transformation can impact a gadget. As discussed

in Sec. IV-A, a gadget can be eliminated, if any of the applied

transformations removes completely its final control transfer

instruction. If the final control transfer instruction remains

intact, a gadget can then be broken, if at least one of its internal

instructions is altered, and the CPU and memory state after

its execution is different than the original, i.e., the outcome

of its computation is not the same. As shown in Table I, in

the average case, about 9.5% of all gadgets contained in a PE

file can be rendered completely unusable. For a vulnerable

application, this already removes about one in ten of the

available gadgets for the construction of ROP code. Although

the rest of the modifiable gadgets (67.4%) is not eliminated,

they can be “broken” by probabilistically modifying one or

more of their instructions.

In case some of the instructions in a broken gadget can

never be altered, it is quite possible that part of its functionality

will remain unaffected, and thus an attacker could still use it

by relying only on its unmodifiable instructions. Especially

for larger gadget sizes, if the possible modifications are

clustered only around a certain part of the gadget, e.g., its

first instructions, then an attacker could predictably rely on

the rest of the gadget. We explore this issue by measuring the

number of broken gadgets in which an instruction at a given

position can be altered.

Figure 8 shows the impact of code randomization on a

broken gadget’s instructions, according to their location within

the gadget. Each group of bars corresponds to a different

gadget length, and in each group, the leftmost bar corresponds

to the leftmost instruction of the gadget. For all sizes, the

probability that an instruction at a given position will be

affected is quite evenly distributed and remains beyond 60%,

with the exception of the final (control transfer) instruction.

This is expected, since most of the transformations cannot

affect the final instruction of intended gadgets (e.g., ret).

As we observe, the locations of the modified instructions in

broken gadgets are almost equally unpredictable.

3) Entropy: Some of the code transformations can perturb

a given instruction within a gadget only in a limited num-

ber of ways, while others can generate a larger number of

permutations. For example, for instructions with only two

equivalent forms, atomic instruction substitution can modify

a particular location in a gadget only in one way, allowing

for two possible states. On the other hand, intra basic block

instruction reordering usually results to a large number of

possible permutations, especially for larger basic blocks that

contain many instructions with no interdependencies.

Usually though, a broken gadget can be modified at multiple

locations, and the same location can be altered in multiple

ways by more than one code transformations. Consequently,

the number of possible randomized states in which a broken

gadget can exist, or its randomization entropy, corresponds

to the product of the number of permutations that each of

the different transformations can generate for that gadget. In

the worst case, a broken gadget can exist in two possible

states: its original form, or its alternative after modification.

For example, there are only two possible orderings for the pop

instructions in an intended gadget of the form pop reg; pop

reg; ret; given that no other transformation can alter it.

Number of possible randomized versions

0 1 2 3 10 10 2 10 3 10 4 10 5

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
g
a
d
g
e
ts

0

0.2

0.4

0.6

0.8

1

Figure 9. Randomization entropy for broken gadgets.

Figure 9 shows the number of possible randomized versions

of each gadget (including its original), as a cumulative fraction

of all broken gadgets. As seen in the lower left corner, a small

amount of about 12% of the gadgets can be modified only in

one way, and thus can exist in two possible states. However,

the randomization entropy increases exponentially, and the

upper 80% of the gadgets have four or more randomized states.

As more of the different transformations are applied on the

same gadget, the randomization entropy increases to thousands

of possible modified states.

Although for a small amount of gadgets an attacker can have

a 50% chance of guessing the actual behavior of a gadget, ROP

code relies on a chain of many different gadgets to achieve

its purpose (11–18 unique gadgets in the exploits we tested).

Even if one of the gadgets behaves in a non-expected way,

then the ROP code will fail. Given that code randomization

typically breaks (or even eliminates) several of the gadgets

used in a ROP exploit, the number of possible randomized

states that can prevent the correct execution of the ROP code

is usually very high, as demonstrated in Sec. V-C.

B. Correctness and Performance

One of the basic principles of our approach is that the

different in-place code randomization techniques should be

applied cautiously, without breaking the semantics of the

program. A straightforward way to verify the correctness of

our code transformations is to apply them on existing code and

compare the outcome before and after modification. Simply

running a randomized version of a third-party application and

verifying that it behaves in the expected way can provide a

first indication. However, using this approach, it is hard to

exercise a significant part of the code, and potentially incorrect

modifications may go unnoticed.

For this purpose, we used the test suite of Wine [61], a

compatibility layer that allows Windows applications to run

on Unix-like operating systems. Wine provides alternative

implementations of the DLLs that comprise the Windows API,

and comes with an extensive test suite that covers the imple-

mentations of most functions exported by the core Windows

DLLs. Each function is executed multiple times using various

inputs that test different conditions, and the outcome of each

execution is compared against a known, expected result. We

ported the test code for about one third of the 109 DLLs

included in the test suite of Wine v1.2.2, and used it directly on

the actual DLLs from a Windows 7 installation. Using multiple

randomized versions of each tested DLL, we verified that in

all runs, all tests completed successfully.

We took advantage of the extensive and diverse code exe-

cution coverage of this experiment to also evaluate the impact

of in-place code randomization to the runtime performance of

the modified code. Among the different code transformations,

instruction reordering is the only one that could potentially

introduce some non-negligible overhead, given that sometimes

the chosen ordering may be sub-optimal. We measured the

overall CPU user time for the completion of all tests by

taking the average time across multiple runs, using both the

original and the randomized versions of the DLLs. In all cases,

there was no observable difference in the two times, within

measurement error.

