
Windows Kernel

Architecture Internals

Dave Probert

Windows Kernel Architect, Microsoft
MSRA/UR Workshop – Beijing, China

15 April 2010

NT Timeline: the first 20 years

 2/1989 Design/Coding Begins

 7/1993 NT 3.1

 9/1994 NT 3.5

 5/1995 NT 3.51

 7/1996 NT 4.0

12/1999 NT 5.0 Windows 2000

 8/2001 NT 5.1 Windows XP – ends Windows 95/98

 3/2003 NT 5.2 Windows Server 2003

 8/2004 NT 5.2 Windows XP SP2

 4/2005 NT 5.2 Windows XP 64 Bit Edition (& WS03SP1)

10/2006 NT 6.0 Windows Vista (client)

 2/2008 NT 6.0 Windows Server 2008 (Vista SP1)

10/2009 NT 6.1 Windows 7 & Windows Server 2008 R2 2

© Microsoft Corporation 3

Windows Academic Program

Historically little information on NT available

– Microsoft focus was end-users and Win9x

– Source code for universities was too encumbered

Much better internals information today

– Windows Internals, 4th Ed., Russinovich & Solomon

– Windows Academic Program (universities only):

• CRK: Curriculum Resource Kit (NT kernel in PowerPoint)

• WRK: Windows Research Kernel (NT kernel in source)

– Chapters in leading OS textbooks (Tanenbaum,

Silberschatz, Stallings)

© Microsoft Corporation 4

Windows Architecture

User-mode

Kernel-mode
NTOS kernel layer

System library (ntdll) / run-time library

Kernel32 win32

DLLs

Applications

System Services
Subsystem

servers

Logon/GINA

Critical services

NTOS executive layer Drivers

HAL

Firmware, Hardware

© Microsoft Corporation 2008 5

NT API stubs (wrap sysenter) -- system library (ntdll.dll)
user

mode

kernel

mode

Windows Kernel-mode Architecture

NTOS executive layer

Trap/Exception/Interrupt Dispatch

CPU mgmt: scheduling, synchr, ISRs/DPCs/APCs

Drivers

Devices, Filters,

Volumes,

Networking,

Graphics

Hardware Abstraction Layer (HAL): BIOS/chipset details

firmware/

hardware CPU, MMU, APIC, BIOS/ACPI, memory, devices

NTOS

kernel

layer

Caching Mgr

Security

Procs/Threads

Virtual Memory

IPC

glue

I/O

Object Mgr

Registry

© Microsoft Corporation 6

NT (Native) API examples

NtCreateProcess (&ProcHandle, Access, SectionHandle,

DebugPort, ExceptionPort, …)

NtCreateThread (&ThreadHandle, ProcHandle, Access,

ThreadContext, bCreateSuspended, …)

NtAllocateVirtualMemory (ProcHandle, Addr, Size, Type,

Protection, …)

NtMapViewOfSection (SectHandle, ProcHandle, Addr,

Size, Protection, …)

NtReadVirtualMemory (ProcHandle, Addr, Size, …)

NtDuplicateObject (srcProcHandle, srcObjHandle,

dstProcHandle, dstHandle, Access, Attributes, Options)

© Microsoft Corporation 7

Object Manager

NT Object Manager

Provides unified management of:

• kernel data structures

• kernel references

• user references (handles)

• namespace

• synchronization objects

• resource charging

• cross-process sharing

• central ACL-based security reference monitor

• configuration (registry)

8

\ObjectTypes

Object Manager: Directory, SymbolicLink, Type

Processes/Threads: DebugObject, Job, Process, Profile,

Section, Session, Thread, Token

Synchronization:

 Event, EventPair, KeyedEvent, Mutant, Semaphore,

ALPC Port, IoCompletion, Timer, TpWorkerFactory

IO: Adapter, Controller, Device, Driver, File, Filter*Port

Kernel Transactions: TmEn, TmRm, TmTm, TmTx

Win32 GUI: Callback, Desktop, WindowStation

System: EtwRegistration, WmiGuid

© Microsoft Corporation 9

© Microsoft Corporation 10

Implementation: Object Methods

Note that the methods are unrelated to actual

operations on the underlying objects:

OPEN: Create/Open/Dup/Inherit handle

CLOSE: Called when each handle closed

DELETE: Called on last dereference

PARSE: Called looking up objects by name

SECURITY: Usually SeDefaultObjectMethod

QUERYNAME: Return object-specific name

© Microsoft Corporation 11

\Global??\C:

\Device\HarddiskVolume1

<directory>

L“Global??”

