
JJoonn  OObbeerrhheeiiddee

LinkedIn !

Twitter "

GitHub #

HHOOMMEE  ||  BBLLOOGG  ||  RREESSEEAARRCCHH  ||  AADDVVIISSOORRIIEESS  ||  PPRROOJJEECCTTSS

PPOOSSTTSS  ||  AARRCCHHIIVVEE

LLiinnuuxx  KKeerrnneell  CCAANN  SSLLUUBB  OOvveerrflflooww

Ben Hawkes discovered a vulnerability in the Controller Area Network (CAN)
packet family in the Linux kernel that results in a controllable overflow of a
SLUB-allocated structure. As there's not a whole lot of modern, public examples
of SLUB overflow exploits, I'll describe my exploit of the CAN vulnerability in
detail.

TThhee  VVuullnneerraabbiilliittyy

Ben provides the full details of the vulnerability in his blog post:

A controller area network is backed by the AF_CAN datagram socket type.
This socket is enabled by the CONFIG_CAN kernel configuration option, so
any kernel compiled with CONFIG_CAN and CONFIG_CAN_BCM options
were vulnerable. This included at least Ubuntu 10.04 and Debian 5.0 (i'm
told a pre-release version of Red Hat was also affected).

The bug is an integer overflow in the sendmsg implementation for BCM
(broadcast manager) AF_CAN sockets which results in controlled
corruption of a kmalloc heap chunk. No physical CAN device is required to
trigger the overflow.

Linux Kernel CAN SLUB Overflow | Jon Oberheide https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub...

1 sur 8 09/05/2019 à 19:53



The bcm_sendmsg function in net/can/bcm.c reads in a bcm_msg_head
structure from a user-supplied iovec:

struct bcm_msg_head {
     __u32 opcode;
     __u32 flags;
     ...
     canid_t can_id;
     __u32 nframes;
     struct can_frame frames[0];
};

The opcode field dictates the type of message processing that should be
performed by bcm_sendmsg. The vulnerability is in the RX_SETUP
operation, which is backed by the bcm_rx_setup function in net/can/bcm.c
(comments marked with BH):

#define CFSIZ sizeof(struct can_frame)

static int bcm_rx_setup(struct bcm_msg_head *msg_head, ...
 // BH: the ifindex parameter is set to zero if
 // BH: msg->msg_name is NULL
 ...

 op = bcm_find_op(&bo->rx_ops, msg_head->can_id,
                  ifindex);
 // BH: by setting can_id to 0xdeadbeef, a NULL op
 // BH: is returned
 if (op) {
     ...
 }
 else {
    op = kzalloc(OPSIZ, GFP_KERNEL);

    if (!op)
       return -ENOMEM;

    op->can_id    = msg_head->can_id;
    op->nframes   = msg_head->nframes;
    // BH: nframes is controlled by the attacker

    if (msg_head->nframes > 1) {
       op->frames = kmalloc(
                      msg_head->nframes * CFSIZ,
                      GFP_KERNEL);
       // BH: integer overflow here, large nframes
       // BH: wraps around to cause a small alloc
       ...

    }...

    if (msg_head->nframes) {
       err = memcpy_fromiovec((u8 *)op->frames,
                        msg->msg_iov,
                        msg_head->nframes * CFSIZ);
       // BH: size field overflows to same value as
       // BH: the allocation, no corruption
                      ...

Linux Kernel CAN SLUB Overflow | Jon Oberheide https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub...

2 sur 8 09/05/2019 à 19:53



    } ...

    do_rx_register = 1
 }

 ...
 if (do_rx_register) {
    if (ifindex) {
       // BH: ifindex is zero, as noted above
       ...
    } else
       err = can_rx_register(NULL, op->can_id,
                        REGMASK(op->can_id),
                        bcm_rx_handler, op, "bcm");

        // BH: can_rx_register explicitly
        // BH: allows registering to a NULL device

        if (err) {
           ...
        }
    }
...