C. Effectiveness

1) ROP Exploits: We evaluated the effectiveness of in-place

code randomization using publicly available ROP exploits

against vulnerable Windows applications [53], [62], [63], as

well as generic ROP payloads based on commonly used

DLLs [64], [65]. These seven different ROP code imple-

mentations, listed in Table II, bypass Windows DEP and

execute a second-stage shellcode, as described in Sec. II, and

work even in the latest version of Windows, with DEP and

ASLR enabled. The ROP code used in the three exploits

is implemented with gadgets from one or a few DLLs that

do not support ASLR, as shown in the second column of

Table II. The number of unique gadgets used in each case

varies between 10–18, and typically a large part of the gadgets

is repeatedly executed at many points throughout the ROP

code. When replacing the original non-ASLR DLLs of each

application with randomized versions, in all cases the exploits

were rendered unsuccessful. Similarly, we used a custom

application to test the generic ROP payloads and verified that

the ROP code did not succeed when the corresponding DLL

was randomized.

The ROP code of the exploit against Acrobat Reader uses

just 11 unique gadgets, all coming from a single non-ASLR

DLL (icucnv36.dll). From these gadgets, in-place code ran-

domization can alter six of them: one gadget is completely

eliminated, while the other five broken gadgets have 2, 2, 3,

4, and 6 possible states, respectively, resulting to a total of

287 randomized states (in addition to the always eliminated

gadget, which also alone breaks the ROP code). Even if we

assume that no elimination were possible, the exploit would

still succeed only in one out of the 288 (0.35%) possible

instances (including the original) of the given gadget set.

Considering that this is a client-side exploit, in which the

attacker will probably have only one or a few opportunities for

tricking the user to open the malicious PDF file, the achieved

randomization entropy is quite high—always assuming that

none of the gadgets could have been eliminated. As shown

Table II
ROP EXPLOITS [53], [62], [63] AND GENERIC ROP PAYLOADS [64], [65] TESTED ON WINDOWS 7 SP1.

non-ASLR DLLs: Gadgets in Modifiable (total %: Unique Gadgets Used:

ROP exploit/payload used for ROP non-ASLR DLLs Broken % Eliminated %) Modifiable (Br.,El.) Combinations

Adobe Reader v9.3.4 [53] 3: 1 36,760 28,637 (77.9: 70.1 7.8) 11: 6 (5, 1) 287

Integard Pro v2.2.0 [62] 1: 1 5,137 4,027 (78.4: 70.5 7.9) 16: 10 (9, 1) 322,559

Mplayer Lite r33064 [63] 5: 2 117,822 104,671 (88.8: 70.0 18.8) 18: 7 (6, 1) 1,128,959

msvcr71.dll [64] 1: 1 10,301 7,129 (69.2: 59.6 9.6) 14: 9 (8, 1) 3,317,760

msvcr71.dll [65] 1: 1 10,301 7,129 (69.2: 59.6 9.6) 16: 8 (8, 0) 1,728,000

mscorie.dll [64] 1: 1 1,616 1,304 (80.6: 73.5 7.1) 10: 4 (4, 0) 25,200

mfc71u.dll [65] 1: 1 86,803 64,053 (73.8: 68.7 5.1) 11: 6 (6, 0) 170,496

in Table II, the number of possible randomized states in the

rest of the cases is several orders of magnitude higher. This

is mostly due to the larger number of broken gadgets, as well

as due to a few broken gadgets with tens of possible modified

states, which both increase the number of states exponentially.

Next, we explored whether the affected gadgets could be

directly replaced with unmodifiable gadgets in order to reliably

circumvent our technique. Out of the six affected gadgets in

the Adobe Reader exploit, only four can be directly replaced,

meaning that the exploit cannot be trivially modified to bypass

randomization. Furthermore, two of the gadgets have only

one replacement each, and both replacements are found in

code regions that are not discovered by IDA Pro—both could

be randomized using a more precise code extraction method.

For the rest of the ROP payloads, there are at least three

irreplaceable gadgets in each case.

We should note that the relatively small number of gadgets

used in most of these ROP payloads is a worst-case scenario

for our technique, which however not only is able to prevent

these exploits, but also does not allow the attacker to directly

replace all the affected gadgets. Indeed, besides the more

complex ROP payloads used in the Integard and Mplayer

exploits, the rest of the payloads use API functions that

are already imported by a non-ASLR DLL, and simply call

them directly using hard-coded addresses. This type of API

invocation is much simpler and requires fewer gadgets [26]

compared to ROP code like the one used in the Integard and

Mplayer exploits (16 and 18 unique gadgets, respectively),

which first dynamically locates a pointer to kernel32.dll (al-

ways ASLR-enabled in Windows 7) and then gets a handle to

VirtualProtect.

2) Automated ROP Payload Generation: The fact that

some of the randomized gadgets are not directly replaceable

does not necessarily mean that the same outcome cannot be

achieved using solely unmodifiable gadgets. To assess whether

an attacker could construct a ROP payload resistant to in-

place code randomization based on gadgets that cannot be

randomized, we used Q [26] and Mona [27], two automated

ROP code construction tools.