<directory>

L“C:”

L“\”

<symbolic link>

\Device\HarddiskVolume1

<directory>

L“Device”

<directory>

L“HarddiskVolume1”

L“\”

<device>

by I/O

manager

implemented

Naming example

© Microsoft Corporation 12

\Global??\C:\foo\bar.txt

<device object>

by I/O

manager

implemented , “foo\bar.txt”

deviceobject->ParseRoutine == IopParseDevice

Object Manager Parsing example

Note: namespace rooted in object manager, not FS

© Microsoft Corporation 13

I/O Support: IopParseDevice

user

kernel
Trap mechanism

Dev Stack

NtCreateFile()

ObjMgr Lookup

context

IopParseDevice()

DevObj,

context

Security

RefMon
Access

check

File object

File Sys

File System Fills in File object

Access

check

Returns handle to File object

© Microsoft Corporation 14

Handle Table

– Every process has a handle table

• System Process (kernel) has global handle table

• Data structure also used to allocate/map process/thread IDs

– NT handles reference kernel data structures

• Mostly used from user-mode

• Kernel mode uses handles or referenced pointers

– NT APIs use explicit handles to refer to objects

• Simplifies cross-process operations

• Handles can be restricted and duplicated cross-process

– Handles can be used for synchronization

• Any dispatcher object can be waited on

• Multiple objects can be waited by single thread

© Microsoft Corporation 15

One level: (to 512 handles)

TableCode

A: Handle Table Entries [512]
Handle Table

Object

Object
Object

© Microsoft Corporation 16

Two levels: (to 512K handles)

TableCode

A: Handle Table Entries [512]

Handle Table

Object

Object
Object

B: Handle Table Pointers [1024]

C: Handle Table Entries [512]

© Microsoft Corporation 17

Three levels: (to 16M handles)

TableCode

A: Handle Table Entries [512]

Handle Table

Object

Object
Object

B: Handle Table Pointers [1024]

C: Handle Table Entries [512]

D: Handle Table Pointers [32]

E: Handle Table Pointers [1024]

F: Handle Table Entries [512]

© Microsoft Corporation 18

Thread Manager

Kernel Layer

© Microsoft Corporation 19

CPU Control-flow

Normal threads are composed of kernel-threads and user-
threads, each with stack, and scheduling/environmental
info

APCs (Asynchronous Procedure Calls) interrupt the
execution of a thread, not a processor

DPCs (Deferred Procedure Calls) interrupt the execution
of a processor, not a thread

Thread Pools and Worker threads used to spawn work
as tasks and reducing thread create/delete overhead

© Microsoft Corporation 20

Threads
Unit of concurrency (abstracts the CPU)

Threads created within processes

System threads created within system process (kernel)

System thread examples:

Dedicated threads

Lazy writer, modified page writer, balance set manager,

mapped pager writer, other housekeeping functions

General worker threads

Used to move work out of context of user thread

Must be freed before drivers unload

Sometimes used to avoid kernel stack overflows

Driver worker threads

Extends pool of worker threads for heavy hitters, like file server

© Microsoft Corporation 21

Thread elements

user-mode

• user-mode stack

• Thread Environment Block (TEB)

– most interesting: thread local storage

kernel-mode

• kernel-mode stack

• KTHREAD: scheduling, synchronization, timers, APCs

• ETHREAD: timestamps, I/O list, exec locks, process link

• thread ID

• impersonation token

© Microsoft Corporation 22

Context-switching Kernel VM

Three regions of kernel VM are switched

– Page tables and page directory self-map

– Hyperspace (working set lists)

– Session space

• Session space

– „Session‟ is a terminal services session

– Contains data structures for kernel-level GUI

– Only switched when processes in different TS session

• Switched kernel regions not usually needed in other processes

– Thread attach is used to temporary context switch when they are

– Savings in KVA is substantial, as these are very large data

structures

© Microsoft Corporation 23

Kernel Thread Attach

Allows a thread in the kernel to temporarily move to a different

process‟ address space

• Used heavily in Mm and Ps, e.g.