Now at this point no memory corruption has occurred, but there is a
bcm_op structure registered for the NULL device under a can_id of
0xdeadbeef with a large value for nframes (e.g. nframes = 268435458) and
a small allocation for the frames buffer (e.g. 32 bytes). If the RX_SETUP
operation is called again on this operation structure, but this time with a
mid-sized nframes value (e.g. nframes = 512), then the following 'update'
code in bcm_rx_setup is invoked:

op = bcm_find_op(&bo->rx_ops, msg_head->can_id, ifindex);
// BH: op struct for 0xdeadbeef is returned

if (op) {
   // BH: 512 < 268435458
   if (msg_head->nframes > op->nframes)
      return -E2BIG;

   if (msg_head->nframes) {
      // BH: writes 8192 attacker-controlled bytes
      // BH: in to a 32-byte buffer
      err = memcpy_fromiovec((u8 *)op->frames,
                       msg->msg_iov,
                       msg_head->nframes * CFSIZ);
      ...
   }
}

This means that it's possible to corrupt any amount of data contiguous to
the original 'frames' kmalloc chunk with an attacker-controlled value. The
tough part from here is finding a good way of normalizing the heap layout
to get a consistent (aka exploitable) crash. Needless to say that, with a bit
of work, you can get an arbitrary kernel-space write.

Linux Kernel CAN SLUB Overflow | Jon Oberheide https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub...

3 sur 8 09/05/2019 à 19:53



SSLLUUBB  OOvveerrflfloowwss

Exploiting a SLUB overflow requires a little knowledge about the SLUB allocator
and how its caches are structured. The SLUB allocator manages many of the
dynamic allocations and deallocations of internal kernel memory and is a
descendant of the SLAB allocator. The kernel maintains a number of SLUB
caches, distinguished by size for allocation efficiency. Some caches are general-
purpose (eg. the "kmalloc-64" cache holds allocations that are of size <= 64 bytes
but > 32 bytes) while others are explicitly defined for commonly allocated
structures (eg. the "task_struct" cache contains the allocations for the kernel
structure task_struct).

Each "slab" in a cache contains a number of contiguous allocations of some
object. For example, the "kmalloc-32" cache contains 128 objects each with a
maximum size of 32 bytes (32*128=4096, which is PAGE_SIZE on many systems).
The allocator keeps track of free slots in each slab, so a typical slab may have
both used and free slots and look something like the following:

OOvveerrflfloowwiinngg  aa  SSLLUUBB  AAllllooccaattiioonn

A key aspect of the SLUB allocator is that objects in a slab are allocated
contiguously. Therefore if we can write past the intended bound of an allocation,
we may be able to influence adjacently allocated objects:

can-slub-2

So, if we can overflow into an adjacent allocation, how can we convert that
control of data into controlling the execution flow of the kernel? Ideally, we'd
like to find a structure allocated in our SLUB cache that contains function
pointers. If we can overwrite a function pointer in the kernel with a value we
control, we can easily redirect control flow to an address of our choosing and
escalate privileges.

However, in many cases, the allocated structure might not itself contain a
function pointer, but may reference a number of additional structures, one of
which contains a function pointer. A popular target for SLUB overflows that
satisfies this condition is shmid_kernel, an internal kernel structure used to track

Linux Kernel CAN SLUB Overflow | Jon Oberheide https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub...

4 sur 8 09/05/2019 à 19:53



POSIX shared memory segments:

``` {style="text-align: left;"} struct shmid_kernel / private to the kernel / { struct
kern_ipc_perm shm_perm; struct file shm_file; unsigned long shm_nattch;
unsigned long shm_segsz; time_t shm_atim; time_t shm_dtim; time_t shm_ctim;
pid_t shm_cprid; pid_t shm_lprid; struct user_struct mlock_user; };

It is an attractive target since its allocations are easily controlled
from unprivileged userspace applications (via shmget(2), shmat(2),
shmctl(2), etc), the allocations stay active even after process
termination, and it references a chain of structures that eventually
leads to a ffuunnccttiioonn pointer that is controllable and triggerable by the
attacker. If we construct fake versions of these structures and
reference them during the overflow, we can control the ffuunnccttiioonn
pointer. For shmid\_kernel, the chain of structures that leads to a
controllable mmap ffuunnccttiioonn pointer looks like::

``` {style=="text-align: left;"}
struct shmid_kernel {

.shm_file == struct file {
.f_op == struct file_operations == {

.mmap == ATTACKER_ADDRESS
}

}
}

It's important to note that shmid_kernel is not the only eligible structure for
SLUB overflows. For vulnerabilities where we can control the size of the
allocation, shmid_kernel works great since we can ensure that our allocation is
sized properly to be co-located in the same cache as shmid_kernel. However, for
vulnerabilities where the size of the overflowed allocation is not in our control, it
is necessary to find an alternate structure allocated in the same cache that
meets the desired properties.