Q is a general-purpose ROP compiler that uses semantic

program verification techniques to identify the functionality

of gadgets, and provides a custom language, named QooL,

for writing input programs. Its current implementation only

supports simple QooL programs that call a single function or

system call, while passing a single custom argument. In case

the function to be called belongs to an ASLR-enabled DLL,

Q can compute a handle to it through the import table of a

non-ASLR DLL [12], when applicable. We should note that

although Q currently compiles only basic QooL programs that

call a single API function, this does not limit our evaluation,

but on the contrary, stresses even more our technique. The

simpler the programs, the fewer the gadgets used, which makes

it easier for Q to generate ROP code even when our technique

limits the number of available gadgets.

Mona is a plug-in for Immunity Debugger [66] that

automates the process of building Windows ROP payloads

for bypassing DEP. Given a set of non-ASLR DLLs,

Mona searches for available gadgets, categorizes them

according to their functionality, and then attempts to

automatically generate four alternative ROP payloads for

giving execute permission to the embedded shellcode

and then invoking it, based on the VirtualProtect,

VirtualAlloc, NtSetInformationProcess, and

SetProcessDEPPolicy API functions (the latter two are

not supported in Windows 7).

Considering the functionality of the ROP payloads gener-

ated by the two tools, Mona generates slightly more complex

payloads, but its gadget composition engine is less sophisti-

cated compared to Q’s. Q generates payloads that compute

a function address, construct its single argument, and call it.

Payloads generated by Mona also call a single memory alloca-

tion API function (which though requires the construction of

several arguments), copy the shellcode to the newly allocated

area, and transfer control to it. Note that the complexity of

the ROP code used in the tested exploits is even higher, since

they rely on up to four different API functions [53], or “walk

up” the stack to discover pointers to non-imported functions

from ASLR-enabled DLLs [62], [63].

Table III shows the results of running Q and Mona on

the same set of applications and DLLs used in the previous

section (for applications, all non-ASLR DLLs are analyzed

collectively), for two different cases: when all gadgets are

available to the ROP compiler, and when only the non-

randomized gadgets are available. The second case aims to

build a payload that will be functional even when code

randomization is applied. Although both Q and Mona were

able to create payloads when applied on the original DLLs in

almost all cases, they failed to construct any payload using

only non-randomized gadgets in all cases.

Although our technique was able to prevent two different

Table III
RESULTS OF RUNNING Q [26] AND MONA [27] ON THE ORIGINAL

NON-ASLR DLLS LISTED IN TABLE II, AND THE UNMODIFIED PARTS OF

THEIR RANDOMIZED VERSIONS. IN ALL CASES, BOTH TOOLS FAILED TO

GENERATE A ROP PAYLOAD USING SOLELY NON-RANDOMIZED GADGETS.

Q success Mona success

Application/DLL Orig. Rand. Orig. Rand.

Adobe Reader ✔ ✘ ✔ (VA) ✘

Integard Pro ✔ ✘ ✘ ✘

Mplayer ✔ ✘ ✔ (VA) ✘

msvcr71.dll ✔ ✘ ✘ ✘

mscorie.dll ✘ ✘ ✘ ✘

mfc71u.dll ✔ ✘ ✔ (VA,VP) ✘

tools from automatically constructing reliable ROP code, this

favorable outcome does not exclude the possibility that a

functional payload could still be constructed based solely on

non-randomized gadgets, e.g., in a manual way or using an

even more sophisticated ROP compiler. However, it clearly

demonstrates that in-place code randomization significantly

raises the bar for attackers, and makes the construction of

reliable ROP code much harder, even in an automated way.

This is reflected on the reduction in the number of avail-

able (non-randomized) gadgets after code randomization. Both

tools operate in two phases: gadget discovery and code com-

pilation. During the first phase, they search for useful gadgets

and categorize them according to their functionality. Tables IV

and V show the number of useful gadgets as reported by Q

and Mona, respectively, that are available before and after

randomization. As shown by the percentage of the remaining

gadgets (last column), many gadget types have very few

available gadgets or are eliminated completely, which makes

the construction of reliable ROP code much harder.

VI. DISCUSSION

In-place code randomization may not always randomize

a significant part of the executable address space, and it is

hard to give a definitive answer on whether the remaining

unmodifiable gadgets would be sufficient for constructing

useful ROP code. This depends on the code in the non-

ASLR address space of the particular vulnerable process, as

well as on the actual operations that need to be achieved

using ROP code. Note that Turing-completeness is irrelevant

for practical exploitation [26], and none of the gadget sets

used in the tested ROP payloads is Turing-complete. For this

reason, we emphasize that in-place code randomization should

be used as a mitigation technique, in the same fashion as

application armoring tools like EMET [51], and not as a

complete prevention solution.

As previous studies [2], [5], [26] have shown, though, the

feasibility of building a ROP payload is proportional to the

size of the non-ASLR code base, and reversely proportional

to the complexity of the desired functionality. Our experi-

mental evaluation shows that in all cases, the space of the

remaining useful gadgets after randomization is sufficiently

small to prevent the automated generation of a ROP payload.

At the same time, the tested ROP payloads are far from the

complexity of a fully blown ROP-based implementation of the

operations required for carrying out an attack, such as dumping

a malicious executable on disk and executing it. Currently, this

functionality is handled by the embedded shellcode, which in

essence allows us to view these ROP payloads as sophisticated

versions of return-to-libc. We should stress that the random-

ization coverage of our prototype implementation is a lower

bound for what would be possible using a more sophisticated

code extraction method [41], [49]. In our future work, we also

plan to relax some of the conservative assumptions that we

have made in instruction reordering and register reassignment,

using data flow analysis based on constant propagation.