– Used to access process page tables, working set descriptors, etc

– PspProcessDelete() attaches before calling ObKillProcess() to

close/delete handles in proper process context

• Used to access the TEB/PEB in user-mode

– (Thread/Process Environment Blocks)

© Microsoft Corporation 24

NT thread priorities

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16 zero thread

real-time

(fixed)

worker

threads

normal

(dynamic)

critical
H

I

G

H
+

N

O

R

M

N

O

R

M

N

O

R

M

-

I

D

L

E

idle

© Microsoft Corporation 25

Scheduling
Windows schedules threads, not processes

Scheduling is preemptive, priority-based, and round-robin at the
highest-priority

16 real-time priorities above 16 normal priorities

Scheduler tries to keep a thread on its ideal processor/node to
avoid perf degradation of cache/NUMA-memory

Threads can specify affinity mask to run only on certain processors

Each thread has a current & base priority
Base priority initialized from process

Non-realtime threads have priority boost/decay from base

Boosts for GUI foreground, waking for event

Priority decays, particularly if thread is CPU bound (running at
quantum end)

Scheduler is state-driven by timer, setting thread
priority, thread block/exit, etc

Priority inversions can lead to starvation
balance manager periodically boosts non-running runnable threads

Scheduler

Initialized

Ready

Terminated Running

Standby

Deferred
Ready

Waiting

KeInitThread

KeTerminateThread

Transition
k stack

swapped

KiUnwaitThread
KiReadyThread

KiQuantumEnd
KiIdleSchedule
KiSwapThread
KiExitDispatcher
NtYieldExecution

Kernel Thread Transition Diagram

DavePr@Microsoft.com

2003/04/06 v0.4b

Idle

processor

or

preemption

KiInsertDeferredReadyList

preemption

preemption

KiRetireDpcList/KiSwapThread/
KiExitDispatcher
KiProcessDeferredReadyList
KiDeferredReadyThread

no avail.

processor

KiSelectNextThread

PspCreateThread
KiReadyThread
KiInsertDeferredReadyList

Affinity

ok

Affinity

not ok

KiSetAffinityThread
KiSetpriorityThread

Ready
process
swapped

KiReadyThread

© Microsoft Corporation 27

Asynchronous Procedure Calls

APCs execute routine in thread context

not as general as UNIX signals

user-mode APCs run when blocked & alertable

kernel-mode APCs used extensively: timers,

notifications, swapping stacks, debugging, set thread

ctx, I/O completion, error reporting, creating &

destroying processes & threads, …

APCs generally blocked in critical sections

e.g. don‟t want thread to exit holding resources

© Microsoft Corporation 28

Asynchronous Procedure Calls

APCs execute code in context of a particular thread

APCs run only at PASSIVE or APC LEVEL (0 or 1)

 Interrupted by DPCs and ISRs

Three kinds of APCs

User-mode: deliver notifications, such as I/O done

Kernel-mode: perform O/S work in context of a
process/thread, such as completing IRPs

Special kernel-mode: used for process termination

© Microsoft Corporation 29

Process Manager

Memory Manager

Cache Manager

© Microsoft Corporation 30

Processes

• An environment for program execution

– Namespaces (access to files & kernel objects)

– virtual address mappings

– ports (debug, exceptions)

– threads

– user authentication (token)

– virtual memory data structures

– PEB (Process Environment Block) in user-mode

• In Windows, a process abstracts the MMU, not the CPU

© Microsoft Corporation 31

Process Lifetime

– Process created as an empty shell

– Address space created with only system DLL and the
main image (including linked DLLs)

– Handle table created empty or populated via duplication
of inheritable handles from parent

– Add environment, threads, map executable image
sections (EXE and DLLs)

– Process partially destroyed (“rundown”) at last thread exit

– Process totally destroyed on last dereference

© Microsoft Corporation 32

System DLL

Core user-mode functionality in the system dynamic link
library (DLL) ntdll.dll

Mapped during process address space setup by the kernel

Contains all core system service entry points

User-mode trampoline points for:
– Process/thread startup

– Exception dispatch

– User APC dispatch

– Kernel-user callouts

© Microsoft Corporation 33

Process/Thread structure

Object

Manager

Any Handle

Table

Process

Object

Process‟

Handle Table

Virtual

Address

Descriptors

Thread

Thread

Thread

Thread

Thread

Thread

Files

Events

Devices

Drivers

Memory

Manager

Structures

© Microsoft Corporation 34

Physical Frame Management

• Table of PFN (Physical Frame Number) data structures
– Represent all pageable pages

