
Format String &
Double-Free
Attacks
ECE568 – Lecture 5
Courtney Gibson, P.Eng.
University of Toronto ECE

Outline
Format String Attacks

� Information leakage
� %n vulnerability
� Crafting a format-string attack

Double-Free Attacks
� malloc / free implementation
� Double-free vulnerability

Format String
Attacks
snprintf, information leakage,
%n, format string vulnerability

Format String Vulnerabilities
A simple format string vulnerability:

sprintf(buf, “WARNING: %s”, attacker_string);

� sprintf is similar to printf, except that the
output is copied into buf

� The vulnerability above is similar to strcpy,
and can result in a buffer overflow

Format String Vulnerabilities
A more complex vulnerability:

snprintf(buf, len, attacker_string);

There is no buffer overflow risk, as len limits the
number of characters written into buf…but, the
attacker gets to specify the format string.

Example: Application logs, language configs,
locale files, etc..

Recall: Stack Frame

Input
Parameters

Return
Address

Saved Frame
Pointer

Local
Variables

Saved
Registers

� Arguments are pushed to the stack in reverse order
� snprintf copies data from the format string until it

reaches a ‘%’. The next argument on the stack is
then fetched and output in the requested format

void main()
{

const int len = 20;

char buf[len];

snprintf(buf, len, ”AB%d%d”, 5, 6);

// buf is now “AB56”

}

snprintf Operation

6

5

0x48592

“AB%d%d”
0x48592

20

0x998623

buf

Return Address

Frame Pointer

Unexpected Behaviour
� What happens if there are more ‘%’

parameters than arguments?
� The argument pointer keeps moving up

the stack, and points to values in the
previous frame!

void main() {

char buf[256];

snprintf(buf, 256,
”AB,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x\n”, 5);

printf(buf);

}

snprintf Operation

snprintf Operation

5

0x48592

256

0x998623

Return Address

Frame Pointer

buf

snprintf
main

“AB,%08x,%08x,%08x,%08x,%08x,…”
0x48592

void main() {

char buf[256];

snprintf(buf, 256,
”AB,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x\n”, 5);

printf(buf);

}

Unexpected Behaviour

AB,00000005,302c4241,30303030,2c353030,…

void main() {

char buf[256];

snprintf(buf, 256,
”AB,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x\n”, 5);

printf(buf);

}

The output of the program is:

‘0’ ‘,’ ‘B’ ‘A’
This is buf: the argument

pointer has worked back
into main’s stack frame.

Information Leakage
� If there is valuable information further up

the stack (e.g., passwords, encryption
keys, etc.), then there is a significant risk of
information leakage.

� Programmers may not pay attention to
sanitizing input like language config:

<param name=”lastLogin" value=”Votre dernière connecté il ya %d jours"/>

Overwriting the Return Address
Rather than just leak
information, can we inject an
exploit?

In most C “print” functions,
“%n” assumes the current
argument is a pointer; the
number of characters written so
far are copied to that address.

Overwriting the Return Address

� Normally, “%” arguments read values, but
%n modifies the memory pointed to by
the argument

� We can take control of the program if a
%n argument points to the saved return
address on the stack

…
int numBytes;

printf (“Hello world%n\n”, &numBytes);
…

numBytes = 11

Exploiting Format String Vulnerabilities
� At the front of your format string, put the

address where you think the return address is
stored on the stack

� Put your shellcode in the format string
� Put enough “%” arguments so that the

argument pointer points to the front of your
format string

� Put a %n at the end and overwrite the return
address to point at the shellcode in the buffer

shellcode %xAddress of
Return Addr %x %x %n

%n Vulnerability

123

0x48590

Return Address

Frame Pointer

buf

printf
main

0x48590

void main()
{

char buf[256];

…

printf(buf, 123);

…

}

0x48590

0x4858C (Arg #2)

0x48588 (Arg #1)

0x48584

0x48580

shellcode %x0x48584 %n

buf

0x48590 0x48594

%n Vulnerability

123

0x48590

0x48594

Frame Pointer

buf

printf
main

0x48590

0x48590

0x4858C

0x48588

0x48584

0x48580

shellcode %x0x48584 %n

buf

0x48590 0x48594

Problem: How do we get %n (the
number of printed characters) up
to such a high value?

In practice, the address of our
shellcode will be a very large
number: would require printing
many, many bytes: buf won’t be
large enough.

Overwriting the Correct Return Address

The number of characters written can be
controlled by adding a width argument
between % and x, u or d.

Example: “%243d” writes an integer with a
field width of 243; “%n” will be incremented
by 243.

shellcodeAddress of
Return Addr %243d %n

Overwriting the Correct Return Address

In practice, though, the
stack addresses are really,
really large values; we
need %n to overwrite the
return address with a large
32-bit number:

� Would require printf to produce multiple GB of
output: likely will not fit in memory

� Often, large width values will crash the
program

Overwriting the Correct Return Address
Fortunately, the 32-bit number return address can be
written one byte at a time:

� Use just the lowest-order byte stored by “%hhn”
� It is incremented with modulo-256 arithmetic

For more information:
� “Exploiting Format String Vulnerabilities” on the

course website

shellcodeRA

%nnx

dummy
value RA+1 dummy

value RA+2 dummy
value RA+3

%hhn %nnx %hhn %nnx %hhn %nnx %hhn%x

What Happens With a Size Limit?

Can the size limit in snprintf stop this attack?
snprintf(buf, len, formatString, …);

snprintf will interpret the whole format string,
regardless of the specified size limit:

� If output is longer than len, it is truncated
before writing to buf

� %n is always evaluated, and assumes that
there is no size limit in place

Double-Free
Attacks
malloc, free, allocation tags,
double-free vulnerability

Double-Free Vulnerability
Freeing a memory location that is under the
control of an attacker is an exploitable
vulnerability.

p = malloc(128);

q = malloc(128);

free(p);

free(q);

p = malloc(256);

strcpy(p, attacker_string);

free(q);

Why is this a
vulnerability?

Let’s look at how
malloc works…

malloc Implementation
malloc maintains a doubly-linked list of free and
allocated memory regions:

� Information about a region is maintained in a
chunk tag that is stored just before the region

� Each chunk maintains:
� A “free bit”, indicating whether the chunk is

allocated or free
� Links to the next and previous chunk tags

� Initially when all memory is unallocated, it is in
one free memory region

tag free region

malloc Implementation
When a region is allocated, malloc marks
the remaining free space with a new tag:

tag free regiontagallocated

When another region is allocated, another
tag is created:

tag free regiontagallocated tagallocated

free Implementation
When regions are de-allocated, the free
function sets the “free bit”:

tag free regiontagallocated

free also tries to consolidate adjacent free
regions:

tag free regiontagallocated free region tag

Double-Free Vulnerability
A vulnerability occurs when the program
calls free on a region that contains data set
by the attacker:

� free(q) will try to use the chunk tag located just
before the address pointed to by q

� In this case, the “chunk tag” is now actually part
of the attacker’s string

tag free regiontagallocated

q

Double-Free Vulnerability
The attacker can set the values in their
“chunk tag” such that free will overwrite a
memory location chosen by the attacker
with a value chosen by the attacker.

tag free regiontag

q

fake
tag

Double-Free Vulnerability

tag free regiontag

q

fake
tagshellcode

prev
Return Address

next

tag = q - sizeof(chunkTag);
tag->next->prev = tag->prev;

When consolidating free regions, free essentially does:

fake
tag

prev

Questions?