Given its practically zero overhead and direct applicability

on third-party executables, in-place code randomization can be

readily combined with existing techniques to improve diversity

and reduce overheads. For instance, compiler-level techniques

against ROP attacks [15], [16] increase significantly the size

of the generated code, and also affect the runtime overhead.

Incorporating code randomization for eliminating some of the

gadgets could offer savings in code expansion and runtime

overheads. Our technique is also applicable in conjunction

with randomization methods based on code block reorder-

ing [17]–[19], to further increase randomization entropy.

In-place code randomization at the binary level is not

applicable for software that performs self-checksumming or

other runtime code integrity checks. Although not encountered

in the tested applications, some third-party programs may

use such checks for hindering reverse engineering. Similarly,

packed executables cannot be modified directly. However, in

most third-party applications, only the setup executable used

for software distribution is packed, and after installation all

extracted PE files are available for randomization.

VII. RELATED WORK

Almost a decade after the introduction of the return-to-libc

technique [28], the wide adoption of non-executable memory

page protections in popular OSes sparked a new interest in

more advanced forms of code-reuse attacks. The introduction

of return-oriented programming [2] and its advancements [3]–

[6], [8], [26], [33], [67]–[69] led to its adoption in real-

world attacks [10], [11]. ROP exploits are facilitated by the

lack of complete address space layout randomization in both

Linux [12], and Windows [6], which otherwise would prevent

or at least hinder [14] these attacks.

Besides address space randomization, process diversity can

also be increased by randomizing the code of each executable

segment, e.g., by permuting the order of functions or basic

blocks [17]–[19]. However, these techniques are applicable

only if the source code or the symbolic debugging information

of the application to be protected is available. Our approach

is inspired by these works, and attempts to bring the benefits

of code randomization on COTS software, for which usually

no source code or debugging information is available.

Return-oriented code disrupts the normal control flow of a

process by diverting its execution to (potentially unintended)

code fragments, most of which otherwise would never be tar-

gets of control transfer instructions. Enforcing the integrity of

Table IV
NUMBER OF USEFUL GADGETS IDENTIFIED BY Q [26] IN THE ORIGINAL CODE SEGMENTS / IN THEIR UNMODIFIABLE PARTS AFTER IN-PLACE

RANDOMIZATION WAS APPLIED.

Gadget Type Reader Integard Mplayer msvcr71 mscorie mfc71u total (%)

Pivots 171/27 55/11 156/48 89/18 13/5 65/20 549/129 (23.50)

Storemem 162/11 14/4 105/7 33/6 1/1 69/15 384/44 (11.46)

Move 57/7 25/13 68/35 31/12 7/3 62/60 250/130 (52.00)

ArithmeticStore 89/8 7/3 90/6 31/4 - 16/8 233/29 (12.45)

ArithmeticLoad 587/23 26/8 1194/40 147/24 - 290/104 2244/199 (8.87)

JumpConsts 1/1 1/1 1/1 1/1 1/1 1/1 6/6 (100.00)

SwitchStack 171/27 55/11 156/48 89/18 13/5 65/20 549/129 (23.50)

Loadmem 657/79 18/0 314/129 71/36 - 761/690 1821/934 (51.29)

LoadConst 424/36 121/20 621/138 155/23 14/3 175/67 1510/287 (19.01)

Arithmetic 409/49 59/10 517/66 167/41 8/2 347/190 1507/358 (23.76)

control transfers [20] can effectively protect against code-reuse

attacks. Compile-time techniques also prevent the construction

of ROP code by generating machine code that does not

contain unintended instruction sequences ending with indirect

control transfer instructions, and by safeguarding any indirect

branches in the actual code using canaries or additional

indirection [15], [16]. In contrast to the above approaches,

although in-place code randomization does not completely

preclude the possibility that working ROP code can be con-

structed, it can be applied directly on third-party software

without access to source code or debugging information.

Another line of defenses are based on runtime solutions

that monitor either the frequency of ret instructions [22],

[23], or the integrity of the stack [21]. Besides the fact these

techniques are ineffective against ROP code that uses indirect

control transfer instructions other than ret, their increased

runtime overhead limits their adoption.

VIII. CONCLUSION

The increasing number of exploits against Windows appli-

cations that rely on return-oriented programming to bypass ex-

ploit mitigations such as DEP and ASLR, necessitates the de-

ployment of additional protection mechanisms that can harden

imminently vulnerable third-party applications against these

threats. Towards this goal, we have presented in-place code

randomization, a technique that offers probabilistic protection

against ROP attacks, by randomizing the code of third-party

applications using various narrow-scope code transformations.

Our approach is practical: it can be applied directly on

third-party executables without relying on debugging infor-

mation, and does not introduce any runtime overhead. At

the same time, it is effective: our experimental evaluation

using in-the-wild ROP exploits and two automated ROP code

construction toolkits shows that in-place code randomization

can thwart ROP attacks against widely used applications,

including Adobe Reader on Windows 7, and can prevent the

automated generation of ROP code resistant to randomization.

Our prototype implementation is publicly available, and as

part of our future work, we plan to improve its randomization

coverage using more advanced data flow analysis methods,

and extend it to support ELF and 64-bit executables.