SSLLUUBB  FFeenngg  SShhuuii

As is common with exploiting overflows in dynamic memory allocators, the state
of the cache and slab is critical to exploitation. If we cannot reliably control the
state of the slab during our allocations and overflow, we will likely crash the
target machine.

A slab state that is fragmented and contains many holes is not ideal for
exploitation since we might overflow into an unused slot or an allocation other
than our target one:

Linux Kernel CAN SLUB Overflow | Jon Oberheide https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub...

5 sur 8 09/05/2019 à 19:53



The easiest way to massage the SLUB into a more friendly state is to force a
large number of shmid_kernel allocations, reducing the potential for
fragmentation and increasing the likelihood that our overflowing allocation will
be adjacent to a shmid_kernel allocation:

To further improve reliability, we can use /proc/slabinfo if it is available and
accessible to an unprivileged user, to ensure we're dealing with a fresh non-
fragmented slab and achieve allocations of our shmid_kernel structure adjacent
to our overflowed structure.

TThhee  EExxppllooiitt

While we've already covered much of the necessary material to exploit a generic
SLUB overflow, there are some aspects of the CAN BCM vulnerability that make
it interesting and are worth further discussion.

First, the allocation pattern of the CAN BCM module gives us some desirable
properties for smashing the SLUB. We control the kmalloc with a 16-byte
granularity allowing us to place our allocation in the SLUB cache of our choosing.
As described above, we'll specify a 96-byte allocation so that it will be allocated
from the kmalloc-96 cache, the same cache used to allocate shmid_kernel
structures. The allocation can also be made in its own discrete stage before the
overwrite which allows us to be a bit more conservative in ensuring the proper
layout of our SLUB cache.

To exploit the vulnerability, we first create a BCM RX op with a crafted nframes
value to trigger the integer overflow during the kmalloc. On the second call to
update the existing RX op, we bypass the E2BIG check since the stored nframes
in the op is large, yet has an insufficiently sized allocation associated with it. We
then have a controlled write into the adjacent shmid_kernel object in the 96-byte
SLUB cache:

Linux Kernel CAN SLUB Overflow | Jon Oberheide https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub...

6 sur 8 09/05/2019 à 19:53



However, while we control the length of the SLUB overwrite via a
memcpy_fromiovec operation, there exists a memset operation that directly
follows:

    /* update can_frames content */
    err = memcpy_fromiovec((u8 *)op->frames,
                           msg->msg_iov,
                           msg_head->nframes * CFSIZ);
    if (err < 0)
        return err;

    /* clear last_frames to indicate 'nothing received' */
    memset(op->last_frames, 0, msg_head->nframes * CFSIZ);

This memset which zeros out last_frames, highly likely to be an adjacent
allocation, with the same malformed length, effectively nullifying our shmid
smash:

To work around this, we take advantage of the fact that copy_from_user can
perform partial writes on x86 and trigger an EFAULT by setting up a truncated
copy for the memcpy_fromiovec operation, allowing us to smash the necessary
amount of memory and then pop out and return early before the memset
operation occurs:

Linux Kernel CAN SLUB Overflow | Jon Oberheide https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub...

7 sur 8 09/05/2019 à 19:53



We then perform a dry-run and detect the shmid smash via an EIDRM errno from
shmat() caused by an invalid ipc_perm sequence number. Once we're sure we
have a shmid_kernel under our control we re-smash it with the malformed
version. By invoking invoking shmat(2) on the smashed shmid, we cause the
kernel to dereference the mmap function pointer which is now under our
control, as seen in ipc/shm.c:

static int shm_mmap(struct file *file, struct vm_area_struct* vma)
{
    ...
    ret = sfd->file->f_op->mmap(sfd->file, vma);
    if (ret != 0)
        return ret;
    ...
}

Which redirects control flow to our credential modifying function mapped in
user space, escalating our privileges:

int __attribute__((regparm(3)))
kernel_code(struct file *file, void *vma)
{
    commit_creds(prepare_kernel_cred(0));
    return -1;
}

The full exploit is available. It is targeted for 32-bit Ubuntu Lucid 10.04
(2.6.32-21-generic), but ports easily to other vulnerable kernels/distros.

Posted Fri 10 September 2010 by jono

Copyright © 2018 - Jon Oberheide

Linux Kernel CAN SLUB Overflow | Jon Oberheide https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub...

8 sur 8 09/05/2019 à 19:53