– Synchronize page-ins

– Linked to management lists

• Page Tables
– Hierarchical index of page directories and tables

– Leaf-node is page table entry (PTE)

– PTE states:

• Active/valid

• Transition

• Modified-no-write

• Demand zero

• Page file

• Mapped file

© Microsoft Corporation 35

Virtual Memory Management

App

VAD tree

File

Data

Image

c-o-w

Data

Data

File

Data

Sections

e
x
e
c
u
ta

b
le

d
a
ta

file

p
a
g
e
file

d
a
ta

file

Working-set Manager

M
o
d
ifie

d
 L

is
t

Working-set list

Modified

Page Writer

S
ta

n
d
b
y
 L

is
t

F
re

e
 L

is
t

Physical Frame State Changes

© Microsoft Corporation 36

Process

(or System)

Working Set

Standby

List
Modified

List

Free

List
Zero

List

Modified Pagewriter

Zero Thread

M
M

 L
o

w
 M

e
m

© Microsoft Corporation 37

32b Virtual Address Translation

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD PT page DATA

1024

PDEs
1024

PTEs
4096

bytes

© Microsoft Corporation 38

Self-mapping page tables
Virtual Access to PageDirectory[0x300]

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD

1100 0000 0011 0000 0000 1100 0000 0000

CR3

PD

PTE
0x300

Phys: PD[0xc0300000>>22] = PD

Virt: *((0xc0300c00) == PD

© Microsoft Corporation 39

Self-mapping page tables
Virtual Access to PTE for va 0xe4321000

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD

1100 0000 0011 1001 0000 1100 1000 0100

CR3

PD

0x300

PTE

PT

0x390

0x321

GetPteAddress:

0xe4321000

=> 0xc0390c84

© Microsoft Corporation 40

I/O

© Microsoft Corporation 41

I/O Model

– Extensible filter-based I/O model with driver layering

– Standard device models for common device classes

– Support for notifications, tracing, journaling

– Configuration store

– File caching is virtual, based on memory mapping

– Completely asynchronous model (with cancellation)

© Microsoft Corporation 42

I/O Request Packet (IRP)

Flags

Buffer Pointers

MDL Chain

Thread‟s IRPs

Completion/Cancel Info

Completion

APC block

Driver

Queuing

& Comm.

System

User
MDL

Thread

IRP Stack Locations

© Microsoft Corporation 43

Layering Drivers

Device objects attach one on top of another using
IoAttachDevice* APIs creating device stacks

– I/O manager sends IRP to top of the stack

– Drivers store next lower device object in their private
data structure

– Stack tear down done using IoDetachDevice and
IoDeleteDevice

Device objects point to driver objects

– Driver represent driver state, including dispatch table

© Microsoft Corporation 44

File System Device Stack

NT I/O Manager

File System Filters

File System Driver

Cache Manager

Virtual Memory

Manager

Application

Kernel32 / ntdll
user
kernel

Partition/Volume

Storage Manager

Disk Class Manager

Disk Driver

DISK

© Microsoft Corporation 45

I/O Manager

Object Manager

NtCreateFile

I/O Manager

ObOpenObjectByName

IopParseDevice

IoCallDriver

IRP

FS filter drivers

NTFS

Volume Mgr

IoCallDriver

Disk Driver

IoCallDriver

IoCallDriver

HAL

File

Object

Result: File Object
filled in by NTFS

© Microsoft Corporation 46

I/O Completions

• Receiving notification for asynchronous I/O completion:

– poll status variable

– wait for the file handle to be signalled

– wait for an explicitly passed event to be signalled

– specify a routine to be called on the originating ports

– use an I/O completion port

© Microsoft Corporation 47

I/O Completion Ports

K

U

th
re

a
d

th
re

a
d

th
re

a
d

I/O I/O I/O

re
q
u
e
s
t

re
q
u
e
s
t

re
q
u
e
s
t

c
o
m

p
le

te

c
o
m

p
le

te

c
o
m

p
le

te

K

U

th
re

a
d

th
re

a
d

th
re

a
d

I/O I/O I/O

re
q
u
e
s
t

re
q
u
e
s
t

re
q

u
e

s
t

complete

c
o
m

p
le

te

th
re

a
d

th
re

a
d

I/O completion ports normal completion

I/O Completion

48

Questions