AVAILABILITY

Our prototype implementation is publicly available at http://

nsl.cs.columbia.edu/projects/orp

ACKNOWLEDGEMENTS

We are grateful to the authors of Q for making it available to us,

and especially to Edward Schwartz for his assistance. We also thank

Úlfar Erlingsson and Periklis Akritidis for their valuable feedback on

earlier versions of this paper. This work was supported by DARPA

and the US Air Force through Contracts DARPA-FA8750-10-2-0253 and

AFRL-FA8650-10-C-7024, respectively, and by the FP7-PEOPLE-2009-

IOF project MALCODE, funded by the European Commission under

Grant Agreement No. 254116. Any opinions, findings, conclusions, or

recommendations expressed herein are those of the authors, and do not

necessarily reflect those of the US Government, DARPA, or the Air Force.

REFERENCES

[1] M. Miller, T. Burrell, and M. Howard, “Mitigating software vulnera-
bilities,” Jul. 2011, http://www.microsoft.com/download/en/details.aspx?
displaylang=en&id=26788.

[2] H. Shacham, “The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM

conference on Computer and Communications Security (CCS), 2007.
[3] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten,

and H. Shacham, “Can DREs provide long-lasting security? the case of
return-oriented programming and the AVC advantage,” in Proceedings
of the 2009 conference on Electronic Voting Technology/Workshop on

Trustworthy Elections (EVT/WOTE), 2009.
[4] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits: bypass-

ing kernel code integrity protection mechanisms,” in Proceedings of the

18th USENIX Security Symposium, 2009.
[5] T. Dullien, T. Kornau, and R.-P. Weinmann, “A framework for automated

architecture-independent gadget search,” in Proceedings of the 4th
USENIX Workshop on Offensive Technologies (WOOT), 2010.

[6] D. A. D. Zovi, “Practical return-oriented programming.” SOURCE
Boston, 2010.

[7] P. Solé, “Hanging on a ROPe,” http://www.immunitysec.com/downloads/
DEPLIB20 ekoparty.pdf.

[8] D. A. D. Zovi, “Mac OS X return-oriented exploitation.” RECON,
2010.

[9] P. Vreugdenhil, “Pwn2Own 2010 Windows 7 Internet Explorer
8 exploit,” http://vreugdenhilresearch.nl/Pwn2Ownl2010-Windows7-
InternetExplorer8.pdf.

[10] K. Baumgartner, “The ROP pack,” in Proceedings of the 20th Virus

Bulletin International Conference (VB), 2010.
[11] M. Parkour, “An overview of exploit packs (update 9) April 5 2011,”

http://contagiodump.blogspot.com/2010/06/overview-of-exploit-packs-
update.html.

[12] G. Fresi Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically
returning to randomized lib(c),” in Proceedings of the 25th Annual

Computer Security Applications Conference (ACSAC), 2009.
[13] H. Li, “Understanding and exploiting Flash ActionScript vulnerabilities.”

CanSecWest, 2011.

http://nsl.cs.columbia.edu/projects/orp
http://nsl.cs.columbia.edu/projects/orp
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=26788
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=26788
http://www.immunitysec.com/downloads/DEPLIB20_ekoparty.pdf
http://www.immunitysec.com/downloads/DEPLIB20_ekoparty.pdf
http://vreugdenhilresearch.nl/Pwn2Ownl2010-Windows7-
InternetExplorer8.pdf
http://contagiodump.blogspot.com/2010/06/overview-of-exploit-packs-
update.html

[14] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings

of the 11th ACM conference on Computer and Communications Security

(CCS), 2004.

[15] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating return-
oriented rootkits with “return-less” kernels,” in Proceedings of the 5th
European conference on Computer Systems (EuroSys), 2010.

[16] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-Free:
defeating return-oriented programming through gadget-less binaries,”
in Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC), 2010.

[17] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer sys-
tems,” in Proceedings of the 6th Workshop on Hot Topics in Operating

Systems (HotOS-VI), 1997.

[18] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient techniques for
comprehensive protection from memory error exploits,” in Proceedings
of the 14th USENIX Security Symposium, August 2005.

[19] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space
layout permutation (ASLP): Towards fine-grained randomization of
commodity software,” in Proceedings of the 22nd Annual Computer

Security Applications Conference (ACSAC), 2006.

[20] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer

and Communications Security (CCS), 2005.

[21] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: A practical
protection tool to protect against return-oriented programming,” in
Proceedings of the 6th Symposium on Information, Computer and
Communications Security (ASIACCS), 2011.

[22] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, “DROP:
Detecting return-oriented programming malicious code,” in Proceedings

of the 5th International Conference on Information Systems Security

(ICISS), 2009.

[23] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity measure-
ment and attestation: towards defense against return-oriented program-
ming attacks,” in Proceedings of the 2009 ACM workshop on Scalable

Trusted Computing (STC), 2009.

[24] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in Proceedings of
the 10th ACM conference on Computer and Communications Security

(CCS), 2003.

[25] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi, “Randomized instruction set emulation to disrupt binary code
injection attacks,” in Proceedings of the 10th ACM conference on
Computer and Communications Security (CCS), 2003.

[26] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy,” in Proceedings of the 20th USENIX Security Symposium,
2011.

[27] Corelan Team, “Mona,” http://redmine.corelan.be/projects/mona.

[28] S. Designer, “Getting around non-executable stack (and fix),” http://
seclists.org/bugtraq/1997/Aug/63.

[29] T. Newsham, “Non-exec stack,” 2000, http://seclists.org/bugtraq/2000/
May/90.

[30] Nergal, “The advanced return-into-lib(c) exploits: PaX case study,”
Phrack, vol. 11, no. 58, Dec. 2001.

[31] S. Krahmer, “x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique,” http://www.suse.de/∼krahmer/no-nx.
pdf.

[32] Ú. Erlingsson, “Low-level software security: Attack and defenses,”
Microsoft Research, Tech. Rep. MSR-TR-07-153, 2007, http://research.
microsoft.com/pubs/64363/tr-2007-153.pdf.

[33] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and Communi-
cations Security (CCS), 2010.

[34] F. B. Cohen, “Operating system protection through program evolution,”
Computers and Security, vol. 12, pp. 565–584, Oct. 1993.

[35] P. Ször, The Art of Computer Virus Research and Defense. Addison-
Wesley Professional, February 2005.

[36] E. Bhatkar, D. C. Duvarney, and R. Sekar, “Address obfuscation: an
efficient approach to combat a broad range of memory error exploits,”
in In Proceedings of the 12th USENIX Security Symposium, 2003.

[37] “/ORDER (put functions in order),” http://msdn.microsoft.com/en-us/
library/00kh39zz.aspx.

[38] “Syzygy - profile guided, post-link executable reordering,” http://code.
google.com/p/sawbuck/wiki/SyzygyDesign.

[39] “Profile-guided optimizations,” http://msdn.microsoft.com/en-us/library/
e7k32f4k.aspx.

[40] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly
of obfuscated binaries,” in Proceedings of the 13th USENIX Security

Symposium, 2004.
[41] M. Smithson, K. Anand, A. Kotha, K. Elwazeer, N. Giles, and

R. Barua, “Binary rewriting without relocation information,” Univer-
sity of Maryland, Tech. Rep., 2010, http://www.ece.umd.edu/∼barua/
without- relocation-technical-report10.pdf.

[42] P. Saxena, R. Sekar, and V. Puranik, “Efficient fine-grained binary
instrumentation with applications to taint-tracking,” in Proceedings of

the 6th annual IEEE/ACM international symposium on Code Generation

and Optimization (CGO), 2008.
[43] Skape, “Locreate: An anagram for relocate,” Uninformed, vol. 6, 2007.
[44] M. Pietrek, “An in-depth look into the Win32 portable executable file

format, part 2,” http://msdn.microsoft.com/en-us/magazine/cc301808.
aspx.

[45] I. Guilfanov, “Jump tables,” http://www.hexblog.com/?p=68.
[46] ——, “Decompilers and beyond.” Black Hat USA, 2008.
[47] Hex-Rays, “IDA Pro Disassembler,” http://www.hex-rays.com/idapro/.
[48] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing

using function-call graphs,” in Proceedings of the 16th ACM conference

on Computer and Communications Security (CCS), 2009.
[49] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh, “Bird: Binary interpre-

tation using runtime disassembly,” in Proceedings of the International

Symposium on Code Generation and Optimization (CGO), 2006.
[50] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,”

SIGARCH Comput. Archit. News, vol. 33, pp. 63–68, December 2005.
[51] Microsoft, “Enhanced Mitigation Experience Toolkit v2.1,” http://www.

microsoft.com/download/en/details.aspx?id=1677.
[52] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques, and Tools (2nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

[53] “Adobe CoolType SING Table “uniqueName” Stack Buffer Overflow,”
http://www.exploit-db.com/exploits/16619/.

[54] R. El-Khalil and A. D. Keromytis, “Hydan: Hiding information in
program binaries,” in Proceedings of the International Conference on

Information and Communications Security, (ICICS), 2004.
[55] Intel 64 and IA-32 Architectures Software Developer’s Manual, ser.

Volume 2 (2A & 2B): Instruction Set Reference, A-Z, 2011, http://www.
intel.com/Assets/PDF/manual/325383.pdf.

[56] S. S. Muchnick, Advanced compiler design and implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[57] Y. L. Varol and D. Rotem, “An algorithm to generate all topological
sorting arrangements,” Comput. J., vol. 24, no. 1, pp. 83–84, 1981.

[58] A. Fog, “Calling conventions for different C++ compilers and operating
systems,” http://agner.org/optimize/calling conventions.pdf.

[59] Skape and Skywing, “Bypassing Windows hardware-enforced DEP,”
Uninformed, vol. 2, Sep. 2005.

[60] F. Bouchez, “A study of spilling and coalescing in register allocation as
two separate phases,” Ph.D. dissertation, École normale supérieure de
Lyon, April 2009.

[61] “Wine,” http://www.winehq.org.
[62] “Integard Pro 2.2.0.9026 (Win7 ROP-Code Metasploit Module),” http://

www.exploit-db.com/exploits/15016/.
[63] “MPlayer (r33064 Lite) Buffer Overflow + ROP exploit,” http://www.

exploit-db.com/exploits/17124/.
[64] “White Phosphorus Exploit Pack,” http://www.whitephosphorus.org/.
[65] Corelan Team, “Corelan ROPdb,” https://www.corelan.be/index.php/

security/corelan-ropdb/.
[66] “Immunity Debugger,” http://www.immunityinc.com/products-immdbg.

shtml.
[67] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good

instructions go bad: generalizing return-oriented programming to RISC,”
in Proceedings of the 15th ACM conference on Computer and Commu-

nications Security (CCS), 2008.
[68] T. Bletsch, X. Jiang, V. Freeh, and Z. Liang, “Jump-oriented program-

ming: A new class of code-reuse attack,” in Proceedings of the 6th

Symposium on Information, Computer and Communications Security

(ASIACCS), 2011.
[69] P. Solé, “Defeating DEP, the Immunitiy Debugger way,” http://www.

immunitysec.com/downloads/DEPLIB.pdf.

http://redmine.corelan.be/projects/mona
http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/2000/May/90
http://seclists.org/bugtraq/2000/May/90
http://www.suse.de/~krahmer/no-nx.pdf
http://www.suse.de/~krahmer/no-nx.pdf
http://research.microsoft.com/pubs/64363/tr-2007-153.pdf
http://research.microsoft.com/pubs/64363/tr-2007-153.pdf
http://msdn.microsoft.com/en-us/library/00kh39zz.aspx
http://msdn.microsoft.com/en-us/library/00kh39zz.aspx
http://code.google.com/p/sawbuck/wiki/SyzygyDesign
http://code.google.com/p/sawbuck/wiki/SyzygyDesign
http://msdn.microsoft.com/en-us/library/e7k32f4k.aspx
http://msdn.microsoft.com/en-us/library/e7k32f4k.aspx
http://www.ece.umd.edu/~barua/without-
http://www.ece.umd.edu/~barua/without-
relocation-technical-report10.pdf
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx
http://www.hexblog.com/?p=68
http://www.hex-rays.com/idapro/
http://www.microsoft.com/download/en/details.aspx?id=1677
http://www.microsoft.com/download/en/details.aspx?id=1677
http://www.exploit-db.com/exploits/16619/
http://www.intel.com/Assets/PDF/manual/325383.pdf
http://www.intel.com/Assets/PDF/manual/325383.pdf
http://agner.org/optimize/calling_conventions.pdf
http://www.winehq.org
http://www.exploit-db.com/exploits/15016/
http://www.exploit-db.com/exploits/15016/
http://www.exploit-db.com/exploits/17124/
http://www.exploit-db.com/exploits/17124/
http://www.whitephosphorus.org/
https://www.corelan.be/index.php/security/corelan-ropdb/
https://www.corelan.be/index.php/security/corelan-ropdb/
http://www.immunityinc.com/products-immdbg.shtml
http://www.immunityinc.com/products-immdbg.shtml
http://www.immunitysec.com/downloads/DEPLIB.pdf
http://www.immunitysec.com/downloads/DEPLIB.pdf

Table V
NUMBER OF USEFUL GADGETS IDENTIFIED BY MONA [27] IN THE ORIGINAL CODE SEGMENTS / IN THEIR UNMODIFIABLE PARTS AFTER IN-PLACE

RANDOMIZATION WAS APPLIED.

Gadget Type Reader Integard Mplayer msvcr71 mscorie mfc71u total (%)

add eax -> ebx - - - 3/0 - - 3/0 (0.00)
add ebp -> eax 1/0 - - - - 1/0 2/0 (0.00)
add ebp -> ebx - - - - - 1/1 1/1 (100.00)
add ebp -> edi - - - - - 1/1 1/1 (100.00)
add ebp -> edx - - 2/0 - - - 2/0 (0.00)
add ebx -> eax 1/0 - 4/0 - - - 5/0 (0.00)
add ebx -> ecx - - 1/0 - - - 1/0 (0.00)
add ebx -> edx 1/0 1/1 1/0 1/0 1/1 1/0 6/2 (33.33)
add ecx -> eax 5/0 - 4/0 2/0 - - 11/0 (0.00)
add ecx -> ebp - - 3/1 - - - 3/1 (33.33)
add edi -> eax 4/0 - 3/0 - - 1/0 8/0 (0.00)
add edi -> ecx - - 8/0 - - - 8/0 (0.00)
add edi -> edx - - 4/0 - - - 4/0 (0.00)
add edx -> eax 3/0 - 5/0 - - - 8/0 (0.00)
add esi -> eax 9/0 - 5/0 2/0 - - 16/0 (0.00)
add esi -> ecx - - 16/0 - - - 16/0 (0.00)
add esi -> edi - - 3/0 - - 4/4 7/4 (57.14)
add value to eax 3/2 2/1 2/2 2/2 2/1 4/1 15/9 (60.00)
add value to ebx 1/0 - - - - - 1/0 (0.00)
add value to edi - - - - - 1/0 1/0 (0.00)
add value to edx - - 1/0 - - - 1/0 (0.00)
add value to esi - - - - - 1/0 1/0 (0.00)
dec eax 24/9 - 84/24 22/4 1/1 33/11 164/49 (29.88)
dec ebp - - 3/0 - - 1/1 4/1 (25.00)
dec ebx - - 4/3 - - - 4/3 (75.00)
dec ecx 2/0 5/5 18/12 63/59 1/1 186/177 275/254 (92.36)
dec edi 2/0 - 2/0 - - 2/2 6/2 (33.33)
dec edx 111/87 - 3/2 1/1 - 3/2 118/92 (77.97)
dec esi 1/0 - 5/3 1/0 - 1/0 8/3 (37.50)
empty eax 156/2 1/0 133/0 89/0 5/0 196/4 580/6 (1.03)
empty edi - - - 1/0 - - 1/0 (0.00)
empty edx 2/0 - 2/0 - - 5/0 9/0 (0.00)
inc eax 51/19 2/0 53/6 108/95 9/2 281/141 504/263 (52.18)
inc ebp - - 134/0 1/1 - 2/1 137/2 (1.46)
inc ebx 6/2 - 9/3 12/1 - 6/1 33/7 (21.21)
inc ecx 0/5 - 9/0 1/0 - 12/8 22/13 (59.09)
inc edi 3/0 - 1/1 2/0 - 7/0 13/1 (7.69)
inc edx 3/0 - 37/1 1/0 - 1/1 42/2 (4.76)
inc esi 14/1 1/0 2/0 3/0 - 11/1 31/2 (6.45)
move eax -> ebp 3/0 - 23/2 - - 5/1 31/3 (9.68)
move eax -> ebx - - 52/0 3/0 - 2/1 57/1 (1.75)
move eax -> ecx 1/0 1/1 7/1 - - - 9/2 (22.22)
move eax -> edi 4/0 - 7/0 - - 17/1 28/1 (3.57)
move eax -> edx - - 10/1 - - - 10/1 (10.00)
move eax -> esi 2/0 - 19/0 - - 13/1 34/1 (2.94)
move eax -> esp 11/2 - 30/3 1/0 - 43/23 85/28 (32.94)
move ebp -> eax 34/0 - 80/2 2/0 - 17/1 133/3 (2.26)
move ebp -> ebx - - 2/0 - - 1/1 3/1 (33.33)
move ebp -> edi 5/0 - 2/0 - - 2/1 9/1 (11.11)
move ebp -> edx - - 6/0 - - - 6/0 (0.00)
move ebx -> eax 96/0 2/0 151/0 8/0 1/0 37/1 295/1 (0.34)
move ebx -> ecx - - 1/0 - - - 1/0 (0.00)
move ebx -> edi 1/0 - - - - 3/0 4/0 (0.00)
move ebx -> edx 1/0 1/1 1/0 1/0 1/1 1/0 6/2 (33.33)
move ebx -> esp 4/0 - 2/0 2/1 - - 8/1 (12.50)
move ecx -> eax 26/1 3/2 46/1 10/4 1/0 41/2 127/10 (7.87)
move ecx -> ebp - - 3/1 - 1/0 3/1 7/2 (28.57)
move ecx -> ebx - - 4/0 - - - 4/0 (0.00)
move ecx -> edi - - 1/0 - - 6/0 7/0 (0.00)
move ecx -> edx 2/0 - - - - 2/0 4/0 (0.00)
move ecx -> esi 1/0 - - - - 5/0 6/0 (0.00)
move ecx -> esp - - - - - 2/0 2/0 (0.00)
move edi -> eax 125/0 - 92/8 15/0 6/0 96/1 334/9 (2.69)
move edi -> ebp 1/0 - - - - - 1/0 (0.00)
move edi -> ebx - - 1/0 - - - 1/0 (0.00)
move edi -> ecx 1/0 - 8/0 - - - 9/0 (0.00)
move edi -> edx - - 19/0 - - - 19/0 (0.00)
move edi -> esi - - 3/0 - - 5/5 8/5 (62.50)
move edi -> esp - - 19/0 - - - 19/0 (0.00)
move edx -> eax 17/1 - 92/1 1/0 1/1 6/0 117/3 (2.56)
move edx -> ebx 1/0 - 3/0 - - - 4/0 (0.00)
move edx -> ecx - - - 1/0 - - 1/0 (0.00)
move edx -> edi 1/0 - - - - 1/0 2/0 (0.00)
move edx -> esi 1/0 - - - - 1/0 2/0 (0.00)
move esi -> eax 488/0 2/0 136/0 58/0 12/1 513/2 1209/3 (0.25)
move esi -> ebx - - 2/0 - - - 2/0 (0.00)
move esi -> ecx 2/0 - 16/0 - - - 18/0 (0.00)
move esi -> edi - - 3/0 - - 4/4 7/4 (57.14)
move esi -> edx - - 8/0 - - - 8/0 (0.00)
move esi -> esp 1/0 - 17/0 - - - 18/0 (0.00)
move esp -> eax 1/0 - 1/0 - - - 2/0 (0.00)
move esp -> ebp - - 1/0 - - - 1/0 (0.00)
move esp -> ebx 5/0 - 85/0 - - - 90/0 (0.00)
move esp -> ecx 8/0 - - 1/0 - - 9/0 (0.00)
move esp -> edi 37/0 - 10/0 - - 2/0 49/0 (0.00)
move esp -> esi 20/0 - 4/0 2/0 - 5/0 31/0 (0.00)
neg eax 3/1 - 1/1 7/0 - 9/8 20/10 (50.00)
neg edx - - - 1/0 - - 1/0 (0.00)
pickup pointer into eax 15/10 1/0 12/3 2/1 - 23/15 53/29 (54.72)
pickup pointer into ecx - - 2/0 - - - 2/0 (0.00)
pushad 7/0 - 26/4 1/0 - 17/12 51/16 (31.37)
xor ebp -> eax 1/0 - - - - - 1/0 (0.00)
xor edx -> eax - - 1/0 - - - 1/0 (0.00)
xor esi -> eax 1/0 - - - - - 1/0 (0.00)

	Introduction
	Background
	Approach
	Why In-Place?
	Code Extraction and Modification

	In-Place Code Transformations
	Atomic Instruction Substitution
	Instruction Reordering
	Intra Basic Block Reordering
	Reordering of Register Preservation Code

	Register Reassignment

	Experimental Evaluation
	Randomization Analysis
	Coverage
	Impact
	Entropy

	Correctness and Performance
	Effectiveness
	ROP Exploits
	Automated ROP Payload Generation

	Discussion
	Related Work
	Conclusion
	References

